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Abstract: Estimation of relevant lung parameters and the breathing effort of a ventilated
patient is essential to keep track of the patient’s clinical condition. The aim of this paper is to
investigate the major challenges of estimating the patient’s condition with parametric models.
The main method is a linear regression framework, where identifiability and persistence of
excitation aspects are clearly unraveled. Different approaches for improving estimation accuracy
are outlined. As an illustration, one of the solution strategies is implemented, which leads to
accurate estimates of the breathing effort and relevant lung parameters.
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1. INTRODUCTION

Mechanical ventilators are mechatronic systems used for
life-saving therapy in Intensive Care Units (ICUs) to sup-
port patients who cannot fully breathe independently. The
main goal of mechanical ventilation is to ensure oxygena-
tion and carbon dioxide elimination for the patient as
stated in Warner and Patel (2013). Especially during the
flu season or a world-wide pandemic such as the COVID-
19 pandemic, mechanical ventilation has proven to be a
life-saver for many patients around the world, see Wunsch
(2020). Patients that are fully sedated completely rely
on mechanical ventilation, while patients that are spon-
taneously breathing are only supported by the ventilator.

Information about the patient’s clinical condition is cru-
cial to achieving optimal treatment for every individual
patient. For individual treatment plans, it is necessary
to track the patient’s condition over time. The patient’s
clinical condition cannot be measured directly. Insight into
the patient’s condition can be obtained with parametric
patient models. By estimating the parameters in such
models, the well-being of the patient can be insightfully
quantified. Parametric lung models, for example the lin-
ear one-compartmental lung model as described in Bates
(2009), enable estimation of the patient’s lung compliance
and the resistance of the patient’s airway. The estimates
can be obtained for fully sedated patients using recur-
sive least squares algorithms as demonstrated by Bor-
rello (2001) and Avanzolini et al. (1997). These methods
produce inaccurate results for the parameter estimation
when the patient is spontaneously breathing because the
breathing is not taken into account in the passive patient
models as stated by Redmond et al. (2019).

From an estimation perspective, it is essential to include
the unknown spontaneous breathing effort of the patient
in the estimation process to obtain more accurate esti-

mates fo the patient parameters. Besides that, clinically,
information about the patient’s breathing effort is also
essential. It helps to monitor the patient and also helps
to detect and eventually prevent patient-ventilator asyn-
chrony Holanda et al. (2018). In Blanch et al. (2015),
patient-ventilator asynchrony is associated to increased
mortality rates. Summarizing, accurate estimates of the
patient parameters and the breathing effort are relevant
to determine the patient’s clinical condition and thereby
improve the patient’s treatment.

One class of approaches to estimate the patient’s charac-
teristics and the breathing effort simultaneously involves
only the existing measurement signals, such as the air-
way pressure and the patient flow. This can only be ac-
complished if prior knowledge in the form of constraints
on the patient’s breathing effort are enforced. In Vicario
et al. (2016), the lung resistance, the lung compliance, and
the patient effort are estimated in a non-invasive fashion
through linear regression techniques by enforcing stringent
conditions on the patient effort, i.e., a monotonic decrease
during inspiration and a monotonic increase during expi-
ration of the patient effort. This may be considered a too
stringent assumption in practice. In Schauer and Simanski
(2021), the patient parameters and the breathing effort are
estimated non-invasively by parameterizing the breathing
effort with radial basis functions. A constraint is enforced
on the breathing effort; namely that the effort is periodic,
which is a too stringent assumption in practice. In Rein-
ders et al. (2022), the patient parameters and the breath-
ing effort are estimated, also non-invasively by enforcing
sparsity on the second derivative of the breathing effort. In
practice, the breathing effort is often more smooth, i.e.; a
non-sparse second derivative of the breathing effort, which
leads to inaccurate estimates.

Another class of approaches to estimate the patient’s
characteristics and the breathing effort simultaneously
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Fig. 1. linear one-

representation of a
compartmental lung model.

Schematic

involves using extra measurement signals, which makes
the estimation less challenging but possibly more expen-
sive, error-prone, and uncomfortable for the patient. In
Navajas et al. (2000), the inspiratory pressure level of a
single breath is increased to estimate the lung resistance
and compliance over multiple breaths. This estimation
method is only accurate if the breathing effort stays the
same over multiple breaths, which may be considered a
too stringent assumption in practice. In Petersen et al.
(2020), the shape of the breathing effort is constrained by
surface electromyographic (SEMG) measurements, which
makes it is possible to estimate the patient parameters
and breathing effort with linear regression. However, the
placement of the SEMG sensors is error-prone and might
intervene with the patient’s treatment.

