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Abstract

In the present paper, we endow the logics of topological quasi Boolean algebras, topological quasi Boolean
algebras 5, intermediate algebras of types 1-3, and pre-rough algebras with proper multi-type display calculi
which are sound, complete, conservative, and enjoy cut elimination and subformula property. Our proposal
builds on an algebraic analysis and applies the principles of the multi-type methodology in the design of
display calculi.

Keywords: Rough sets, topological quasi Boolean algebras, topological quasi Boolean algebras 5,
pre-rough algebras, intermediate algebras, canonical extensions, multi-type calculi, proper display calculi.

1 Introduction

Rough algebras and related structures arise in tight connection with formal models

of imperfect information [24], and have been investigated for more than twenty

years using techniques from universal algebra and algebraic logic, giving rise to a

1 The research of the fourth author is supported by the NWO Vidi grant 016.138.314, the NWO Aspasia
grant 015.008.054, and a Delft Technology Fellowship awarded in 2013.
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rich theory which develops the algebraic semantics, duality, representation and proof

theory of their associated logics (cf. e.g. [1,20,4,25,26]). In particular, sound and

complete sequent calculi have been introduced for these logics in [25,26]. However,

the cut rule in these calculi is not eliminable. Very recently, sequent calculi with cut

elimination and a non-standard version of subformula property have been introduced

in [22] for some of these logics, but not for the logic of the so-called intermediate

algebras of type 3 (cf. [25], Definition 2.11). In these calculi, the subformula property

is non-standard because each logical connective has four introduction rules, two of

which are non-standard and introduce the given logical connective under the scope

of negation.

In the present paper, we introduce a family of proper display calculi for the

logics associated with the classes of ‘rough algebras’ 2 discussed in [25]; namely,

topological quasi Boolean algebras (tqBa), topological quasi Boolean algebras 5

(tqBa5), intermediate algebras of types 1-3 (IA1, IA2, IA3), and pre-rough algebras

(pra) (cf. Definition 2.1).

We apply the methodology of multi-type calculi, the main feature of which is the

systematic use of notions and insights from algebraic logic, duality and representa-

tion to solve problems in structural proof theory. Multi-type calculi are introduced

in [10,8,9], motivated by [14,11], and have proven effective in endowing a wide range

of diverse and differently motivated logical systems, spanning from basic lattice logic

[18] to inquisitive logic [12], with calculi for which soundness, completeness, con-

servativity, cut elimination and subformula property are guaranteed uniformly by

the general theory. This methodology has contributed to create an overarching en-

vironment in which the algebraic proof theory of paraconsistent logics such as semi

De Morgan logic [15] and bilattice logic [16,21] can be studied in connection with

very well known and well behaved logics such as linear logic [19] and first order logic

[27]. Multi-type calculi also allow to capture a wide class of axiomatic extensions

of given logics [17], and therefore provide a powerful and flexible environment for

the design of new families of logics, such as those introduced in [2] to reason about

agents’ resources and capabilities, which pave the way to novel applications of alge-

braic and proof-theoretic methods in non-classical logics to formalization problems

in fields ranging from artificial intelligence to the social sciences.

The first contribution of the present paper is an equivalent presentation of rough

algebras, based on so-called heterogeneous algebras [3]. Intuitively, heterogeneous

algebras are algebras with more than one domain, and their operations might span

across different domains. The classes of heterogeneous algebras corresponding to

rough algebras have three domains, respectively corresponding to (abstract repre-

sentations of) general sets and upper and lower definable sets of an approximation

space. Each of these three domains corresponds to a distinct type. The modal op-

erators capturing the lower and upper definable approximations of a general set are

then modeled as heterogeneous maps from the general type to one of the two de-

finable types. The equivalent heterogeneous presentations of rough algebras come

2 Although the name ‘rough algebras’ has a specific meaning in this literature (reported in Definition 2.1),
in the present paper we find it convenient to use it as the generic name for the class of topological quasi
Boolean algebras and its subclasses.

G. Greco et al. / Electronic Notes in Theoretical Computer Science 344 (2019) 101–118102



naturally equipped with a multi-type logical language, and are characterized by

axiomatizations which can be readily recognized to be analytic inductive (cf. [17,

Definition 55]), and hence, by the general theory of multi-type calculi, can be ef-

fectively captured by proper multi-type display calculi which are sound, complete,

conservative, and enjoy cut elimination and standard subformula property, given

that the introduction rules for all connectives are standard. The introduction of

these calculi is the second contribution of the present paper.

Compared with [22], the multi-type methodology allows for more modularity,

which not only has made it possible to account for the logic of IA3 (which could not

be encoded in an analytic rule otherwise, see Footnote 6), but will also make it pos-

sible to extend the present theory so as to cover weaker versions of rough algebras

based on e.g. semi De Morgan algebras [15], or even general lattices [5,13], which

will account for the proof-theoretic aspects of the logics of rough concepts. More

generally, thanks to the multi-type methodology, the logics of rough algebras have

been embedded into the wider context of the logics which are properly displayable.

Properly displayable logics are studied as a class, and several metatheoretic results,

such as semantic cut elimination, finite embeddability property, finite model prop-

erty, can be given uniformly for large subclasses. Moreover, the modularity of the

proof theoretic environment of properly displayable logics makes it possible to make

different logics interact in a systematic way, so as to obtain e.g. dynamic epistemic

logics based on the logics of rough algebras. This opens new interesting possibilities

to enrich the theory of the logics of rough algebras.

2 Preliminaries

2.1 Varieties of rough algebras

Definition 2.1 (cf. Section 2 [26]) T = (L, I) is a topological quasi-Boolean algebra

(tqBa) if L = (L,∨,∧,¬,�,⊥) is a De Morgan algebra and for all a,b ∈ L,

T1. I(a∧b) = Ia∧ Ib, T2. IIa = Ia, T3. Ia ≤ a, T4. I� = �.
For any a ∈ T, let Ca := ¬I¬a. We consider the subclasses of tqBas defined as in the

following table.

Algebras Acronyms Axioms

topological quasi Boolean algebra 5 tqBa5 T5: CIa = Ia

intermediate algebra of type 1 IA1 T5, T6: Ia∨¬Ia = �
intermediate algebra of type 2 IA2 T5, T7: Ia∨ Ib = I(a∨b)

intermediate algebra of type 3 IA3 T5, T8: Ia ≤ Ib and Ca ≤Cb imply a ≤ b

pre-rough algebra pra T5, T6, T7, T8.

IA2IA1 IA3

tqBa5

tqBa

pre-rough

rough

A rough algebra is a complete and completely distributive pre-rough algebra.

