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ABSTRACT
Blended acquisition along with efficient spatial sampling is capable of providing
high-quality seismic data in a cost-effective and productive manner. While deblend-
ing and data reconstruction conventionally accompany this way of data acquisition,
the recorded data can be processed directly to estimate subsurface properties. We es-
tablish a workflow to design survey parameters that account for the source blending
as well as the spatial sampling of sources and detectors. The proposed method in-
volves an iterative scheme to derive the survey design leading to optimum reflectivity
and velocity estimation via joint migration inversion. In the workflow, we extend the
standard implementation of joint migration inversion to cope with the data acquired
in a blended fashion along with irregular detector and source geometries. This makes
a direct estimation of reflectivity and velocity models feasible without the need of
deblending or data reconstruction. During the iterations, the errors in reflectivity and
velocity estimates are used to update the survey parameters by integrating a genetic
algorithm and a convolutional neural network. Bio-inspired operators enable the
simultaneous update of the blending and sampling operators. To relate the choice
of survey parameters to the performance of joint migration inversion, we utilize a
convolutional neural network. The applied network architecture discards suboptimal
solutions among newly generated ones. Conversely, it carries optimal ones to the sub-
sequent step, which improves the efficiency of the proposed approach. The resultant
acquisition scenario yields a notable enhancement in both reflectivity and velocity
estimation attributable to the choice of survey parameters.

Key words: Acquisition, Optimization, Reflectivity, Velocity, Genetic algorithm,
Neural network.

INTRODUCTION

During the last decade, blended acquisition has realized the in-
dustry’s ambition towards efficient and cost-effective seismic
operations that still attain the required data quality (Beasley,
Ronald and Jiang 1998; Berkhout 2008; Bouska 2010; Abma
et al. 2012; Nakayama et al. 2015). Furthermore, the en-
hancement in the survey productivity contributes to minimiz-
ing health, safety and environment (HSE) exposure in the field.

∗E-mail: s.nakayama@tudelft.nl; shotaro.nakayama@inpex.co.jp

In general and where applicable, separation of overlapping
source-wavefields comes to the initial step to process blended
data rather than processing them directly (Moore et al. 2008;
Lin and Herrmann 2009; Mahdad, Doulgeris and Blacquière
2011; Kontakis and Verschuur 2015). Deblended data subse-
quently enable us to use standard processing and interpreta-
tion practices.

While conventional seismic surveys aim ideally at regu-
lar and dense sampling to satisfy the Shannon–Nyquist the-
orem, further easing the spatial-sampling requirements con-
tributes to the business aspect, and reduces the environmental

1C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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footprint. For example, compressive sensing has recently
been successfully implemented in the industry (Hennenfent
and Herrmann 2008; Herrmann 2010; Mosher, Kaplan and
Janiszewski 2012). This technique allows for a non-uniform
spatial sampling along with fewer measurements in the field.
Subsequent signal recovery from compressive measurements is
generally posed as an underdetermined inversion problem. To
solve it, compressive sensing exploits the sparsity of signals in
a proper transform domain, allowing a small number of coef-
ficients to sufficiently represent the signals that one attempts
to obtain. The improvement in spatial-sampling efficiency,
coupled with optimal data recovery, potentially enables us
to design seismic surveys that satisfy demanding geophysical
objectives at an affordable cost.

An alternative approach to handle blended data is to
apply imaging without deblending (Tang and Biondi 2009;
Verschuur and Berkhout 2011; Berkhout, Blacquière and Ver-
schuur 2012; Chen et al. 2015; Caporal, Blacquière and Davy-
denko 2018). Instead of directly migrating blended data, these
studies utilized a least-squares migration (LSM) scheme. The
formulation of the imaging problem as a least-squares prob-
lem enables LSM to iteratively minimize the misfit between
the real and the modelled blended data, which consequently
produces the subsurface reflectivity without the separation of
blended wavefields. Insufficient spatial sampling in the acqui-
sition often induces aliasing noise in migration. A common
practice to address this issue is to apply data reconstruction
prior to imaging, yet alternatively, LSM can be used for this
purpose. Nemeth, Wu and Schuster (1999) showed that the
technique is capable of suppressing migration artefacts and
producing images with balanced amplitudes and high reso-
lution even when the input data suffer from coarse and/or
irregular spatial sampling. Full-waveform inversion (FWI) is
capable of using acquired seismic data to retrieve the sub-
surface properties that determine the seismic wavefield in an
iterative manner (Tarantola 1984), that is, blended records
can be directly used in FWI, which attempts to minimize the
misfit between observed data and forward-modelled blended
data (Florez, Mantilla and Ramirez 2016). Due to the heavy
computational burden in FWI, the concept of blending is con-
sidered as one of the crucial strategies to improve its efficiency,
even when the acquired data were not blended. It combines
individual shot records into supershot records which are then
simulated during waveform forward modelling and the resid-
uals are back-propagated for gradient calculation. This im-
plementation ideally accelerates the inversion process with
a factor of the number of shots assembled in the supershot
record.

A fundamental drawback in estimating reflectivity or ve-
locity directly from blended data is the crosstalk noise that
arises from the interference of overlapping wavefields from
multiple sources. One way to minimize this issue is to ap-
ply encoding to the sources to be blended both for LSM and
FWI, see, for example, the studies by Krebs et al. (2009),
Boonyasiriwat and Schuster (2010), Ben-Hadj-Ali, Operto
and Virieux (2011), Jeong et al. (2013) and Huang and Schus-
ter (2012). In these studies, different encoding schemes were
implemented, such as the use of random time shifts, frequency
scheduling, amplitude encoding, selection of source locations
used for the inversion or combinations thereof. However, the
inadequacy in spatial sampling still deteriorates inversion re-
sults (Ben-Hadj-Ali et al. 2011; Aldawood, Hoteit and Alkhal-
ifah 2014). Boonyasiriwat and Schuster (2010) applied a ran-
dom distribution of sources to minimize the crosstalk noise in
FWI. Wang et al. (2014) confirmed the improvement of FWI
results with irregularly decimated data compared to regularly
decimated data. These studies infer that designing a survey
incorporating irregularity potentially leads to effective reflec-
tivity and/or velocity estimation when one aims to directly
process blended and irregularly sampled data.

