SYSTEMATIC INTEGRATION OF URBAN FARMING INTO URBAN METABOLISMS

Waste As A Resource For Urban Food Production

Eren Gozde Anil | 5263557

Mentors:

Andrew Jenkins | Climate Design & Sustainability

Michela Turrin | Design Informatics

Delft University of Technology

 $MSc.\ Architecture,\ Urbanism\ and\ Building\ Sciences$

Building Technology Graduation Studio AR3B025

2021 - 2022

Presentation 5

Contents

01. Introduction & Research Framework

02. Methodology & Approach

03. Foodcycle

04. Using Foodcycle

05. TU Delft Case Study

06. Conclusions

Introduction

Problem
Possible Solution
Why A Decision Making Tool Is Necessary
Research Questions

Linear Metabolism

Problem Statement

Problem Statement

Research Question

In which situations can different **URBAN FARMING SYSTEMS** employ different **URBAN WASTE FLOWS** in order to promote the circularity of food production and resources in urban contexts by augmenting the design process with **DECISION SUPPORT SYSTEMS**?

Research Question

Which kind of WASTE FLOWS are viable to be utilised by the urban farm economically, environmentally and from a public safety perspective?

Which kind of **URBAN FARMING SYSTEMS** are suitable to repurpose the urban waste flows including water, CO2, heat, organic waste?

How can urban farming systems be combined and have a SYMBIOTIC RELATIONSHIP to close the loop within the urban metabolism?

Which COMPUTATIONAL APPROACHES are feasible to construct the decision making tool serving the purpose of generating a network of inputs, outputs, and urban farming systems (operators) with given criteria and rules to design?

Research & Design Approach

Methodology Waste As A Sources Produce Urban Farming As An Exchange Hub Database Rule Based Decision Making

Methodology

Waste As A Resource

Product Types

Different Systems

Exchange Hub

Database

Space	Waste	Supplement	Medium	Growing Technique	Design Characteristic	System Type	Main Product	Bi-Product
Rooftop	Food Waste	Fertilser	Soil	Compost	Fish Tank	Food Production	Small Crops	Heat
Facade	Coffee Waste	Nutrient Solution	Water	Spawning	Tank	Supplementary	Large Crops	Food Waste
Intermediate Floor	Other Waste	Calcium	Fish Tank Water	Aquaculture	Stacked System	Food Producing Supplementary	Mushrooms	Spent Mushroom Substrate
Ground Floor	CO2	Lime Bath*	Air	Raised Beds	Horizontal		Worms	Fertiliser
Basement	Rainwater		Food Waste	NFT	Vertical		Fish	Fish Tank Water
	Heat		Coffee Waste	Aeroponics	Modular Frame			
			Other Waste	EBB & Flow				
			Clay Balls	Gravity Trickle				
	inputs			syste	em		outputs	

 $^{\star}\,\mathrm{Lime}$ Bath is used for pasteurization of substrate.

Vermiculture
 Aquaculture
 Hydroponic - NFT
 Hydroponic - Water Culture
 Hydroponic - Media Bed

Rule Based Decision Making

if then ...

Foodcycle

Aim / Scope Data Flow Design Rules User - Tool Interaction Design Process

Project Scope

Decision Making Flow

Welcome To FoodGycle!

Decision Making Flow

Decision Making Flow

Design Rules

Vacant Space Characteristics

Waste Demand

Availability

Search Radius

Vacant Space Characteristics

Solar Exposure

Structural Capacity

Waste Demands

Demanded Waste Types

Demanded Waste Quantity

Waste Availability

Found & Missing Items

Critical Items

Non - Transferable Items

Symbiosis Rate

Search Radius

Minimum & Maximum Radius

How to make decisions?

Step By Step Decision Making

Illustrating Decisions

Using Foodcycle

User - Tool Interaction Design Process

How to Interact with Foodcycle?

Welcome To FoodGycle!

Open File

Location

TU Delft 🕜

Boundary

Tip! Drag Corners To Rseize Boundary Box

Coordinates :
 x , y , z

Area : ... m2

Elevation Difference : ... m

NEXT

Include Waste
 Types:

- ✓ Coffee Waste
- Food Waste
- 🖊 Paper Waste
- ✓ Sawdust
- ✓ CO2
- **Excess** Heat
- Rainwater
 Harvesting

Tip! Drop Pin &
Fill In The Details
For Manual Input

Data Colection Method:

- ☐ GIS Data Import
- ✓ Manual Input

NEXT

Include Spaces
For Farming:

✓ Ground Floor ▼

Roof Top

√ Indoor

Tip! Click on the areas to include

Data Colection Method:

- **☑** GIS Data
- ☐ Drone Footage
- ✓ Manual Input

NEXT

Design Questionnaire

X

What is the aim of the project?