Lemma 2.2 Any tqBa T = (L,∨,∧,¬, I,�,⊥) satisfies the following equalities:

(i) I(Ia∨ Ib) = Ia∨ Ib (ii) C(Ca∧Cb) =Ca∧Cb.

Proof. (i) I(Ia∨ Ib) ≤ Ia∨ Ib is a straightforward consequence of T3. As to the
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converse direction, it is enough to show that Ia ≤ I(Ia∨ Ib) and Ib ≤ I(Ia∨ Ib). Let

us show the first of these inequalities. From T1 it immediately follows that I is

monotone. Hence Ia ≤ Ia∨ Ib implies IIa ≤ I(Ia∨ Ib). Hence, by T2, Ia ≤ IIa ≤
I(Ia∨ Ib). Analogously one proves Ib ≤ I(Ia∨ Ib). The proof for (ii) is dual. �

Below, we use the abbreviated names of the algebras written in “blackboard

bold” (e.g. TQBA, etc.) to indicate their corresponding classes. When it is unam-

biguous, we will use rough algebras as the generic name for these classes.

2.2 The logics of rough algebras

Fix a denumerable set Atprop of propositional variables, let p denote an element

in Atprop. The logics of rough algebras share the language L which is defined

recursively as follows:

A ::= p | � | ⊥ | ¬A | IA |CA | A∧A | A∨A.

Definition 2.3 The logic H.TQBA of the class TQBA is defined by adding the

following axioms to De Morgan logic:

IA � A, IA � IIA, I(A∧B) � IA∧ IB, IA∧ IB � I(A∧B), � � I�
CA � ¬I¬A, ¬I¬A � CA, ¬C¬A � IA, IA � ¬C¬A.

We consider the following extensions of H.TQBA corresponding to the subclasses of
TQBA reported above:

Class of algebras name of logic Axioms/Rules

TQBA5 H.TQBA5 1: CIA � IA

IA1 H.IA1 1, 2: � � IA∨¬IA

IA2 H.IA2 1, 3: I(A∨B) � IA∨ IB

IA3 H.IA3 1, 4:
IA � IB CA � CB

A � B

PRA H.PRA 1, 2, 3, 4

Let H denote any of the logics in the table above (second column), and A denote

its corresponding class of algebras in the table above (first column, same row as H).

Theorem 2.4 (Completeness) H is sound and complete with respect to A, that

is, if A � B is an L-sequent, then A � B is derivable in H iff h(A) ≤ h(B) for all T ∈ A
and every interpretation h :L→ T.

3 Towards a multi-type presentation: algebraic analysis

In this section, we equivalently represent rough algebras as heterogeneous algebras.

3.1 The kernels of rough algebras

For any tqBa T (cf. Definition 2.1), we let KI := {Ia | a ∈ L} and KC := {Ca | a ∈ L},
and let ι : L→KI and γ : L→KC be defined by the assignments a 
→ Ia and a 
→Ca,
respectively. Let eI : KI ↪→ L and eC : KC ↪→ L denote the natural embeddings.

Axioms T1, T2, and T3 imply that I : L→ L is an interior operator and C : L→ L
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is a closure operator on L seen as a poset. Hence, by general order-theoretic facts

(cf. [7, Chapter 7]), eI (resp. eC) is the left (resp. right) adjoint of ι (resp. γ), in

symbols: eI � ι and γ � eC, i.e. for any α ∈ KI, ξ ∈ KC and a ∈ L,

eIα ≤ a iff α ≤ ιa γξ ≤ a iff ξ ≤ eCa. (1)

The following equations are straightforward consequences of the definitions of the

maps and (1):

ι(eIα) = α eI(ιa) = Ia γ(eCξ) = ξ eC(γa) =Ca. (2)

Definition 3.1 For any tqBa T = (L,∨,∧, I,¬,�,⊥), the left-kernel KI =

(KI ,∪,∩,1I ,0I) and the right-kernel KC = (KC ,�,�,1C ,0C) are such that, for all

α,β ∈ KI, and all ξ,χ ∈ KC,

K1. α∪β := ι(eIα)∨ eIβ) K3. 1I := ι� K′1. ξ�χ := γ(eCξ∨ eCχ) K′3. 1C := γ�
K2. α∩β := ι(eIα∧ eIβ) K4. 0I := ι⊥ K′2. ξ�χ := γ(eCξ∧ eCχ) K′4. 0C = γ⊥

If T is a tqBa5, we define ∼: KI→ KI and − : KC→ KC by the following equation:

K5. ∼ α := ι¬eIα K′5. −ξ := γ¬eCξ

The next lemma captures the relationship between a tqBa and its kernels via

the properties of their connecting maps:

Lemma 3.2 For any tqBa T,

1. ι : T� KI and γ : T� KC are surjective maps which satisfy the following equa-

tions: for all a,b ∈ L,
(a) ιa∩ ιb = ι(a∧b), ι� = 1I, ι⊥ = 0I;

(b) γa∪γb = γ(a∨b), γ� = 1C, γ⊥ = 0C.

2. eI : KI → T and eC : KC → T are injective maps which satisfy the following

equations:

(a) eIα∧ eIβ = eI(α∩β), eIα∨ eIβ = eI(α∪β);
(b) eCξ∧ eCχ = eC(ξ�χ), eCξ∨ eCχ = eC(ξ�χ);
(c) eI1I = �, eI0I = ⊥, eC1C = �, eC0C = ⊥.

Proof. We only prove 1(a) and 2(a), the arguments for 1(b) and 2(b) being dual.
The identities in 2(c) easily follow using K3, K4, K′3, K′4 and the definition of T.
The surjectivity of ι is an immediate consequence of the definition of KI (cf. begin-
ning of Section 3.1). In what follows, we show that ι satisfies 1(a).

ιa∩ ιb = ι(eιa∧ eιb) K2

= ι(Ia∧ Ib) (2)

= ιI(a∧b) T1

= ιeι(a∧b) (2)

= ι(a∧b) (2)

The remaining identities in 1(a) can be shown analogously using K3 and K4.
Let us show that eI satisfies 2(a) and 2(c). For any α,β ∈ KI, let a,b ∈ L be such
that α = ιa and β = ιb.
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e(α∩β) = e(ιa∩ ιb) (α = ιa, β = ιb) e(α∪β) = e(ιa∪ ιb) (α = ιa, β = ιb)

= eι(eιa∧ eιb) K2 = eι(eιa∨ eιb) by K1

= I(Ia∧ Ib) (2) = I(Ia∨ Ib) (2)

= IIa∧ IIb T1 = Ia∨ Ib Corollary 2.2

= Ia∧ Ib T2 = eιa∨ eιb (2)

= eιa∧ eιb (2) = eα∨ eβ (α = ιa, β = ιb)

= eα∧ eβ (α = ιa, β = ιb)

�

The next propositions and lemmas provide a ‘multi-type’ characterization of

defining properties of axiomatic extensions of tqBas in terms of additional properties

of the kernels or of their connecting maps:

Proposition 3.3 If T is a tqBa5, then KI � KC.