This paper, hence, introduces a survey-design workflow
that iteratively optimizes the survey parameters related to both
blending and spatial sampling of detectors and sources, lead-
ing to satisfactory reflectivity and velocity estimation via joint
migration inversion (JMI). JMI is a method that iteratively es-
timates a high-resolution subsurface reflectivity model as well
as a migration velocity model by estimating two independent
operators responsible for reflection and propagation (Staal
and Verschuur 2013; Berkhout 2014b). We extend the stan-
dard JMI scheme to handle blended and irregularly sampled
data, which is then incorporated into the proposed survey-
design scheme. The workflow utilizes errors in reflectivity
and velocity estimates from the JMI process for given sur-
vey design. They are assigned to its objective function and
are subsequently input into a survey-parameter update sys-
tem based on the integration of a genetic algorithm (GA) and
a convolutional neural network (CNN). Stochastic operators
in the GA that imitate the theory of natural evolution allow
for simultaneous update of the blending and sampling opera-
tors towards optimum JMI results. The implementation of the
CNN aids the population management in our GA by select-
ing optimum designs while discarding suboptimal ones among
newly generated solutions from genetic operators. Only clas-
sified designs in the CNN are fed into the subsequent step
that involves the evaluation of the objective function through
JMI. Since JMI is computationally expensive, this use of an

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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antecedent classifier effectively prevents wasteful computa-
tion incurred to suboptimal solutions, which consequently
enhances the performance of the overall survey-design scheme.
We also incorporate the dispersed source array (DSA) concept
(Berkhout 2012a) in the proposed survey-design scheme. This
technique utilizes a plurality of source types, each having a
dedicated narrow bandwidth. This permits each narrowband
source to be independently deployed to satisfy its own spatial-
sampling criteria determined by its frequency range. Caporal
et al. (2018) extensively discussed its advantages in terms of
geophysical, operational and environmental perspectives.

In our acquisition design, the aim is to find the opti-
mum blending and spatial-sampling schemes, contributing to
efficiency, economics and HSE, that satisfy the geophysical
objectives without relying on an expensive survey acquired in
an unblended and regularly well-sampled fashion. Our main
objective in this paper is twofold: (1) to explore the effect of
the choice of survey parameters on the performance of JMI
and (2) to illustrate the proposed survey-design workflow.
Numerical examples provide the results of our approach that
aims to enhance the JMI results by simultaneously updating
different survey parameters involved in DSA acquisition.

S U R V E Y - D E S I G N F R A M E W O R K

Using the matrix notation proposed by Berkhout (1982), the
monochromatic expression of seismic data is given by

P(zd; zs) = D(zd)X(zd, zs)S(zs). (1)

Each column and row of the data matrix, P(zd; zs), cor-
respond to a common shot record and a common detector
gather, respectively, each being measured by detectors at depth
zd and sources at depth zs . The entire seismic data volume can
be stored by the collection of P(zd; zs) for each frequency com-
ponent. Matrices D(zd) and S(zs) are the detector and source
matrix, respectively. The columns in D(zd) represent the spa-
tial detector locations whereas the rows in S(zs) are the spatial
source locations. Matrix X(zd, zs) is the Earth transfer oper-
ator containing the subsurface response including propaga-
tion effects and (multiple) reflections. The elements of each
matrix contain the amplitude and phase information for one
frequency component. In the following, we assume the de-
tectors and sources to be located at the same depth, that is,
zs = zd = z0. According to Berkhout (2014a), X(z0, z0) can be
approximated by

X(z0, z0) =
Md∑

m=1

W
−

−(z0; zm)R∪(zm)W
−

+(zm; z0), (2)

with

W
−

−(z0; zm) = W−(z0; z1)
m−1∏
n=1

[
I + δT−(zn)

]
W−(zn; zn+1)

W
−

+(zm; z0) = W+(zm; zm−1)
1∏

n=m−1

[
I + δT+(zn)

]
W+(zn; zn−1),

(3)

where W−(zm−1; zm) and W+(zm; zm−1) account for the upward
and downward propagation, respectively, between depth lev-
els zm−1 and zm. They are transposed versions of each other.
Parameter Md indicates the maximum number of depth levels.
Matrix R∪(zm) is the down–up reflectivity operator responsi-
ble for scattering at depth, zm. The terms [I + δT∓(zm)] are the
upward and downward transmission operators at depth, zm,
respectively. Hence, matrices W

−
∓ include both propagation

and transmission effects. According to Berkhout (2014a), the
assumption of angle- and frequency-independent reflectivity
along with negligible mode conversion allows for the follow-
ing approximations to be used:

R∪(zm) ≈ −R∩(zm)
δT(zm)∓ ≈ ∓R(zm), (4)

where R∩(zm) is the up–down reflectivity operator. For nota-
tional simplicity, the depth index and the superscripts indi-
cating the directions of wave propagation and reflection are
hereinafter omitted.

As for the design of D and S, our primary focus is on
the effect of spatial sampling. We, therefore, assume the
application of a point detector and a point source, each
having a delta-functioned response. This simply makes all
the non-zero elements of D and S one. In addition, the
distributions of zero and non-zero elements in D and S
depict the spatial locations of the detectors and sources,
respectively. In an ideal acquisition geometry, that is, carpet
detectors and sources, D and S become identity matrices. In
this case, P equals X, and, consequently, optimum retrievals
of R and W from P are expectantly attainable. However, in
practice, operational and economic constraints lead to im-
perfections in the spatial sampling, which means that D and
S are no longer identity matrices. This eventually results in
the erroneous estimation of R and W. Therefore, we need
to properly design survey parameters to obtain reliable esti-
mates of R and W, which is targeted in our acquisition design
strategy.

Berkhout (2008) proposed the theoretical framework of
source blending by introducing a blending matrix, �. Based

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
Engineers., Geophysical Prospecting, 1–20
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Figure 1 The survey-design workflow. The iterative scheme aims to output the blending and sampling operators that can provide the optimum
deblending and reconstruction quality. The workflow starts with R and W. The forward process in the blue-filled step derives P′ using FWMod.
The inverse process in the red box then estimates 〈R〉 and 〈W〉 from P′ using JMI. The procedure stops if the misfits between R and 〈R〉 as well
as between W and 〈W〉 are sufficiently small or the maximum number of iterations is reached. If not, D, S and � are updated in the green box
and subsequently used in the next iteration.

on equation (1), the forward model of blended data, P′, can
be expressed as

P′ = P� = DXS�. (5)

Each column and row of � represent a blended experiment
and a source location, respectively. One column of � con-
tains the blending code of the sources involved in one blended
experiment, and element i, j for frequency ω is given by

γi, j = ai, j (ω) exp
[− jφi, j (ω)

]
, (6)

where ai, j and φi, j are the amplitude term and phase term cor-
responding to the i th source of the j th blended experiment.
Any type of source signature can be encoded in equation (6).
In the case of simple time delays τi, j , the corresponding phase
shift can be expressed as φi, j = ωτi, j . Our forward-modelling
scheme is also applicable to the dispersed source array (DSA)
concept, where a plurality of narrowband sources with dif-
ferent centre frequencies accounts for the total blended wave-
field. Being formulated in the frequency domain, equations (2)
and (5) imply that starting with R and W, various blending
and spatial-sampling schemes can be modelled by designing
D, S and �.