Questions 4/14

Research

Holistic Food
Production

Maximum Productivity

Should all the waste sources be found for food production systems?

Both Critical and Non-Critical Items

Only Critical Items

How many missing resources is acceptable?

1

2

3

Should all the waste sources be found for food producing supplementary systems?

Both Critical and Non-Critical Items

Only Critical Items

Holistic Food
Production

Uf systems are sorted according to ease of application in existing urban contexts.

All of the vacant spaces will be occupied based on the number of missing items even if there is not any found item.

Critical Items:

Resources which are a must for a system to function
Vermiculture: Food waste, sawdust, paper

hould all the waste sources be found for supplementary systems?

Questions 8/14

Both Critical and Non-Critical Items

Only Critical Items

How far can the waste sources be from vacant spaces?

100 [m]

Can this distance be increased if there are vacant spaces left?

No

Yes

What is the maximum distance waste sources can travel?

500 [m]

Food Production Systems:

Systems which only produce food including mushrooms, soft fruits and leafy greens.
Food Producing Supplementary Systems:
Systems which pro-

duce supplements in addition to food. Supplementary Sys-

tems:

Systems which only produce supplementary items but no food items.

Can search radius be increased if there are vacant spaces left?

Questions 11/14

No

Yes!

How many times?

0

1

2

Is there a possibility to add infrastructure to transfer CO2, heat and Rainwater?

No

Yes!

Search Radius:

Search radius is
the distance
between each vacant
space and waste
sources around it.
Non Transferable
Items:

CO2, Heat,
Rainwater
These resources are
only used if they
are available in
the same building
as the vacant
space.

How many steps should there be until it reaches the maximum value?

2

3

4

How Is there a possibility to add infrastructure to transfer CO2, heat and rainwater?

No

Yes!

Should all the vacant spaces be occupied even if there are not any found items?

No

Yes!

Questions 14/14

Search Radius:

Search radius is
the distance
between each vacant
space and waste
sources around it.
Non Transferable
Items:

CO2, Heat,
Rainwater
These resources are
only used if they
are available in
the same building
as the vacant
space.

✓ Increased
Search Radius

500

- Maximum 2 missing resources
- ☑ Min. 1 found resource

Average Symbiosis
Rate:
... %

Number of Vacant
Spaces:
... spaces

Number of Used Waste Sources: ... sources

0

500

- Maximum 2 missing resources
- √ Min. 1 found resource

Average Symbiosis Rate:

... %

Number of Vacant
Spaces:
... spaces

Number of Used Waste
Sources:
... sources

✓ Increased
Search Radius

•

500

- ☐ Maximum 2 missing resources
- Min. 1 found
- Critical Items Cannot Be Supplied Externally
- Assign a system to every vacant space

Average Symbiosis
Rate:
... %

Number of Vacant
Spaces:
... spaces

Number of Used Waste
Sources:
... sources

☑ Initial Search ▼
Radius

0

500

- ☐ Maximum 2 missing resources
- Min. 1 found resource
- Critical Items Cannot Be Supplied Externally
- Assign a system to every vacant space

Average Symbiosis Rate:

... %

Number of Vacant
Spaces:
... spaces

Number of Used Waste
Sources:
... sources

Enough Vegetables to Feed 72093 People (Daily)

Delft Population : 101,030

250 gr Fruit & Veg

90 % of Delft Population

Sawdust

Paper

Spent Coffee Grounds

C02

Rainwater

Excess Heat

Food Waste:
4237 / 131542
[kg/year]

Sawdust : 592000 / 592000 [kg/year]

Paper : 812601 / 812601 [kg/year]

Spent Coffee Ground : 13020 / 201040 [kg/year]

> CO2 : 1962 / 3979 [kg/year]

Rainwater : 41050300 / 49116800 [L/year]

Excess Heat : 44000000 / 45732320 [kWh/year]

Change UF System

Vermiculture Aquaculture Mushroom NFT Mediabed Water Culture Raised Bed **Plant Factory** Aeroponics

Warning! The system you picked is too heavy for a rooftop

Tip! Click on the system to chenge it

Average **Symbiosis** Percentage: ...% -> ...%

Food Yield: ... kg -> ...%

Number of Vacant Spaces: ... spaces ->... spaces

Food Yield:

Removing Waste Source

Warning! The waste source you removed provides a critical resource.