Although a range of different methodologies have been
developed to estimate the patient’s clinical conditions in
a non-invasive manner, the methods achieve sub-optimal
performance either due to the fact that too stringent
constraints are added to the shape of the breathing effort
or that treatment of the patient must be altered, in the
form of extra measurements or ventilation maneuvers.

The main contribution of this paper is an estimation
perspective on combined patient parameter and breathing
effort estimation, encompassing a range of methods involv-
ing both prior knowledge and additional measurements.
As sub-contributions, a mathematical explanation is given
why estimating the patient characteristics and breathing
effort simultaneously is a challenging identification prob-
lem and a simulation case-study is conducted for a possible
solution of the estimation problem. These contributions
are a stepping stone for future research on patient es-
timation with the presented estimation perspective, for
example estimation using information of multiple breaths.

In this paper, the contributions are touched upon as
follows. First, in Section 2, the considered patient and
patient breathing model is presented. In Section 3, the
linear regression framework for estimation of the patient
characteristics and breathing effort is introduced. There-
after, in Section 4, a simulation case-study of a sponta-
neously breathing patient is presented to analyze a pos-
sible solution that fits within the estimation framework.
Finally, conclusions and recommendations for future work
are presented in Section 5.

2. PATIENT AND BREATHING EFFORT MODELING

The patient model that is used in this paper is the lin-
ear one-compartmental lung model as described in Bates
(2009). This model is the simplest description of the lungs
and airways, but is very intuitive for clinicians due to
the physiological parameters as lung resistance, Rjung,
and lung compliance Cjyng. A schematic overview with
all important signals and parameters is shown in Figure
1. The model is considered to be a grey box model with
certain patient parameters, which is derived below. Finally,
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an input-output model is given, where the inputs, outputs,
and exogenous disturbance are defined.

The model consists of two components: the lungs and the
airway. The lung model describes how the lung pressure
changes due to the volume inside the lungs together with
the patient’s breathing effort. The airway model describes
the pressure drop over the airway and the flow moving in
or out of the lungs. The pressure inside the patient’s lungs
is modeled as
1

Clung

where Vpa(t) 1= ftf) Qpat (T)dT is the volume inside the pa-
tient’s lungs, Clung the average compliance over the lungs,
Qpat(t) the flow towards the patient’s lungs, prung(to)
the initial lung pressure, and p.s(t) is the patient’s
time-varying breathing effort. The breathing effort p.,us
changes the lung pressure pi,.g due to contraction and
relaxation of the respiratory muscles. Therefore, it is mod-
eled as an additive exogenous disturbance in (1).

The airway of the patient is modeled with a linear resis-
tance, which gives the relation between the airway pres-
sure, lung pressure, and the patient flow:

plung(t) ‘/pat (t) + Plung (tO) + Pmus (t)7 (]-)

Qpat (t) _ Paw (t)]% Piung (t) ’ (2)
lung
where Rjyng is the linear airway resistance. Combining
expressions of the lung pressure (1) and the patient flow
(2) gives the following expression for the airway pressure
Paw:

Paw (t) Vpat (t) + Rlunngat (t)+ (3)

DPlung (tO) + Prmus (t)
The lung compliance Cjyy, g, the lung resistance Ryypng, the
initial lung pressure piung(to), and the breathing effort
DPmus(t) are typically unknown in practice. The measured
signals are the airway pressure pg,(t), the patient flow
Qpat(t), and the volume V). (t). Equation (3) is algebraic,
therefore, the discrete time equivalent is

paw(k) = ‘/pat(k) + Rlunngat(k)+ (4)

plung(]-) + pmus(k)v
where k denotes the discrete sampling number and
Plung(1) denotes the initial lung pressure. The discrete
time variant forms the foundation for the estimation prob-
lem as presented in Section 3.

Clung

1
Clung

A more generic structure for the model that we use for the

estimation is:

y(k) = G(§)u(k) + d(k), (5)
where, for the modeled as described in (4), y(k) := paw (k)
is a measured output, G(&) the transfer from wu to y
with ¢ = [§&1 &] = [1/Clung Riung], which includes
the patient parameters, u(k) := [Vpat(k) Qpat(k)}T the
measured input signals, and d(k) := piung (1) +Pmus (k) the
unknown exogenous disturbance. In the next section, we
develop an estimation perspective to identify the patient

parameters in G(£) and the exogenous disturbance d(k)
simultaneously.