Figure 1 illustrates the proposed survey-design workflow
to find optimum D, S and �, while we assume R and W,
which contain all relevant information of the subsurface, to
be available as prior information. Such information is avail-
able, for example, at the development or production stage, or
when data from a previous acquisition and appropriate well
logs are available. It means that the approach is subsurface

dependent. The blue-filled step in Fig. 1 corresponds to the for-
ward process to generate blended data P′ from R and W along
with the current survey parameters, D, S and �. This forward-
modelling engine is called full-wavefield modelling (FWMod)
(Berkhout 2014a). In FWMod, scattering is assumed to take
place at each depth level via the reflection operator R, whereas
in between each level the wavefields propagate via the propa-
gation operator W.

The red-filled step is the inverse process, that is, joint mi-
gration inversion (JMI), to obtain 〈R〉 and 〈W〉 from P′, where
the angled brackets 〈 and 〉 indicate estimation. JMI iteratively
derives both reflectivity and velocity models using FWMod as
its forward engine (Berkhout 2014b).Therefore, in this study,
the same FWMod engine is used for both blue-filled and red-
filled steps in Fig. 1. It should be noted that proving the viabil-
ity of the JMI algorithm is not the objective of this study. Our
main focus is on exploring and understanding the effect of ac-
quisition design on the performance of JMI. Hence, we utilize
this idealized condition in which the choice of survey param-
eters can be a major factor determining the quality of esti-
mated subsurface properties. The implementation of FWMod
and JMI in our study is based on Staal and Verschuur (2013)
and Staal (2015), which updates and estimates one single re-
flectivity parameter per grid point in R and one single slow-
ness parameter per grid point in W. We consider the underly-
ing assumptions of acoustic wavefield behaviour along with
angle- and frequency-independent reflectivity made in this im-
plementation to be valid in this study. Staal (2015) suggested
the JMI framework can be extended to blended acquisition.
In this study, we formulate the objective function in JMI as

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
Engineers., Geophysical Prospecting, 1–20
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JJMI =
∑

ω

∥∥�P′∥∥2

2 =
∑

ω

∥∥P′ − 〈
P′〉∥∥2

2. (7)

Here, we feed P′ directly into the JMI process. We per-
form JMI on the spatially regular and well-sampled detector
grid determined by X. Each blended and irregularly sampled
shot record can be stored on this grid, yet the information is
only present at active detector locations defined by D. Note
that this choice means that our solution is spatially irreg-
ular in the sense that not all grid points contain detectors.
However, all detectors coincide with grid points. By taking
the grid size in X sufficiently small, the consequences of this
choice can be largely mitigated. Together with the current
reflectivity and slowness estimates, FWMod simulates each
blended shot record based on the given S and � at the reg-
ular, well-sampled detector grid. By selecting traces from the
modelled shot records according to D, 〈P′〉 can be obtained.
This subsequently allows us to compute the residual between
P′ and 〈P′〉 as described in equation (7). The JMI proce-
dure iteratively minimizes the data misfit via a gradient de-
scent scheme. At each iteration, reflectivity and propagation
operators are updated by cross-correlating wavefields, that
is, the back-propagated residual wavefield and the forward-
modelled wavefield, in the opposite directions and in the same
direction, respectively (Verschuur, Staal and Berkhout 2016).
In our case, empty traces corresponding to detector locations
that are not present in D are also used in the back-propagation
in JMI along with the forward-propagation of blended source-
wavefield determined by S and �.

The overall acquisition-design scheme attempts to mini-
mize the residue between R and 〈R〉 as well as W and 〈W〉:

j =
⎡
⎣ JR

JW

⎤
⎦ =

⎡
⎢⎣

∑
ω

∥∥∥�R̂
∥∥∥2

2∑
ω

∥∥∥�Ŵ
∥∥∥2

2

⎤
⎥⎦ =

⎡
⎢⎣

∑
ω

∥∥∥R̂ −
〈
R̂

〉∥∥∥2

2∑
ω

∥∥∥Ŵ −
〈
Ŵ

〉∥∥∥2

2

⎤
⎥⎦, (8)

where j is the objective-function vector containing errors in
R̂ and Ŵ. The term Ŵ represents a scalar velocity field in
the space-depth domain derived from a propagation operator,
and R̂ is a scalar reflectivity field converted to the space–time
domain such that any undesired effects from errors in 〈W〉 on
JR can be avoided.

The green-filled step in Fig. 1 updates the blending and
sampling operators that are subsequently carried into the next
iteration. The procedure stops once the objective function is
sufficiently small, or the maximum number of iterations is
exceeded. Therefore, our approach iteratively computes the
acquisition design parameters D, S and � that minimize the
objective-function vector, meaning that optimum reflectivity

and velocity estimates can be obtained. With the proposed
survey-design scheme, the variation of the JMI results is as-
sumed to be attributable fundamentally to the choice of sur-
vey parameters.

S U R V E Y - P A R A M E T E R U P D A T E

Designing survey parameters in an irregular fashion requires
extensive efforts as it inherently makes the parameter selection
problem huge, unlike a conventional survey that generally em-
ploys regularly positioned detectors and sources along with a
spatially uniform source signature. To manage the large prob-
lem space, we presented a survey-design scheme utilizing a ge-
netic algorithm (GA) (Nakayama et al. 2019). Together with
a constraint on the parameter space, a so-called repeated en-
coding sequence, this scheme aimed at deriving survey param-
eters allowing for optimum deblending and data reconstruc-
tion quality. In this study, we extend the approach to obtain
blending and sampling operators that optimize joint migration
inversion (JMI) results. Owing to its ability to manage opti-
mization problems with non-convexity, non-differentiability,
the existence of many local minima and large problem space,
GAs have successfully been implemented in various applica-
tion domains (Monteagudo and Santos 2015; Perez-Liebana
et al. 2015; Bak, Rask and Risi 2016; Davies et al. 2016;
Scirea et al. 2016). However, a standard GA inherently and
inevitably needs to evaluate all the solutions to obtain their
objective-function values. The evaluation of suboptimal solu-
tions, that is, those that do not contribute to the next genera-
tion, potentially makes GAs computationally expensive.

A number of studies have shown the integration of
metaheuristics and neural networks. In spite of recent suc-
cesses in neural networks (Hinton et al. 2012; Leung et al.