Proof. Let f : KI → KC be defined as f := γeI. To show that f is surjective, let
ξ ∈ KC, and let ξ = γa for some a ∈ L,

γa = γeCγa adjunction

= γCa (2)

= γICa T5

= γeI ιeCγa (2)

= γeI ιeCξ (ξ = γa)

= f ιeCξ ( f := γeI)

Since both γ and eI are monotone, so is f := γeI. To finish the proof, we need
to show that for all α,β ∈ KI, if γeI(α) ≤ γeI(β), then α ≤ β. Since eC is an order
embedding, the assumption can be equivalently rewritten as eCγeI(α)≤ eCγeI(β), Let
a,b ∈ L such that α = ιa and β = ιb. Then we can equivalently rewrite the assumption
as eCγeIιa ≤ eCγeIιb. Since I := eIι and C := eCγ, we can again equivalently rewrite
the assumption as CIa ≤CIb, and hence, by T5, as Ia ≤ Ib, that is, eIιa ≤ eIιb. Since
eI is an order-embedding, this yields ιa ≤ ιb, that is, α ≤ β, as required. This finishes
the proof that KI �KC as lattices. Finally, we need to show that f (∼ α) = − f (α) for
any α ∈ KI. For such an α, let a ∈ L s.t. α = ι(a).

f ∼ α = γeI ∼ α
= γeI ∼ ιa
= γeI ι¬eI ιa

= γeI ι¬Ia

= γI¬Ia

= γIC¬a

= γC¬a

− fα = γ¬eC fα

= γ¬eCγeIα

= γ¬eCγeI ιa

= γ¬CeI ιa

= γ¬CIa

= γI¬Ia

= γIC¬a

= γC¬a

�

By the proposition above, we can drop the subscripts in KI (or KC) and in eI and

eC, and refer to K as the kernel of T. The following lemma has a straightforward

proof which uses K5:

Lemma 3.4 (1) If T is a tqBa5, then e∼α = ¬eα;
(2) If T is an IA1, then ι(a∨b) = ιa∪ ιb.
Proposition 3.5 If T is a tqBa5, then K is a De Morgan algebra. Moreover, if T

is an IA1, then K is a Boolean algebra.

Proof. For any α,β ∈ KI, let a,b ∈ L such that α = ιa and β = ιb. Let us show that
∼∼ α = α and ∼ (α∪β) =∼ α∩ ∼ β.
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∼∼ α = ι¬eι¬eα K5 ∼ (α∪β) = ι¬e(α∪β) K5

= ι¬eι¬eιa (i) = ι¬eι(eα∨ eβ) K1

= ι¬I¬Ia (2) = ι¬eι(eιa∨ eιb) (α = ιa, β = ιb)

= ιCIa C = ¬I¬ = ι¬I(Ia∨ Ib) (2)

= ιIa T5 = ι¬(Ia∨ Ib) Lemma 2.2

= ιeιa (2) = ι(¬Ia∧¬Ib) definition of L

= ιa (2) = ι(C¬a∧C¬b) C = ¬I¬ and definition of L

= α (i) = ι(IC¬a∧ IC¬b) T5, C = ¬I¬ and definition of L

= ι(I¬Ia∧ I¬Ib) C = ¬I¬ and definition of L

= ι(eι¬eιa∧ eι¬eιb) (2)

= ι(eι¬eα∧ eι¬eβ) (α = ι(a), β = ι(b))

= ι(e ∼ α∧ e ∼ β) K5

= ∼ α∩ ∼ β K2

Using K5, K3, (2) and T7, one can show the identities ∼ 1I = ι¬e1I = ι¬eι� = ι¬I� =
ι⊥ = 0I. The argument for ∼ 0I = 1I can be given dually. Hence, KI is a De Morgan
algebra. If T is an IA1, in order to show that KI is a Boolean algebra, we only need
to show ∼ α∪α = 1I.

∼ α∪α = ι¬eα∪α K5

= ι(eι¬eα∨ eα) K1

= ι(eι¬eιa∨ eιa) (i)

= ι(I¬Ia∨ Ia) (2)

= ι(¬CIa∨ Ia) C = ¬I¬
= ι(¬Ia∨ Ia) T5

= ι� T6

= 1I K3

�

3.2 Heterogeneous rough algebras

In the present subsection, we show that the properties that we have verified to hold

for rough algebras, their kernels and connecting maps yield an equivalent presenta-

tion of rough algebras

Definition 3.6 A heterogeneous tqBa (htqBa) is a tuple H = (D,LI,LC,eI ,eC , ι,γ)
such that:

H1 D = (D,∨,∧,¬,�,⊥) is a De Morgan algebra;

H2 LI = (LI,∪,∩,∼,0I ,1I) and LC = (LC,�,�,−,0C ,1C) are bounded distributive lattices;

H3 eI : LI ↪→ D and eC : LC ↪→ D are lattice homomorphisms;

H4 ι : D→ LI and γ : D→ LC satisfy the following identities:

ι(a∧b) = ιa∩ ιb ι� = 1 ι⊥ = 0 γ(a∨b) = γa�γb γ� = 1 γ⊥ = 0;

H5 eI � ι γ � eC ιeIα = α γeCξ = ξ;
3

H6 eCγa = ¬eIι¬a.

LI D LC

� �

eI eC

ι γ

The heterogeneous algebras corresponding to the subclasses of tqBas considered in
Section 2.1 are defined as follows:

3 Condition H5 implies that ι is surjective and e is injective.
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Algebra Acronym Conditions

heterogeneous tqBa5 htqBa5 H7: LI = LC = L is a De Morgan algebra, eI = eC = e is a De Morgan homomorphism

heterogeneous IA1 hIA1 H7, H8: L is a Boolean algebra

heterogeneous IA2 hIA2 H7, H9: ι(a∨b) = ιa∪ ιb
heterogeneous IA3 hIA3 H7, H10: ιa ≤ ιb and γa ≤ γb imply a ≤ b

heterogeneous pra hpra H7, H8, H9, H10

In what follows, we use the abbreviated names of the heterogeneous algebras

written in “blackboard bold” (e.g. HTQBA, etc.) to indicate their corresponding

classes. A heterogeneous algebra H is perfect if every lattice reduct in the signature

of H is perfect, 4 and every join (resp. meet) preserving (resp. reversing) map in the

signature of H is completely join (resp. meet) preserving (resp. reversing).