3. ESTIMATION PERSPECTIVE ON
SPONTANEOUSLY BREATHING PATIENTS

In this section, an estimation perspective on spontaneously
breathing patients is presented. In Section 3.1, a linear
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regression framework for the breathing effort estimation is
proposed. In Section 3.2, the uniqueness of the estimated
parameters is discussed. In Sections 3.3, 3.4, and 3.5, mul-
tiple, alternative solutions are proposed to solve the non-
uniqueness of the formulated breathing effort estimation
problem.

3.1 Linear regression framework for breathing effort
estimation

The estimation goal is to accurately find estimates of the
patient parameters and the exogenous disturbances in the
chosen grey box model presented in (5). These estimates
are important for adjusting the treatment according to the
patient’s condition. The goal must ideally be achieved by
only using the measured signals at hand, i.e., the airway
pressure pg,(k), the patient @Qpq:(k), and the patient
volume V4 (k). We adopt the perspective that we measure
these signals for a single breath, by which we define the
following model structure:

Mg: X =Y, Y=Xp (6)
with
Paw(1) Vpat(1) Qpar(1) 1 0
v=| o |x=| L]
paw(]\? Vpat(N) Qpat (N) 0 1
BT = C Rlung ﬁmus(l) o ﬁmus(N) € RN+2,
lung

(7
where Prus(k) = Pmus (k) +Piung(1) denotes the sum of the
patient effort and the initial lung pressure and N denotes
the number of samples in a single breath. The data set of a
single breath is captured by D = {X,Y}. We assume that
the lung resistance Rj,ny and compliance Cjyng do not
change over the data set D. Note that we aim to estimate

In the estimation procedure, we want to select the member
in the set Mg that reflects the patient in the best way
possible given the dataset D. For now, the assumption
is made that the linear model in (3) can fully describe
the patient. In that case, the true parameter vector is
defined as f(,. Hence, measurements of the true system

are described by:
Y =XpB,+wv, (8)

where the measurement noise v on the output Y is assumed
to be normally distributed with v ~ A(0,02), where o>
is the sample variance. To estimate the parameters, we
define a least-squares cost function:

k=N
T= (Pawk) = pau(k)* =Y =Y|5  (9)
k=1

with pg.w (k) the measured airway pressure and g, (k)
the estimated airway pressure via the model (4) with the

estimated lung resistance Rjyng, the estimated lung com-

pliance Clyng, and the estimated breathing effort pp,.s(k).
The parameter vector that minimizes the cost function is
found by analytically calculating the derivative of the cost
function and equating that to zero. It is well known, e.g.,
in Hastie et al. (2009), that the solution of the parameter
vector is given by

B=(XTX)'XTY. (10)

Note that the solution 3 is only unique if (X T X) is invert-
ible, which is not the case for the estimation problem as
defined above. This non-uniqueness can have two different
causes as stated in Ljung (1999). One is that two different
regressors [ give identical input-output properties in the
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Fig. 2. Three combinations of C, R, (C' = 80 [ml/mbar],
R = 0.083 [mbar s /ml](=)), (C = 80 [ml/mbar],
R = 0.042 [mbar s/ml](=)), (C' = 40 [ml/mbar], R =
0.083 [mbar s/ml](~)) with accompanying breathing

effort p,,.s leading to the same airway pressure pgq
(==)). The model structure in (7) is not identifiable.

model, i.e., the model structure is not identifiable. The
other cause is that the dataset D is not informative enough
to distinguish between different regressors 8 in the model
structure Mpg. In Section 3.2, a more in-depth analysis
of the two causes is given in the scope of the estimation
problem for mechanical ventilation.