2014; Schmidhuber 2015), advanced architectures have be-
come deeper and more complex. Designing network archi-
tectures is still a challenging task due to the existence of nu-
merous parameters. In this respect, a typical approach is to
explore and design efficient network architectures using GAs
(Ahmadizar et al. 2015; Xie and Yuille 2017). The other way
around, Kramer (2016) outlined ways to support and accel-
erate evolutionary algorithms with the learning process. In
various engineering domains, determining the objective func-
tion of a single candidate takes a long time to execute due
to the use of finite element analysis and computational fluid
dynamics simulations. To deal with such computationally ex-
pensive optimization problems, a viable option is to use a
model that can approximate the outcomes from the fitness
evaluations at relatively low computation cost and to limit the

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
Engineers., Geophysical Prospecting, 1–20
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number of real evaluations (Tenne and Goh 2010). Kramer
(2017) illustrated a workflow to embed a supervised learn-
ing model into a GA where the real fitness evaluations are
performed only to the solutions that fulfil criterion in the pre-
dictive model. This way of integration is easily recognizable in
different engineering applications (Marcelin 2004; Sreekanth
and Datta 2011; Ibaraki, Tomita and Sugimoto 2015; Sato
and Fujita 2016; Sakaguchi et al. 2018). Exploiting a strat-
egy from these engineering problems is certainly valuable to
our survey-design problem because a large computation ef-
fort to calculate the objective function inherently restricts the
number of fitness evaluations in our case. Hence, this study
implements a convolutional neural network (CNN), which
aims primarily to aid the population management in our GA
and subsequently reach a satisfactory solution with affordable
turn-around time.

As described in Algorithm 1, the proposed approach up-
dates a set of parameter vectors representing D, S and �. The
vectors for the pth individual solution in the gth generation
are given by

cg,p = [
dg,p, sg,p, γ g,p

]T
, (9)

with

dg,p ∈ {0, 1}ld , sg,p ∈ {0, 1}ls , γ g,p ∈ {0, 1}ls×lg . (10)

Here, dg,p and sg,p are binary vectors indicating detector
sampling and source sampling operators for the pth individual
solution in the gth generation, each of which can be expressed
as

dg,p = diag
[
DT

g,pDg,p

]
(11)

and

sg,p = diag
[
Sg,pST

g,p

]
. (12)

Their dimensions, ld and ls, are equal to the number of
detectors and sources in X. As described previously, the as-
sumption of point detectors and point sources allows distri-
butions of zero and non-zero elements to explicitly indicate
their spatial coordinates. With the use of delta-functioned de-
tector and source responses, D and S can be simply expressed
by binary vectors using equations (11) and (12). Vector γ

is a binary vector representing the blending operator for the
pth individual solution in the gth generation. Parameter lg
equals the required bit length to parametrize a given blending
code per single source. In our case, a binary string for a given
source with a length of lg accounts for the amplitude term
and the phase term given by equation (6). Since the spectral
properties of the dispersed source array (DSA) sources are

predetermined, the information on the source type is included
in the frequency-dependent amplitude term.

Let ng and np represent the numbers of generations and
populations. The population in the gth generation, cg, consists
of a set of parameter vectors, having np individuals as

cg =
[
cg,1, cg,2, . . . , cg,np

]T
. (13)

The first step is to randomly generate the initial popula-
tion, c0, across a given problem space:

c0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

c0,1

c0,2

...

c0,np

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

[
d0,1, s0,1, γ 0,1

]T

[
d0,2, s0,2, γ 0,2

]T

...[
d0,np

, s0,np
, γ 0,np

]T

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

Each parameter vector in the initial population, c0,p, then
goes to the forward process (going to P′

0,p from R and W along
with D0,p, S0,p and �0,p). The inverse process subsequently
follows (going to 〈R0,p〉 and 〈W0,p〉 from P′

0,p). Using equation
(8), a set of objective functions for the initial population, j0
can be obtained by

j0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
JR 0,1, JW 0,1

]T

[
JR 0,2, JW 0,2

]T

...

s
[

JR 0,np
, JW 0,np

]T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[∑
ω

∥∥∥�R̂0,1

∥∥∥2

2
,
∑

ω

∥∥∥�Ŵ0,1

∥∥∥2

2

]T

[∑
ω

∥∥∥�R̂0,2

∥∥∥2

2
,
∑

ω

∥∥∥�Ŵ0,2

∥∥∥2

2

]T

...[∑
ω

∥∥∥�R̂0,np

∥∥∥2

2
,
∑

ω

∥∥∥�Ŵ0,np

∥∥∥2

2

]T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

Using c0 and j0, we train the CNN. As shown in Fig. 2,
the neural network architecture in this study consists of layers
that are commonly used in CNN architectures: three pairs
of 2D convolutional layers (LeCun et al. 1998) and ReLU
(rectified linear unit) layers (Hahnloser et al. 2000), followed
by a fully connected and softmax layer (Bishop 2006). In a
convolutional layer, we apply zero padding and a stride of one
along the height and width dimensions. The channel size and
kernel size of each layer are given in Fig. 2. In this study, we
select square shape kernels. Instead of down-sampling feature
maps within the CNN via a pooling layer, we first arrange

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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Algorithm 1. Survey-design workflow

Input: R and W
Output: c0:ng (=

[
c0, . . . , cng

]T ) and j0:ng (=
[
j0, . . . , jng

]T )
1: Set ng and np (= nc + nm)
2: Generate initial population, c0 (=

[
c0,1, . . . , c0,np

]T )
3: for g = 0 → ng do
4: if g = 0 then
5: c0:g−1 = ∅ and j0:g−1 = ∅
6: else
7: Compute selection probability of each solution in cg−1

8: for p = 1 → nc/2 do
9: while stopping criterion not met do

10: Select two parental solutions from c0:g−1 using roulette wheel selection
11: Perform crossover operation to generate cg,2p−1 and cg,2p

12: Evaluate cg,2p−1 and cg,2p with the CNN trained from g − 1th generation
13: end while
14: end for
15: for p = nc + 1 → np do
16: while stopping criterion not met do
17: Select one parental solution from c0:g−1 using roulette wheel selection
18: Perform mutation operation to generate cg,p

19: Evaluate cg,p with the CNN trained from g − 1th generation
20: end while
21: end for
22: end if
23: for p = 1 → np do
24: Generate Dg,p, Sg,p and Γg,p from cg,p (=

[
dg,p, sg,p,γg,p

]T )
25: Generate P′

g,p from R and W along with Dg,p, Sg,p and Γg,p via FWMod
26: Estimate 〈R〉g,p and 〈W〉g,p from P′

g,p via JMI
27: Compute reflectivity and velocity errors using equation 8
28: end for
29: Update c0:g (= [c0:g−1, cg]

T ) and j0:g (= [j0:g−1, jg]
T )

30: Apply fast non-dominated sort to c0:g based on j0:g

31: Compute crowding distances of each non-domination rank
32: Train the CNN using c0:g and j0:g

33: Sort c0:g by the elitism based primarily on non-domination rank and secondary on
crowding distance to derive the fittest population, cg

34: end for

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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Preconditioning
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ReLU

Conv(10,7)

ReLU
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Conv(12,3)