Definition 3.7 If T = (L, I) is a tqBa, we let T+ := (L,KI,KC,eI ,eC , ι,γ), where:

· KI and KC are the left and right kernels of T (cf. Definition 3.1);

· eI : KI ↪→ L and eC : KC ↪→ L are defined as the embeddings of the domains of KI
and KC into the domain of L;

· ι : L→ KI and γ : L→ KC are defined by ι(a) = Ia and γ(a) =Ca respectively.

If T = (L, I) is a tqBa5, KI and KC can be identified and also eI and eC can, hence

we write T+ := (L,K,e, ι,γ).

Definition 3.8 If H = (D,LI,LC,eI ,eC , ι,γ) is an htqBa, we let H+ := (D, I,C) where

the unary operations I and C on D are defined by the assignments a 
→ eIιa and

a 
→ eCγa respectively.

Let A denote a class of rough algebras (cf. Section 2.1), and HA its corresponding

class of heterogeneous algebras.

Proposition 3.9 (i) If T ∈ A, then T+ ∈ HA;
(ii) If H ∈ HA, then H+ ∈ A;
(iii) T � (T+)+ and H � (H+)+.

3.3 Canonical extensions of heterogeneous algebras

As discussed in other papers adopting the multi-type methodology (cf. e.g. [15,19]),

canonicity in the multi-type environment serves both to provide complete semantics

for the analytic extensions of the basic logic (i.e. extensions obtained by adding

analytic inductive axioms) and to prove the conservativity of their associated display

calculi. In what follows, we let Dδ, Lδ
I
, and Lδ

C
denote the canonical extensions of

the algebras D, LI, and LC respectively, and eδI , eδC, ι
π, and γπ denote the extensions

of eI, eC, ι, and γ respectively.
5

4 A distributive lattice is perfect if it is complete, completely distributive and completely join-generated by
the collection of its completely join-prime elements.
5 The order-theoretic properties of eI ,eC , ι and γ guarantee that they are smooth, that is, for each of them,
σ-extension and π-extension coincide. However, the different notations in the superscripts are meant to
emphasize that while the smoothness of the embeddings is used in the canonicity proofs, it is not needed
in the case of ιπ and γσ.
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Definition 3.10 If H = (D,LI,LC,eI ,eC , ι,γ) ∈ HA is an htqBa, then the canonical

extension of H is the heterogeneous algebra Hδ = (Dδ,Kδ
I
,Kδ
C
,eδI ,e

δ
C , ι
π,γσ).

The defining conditions of the heterogeneous algebras of Definition 3.6 can be

expressed as analytic inductive inequalities (cf. Definition 4.3), and each such in-

equality is canonical. Hence:

Proposition 3.11 If H ∈ HA, then Hδ is a perfect element of HA.

LI

LI
δ

D

Dδ

LC

LC
δ

�
�

� �
�

�
Fig. 1. Extending heterogeneous algebras to canonical extensions

ι′ γ′

eI

eδI

eC

eδC

ιπ

ι

γσ

γ

In Section 6.1, soundness of each multi-type calculus will be proven w.r.t. perfect

HAs.

4 Multi-type language for heterogeneous rough alge-
bras

Heterogeneous algebras provide a natural interpretation for the following multi-type

language LMT consisting of terms of types D, KI and KC (the kernel-type negations

apply to the language of H.TQBA5 and its extensions).

D � A ::= p | ◦Iα | ◦Cξ | � | ⊥ | A∧A | A∨A | ¬A

KI � α ::= �I A | 1I | 0I | α∪α | α∩α | ∼α KC � ξ ::= �C A | 1C | 0C | ξ� ξ | ξ� ξ | −ξ
The logic H.TQBA5 can be also captured in a simpler language consisting of the two

types D as above and K as follows:

K � α ::= �I A | �C A | 1 | 0 | ∼α | α∪α | α∩α.

4.1 Analytic inductive LMT-inequalities

In the present section, we specialize the definition of analytic inductive inequalities

(cf. [17, Definition 55]) to the multi-type language LMT. This definition also applies

to the algebraic language of htqBas that interprets it, so that we will talk about

analytic inductive term-inequalities. We will make use of the following auxiliary

definition: an order-type over n ∈ N is an n-tuple ε ∈ {1,∂}n. For every order type

ε, we denote its opposite order type by ε∂, that is, ε∂(i) = 1 iff ε(i) = ∂ for every

1 ≤ i ≤ n. The connectives of the language above are grouped into the following

families F := FD∪FMT∪FKI ∪FKC and G := GD∪GMT∪GKI ∪GKC :
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FD := {�,∧,¬} FKI := {1I ,∩,∼} GD := {⊥,∨,¬} GKI := {0I ,∪,∼}
FMT := {�I ,�C ,◦I ,◦C} FKC := {1C ,�, − } GMT := {�I ,�C ,◦I ,◦C} GKC := {0C ,�, − }

For any f ∈ F (resp. g ∈ G), we let n f ∈ N (resp. ng ∈ N) denote the arity of

f (resp. g), and the order-type ε f (resp. εg) on n f (resp. ng) indicate whether the

ith coordinate of f (resp. g) is positive (ε f (i) = 1, εg(i) = 1) or negative (ε f (i) = ∂,
εg(i) = ∂). The order-theoretic motivation for this grouping is that the algebraic

interpretations of F -connectives (resp. G-connectives) preserve finite joins (resp.

meets) in each positive coordinate and reverse finite meets (resp. joins) in each

negative coordinate. For any term s(p1, . . . pn), any order type ε over n, and any

1 ≤ i ≤ n, an ε-critical node in a signed generation tree of s is a leaf node +pi with

ε(i) = 1 or −pi with ε(i) = ∂. An ε-critical branch in the tree is a branch ending in

an ε-critical node. For any term s(p1, . . . pn) and any order type ε over n, we say

that +s (resp. −s) agrees with ε, and write ε(+s) (resp. ε(−s)), if every leaf in the

signed generation tree of +s (resp. −s) is ε-critical. We will also write +s′ ≺ ∗s (resp.
−s′ ≺ ∗s) to indicate that the subterm s′ inherits the positive (resp. negative) sign

from the signed generation tree ∗s. Finally, we will write ε(s′) ≺ ∗s (resp. ε∂(s′) ≺ ∗s)
to indicate that the signed subtree s′, with the sign inherited from ∗s, agrees with
ε (resp. with ε∂).