3.2 Non-unique patient parameter estimation

The estimation problem with the cost function as formu-
lated in (9) does not give a unique solution for the param-

eter vector 8. This can be related to problems concerning
identifiability of the model structure or the informative-
ness of the input signals. First, the identifiability of a
model structure is defined as:

Definition 1. The parameterization Mgy is identifiable if
for all #; and (> it holds that
(11)

Mﬁl = M[b = b1 = P,
where the model equality is defined as

Mﬂl = M52 ~ Mﬁ1 (X) = Mﬂ2 (X) vX. (12)
The identifiability is a property of the model structure and
is independent of the data. For all inputs in X, we find that
X TX is not full rank (the rank drops with two because
the last N rows of X' X summed together are a linear
combination of the first two rows). In other words, we are
able to find infinite many different 8 vectors that result in
the same output. Therefore, it is concluded that the chosen

parameterization is not identifiable. An interpretation of
the lack of identifiability can be given using (4). It is

observed that if we choose a combination of Cj,,, and

leg, then it is possible to find a breathing effort Pryq.s(k)
such that pgw (k) = paw(k) Yk € [1, N], namely ps =
paw(k) - (ﬁ‘/pat(lﬂ) + Rlunngat(k) + ﬁlung(l))a even
ung

if the parametric estimates Rjung and Ciyung are wrong.
In Figure 2, three different combinations are shown that
result in the same airway pressure. Again, we conclude
that the parameterization is not identifiable.

Secondly, the informativeness of the inputs is made explicit
with the condition of persistent excitation as follows:

Definition 2. A dataset D is persistently exciting with
respect to the identifiable parametrization M., if, for any
two realizations M., , M., satisfy

M’Yl(X) - M’Y2(X) = 07
implies that v; = vs.

(13)
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Fig. 3. Enforcing constraints Fig. 4. Estimation over mul-

on the breathing ef-
fort shape reduces the
amount of parameters
to be estimated [, e.g.,
basis functions, sparse
estimation.

tiple breaths with con-
straints over subsequent
breaths to increase in-
formation, e.g., a breath
does not vary from the
previous breath(s).

Note that the parameterization Mpg is not identifiable;
hence, it is not possible to conclude whether the inputs are
persistently exciting. To show the concept of persistently
exciting signals, we change the linear regression problem
slightly in the following example.

Example 3. Assume that the patient is fully sedated
such that it is known that there is no breathing effort
(Prmus(k) = 0 VE). The regression problem then simplifies

to:
Paw(1) Voat (1) Qpat(l) 1
: = : : Clung (14)
paw(N) pat( )Qpat( ) lung

Y X B
In this regression problem, we find that the model struc-
ture is identifiable, because each parameter vector S gives
a different output Y for inputs X under the assumption
that the columns of X "X are linearly independent.

The input signals are not persistently exciting if X " X has
linearly dependent columns. In the patient estimation case,
the patient flow @Qpe¢ and volume V). are only linearly
dependent when the flow is zero. This might happen in the
continuous positive airway pressure (CPAP) mode of the
ventilator where a constant airway pressure is delivered,
which results in a zero patient flow @, and a constant
volume Vjq¢. In this case, the input signals are not per-
sistently exciting. All other airway pressure profiles, e.g.,
the pressure profile in Figure 2, are persistently exciting,
because the rank of X " X remains full.

In the next sections, possible adjustments are proposed to
end up with an identifiable model structure. This can be
achieved by imposing constraints on the breathing effort
over a single breath or by imposing constraints on the
breathing effort over multiple breaths.

3.8 Possible solutions within the estimation framework

Identifiability of the model structure Mg can be guar-
anteed in different ways. One option to change the model
structure is shown in Figure 3, where the parameter vector
08 is reduced B by including prior knowledge on a single
breathing effort. Another option is visualized in Figure 4,
where the amount of data in the input X is increased,
compared to the input in X, by using prior knowledge

over multiple breaths which also increases  in some cases.

The prior knowledge of the breathing effort is related to
the shape of the breathing effort. Constraints that we
consider to be practically feasible can be enforced to reduce
the possible realizations of the breathing effort. It is neces-

sary to define a subset of breathing efforts, which include
the true breathing effort, that leads to an identifiable
model structure. In the following sections, we introduce
two new model structures, one where prior knowledge is
applied to a single breath and one where prior knowledge
is applied to multiple breaths.