ReLU

Genetic
Operators

CNNs

Criterion

Evaluation
(JMI)

Yes

No

D S Γ

Figure 2 The scheme to update survey parameters. Genetic operators
update D, S and � simultaneously. Newly generated parameters then
go to the CNN. Survey parameters are regenerated till the classifica-
tion result meets the criterion (the expected residue between R and
〈R〉 as well as between W and 〈W〉). Only selected solutions go to the
actual evaluation that involves JMI. Designs having smaller objective-
function values form a new generation. Additionally, the evaluation
results are used to train the CNN applied to the classification step
in the next iteration. The diagram at the right depicts the applied
network architecture. Conv means a convolutional layer with two
numbers indicating the channel size and the kernel size, respectively.
ReLU indicates a rectified linear unit layer and FC a fully connected
layer.

blending and sampling operators into a 3D matrix, Y, its size
being cw × ch × N, where cw and ch are the width and the
height of Y. They equal the numbers of columns and rows
in X, respectively. N equates to the number of DSA source
types. For the pth individual in the initial population, the
nthth feature map of Y is given by

Y(n)
0,p = λn

∣∣L[
DT

0,pD0,p

(
kτ T

0,p

)
Sn,0,pST

n,0,p

]∣∣, (16)

with

k ∈ {1}ch , τ 0,p =
[
τ1,0,p, . . . , τch,0,p

]T
. (17)

Matrix Sn contains the spatial locations of the nth source
type of the DSA acquisition, λn is a user-defined weight pa-
rameter and vector τ contains information on the activation
time applied to each source. Matrix L is the forward trans-
form operator to the wavenumber domain. Since we assume
delta-functioned detector and source responses, Y becomes
frequency independent, leading to a reduction in the data size.
Although a deeper and more complex network presumably
enables us to directly input D, S and � into the CNN, for
now this mathematical operation helps to achieve reasonable

classification results with an affordable computation time. Af-
ter the initial iteration, the CNN is embedded into our GA.
As mentioned, its task is to exclude individual solutions that
are likely to not satisfy the predetermined threshold criterion
for proceeding to the next generation.

To ’minimize the vectorized objective function in equa-
tion (8), we utilize non-dominated sorting and crowding dis-
tance approaches (Deb et al. 2002). Algorithm 2 illustrates the
procedure to assess the individual solution. It starts with find-
ing the first-rank solutions. This involves a calculation of two
entities: (1) domination count qg,p (the number of solutions
dominating a given solution, cg,p) and (2) a set of individu-
als, q0

g,p, being dominated by cg,p. For all solutions with rank
one, their domination counts become zero. For each member
dominated by these solutions, its domination count is reduced
by one. Any members having a zero domination count obtain
rank two. This procedure is repeated until the ranks of all
solutions are identified.

We then derive the selection probability of each solution
according to its rank as

G(cg,p) = rg,p/

np∑
j=1

rg, j , (18)

with

rg,p = exp(−βRankg,p/max
j∈np

Rankg, j ), (19)

where β is a scalar controlling the diversity of the selection.
The new population is formed by elitism replacement based
primarily on the domination rank. Additionally, to discrim-
inate solutions with the same rank, we analyse their crowd-
ing distances. An infinite crowding distance is given to two
solutions within the tth rank having the maximum and the
minimum value of a given objective function (in our case ei-
ther JR or JW). Crowding distance values for other solutions
are then calculated by the sum of individual distance values
corresponding to each objective function as

dg, j =
∣∣∣∣∣∣
JR(cg, j+1) − JR(cg, j−1)

max
j∈nt

JR g, j − min
j∈nt

JR g, j

∣∣∣∣∣∣

+
∣∣∣∣∣∣
JW(cg, j+1) − JW(cg, j−1)

max
j∈nt

JW g, j − min
j∈nt

JW g, j

∣∣∣∣∣∣, (20)

with

j ∈ [2, . . . , nt − 1], cg, j ∈ ft, (21)

where ft is a set of solutions belonging to the tth rank and nt

is the number of solutions in ft. This ensures the diversity of

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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Algorithm 2. Fast non-dominated sort

Input: c0:g(= [c0, . . . , cg]
T ) and j0:g(= [j0, . . . , jg]

T )
Output: f1:t(= [f1, . . . , ft]

T )
1: for each ck,h ∈ c0:g do
2: q0

k,h = ∅ and qk,h = 0
3: for each ci,j(�= ck,h) ∈ c0:g do
4: if ck,h ≺ ci,j then
5: q0

k,h = q0
k,h ∪ ci,j

6: else
7: qk,h = qk,h + 1
8:

Rank

Rank

end if
9: end for

10: if qk,h = 0 then
11: k,h = 1
12: f1 = f1 ∪ ck,h

13: end if
14: end for
15: t = 1
16: while ft �= ∅ do
17: q = ∅
18: for each ck,h ∈ ft do
19: for each ci,j ∈ q0

k,h do
20: qi,j = qi,j − 1
21: if qi,j = 0 then
22: i,j = t + 1
23: q = q ∪ ci,j

24: end if
25: end for
26: end for
27: t = t + 1
28: ft = q
29: end while

the new generation by assigning a higher priority to a more
isolated solution in the objective-function space.

According to the selection probabilities of the individuals,
parental solutions that feed into crossover and mutation op-
erations are selected. Let nc and nm be the number of parental
solutions to apply crossover and mutation, respectively. The
sum of nc and nm is then equal to np. Crossover mixes the por-
tions of two parental solutions to generate new solutions. Mu-
tation then adds a random refinement to a single parental solu-
tion. Our parameter sequence consists of different parameter
vectors related to the blending and sampling operators, each

having a different length and constraint. Thus, we apply
crossover and mutation to each binary vector separately.
Newly generated solutions are evaluated using the CNN
trained in the previous iteration to classify solutions according
to their likelihood to pass the predetermined threshold based
on the non-domination rank. Genetic operators repeatedly
generate new d, s and γ until the CNN classifies all candi-
dates in a given generation as likely to pass the threshold.

All the new candidates cg of generation g obtained in this
way go to the JMI process to derive a set of objective-function
vectors:

jg =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
JR g,1, JW g,1

]T

[
JR g,2, JW g,2

]T

...[
JR g,np

, JW g,np

]T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[∑
ω

∥∥∥�R̂g,1

∥∥∥2

2
,
∑

ω

∥∥∥�Ŵg,1

∥∥∥2

2

]T

[∑
ω

∥∥∥�R̂g,2

∥∥∥2

2
,
∑

ω

∥∥∥�Ŵg,2

∥∥∥2

2

]T

...[∑
ω

∥∥∥�R̂g,np

∥∥∥2

2
,
∑

ω

∥∥∥�Ŵg,np

∥∥∥2

2

]T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (22)

We combine cg with the solutions obtained from all pre-
vious generations, c0:g−1, and jg with the objective functions
from all previous generations, j0:g−1, as

c0:g = [
c0:g−1, cg

]T = [
c0, . . . , cg

]T
(23)

and

j0:g = [
j0:g−1, jg

]T = [
j0, . . . , jg

]T
. (24)

Since the new individuals do not necessarily attain better
results, the np best solutions in c0:g are selected on the basis
of elitism. They are subsequently replaced to cg which is then
used for the next generation. In this way, the best parental
solutions are carried into the new generation.