Definition 4.1 [Signed Generation Tree] The positive (resp. negative) genera-

tion tree of any LMT-term s is defined by labelling the root node of the generation

tree of s with the sign + (resp. −), and then propagating the labelling on each re-

maining node as follows: For any node labelled with � ∈ F ∪G of arity n� ≥ 1, and
for any 1 ≤ i ≤ n�, assign the same (resp. the opposite) sign to its ith child node

if ε�(i) = 1 (resp. if ε�(i) = ∂). Nodes in signed generation trees are positive (resp.

negative) if are signed + (resp. −).
Definition 4.2 [Good branch] Nodes in signed generation trees are called Δ-
adjoints, syntactically left residual (SLR), syntactically right residual (SRR), and
syntactically right adjoints (SRA), according to the specification given in Table 1.
A branch in a signed generation tree ∗s, with ∗ ∈ {+,−}, is a good branch if it is the
concatenation of two paths P1 and P2, one of which may possibly be of length 0,
such that P1 is a path from the leaf consisting (apart from variable nodes) only of
PIA-nodes (for explanations on terminology, we refer to [23, Remark 3.24]), and P2
consists (apart from variable nodes) only of Skeleton-nodes.

Skeleton PIA

Δ-adjoints

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

+ ∨ ∪ � ⊥ 0I 0C

− ∧ ∩ � � 1I 1C
SRA

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

+ ⊥ 0I 0C ∧ ∩ � ◦I ◦C �I ¬ ∼ −
− � 1I 1C ∨ ∪ � ◦I ◦C �C ¬ ∼ −

SLR

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

+ � 1I 1C ∧ ∩ � ◦I ◦C �C ¬ ∼ −
− ⊥ 0I 0C ∨ ∪ � ◦I ◦C �C ¬ ∼ −

SRR

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

+ ∨ ∪ �
− ∧ ∩ �

+

Skeleton

+p s1

PIA

≤ −
Skeleton

+p s2

PIA
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Definition 4.3 [Analytic inductive inequalities, cf. [17, Definition 55]] For

any order type ε and any irreflexive and transitive relation <Ω on p1, . . . pn, the

signed generation tree ∗s (∗ ∈ {−,+}) of a term s(p1, . . . pn) is analytic (Ω, ε)-inductive
if

(i) every branch of ∗s is good (cf. Definition 4.2);

(ii) for all 1 ≤ i ≤ n, every m-ary SRR-node occurring in any ε-critical branch with

leaf pi is of the form �(s1, . . . , s j−1,β, s j+1 . . . , sm), where for any h ∈ {1, . . . ,m} \ j:
(a) ε∂(sh) ≺ ∗s (cf. discussion before Definition 4.2), and

(b) pk <Ω pi for every pk occurring in sh and for every 1 ≤ k ≤ n.

An inequality s ≤ t is analytic (Ω, ε)-inductive if the signed generation trees +s
and −t are analytic (Ω, ε)-inductive. An inequality s ≤ t is analytic inductive if is

analytic (Ω, ε)-inductive for some Ω and ε.

In each setting in which they are defined, analytic inductive inequalities are a

subclass of inductive inequalities (cf. [17]). In their turn, inductive inequalities are

canonical (that is, preserved under canonical extensions, as defined in each setting,

cf. [6]). Hence, the following is an immediate consequence of the general canonicity

of inductive inequalities.

Theorem 4.4 Analytic inductive LMT-inequalities are canonical.

4.2 Translating the original language of rough algebras into the multi-type language

The toggle between the single-type algebras and their corresponding heterogeneous

algebras is reflected syntactically by the translation (·)t :L→LMT defined as follows:

pt = p ⊥t = ⊥ �t = � (¬A)t = ¬At

(A∧B)t = At ∧Bt (A∨B)t = At ∨Bt (IA)t = ◦C�I At (CA)t = ◦I�C At

Recall that T+ denotes the heterogeneous algebra associated with the given algebra

T (cf. Definition 3.7). The following proposition is proved by a routine induction

on L-formulas.

Proposition 4.5 For all L-formulas A and B and every L-algebra T, T |= A ≤
B iff T+ |= At ≤ Bt.

We are now in a position to translate the axioms and rules of any logic H defined

in Section 2.2 into LMT.
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original language translation interpretation

IA � A � ◦I�I A � A � eI ιa ≤ a (i)

� � I� � � � ◦I �I � � � ≤ eI ι� (ii)

I(A∧B) � IA∧ IB � ◦I�I (A∧B) � ◦I �I A∧◦I�I B � eI ι(a∧b) ≤ eI ιa∧ eI ιb (iii)

IA∧ IB � I(A∧B) � ◦I�I A∧◦I�I B � ◦I �I (A∧B) � eI ιa∧ eI ιb ≤ eI ι(a∧b) (iv)

IA � IIA � ◦I�I A � ◦I �I ◦I �I A � eI ιa ≤ eI ιeI ιa (v)

CIA � IA � ◦C�C ◦I �I A � ◦I �I A � eCγeI ιa ≤ eI ιa (vi)

I(A∨B) � IA∨ IB � ◦I�I (A∨B) � ◦I �I A∨◦I�I B � eI ι(a∨b) ≤ eI ιa∨ eI ιb (vii)

IA∨ IB � I(A∨B) � ◦I�I A∨◦I�I B � ◦I �I (A∨B) � eI ιa∨ eI ιb ≤ eI ι(a∨b) (viii)

� � IA∨¬IA � � � ◦I �I A∨¬◦I �I A � � ≤ eI ιa∨¬eI ιa (ix)
IA � IB CA � CB

A � B � ◦I�I A � ◦I �I B and ◦C�C A � ◦C �C B implies A � B

� eI ιa ≤ eI ιb and eCγa ≤ eCγb implies a ≤ b (x)

Since eI and eC are order-embeddings, eIι(a) ≤ eIι(b) and eCγ(a) ≤ eCγ(b) are

respectively equivalent to ι(a) ≤ ι(b) and γ(a) ≤ γ(b), and hence the quasi-inequality

(x) can be equivalently rewritten as the following quasi-inequality, which defines the

class HIA3:
ι(a) ≤ ι(b) and γ(a) ≤ γ(b) implies a ≤ b.