The productivity will be affected significantly!

Number of Vacant Spaces: ... kg -> ...% ... spaces ->... spaces

Tip! Click on the node to remove it

NEXT

Average **Symbiosis** Percentage: ...% -> ...%

When to use Foodcycle?

Step 0

Step 2 Foodcycle new project_▼

TU Delft Case Study

Vacant Spaces & Site Analysis Waste Sources & Site Analysis Rules For Tu Delft Outcomes / Results Waste Storyboard & Numerical Results Impressions

TU Delft Campus

Available Spaces

Identifier	Coordinates	Size	Building	Location	Orientation	Tag	Node Type
V94	{1180.528137, 402.278761, 12.0}	444	EEMCS2	roof	S	V94	vacant space
V95	{1200.66369, 302.439976, 0}	440	outside	outside	E	V95	vacant space

Available Waste Sources

Identifier	Coordinates	Building	Туре	Quantity	Тад	Node Type	Waste Type
WO84	{1008.117463, 432.481923, 0}	EEMCS2	W1	1257	WO84	waste	food
WO85	{938.062517, 361.587996, 0}	education	W5	148	WO85	waste	co2

Vacant Ground Floor

Design Rules (Stage 1 - 3)

Availability

Search Radius

found items ≥ 1 missing items ≤ 2 critical items non - transferable

100 meters

200 meters

500 meters

Stage 1 Results

Radius 100 m

13 farms (4.3 hectares)

Symbiosis Rate = 53 %

Stage 1 Results

Radius 100 m

29 Used Waste Sources

Stage 2 Results

Radius 200 m

13 + 1 farms (4.3 + 0.2 hectares)

Symbiosis Rate = 50 %

Vermicompost (UF1)
Aquaculture (UF2)
Mushroom Farm (UF3)
NFT (UF4)
Mediabeds (UF5)
Raised Beds (UF6)
Water Culture (UF7)
Plant Factory (UF8)
Aeroponics (UF9)

Stage 2 Results

Radius 200 m

29 + 3 Used Waste Sources

Stage 3 Results

Radius 500 m

14 +1 farms (4.5 + 0.25 hectares)

Symbiosis Rate = 50 %

Vermicompost (UF1)

Aquaculture (UF2)

Mushroom Farm (UF3)

NFT (UF4)

Mediabeds (UF5)

Raised Beds (UF6)

Water Culture (UF7)

Plant Factory (UF8)

Aeroponics (UF9)

Stage 3 Results

Radius 500 m

33 + 3 Used Waste Sources

Design Rules (Stage 4)

Availability

Search Radius

found items ≥ 0 critical items non - trasferable

500 meters

Stage 4 Results

Radius 500 m

15 + 110 farms (4.75 + 17.4 hectares)

Stage 4 Results

Radius 500 m

36 + 29 Used Waste Sources

Assigned Urban Farming Systems

Waste Use Percentage

How to transfer waste?

What is the potential of TU Delft Campus?

23 Tonnes of Leafy Greens

+ 4.8 tonnes of mushrooms + 346 kg fish + 3.1 tonnes soft fruits

Conclusions

SWOT Comparison With Other Tools Learnings

SWOT Analysis

Agritecture vs Delphy QMS vs Foodcycle

Features	Agritecture Designer	Delphy - QMS	Foodcycle
Energy calculations	+	+	-
Yield estimation	+	+	+
Profit estimation	+	+	-
Business plan	+	+	-
Comparison between models	+	+	+
Using waste as a resource	-	-	+
Building a network of farms	-	-	+
Suggests growing techniques	-	?	+
Suggesting farming systems	+	?	+
Designing for more than one space at once	-	-	+
Different project aims	+	?	-
Designing with a budget	+	;	
Different crops to select	urban/peri urban/ rural	;	urban
Site	+	+	-
Different design stages	+	-	=
Includes ease of running the farm	+	-	-
Concept report	+	+	+
Advice regarding farm design	+	+	-
Climate control	-	+	- /

Learnings

Urban Farming

Thinking Methodologically

Waste Sources

Datasets Influence

Further Improvements

Thank you !!