Finally, we train the CNN using c0:g and j0:g. We apply
a fivefold cross-validation to evaluate the predictive classifier.
The procedure randomly splits all the samples into five subsets
with equal size. One of the five subsets is used as a testing set,
whereas the remaining four subsets are assembled to form a
training set. This process is repeated five times by alternately
using every subset for testing and the remaining subsets for
training. This interchange enables all the samples to be used
for training as well as for testing. The mean of prediction

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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errors along with the variance among the five trials indicates
the predictive performances of the classifiers. The best of the
five models is applied to the next iteration. At each generation,
the threshold criterion applied in the classification is updated,
starting from a mild value and moving to a harsh one. To
improve the stability of the CNN, we modify the number of
epochs and the strength of the L2-regularization term applied
to every weight in the network through the course of the it-
erations. The former parameter is increased while the latter is
decreased with the number of iterations. Controlling them is
considered as an effective and simple means to prevent over-
fitting (Murphy 2012). It is worth noting that the update of
survey parameters is based primarily on the actual perfor-
mance of JMI, while the CNN classifier has a supporting role
in the proposed scheme.

The iterative procedure stops when the objective func-
tion is sufficiently small, or when the number of generations
reaches the pre-defined number of generations ng. The poten-
tial risk of our approach is that we may end up in some local
minimum. Fortunately, since we are dealing with survey de-
sign, this is still acceptable as long as the resulting design is
efficient and leads to the required image quality. It should be
noted that various constraints on the blending and sampling
operators can be imposed within the genetic operators in or-
der to prevent the generation of any undesired solutions, such
as operationally infeasible designs. It is also noteworthy that
the proposed optimization scheme is not a mandated choice
while our survey-design workflow can accommodate differ-
ent methods. Both metaheuristics and neural networks can be

flexibly modified and designed, enabling us to adapt them for
a problem-specific task. Therefore, a user can freely select a
preferred framework for a given survey-design problem.

NUMERICAL EXAMPLES

We numerically simulated four acquisition scenarios: one rep-
resenting standard blended acquisition and the other three in-
corporating the dispersed source array (DSA) concept. Table 1
summarizes the spatial-sampling schemes used in this study.
In the standard scenario, detectors and sources are regularly
deployed, while in the other three the geometries are irregu-
lar. Additionally, the DSA scenarios use fewer sources than
the standard one. Figure 3 and Table 2 compare the source
properties of the standard and DSA scenarios. The standard
scenario uses a spatially uniform source signature with a wide
frequency range. On the contrary, the DSA scenarios employ
three source types, each having a dedicated narrow frequency
bandwidth and a spatial-sampling scheme according to its
frequency range. This illustrates that the DSA scenarios emit
significantly less energy in both space and frequency. Note

Table 1 Detector and source sampling in standard and DSA scenarios

Standard DSA

Detector interval 40 m at regular Irregular
The number of detectors 50 50
Source interval 20 m at regular Irregular
The number of sources 100 70 (see Table 2)
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Figure 3 Source responses in the frequency-space domain. (a) Standard scenario using spatially uniform source signatures with a wide bandwidth.
(b) DSA scenario using three types of source units, each having a specific sampling requirement and a dedicated narrow bandwidth.
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Table 2 Source properties in standard and DSA scenarios

Frequency range (Hz) The number of sources

Standard source 4-8-24-40 100
DSA source type 1 2-4-6-10 10
DSA source type 2 4-8-12-20 20
DSA source type 3 8-16-24-40 40

Four corner frequencies, (1) low cut, (2) low pass, (3) high pass and (4) high
cut, describe the frequency range of each source type. Compared to the stan-
dard scenario, the DSA scenario employs fewer sources, each having a limited
bandwidth.

that we applied dedicated low-frequency sources, called DSA
source type 1, whose frequency range is not well covered by
the source used in the standard scenario (Fig. 3 and Table 2).
The DSA concept allows a lower frequency source to be more
coarsely sampled and a higher frequency source to be more
densely sampled. This effectively prevents both oversampling
of the lower frequencies and undersampling of the higher fre-
quencies (Berkhout 2012a; Caporal et al. 2018).

Figure 4 shows a blended shot record from the standard
scenario and one from a DSA scenario that exemplify our
blending and spatial-sampling schemes. Unlike the standard
scenario shown in Fig. 4(a), sources with different frequency
responses are blended in the DSA scenario shown in Fig. 4(b).
Our synthetic data contain both primaries and internal mul-

tiples. These data are directly fed into the joint migration
inversion (JMI) process to obtain reflectivity and velocity esti-
mates, that is, without deblending and reconstruction of miss-
ing traces.

For comparison purposes, we provide three DSA scenar-
ios, two of which are obtained from blending and sampling
operators created by 800 realizations of uniformly distributed,
random variables. We derived the probability density function
(PDF) by kernel density estimation using the 800 realizations.
We show one result, called ‘P50’, having the mode value in
the estimated PDF, which we assume to be representative for
the situation where we rely on a single random realization to
embed irregularity into blending and sampling operators. In
addition, we provide the best result, ‘P1’, which is assumed
to represent the outcome of a Monte Carlo approach. The
previously mentioned three scenarios (standard, P50 and P1)
are compared with the result from our optimized design.

Figure 5 shows the acquisition configurations applied to
the standard and three DSA scenarios, respectively. In our
examples, the detectors and sources are placed at the sur-
face (zd = zs = 0 m). The detectors are stationary, making the
maximum offset in the data 2000 m. All scenarios use the
same number of detectors yet they are deployed differently.
In each record of this study, two active sources are blended
with a 1000 m distance separation having different activation
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Figure 4 Blended shot record. (a) A blended shot record from the standard case where two sources employ the same signature with a regular
detector interval. (b) A blended shot record from the DSA case where two sources employ different bandwidths and activation times with an
irregular detector interval.
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Figure 5 Acquisition scenarios used in this study: (a) standard, (b) P50, (c) P1 and (d) optimized designs. Each figure contains two plots: spatial
sampling of detectors (top) and that of sources as well as activation times (bottom). In the standard scenario, all sources employ the same
signature with irregular activation times and with a regular detector interval. In three DSA scenarios, blue, green and red circle markers with
different marker sizes correspond to DSA source types 1, 2 and 3, respectively. Activation times of these DSA sources are irregular with an
irregular detector interval.

times ranging from 0 to 256 ms. In the DSA scenarios, three
types of source units are irregularly distributed according to
the requirements defined in Table 2.