By applying adjunction, the inequalities in the antecedent can be equivalently

rewritten as a = eC(γ(b))∧ a and b = b∨ eI(ι(a)). Hence, the initial quasi-inequality

can be equivalently rewritten as the following LMT-inequality:

a∧ eCγ(b) ≤ eIι(a)∨b. (3)

The inequality above is analytic inductive 6 , and hence it can be used, together with

the other axioms of heterogeneous algebras, which, as observed in Section 3.3, are

analytic inductive, to generate the analytic structural rules of the calculi introduced

in Section 5, with a methodology analogous to the one introduced in [17]. As we

will discuss in Section 6.2, the inequalities (i)-(ix) are derivable in the appropriate

calculi obtained in this way.

5 Proper display calculi for the logics of rough algebras

In this section, we introduce proper multi-type display calculi D.A for the logics

associated with each class of algebras A mentioned in Section 2.1. The language

of these calculi has types D and KI and KC, and is built up from structural and

operational (aka logical) connectives. Heterogeneous connectives ◦I ,◦C ,�I ,�C are

interpreted as eI ,eC , ι,γ in heterogeneous algebras respectively. Each structural con-

nective is denoted by decorating its corresponding logical connective with ˆ (resp. ˇ
or ˜). Below, we adopt the convention that unary connectives bind more strongly

than binary ones.

5.1 Language

• Structural and operational terms:

6 Notice that applying similar steps in the single-type environment would give rise to the inequality
A∧C�CB ≤ B∨ I�IB (where C� and I� respectively denote the right adjoint of C and the left adjoint of I)
which is inductive but not analytic.
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D

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

A ::= p | � | ⊥ | ◦Iα | ◦Cξ | ¬A | A∧A | A∨A

X ::= A | ⊥̌ | �̂ | ◦̃C Π | ◦̃I Γ | ¬̃X | X ∧̂X | X ∨̌X | X >̂ X | X →̌X

KI

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

α ::= �I A | 1I | 0I | α∩α | α∪α | (∼α)

Γ ::= α | �̌I X | �̂I X | 0̌I | 1̂I | Γ ∩̂Γ | Γ ∪̌Γ | Γ ⊃̂ Γ | Γ ⊃̌Γ | ( ∼̃ Γ)

KC

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ξ ::= �C A | 1C | 0C | ξ� ξ | ξ� ξ | (−ξ)
Π ::= ξ | �̂C X | �̌C X | 0̌C | 1̂C | Π �̂Π | Π �̌Π | Π �̌Π | Π �̂ Π | (−̃ξ)

The formulas and structures in brackets in the table above pertain to the language

of D.TQBA5 and its extensions.

• Interpretation of structural connectives as their logical counterparts 7

(i) structural and operational pure D-type connectives:

structural operations �̂ ⊥̌ ∧̂ ∨̌ ¬̃ >̂ →̌
logical operations � ⊥ ∧ ∨ ¬ (> ) (→)

(ii) structural and operational pure KI-type and KC-type connectives:

structural operations 1̂I 0̌I ∩̂ ∪̌ ⊃̂ ⊃̌ 1̂C 0̌C �̂ �̌ �̌ �̂

logical operations 1I 0I ∩ ∪ (⊃ ) ( ⊃ ) 1C 0C � � ( �) (� )

(iii) As mentioned above, the language of D.TQBA5 and its extensions includes the
following structural and operational pure KI-type and KC-type connectives:

structural operations ∼̃ −̃
logical operations ∼ −

(iv) structural and operational multi-type connectives, and their algebraic counter-
parts:

types D→ KI D→ KC KI → D KC → D

structural operations �̂I �̌I �̂C �̌C ◦̃I ◦̃C
logical operations (�I ) �I �C (�C ) ◦I ◦C

algebraic counterparts ι′ ιπ γσ γ′ eδI eδC

5.2 Rules

In what follows, we will use X,Y,W,Z as structural D-variables, Γ,Δ,Λ as structural

KI-variables, and Π,Σ,Ω as structural KC-variables. The proper multi-type display

calculus D.TQBA includes the following axiom and rules: 8

• Identity and Cut:

IdD p � p
X � A A � Y CutDX � Y

Γ � α α � Δ CutKI
Γ � Δ

Π � ξ ξ � Σ CutKCΠ � Σ
• Pure D-type display rules:

X ∧̂Y � ZresD
Y � X →̌Z

X � Y ∨̌Z resD
Y >̂ X � Z

¬̃X � Y
galD ¬̃Y � X

X � ¬̃Y
galD

Y � ¬̃X

• Pure KI-type and KC-type display rules:
Γ ∩̂Δ � ΛresKI
Δ � Γ ⊃̌Λ

Γ � Δ ∪̌Λ resKI
Δ ⊃̂ Γ � Λ

Π �̂Σ � ΩresKC
Σ � Π �̌Ω

Π � Σ �̌Ω resKC
Σ �̂ Π � Ω

• Multi-type display rules:

7 In the synoptic table, the operational symbols which occur only at the structural level will appear between
round brackets.
8 For the sake of conciseness, we adopt the convention that the position of the name of rules – on the left or
on the right of the inference line – is relevant to correctly identify each given rule. For instance, the name
of each logical rule is placed on the right or on the left of the inference line, depending on whether the given
rule is a right- or a left-introduction rule. Some structural rules have a double inference line, meaning that
the rule is an abbreviation of two rules (one to be read top-down and the other bottom-up). In this case,
we use one and the same name for both rules.
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◦̃I Γ � Y
adDKI

Γ � �̌I Y

Y � ◦̃I Γ adDKI
�̂I Y � Γ

Y � ◦̃C ΠadDKC
�̂C Y � Π

◦̃C X � Π
adDKC

X � �̌C Π

• Pure-type structural rules: these include standard Weakening (W), Contraction
(C), Commutativity (E) and Associativity (A) in each type. We do not report
on them. 9

X � Y
cont¬̃Y � ¬̃X

X � Y�̂
X ∧̂ �̂ � Y

X � Y ⊥̌
X � Y ∨̌ ⊥̌

Γ � Δ
1̂I

Γ ∩̂ 1̂I � Δ
Γ � Δ

0̌I
Γ � Δ ∪̌ 0̌I

Π � Σ
1̂C

Π �̂ 1̂C � Σ
Π � Σ

0̌C
Π � Σ �̌ 0̌C

• Multi-type structural rules:
�̂ � Y◦̃I 1̂I ◦̃I 1̂I � Y

Γ � �̌I ⊥̌
�̌I �̂

Γ � 0̌I

�̂C �̂ � Π
�̂C �̂

1̂C � Π
X � ⊥̌ ◦̃C 0̌C
X � ◦̃C 0̌C

◦̃I Γ � ◦̃I Δ◦̃I
Γ � Δ

◦̃C Π � ◦̃C Σ ◦̃C
Π � Σ

�̂C X � �̌C Y
�̂C �̌C X � Y

�̂I X � �̌I Y
�̂I �̌IX � Y

X � ◦̃I �̌I ¬̃Y
IC

X � ¬̃ ◦̃C �̂C Y

X � ◦̃C �̌C ¬̃Y
IC

X � ¬̃ ◦̃I �̂I Y

◦̃C �̂C ¬̃X � Y
CI ¬̃ ◦̃I �̌I X � Y

◦̃I �̂I ¬̃X � Y
CI¬̃ ◦̃C �̌C X � Y

• Logical rules: those for the pure-type connectives are standard and omitted; those
for multi-type connectives:

�̂I A � Γ
�I �I A � Γ

Γ � A �I
�̂I Γ � �I A

◦̃I α � X◦I ◦Iα � X
A � Γ�I

�I A � �̌I Γ

Γ � �̌I A
�I

Γ � �I A

◦̃C ξ � X◦C ◦Cξ � X

�̂C A � Π
�C �C A � Π

Π � A �C
�̂C Π � �C A

X � ◦̃I α ◦I
X � ◦Iα

A � Π�C
�C A � �̌C Π

Π � �̌C A
�C

Π � �C A

X � ◦̃C ξ ◦C
X � ◦Cξ

The calculus D.TQBA5 is obtained by adding the following rules to D.TQBA:

• Display rules:
∼̃ Γ � ΔgalKI ∼̃ Δ � Γ

Γ � ∼̃ Δ galKI
Δ � ∼̃ Γ

−̃ Π � ΣgalKC −̃ Σ � Π
Π � −̃ Σ galKC
Σ � −̃ Π

• Pure KI-type and KC-type structural rules:
Γ � Δ

contI ∼̃ Δ � ∼̃ Γ
Π � Σ contC−̃ Σ � −̃ Π

• Multi-type structural rules:
X � ◦̃I �̌I Y ◦̃I �̌I
X � ◦̃C �̌C Y

X � ◦̃I ∼̃ Γ ◦̃I ∼̃
X � ¬̃ ◦̃I Γ

X � ◦̃C −̃ Π ◦̃C −̃
X � ¬̃ ◦̃C Π

• Logical rules for ∼ and − :
∼̃ α � Γ∼ ∼α � Γ

Γ � ∼̃ α ∼
Γ � ∼α

−̃ α � ξ− − α � ξ
Π � −̃ ξ −
Π � − ξ

The proper display calculi for the axiomatic extensions of H.TQBA5 discussed

in Section 2.2 are obtained by adding the analytic structural rules indicated in

the following table to the calculus D.TQBA5.

Name of logic Display Calculus Rules

H.IA1 D.IA1 Γ ∩̂Δ � Λcgri
Δ � ∼̃ Γ ∪̌Λ

Π �̂Σ � Ω cgri
Σ � −̃ Π �̌Ω

H.IA2 D.IA2
�̂C (X ∧̂Y) � Π

�̂C �̂ �̂C X �̂ �̂C Y � Π
Γ � �̌I (X ∨̌Y)

�̌I ∪̌
Γ � �̌I X ∪̌ �̌I Y

H.IA3 D.IA3
X � Y W � Z

ia3
X ∧̂ ◦̃C �̂C W � ◦̃I �̌I Y ∨̌Z

H.PRA D.PRA cgri, �̂C �̂ , �̌I ∨̌ , ia3.

9 In what follows, we use subscripts (indicating the type) to distinguish the rules for lattice operators in
different type rules.
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6 Properties

Throughout this section, we let H denote any of the logics defined in Section 2.2;

let A and HA denote its corresponding class of single-type and heterogeneous al-

gebras, respectively, and let D.A denote the display calculus for H. The verifica-

tion of the properties of every D.A follows very closely those of analogous proper-

ties of other calculi designed using the general methodology of multi-type calculi

(cf. e.g. [19,15,18,16]). For this reason, we only sketch them.

6.1 Soundness on perfect HA algebras

In the present subsection, we outline the verification of the soundness of the rules

of D.A w.r.t. the semantics of perfect elements of HA (see Definition 3.6). The

first step consists in interpreting structural symbols as logical symbols according

to their (precedent or succedent) position, as indicated at the beginning of Section

5. This makes it possible to interpret sequents as inequalities, and rules as quasi-

inequalities. For example, the rules on the left-hand side below are interpreted as

the quasi-inequalities on the right-hand side:
X � Y W � Z

ia3
X ∧̂ ◦̃C �̂C W � ◦̃I �̌I Y ∨̌Z

� ∀a∀b∀c∀d[(a ≤ c & b ≤ d)⇒ a∧ eCγ(b) ≤ eI ι(c)∨d].

The verification of the soundness of the rules of D.A then consists in verifying
the validity of their corresponding quasi-inequalities in any perfect element of HA.
The verification of the soundness of pure-type rules and of the introduction rules
following this procedure is routine, and is omitted. The soundness of the rule ia3
above is verified by the following ALBA-reduction, which shows that the quasi-
inequality above is equivalent to the inequality (3), which, as discussed in Section
4, is valid on every H ∈ HIA3.

∀p∀q[p∧ eCγ(q) ≤ eI ι(p)∨q]

iff ∀p∀q∀a∀b∀c∀d[(a ≤ p & b ≤ q & p ≤ c & q ≤ d)⇒ a∧ eCγ(b) ≤ eI ι(c)∨d]

iff ∀a∀b∀c∀d[(a ≤ c & b ≤ d)⇒ a∧ eCγ(b) ≤ eI ι(c)∨d].

The validity of the quasi-inequalities corresponding to the remaining structural

rules follows in an analogous way.

6.2 Completeness

Let Aτ � Bτ be the translation of any L-sequent A � B into the language of D.A which

composes the translation introduced in Section 4 with the correspondence between

algebraic operations and logical connectives indicated in table (iv) of Section 5.1.

Proposition 6.1 For every H-derivable sequent A � B, the sequent Aτ � Bτ is deriv-
able in D.A.

