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I ntroduction

One innovative technologthat is supportinghe ‘digital transformatiohis the deepneural-network
(DNN; Hinton et al. 2006). fie DNN can bedistinguished from the more common neural networks
by the larger number ofidden layers usedo adieve sufficient pattern recognitiorability. This
multi-layer, pattern recognition,architecture is powerful and ideally suited to the data rich
environment that exists at the heart of the oil and gas industry.

Elastic impedance analyseof both well andseismic data havéong beenusedfor determining
lithological and pore fluid propertieim subsurfacedata Whilst well data has the benefit of directly
measuringparameters such as Vps and Rho within the vicinity of the wellbore equivalent
seismically derived paraneters,away from the wellboreare determined using amplitugtersus-
offset (AVO) techniques.Pattern recognitiorof elastic impedances both instances involves
processing lamy volumes of data to classify each pattern specific to indivifiaegies. Such
classification problems ardeally suited tdhe application o& DNN.

In this study, we have applied a DNN, using ssapervised learning (SSL) foll@a by the selfrain

process Chapelle et al. 2006), to wedind seismic databtainedfrom a UK North Seaoil discovery
in order to automaticallglassifyfacies This algorithmtrains itself usingvell data, beforepplying

itself to equivalent seismidatg allowing hydrocarbons to be volumetrically quantifiecross the
discovery

Method

Although tere are several SShethods,such as the generative moadeld graptasedmodel, we
adapted the #etrain method.The selftrain methodcomnbines both labelled and unlabelleldta
during the training phase so ttaassified da, which has higheprobabilities farger than 98% in
this study) becomegpart ofthetraining datasein the next iteration.This approach is ideal when the
availability of labelleddata is limited by practical constrainfthe SSLbasedDNN scheme we have
implemented issummarisedin Fig.1. The training dataset issubsequentlycrossvalidated by
confusion matrices.
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Figure 1 The SS.-DNN architecture used in this study. (a) The details of DNN where X is the input
data, Z is the output data from the previous layer, Y is the output, T is the actual label of Y, wis the

weight, b is the bias, E( or d4) is the misfit between Y and T; and 4E is the gradient of E. The

activators in the hidden- and the output-layer are ReLU and softmax. The cost function is the cross
entropy. The back propagation was carried out by stochastic gradient descent by choosing the mini-
batch size and learning rate through an exhaustive-grid-search. (b) The processing flow of S3_ where
the cyan rectangle corresponds to the schematic in (a).
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Results and Discussion

Output dassified facies can be visualisedising dastic impedance cross-plo{fig. 2a) after the
application ofthe SSL-DNN to a single training wellThe resultingdecisionboundaries arepecific
only tothe immediate data provided rather than preconceived rock physics treridgh&ovalidate
the SSLDNN conceptwe upscaled thelassificationmodel to equivalenseismicdata(Fig. 2b) in
order to compare the learning from the training well with two blind wBkspite the uniqueness of
the decision boundariesobtained from the singl well, the upscalectlassified facies show an
excellentmatch with the two blind welldn order to use SSL more regionalyith different facies
and depths of buriab consider, additional training wells would be requit@ther SSL methods may
also prove useful ithis regard inclushg the generative model or ®alled activdearning apprach
to account for noissensitivity, input data types and seismic inversion accuracy
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Figure 2 (a) Classification of elastic impedances after the application of SS_L-DNN. Thefilled circles
are the training data, empty circlestest data and the crosses are the ground truth for the test data. (b)
Seismic upscaling using the model shown in (a). Four different colours correspond to the classified
facies shown in the legend. The Vshale logs provide correlation with upscaled facies.

Conclusions

We presented the application of sesupervisedleeplearning using the self-train methoddassify
elasticimpedances frorhoth welland seismic field data from the UK Noea.The results indicate
that the methods used have the potential to accurdétdyminefacies anchydrocarbon distributions
at a field scale. This technology could, given sufficient training data and further developroeicle
a paradigm shift in QI geoscience capability.
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