Figure 6(a,b) shows the true subsurface properties used
in this study in terms of reflectivity and velocity, respectively.
The model contains a lens-shaped high-velocity body above
three weak horizontal reflectors. Figure 6(c,d) shows the ini-
tial reflectivity model, which involves no contrast, and the
initial velocity model, which contains a gradient only. The es-
timation by JMI starts with these models having (almost) no

indication of true geological features. Figure 7(a,b) shows the
JMI results from the standard acquisition design. Although
some oblique lineaments are still recognizable below the lens
body, both reflectivity and velocity models are estimated rea-
sonably well. Figure 7(c,d) shows the JMI results from P50.
This scenario apparently accentuates linear artefacts, leading
to some jitter on the three horizontal reflectors. The lateral
velocity variation, particularly beneath the high-velocity lens,
adversely affects the kinematics of wave propagation. This
explains the undesired structural undulations on the three
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Figure 6 Subsurface model used in this study: (a) true reflectivity model, (b) true velocity model, (c) initial reflectivity model and (d) initial
velocity model.

reflectors. Compared to P50, some improvements are observ-
able in P1 (Fig. 7e,f). However, it still is hard to find a justi-
fiable rationale for the applied DSA scheme compared to the
standard one in terms of the JMI quality. The optimized de-
sign, however, attains notable enhancement in the JMI results
(Fig. 7g,h). The lens-shaped body can be easily delineated in
both reflectivity and velocity estimates. Reduction of artefacts
improves the coherency of the reflectors. The optimized design
also achieves a robust estimation of the velocity model, which
enables all the reflectors to be recovered close to their actual
locations. Even edge effects are well reduced in the optimized
design compared to the other three scenarios.

In addition to the observations made from reflectivity
and velocity estimates, Figure 8 quantitatively differentiates
the overall data quality of each scenario. Figure 8(a) shows a
cross-plot of JR against JW from 800 random realizations.
The colours of the circle markers indicate the number of
realizations. The blue, green, red and cyan squares represent
the standard, P50, P1 and optimized design, respectively. The
three dashed lines in Fig. 8(a) are constant probability density
contours each of which represents the boundary of the area
that contains a certain percentage (25%, 50% and 75% from
the inner to the outer contour) of the estimated PDF. It shows
a close to unimodal distribution indicating an increase in data
points towards a single peak in the JR − JW space. This implies
that P50 obtained from the mode value in the PDF is expected
to reasonably represent the anticipated data quality in the case
where we use a single random realization to design blending

and sampling operators. If it is assumed that the PDF based
on the outcome of our Monte Carlo optimization procedure
is correct, we observe that the cumulative probability of the
objective-function values from our optimized design turns out
to be smaller than 10−13. Statistically, this suggests that an
enormous number of random realizations are needed to reach
a result that is equivalent to our optimized design. On the
other hand, our workflow is capable of obtaining it with 800
realizations. Figure 8(b) shows a cross-plot of JR against JW

from our approach. This clearly demonstrates that the pro-
posed workflow effectively and efficiently minimizes both JR

and JW through the course of iterations. The optimized DSA
acquisition scenario consequently leads to proper reflectivity
and velocity estimates even compared to the standard design.

As described previously, we performed a fivefold cross-
validation at every 50 realizations to evaluate classification
accuracies while training the convolutional neural network
(CNN) (Fig. 9). A vertical error bar indicates the minimum
and the maximum accuracies obtained from each validation.
Blue and red circle markers represent the mean value from
five cross-validations for training and testing, respectively.
Although we adjusted the regularization strength applied on
each weight in the network and the number of epochs to ob-
tain a reliable model, due to the insufficient number of sam-
ples the testing results still exhibit some indication of over-
fitting at the early stage of the iterative procedure. Since we
altered the threshold criterion and some parameters within the
CNN as mentioned previously, the validation results among
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Figure 7 Estimated reflectivity and velocity models: (a and b) standard, (c and d) P50, (e and f) P1 and (g and h) optimized design, respectively.
The notable enhancement in the performance of JMI due solely to the choice of survey parameters is easily recognizable.

different stages are not directly comparable. Nevertheless,
the classification performance evidently improves through the
course of iterations. Additionally, the difference in accuracies
between training sets and testing sets becomes insignificant af-
ter a couple of hundred realizations, where the classification
achieves accuracies well above 90% for both training and
testing sets with a small discrepancy between the minimum
and the maximum values. This indicates that our network ar-
chitecture, along with the chosen hyperparameters, manages
the bias-variance trade-off reasonably well and successfully
relates the survey parameters to the resultant JMI quality.

D I S C U S S I O N

Insufficiencies in quality and quantity of available subsur-
face information potentially cause uncertainty in R and W
used to optimize survey parameters in the proposed work-
flow although its degree varies with the situations. In this
respect, we investigated the effect of this uncertainty on the
joint migration inversion (JMI) results. Figure 10(a) depicts
velocity perturbations applied to the true model where we ran-
domly modified the velocity of each layer with a value in the
range of ±100 m/s. These velocity perturbations enable each

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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Figure 8 The progress of the optimization from (a) random realization and (b) proposed approach. Plot colours indicate the realization number.
The blue, green, red and cyan squares are the results from the standard, P50, P1 and optimized design, respectively. In (a), the three dashed
lines are constant probability density contours from kernel density estimation each of which represents the boundary of the area that contains
a certain percentage of data points (25%, 50% and 75% from the inner to the outer contour).

subsurface model to employ different R and W. For each arbi-
trary derived subsurface model, we performed full-wavefield
modelling (FWMod) to simulate four different P′ using the
four survey designs discussed earlier (standard, P50, P1 and
optimized). We then applied JMI to these four datasets to
obtain different reflectivity and velocity estimates. As shown
in Fig. 10(b), this procedure was applied to all the subsur-
face models. Figure 11 shows a comparison among the JMI
results from the four different acquisition scenarios for each
subsurface model. The vertical axes of Fig. 11(a,b) indicates
relative differences in JR and JW, respectively, with respect
to the corresponding objective-function values from the op-
timized design. A negative value indicates that the optimized
design attains the smaller misfit. The figure clearly shows that
our optimized design achieves proper reflectivity and velocity
estimates for all the models. Although certain variations can
be observed among different subsurface models, the relative
relationship among the four designs in terms of JMI quality
still holds. For the reflectivity estimation, the standard and
optimized designs attain comparable results. Next, P1 pro-
duces a somewhat less optimal outcome, followed by P50.
For the velocity estimation, a distinct improvement can be
seen in the optimized design. It clearly outperforms the stan-
dard design as well as the P1 design, the two of which provide
almost comparable results. Then, the P50 result is subopti-
mal for all the subsurface models. Hence, this suggests that
blending and sampling operators derived from our approach
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Figure 9 Classification accuracy of the predictive model at every 50
realizations. The red and blue markers represent mean accuracies at
each fivefold cross-validation from training and testing sets, respec-
tively. Error bars indicate the minimum and maximum accuracies
obtained from each validation.

can still provide optimum JMI results even when prior sub-
surface properties used for the survey-design scheme are not
precisely known.