We only show the derivations of rule T8, axioms T6, and one direction of axiom

T7.
T8. IA � IB and CA � CB imply A � B � ◦I�I A � ◦I �I B and ◦C�C A � ◦C

�C B imply A � B
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A � A

◦C�C A � ◦C�C B

IdD + �C + ◦C + CutD

◦̃C �̂C A � ◦̃C �C B◦̃C
�̂C A � �C B

adDKC A � ◦̃C �C B ◦C
A � ◦C�C B ∧

A ∧̂A � A∧◦C�C B
CD A � A∧◦C�C B

A � A B � B
ia3

A ∧̂ ◦̃C �̂C B � ◦̃I �̌I A ∨̌B

∧l + ∨r

A∧◦C�C B � ◦I�I A∨B

◦I�I A � ◦I�I B

IdD +�I +◦I +CutD
◦̃I �I A � ◦̃I �̌I B◦̃I
�I A � �̌I B

adDKI ◦̃I �I A � B◦I ◦I�I A � B B � B∨ ◦I�I A∨B � B ∨̌B
CD◦I�I A∨B � B

CutDA∧◦C�C B � B
CutDA � B

T6. � � IA∨¬IA � � � ◦I�I A∨¬◦I �I A T7. I(A∨B) �� IA∨ IB �
◦I�I (A∨B) �� ◦I�I A∨◦I�I B

A � A�I
�I A � �̌I A

�I
�I A � �I A

1̂I�I A ∩̂ 1̂I � �I A
cgri

1̂I � ∼̃ �I A ∪̌�I A◦̃I ◦̃I 1̂I � ◦̃I ( ∼̃ �I A ∪̌�I A)

◦̃I + adDKI + W + C + �̂I �̌I

◦̃I 1̂I � ◦̃I ∼̃ �I A ∨̌ ◦̃I �I A resD◦̃I ∼̃ �I A >̂ ◦̃I 1̂I � ◦̃I �I A ◦I◦̃I ∼̃ �I A >̂ ◦̃I 1̂I � ◦I�I A resD◦̃I 1̂I � ◦̃I ∼̃ �I A ∨̌ ◦I �I A
ED◦̃I 1̂I � ◦I�I A ∨̌ ◦̃I ∼̃ �I A ◦̃I 1̂I�̂ � ◦I�I A ∨̌ ◦̃I ∼̃ �I A� � � ◦I�I A ∨̌ ◦̃I ∼̃ �I A resD◦I�I A >̂ � � ◦̃I ∼̃ �I A ◦̃I ∼̃◦I�I A >̂ � � ¬̃ ◦̃I �I A resD� � ◦I�I A ∨̌¬◦I �I A ∨� � ◦I�I A∨¬◦I �I A

A � A B � B∨
A∨B � A ∨̌B�I

�I (A∨B) � �̌I (A ∨̌B)
�̌I ∪̌

�I (A∨B) � �̌I A ∪̌ �̌I B resKI
�̌I A ⊃̂ �I (A∨B) � �̌I B

�I
�̌I A ⊃̂ �I (A∨B) � �I B resKI

�I (A∨B) � �̌I A ∪̌�I B EKI�I (A∨B) � �I B ∪̌ �̌I A resKI
�I B ⊃̂ �I (A∨B) � �̌I A

�I
�I B ⊃̂ �I (A∨B) � �I A resKI

�I (A∨B) � �I B ∪̌�I A EKI�I (A∨B) � �I A ∪̌�I B◦̃I ◦̃I �I (A∨B) � ◦̃I (�I A ∪̌�I B)

◦̃I + adDKI + W + C + �̂I �̌I

◦̃I �I (A∨B) � ◦̃I �I A ∨̌ ◦̃I �I B

resD+ ◦̃I +E

◦I�I (A∨B) � ◦I�I A∨◦I�I B

In between the dashed inference lines we list the names of all the rules needed to

reconstruct the entire derivation.

6.3 Conservativity

To argue that D.A is conservative w.r.t. H we follow the standard proof strategy

discussed in [17,14]. Let �H denote the syntactic consequence relation correspond-

ing to H and |=HA denote the semantic consequence relation arising from (perfect)

heterogeneous algebras in HA. We need to show that, for all L-formulas A and B,
if Aτ � Bτ is a D.A-derivable sequent, then A � B is derivable in H. This claim can

be proved using the following facts: (a) The rules of D.A are sound w.r.t. perfect

members of HA (cf. Section 6.1); (b) H is complete w.r.t. the class of perfect algebras

in A (cf. Proposition 2.4); (c) A perfect element of A is equivalently presented as a

perfect member of HA so that the semantic consequence relations arising from each

type of structures preserve and reflect the translation (cf. Proposition 4.5). Let A,B
be L-formulas. If Aτ � Bτ is D.A-derivable, then by (a), |=HA Aτ � Bτ. By (c), this

implies that |=A A � B, where |=A denotes the semantic consequence relation arising

from the perfect members of class A. By (b), this implies that A � B is derivable in

H, as required.
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6.4 Cut elimination and subformula property

In the present section, we briefly sketch the proof of cut elimination and subformula

property for D.A. As hinted to earlier on, proper display calculi have been designed

so that the cut elimination and subformula property can be inferred from a meta-

theorem, following the strategy introduced by Belnap for display calculi. The meta-

theorem to which we will appeal for each D.A was proved in [9].

All conditions in [9, Theorem 4.1] except C′8 are readily satisfied by inspecting

the rules. Condition C′8 requires to check that reduction steps are available for

every application of the cut rule in which both cut-formulas are principal, which

either remove the original cut altogether or replace it by one or more cuts on for-

mulas of strictly lower complexity. In what follows, we only show C′8 for the unary

connectives.

Pure D-type connectives:
.
.
. π1

X � ¬̃A ¬
X � ¬A

.

.

. π2

¬̃A � Y¬ ¬A � Y CutD
X � Y �

.

.

. π2

¬̃A � Y
galD ¬̃Y � A

.

.

. π1

X � ¬̃A
galDA � ¬̃X CutD¬̃Y � ¬̃X

cont
X � Y

The cases for ∼α and − ξ of D.TQBA5 and its extensions are standard and similar

to the one above.

Multi-type connectives:

.

.

. π1

Γ � �̌I A
�I

Γ � �I A

.

.

. π2

A � Y�I
�I A � �̌I Y

Γ � �̌I Y �

.

.

. π1

Γ � �̌I A
adDKI◦̃I Γ � A

.

.

. π2

A � Y
◦̃I Γ � Y

adDKI
Γ � �̌I Y

.

.

. π1

X � ◦̃I α ◦I
X � ◦Iα

.

.

. π2

◦̃I α � Y◦I ◦Iα � Y
X � Y �

.

.

. π1

X � ◦̃I α adDKI
�̂I X � α

.

.

. π2

◦̃I α � Y
adDKI

α � �̌I Y

�̂I X � �̌I Y
�̂I �̌IX � Y

The cases for �C A and ◦Cξ are analogous.
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