3.4 Prior knowledge on a single patient breath

Let us parameterize the breathing effort p,,,s as follows:
ﬁmus‘(k) = 9T Q(k)v (15)

where 6 € R™ are the parameters that determine the shape

of the breathing effort and g(k) € R™ the signals of the

parameterized breathing effort. This extra prior knowledge
enables us to define a new model structure:

Mp:Y =Xp (16)
with
YT = [paw(]-) paw(N)]7
- Vpat(l) pat(l) QI() QH(l)
Xo=| oo 2
Viat (N )Qfat( ) @1(N) -+ qn(N)
and g7 = G Riung 01 ... an} e R"2,

The parameterization of the breathing effort significantly
decreases the amount of estimated parameters in 8 (com-
pared to () because the breathing effort without pa-
rameterization equals the number of samples n within
one breath. Possible models for the breathing effort are
for example polynomial basis functions (with g¢(k) =
[1 t(k) --- t"(k)]), radial basis functions as in Schauer
and Simanski (2021), or a sinusoidal half-wave model (see
Section 4). The signal g(k) can also be a measured signal
as in Petersen et al. (2020). A stricter parameterization
results in a smaller subset of possible breathing efforts and
less parameters 6 that need to be estimated. At least, it
would be beneficial for the estimation if the amount of
estimated parameters 8 € RV*2 is reduced to § € R"
where n < N + 2. However, too stringent constraints may
result in a selected subset that does not include the true
breathing effort.

8.5 Prior knowledge on multiple patient breaths

Instead of enforcing constraints on the shape of a single
patient breath, it is possible to use information over
multiple breaths and constrain the variation of breathing
effort between breaths as done in Navajas et al. (2000).
We conjecture that constraints on multiple breaths can be
formulated such that they are less stringent compared to
some constraints on single breaths. If we assume that the
bﬁeathing effort stays equal over m breaths of length N,
then

Mg:YV =Xj3 (18)
Wigh
V= [pawl(l) o Paw(mAN) ],
BT — |:C Rlung ﬁmus(]-) ﬁmus(N) S RN+2,
lung
[ Vpat(l) Qpat(l) 1 0]
Vyar (V) Que™) 0 1
X = z :
Vpat (M~ DN +1) Qpar((m 1N +1) 1 0
L Vpw(md) Quat(mN) 0 1)
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This parameterization leverages information from multiple
breaths where we assume that the lung resistance Riyng,
compliance Cjyng, and the breathing effort p,,.s(k) stay
the same over multiple breaths. This does not decrease the
amount of estimated parameters but increases the amount
of data points compared to a single breath if and only if
each of the m ventilator breaths are distinct.

4. SIMULATION CASE-STUDY OF PARAMETER
ESTIMATION OF SPONTANEOUS BREATHING
PATIENTS

Parameterization of the breathing effort helps to define
a new estimation problem with a unique solution as pre-
sented in Section 3.4 and 3.5. With the parameterization
we select a subset in which we can find the true breathing
effort by solving a optimization problem. In this simula-
tion case study, we compare three different methods to
parameterize the breathing effort:

(i) Enforcing sparsity on the second derivative of the
breathing effort;

(ii) Parameterizing the breathing effort with a sinusoidal
flipped halfwave, as defined in Reinders et al. (2021),
with estimated breathing start times of the patient;

(iii) Parameterizing the breathing effort with a sinusoidal
flipped halfwave, as defined in Reinders et al. (2021),
with the true breathing start times of the patient.

In method (i), we minimize the cost function:
i 1Y = Y113 + Allmwusllo
ﬁm,us S 0 vk?

where Y is the estimated output of the model defined in (6)
and (7) and X a weighting parameter. The rationale of the
constraint is that the patient’s inspiration and expiration
are only passive. The regularization term restricts the
shape of the breathing effort to a shape that only has a
sparse second derivative. We apply /¢;-relaxation to make
the optimization problem convex. The algorithms to find
a solution for this estimation problem are available in
Reinders et al. (2022).

(20)
subject to

In method (ii) and (iii), we parameterize the breathing
effort with a sinusoidal halfwave model, which is defined
in Reinders et al. (2021), and is equal to

0, t < Tpi

APmus (t) =

(07

Q Sl (2

9

7(t — Tpe)

(Tpeh - Tpe

. 7T(t — sz) >
—asin [ —————— ],
(2(Tpih —Tpi)

>)‘O"

Thi <t < Ty
Thin <t < Tpe
Tpe <t < Tpen
Tpen <t

21
where « denotes the amplitude of the breathing eff(ort),
T,; the start of the patient inspiration, T, the start of
the patient inspiration hold, T}, the start of the patient
expiration, and T, the start of the patient expiration
hold which are visualized in Figure 5.