One of the unique properties of JMI is its ability to ex-
plain and utilize multiple reflections. They can provide sub-
surface illumination at different angles from the same shot
and may carry information on areas that primaries can-
not reach (Berkhout 2012b; Verschuur and Berkhout 2015).

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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Internal multiples are also capable of illuminating the sub-
surface in downward and upward directions (Davydenko and
Verschuur 2013). By treating multiples as signal, they can
also assist primaries in the subsurface illumination, provided
that proper processing algorithms are implemented. For in-
stance, Berkhout and Verschuur (2016) illustrated a contribu-
tion of multiples by comparing JMI results with and without
the use of multiples. Seismic surveys are often designed to

sample primary reflections. On the contrary, less emphasis is
given to multiples as they are to be attenuated in the subse-
quent processing. Exploiting features of multiples potentially
allows us to ease the sampling requirements in data acquisition
(Verschuur and Berkhout 2015). Alternatively, it can en-
hance the subsurface illumination with the same acquisi-
tion footprint (Kumar et al. 2016). The proposed workflow,
aimed at improving the JMI results, then enables us to derive
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Figure 11 JMI results for different designs from different subsurface models: (a) reflectivity estimate and (b) velocity estimate. The plots in
blue, red and green show relative differences between JMI results with respect to the optimized design for the standard, P1 and P50 design,
respectively.

acquisition scenarios that can account for the effect of both
primary and multiple reflections in the area of interest.

In this study, we utilize the standard implementation of
JMI based on Staal and Verschuur (2013) and Staal (2015),
which disregards certain subsurface characteristics as men-
tioned previously. In this respect, some recent studies have
been carried out towards exploring phenomena which are
not explained in this standard framework such as mode
conversion (Berkhout 2014b), angle-dependent reflectivity
(Qu, Sun and Verschuur 2018), horizontal wave propagation
(Masaya and Verschuur 2017) and anisotropy (Alshuhail and
Verschuur 2019). The research has been also extended to other
perspectives such as applications to 3D data (El-Marhfoul
and Verschuur 2016), time-lapse data (Qu and Verschuur
2017) and integration of JMI and full-waveform inversion
(FWI) (Sun et al. 2018). Furthermore, the presented numer-
ical examples were designed fundamentally to demonstrate
the proposed survey-design scheme. To this end, a simple 2D
subsurface model was chosen which does not reflect the ge-
ological complexity encountered in actual fields. Hence, our
future work is aligned with the recent developments in JMI
coupled with the use of more complex and realistic 3D sub-
surface scenarios. To examine the effect of acquisition design
on the JMI result, our study employed the idealized situation
comprising FWMod as a forward-modelling tool and JMI as a
property estimation tool. It is worth noting that the proposed
approach is not necessarily limited to this implementation
as the contents within the overall scheme can be freely and

flexibly altered depending on the needs of users. A possible
option would be to replace them with different methodologies,
for example, different forward-modelling schemes such as a
finite-difference modelling as well as different velocity estima-
tion and/or imaging algorithms such as FWI and least-squares
migration (LSM). Our approach would then be able to design
a seismic survey that can meet the quality requirements of the
applied process(es).

This study demonstrates that optimally designed sur-
vey parameters lead to JMI results that are better than the
results obtained with the standard scenario. Alternatively,
the same results could have been obtained in a more effi-
cient and cost-effective manner. Furthermore, the implemen-
tation of dispersed source array (DSA) is of help in contribut-
ing to a health, safety and environment (HSE) perspective
(Caporal et al. 2018). The emission of acoustic energy may
incur a potential environmental risk, particularly in marine
surveys. Sound pressure level (SPL) and sound exposure level
(SEL) are of primary concern to determine the effects of an
acoustic source on the marine environments, in particular on
marine mammals. Airgun clusters that generate an impulsive
signal are widely used in the industry. As a broad frequency
range of acoustic energy is instantaneously generated, the
technique inevitably accentuates the peak pressure. Further-
more, these conventional marine sources inevitably emit high-
frequency components, for example, above 100 Hz, which
are normally discarded in seismic imaging yet significantly
overlap with the hearing ranges of odontocetes and pinnipeds

C© 2019 The Authors. Geophysical Prospecting published by John Wiley & Sons Ltd on behalf of European Association of Geoscientists &
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(Southall et al. 2007). As illustrated in Fig. 3, the use of dedi-
cated narrowband sources decreases both peak amplitude and
total energy for each shot. It is also capable of preventing a
seismic survey from the emission of unnecessary frequency
components, yet of acquiring the information needed to char-
acterize the subsurface. Hence, the technique contributes to
reducing both SPL and SEL. The optimized DSA scenario uses
reduced source locations without adversely affecting the data
quality. These elements lower the total energy accumulated
over the survey duration, known as cumulative SEL. Our opti-
mization scheme is therefore capable of designing an efficient,
cost-effective and environmentally favourable seismic survey
that also enhances the performance of JMI.

CONCLUSION

The survey-design workflow introduced in this study simulta-
neously optimizes parameters that determine source blending
and the spatial sampling of detectors and sources. The numer-
ical examples in this study demonstrate that the joint migra-
tion inversion (JMI) results can vary with the design of survey
parameters. Optimally designed parameters lead to the en-
hancement of both reflectivity and velocity models estimated
directly from blended and irregularly sampled data. The pro-
posed approach integrates a genetic algorithm (GA) and a con-
volutional neural network (CNN) to make the optimization
of survey designs feasible within an affordable computation
time. Genetic operators coupled with non-dominated sorting
are capable of minimizing errors in reflectivity and velocity
models by simultaneously updating the survey parameters.
The workflow can effectively deal with complex blending and
spatial-sampling schemes that employ the dispersed source ar-
ray (DSA) concept. The neural network architecture applied
to this study successfully relates the performance of JMI to
the choice of survey parameters. The classification through a
CNN helps us to minimize the computation of suboptimal de-
signs while keeping the optimal ones into the iterative scheme.
The proposed approach provides survey parameters to en-
hance the results of JMI that have been obtained by directly
processing blended and irregularly sampled data without the
need for deblending or data reconstruction. The resultant ac-
quisition scenarios allow us to optimally estimate subsurface
properties at an affordable cost and with a low environmen-
tal footprint.
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