The breathing start times of the patient are unknown
in practice. Thus, this breathing effort parameterization
can only be used if the patient’s breathing start times are
estimated. In this simulation case study, we have two ways
to determine these starting times. In method (ii) we obtain
the start times by extracting them from the estimated
breathing effort obtained with method (i). In method (iii),
we use the true patient’s breathing start time because they
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Fig. 5. Simulation results of three different estimation
methods. The true airway pressure p,,, and breathing
effort pyus (=) are compared to method (i) (=) (),
method (ii) (=)(+) with the patient breathing start
times from the sparse estimation (--), method (iii)
(==)(o) with the true patient breathing start times
(—). Re-estimation with the parameterized breathing
effort (method (ii)) improves the parameter estimates
compared to sparse estimation (method (i)), but
not converges the true values due to the inaccurate
estimates of the patient’s breathing start times.

are available in the simulation environment.

The sinusoidal halfwave parameterization enables us to
present a new model structure:

Ms:X Y, Y =X3 (22)
with
paw(l) Vpat(l) Qpat(l) pmus(l)
Y= @ |X=| = : N
paw(N) ‘/pat (N) Qpat (N) pmus(N)
AT
and 6 = Clung Rlung «
(23)

The methods (ii) and (iii) fit within the possible solu-
tions presented in Section 3.4, where we parameterize the
breathing effort. In this case, we obtain that 67 q(k) :=
Pmus (k). This reduces the amount of estimated parame-
ters from N + 2 to 3. A unique solution for this estimation
problem can be found because (X' X) is invertible for
all nonzero inputs except if Qpat(k) = cpmus(k) Yk or
Vpat (k) = cpmus(k) Vk, where ¢ is a constant. These
exceptions do not occur in practice because those inputs
signals do not comply with clinician set ventilation signals.
Thus, the model structure is identifiable in practice.

In Figure 5, results of a simulation case study are shown,
where we compare the estimation results of method (i)
with methods (ii) and (iii) as explained above. It can be
seen that method (ii) results in more accurate estimates
than method (i). However, the estimated breathing effort
amplitude & did not converge exactly to the true value due
to a mismatch in the start of the patient’s breathing times.
We only converge to the true parameter set when the
breathing times can be estimated exactly. This is shown
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with method (iii), where the green line in Figure 5 is on
the true breathing effort. For other start times, a different
combination of lung resistance Rjyng, lung compliance
Clung, and breathing effort py,.s is found, because the
subset of the breathing effort, due to the parameterization,
does not contain the true breathing effort.

The estimates of parameter vector [ with the sparse
estimation can thus be improved by conducting a re-
estimation method where the breathing effort is param-
eterized by a sinusiodal halfwave model. However, it is
important to mention that the re-estimation only improves
the estimation results when the breath timings (e.g., Tp;,
T,in) are estimated accurately. Convergence to the true
parameter set and exogenous disturbance can be enforced
with stringent constraints, e.g, parameterization of the
shape with one parameter.

5. CONCLUSIONS AND RECOMMENDATIONS

In this paper, a linear regression framework for estimation
of the ventilated patient’s clinical condition is proposed.
With the framework it is shown that the model structure
based on a linear one-compartmental lung model to esti-
mate the patient’s characteristics and breathing effort is
not identifiable. Furthermore, different possible solutions
are briefly discussed to change the model structure within
the linear regression framework. One of the solutions is
to parameterize the patient’s breathing effort with a sinu-
soidal halfwave. In the simulation case study, it was shown
that re-estimation with the parameterized breathing effort
leads to more accurate estimates of the patient’s char-
acteristics and breathing effort under the condition that
the patient’s breathing times are estimated accurately and
that the shape of breathing effort can be mimicked with
the parameterezation.

The parameterization of the sinusoidal halfwave is rather
stringent because not all patients breathe with this shape.
However, the used method gives a good indication that
when we know the shape of the breathing effort, the ampli-
tude of the effort together with the patient’s characteristics
can be estimated. Future research includes estimation with
measured signals that are related to the breathing effort.
Furthermore, we want to research estimation over multiple
breaths by enforcing constraints on subsequent breaths. In
Figure 6, the breathing effort and patient’s characteristics
are estimated based on two breaths with the assumption
that the breathing is exactly the same across breaths but
the shape is free. These initial simulation results indicate
that it is a promising research area. Furthermore, we
should explore methods with less stringent assumptions
on subsequent breaths.
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