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Abstract
In today’s world, accurate location sensing is im-
possible to think away. One of the most prominent
and most used techniques for determining location
is GPS. In the outside world, GPS is capable of
pinpointing a location with only a few meters er-
ror. But inside buildings, GPS often fails to de-
liver the same accuracy. In this paper, a relatively
new technique will be presented to solve this prob-
lem using acoustic location sensing where a smart-
phone emits inaudible chirps and records the result.
Specifically, this paper will cover what kind of data
is needed to train the deep model that will solve this
problem.

1 Introduction
Accurate indoor location sensing using the smartphone
acoustic system becomes more important everyday. In this
paper two key questions are addressed: what is the optimal
data set for training the deep model and how should this data
be processed to achieve the best results. Just like whales and
bats use echolocation to determine their location and the loca-
tion of objects around them, a smartphone can use its acous-
tic system (speaker and microphone) to emit short, inaudible
chirps akin to sonar signals. The recorded result can then be
used to determine its location.

Take for example large buildings with a large amount of
rooms, like a hospital, where swift and precise location sens-
ing is vital in case of emergencies. Or a museum where loca-
tion sensing can be used to improve the responsiveness of an
audio tour application. In these situations, acoustic location
sensing can provide swifter and more accurate results than
existing technologies such as GPS and WiFi. Building on
the concept that each room will have its own unique acous-
tic fingerprint, a deep model can be used in classifying room
locations.

Existing studies [1; 2; 4; 5; 6; 8; 10; 11; 12; 13] use the
collection of spectrograms as the basis for the training data.
However, using spectrograms is only one of several options
available for feature extraction that can be used to train a deep
model. In this paper, alternative strategies are investigated for
efficient processing of acoustic signals. The goal is to find
methods that can deliver the highest accuracy in recognizing
different locations.

2 Related work
While this technique is relatively new, a lot of papers are al-
ready out there with a variety of attempts at creating an im-
plementation for location sensing applications. Applications
like RoomRecognize [11] and EchoLoc [10] manage to suc-
cessfully implement an application that can near perfectly de-
termine which location the smartphone is. The research by
B. Zhou et. al. [13] shows that chirps can even be used to
create floorplans. This indicates that there is sufficient data
within chirps and their corresponding echoes to extract de-
tailed information about a room and the location within that
room. However, while chirps seem to be extremely handy in

location sensing, S. P. Tarzia et. al. [4] show that just using
passive location sensing without using any chirps also shows
information about the location that can be used to create a
classifier.
While standard spectrograms are often used for location sens-
ing, it is not the only feature extraction technique that has
been applied. The research by P. Seetharaman et. al. [7] uses
chromagrams to identify cover songs. While this does not di-
rectly apply to acoustic location sensing it is an interesting
view on audio recognition that might aid in the recognition of
different locations. Mfcc has also been used for audio recog-
nition as described by C. Ittichaichareon et. al.[9]. Here,
speech recognition is investigated using Mel-Scale Frequency
Cepstral Coefficients (MFCC) showing that it can also be
used to identify different audio features. This paper will at-
tempt to find out which of these techniques is most fit for
recognizing different locations across multiple rooms.

3 Measurement Study
Many existing implementations employ spectral features to
train machine learning models for location or room recog-
nition. This approach is logical because the response time
and response intensity are key factors for identifying a room
with chirps. Spectrograms effectively display this data, pro-
viding a comprehensive view of both temporal and frequency
information. Therefore they are well suited to train a ma-
chine learning model since machine learning models (espe-
cially deep models) have the ability to recognize subtle pat-
terns that can be found within these spectrograms. In this pa-
per, other techniques are investigated to show whether spec-
trograms are the most efficient choice or whether there might
be a way to improve the accuracy of the deep models.

Figure 1: Example of a classic time graph. Here the recording can
be seen including multiple chirps after a high pass filter has been
applied. The area between the chirps show smaller peaks that corre-
spond to the echos that are produced by these chirps.

Figure 2: Example of a spectogram of the same recording with same
preprocessing.

Figure 1 shows a time graph of a recording. The larger
peaks correspond to the chirps that are directly recorded by
the phone’s speaker while the smaller peaks that can be seen
between each of the larger peaks, correspond to the echoes



received by the speaker. This data specifically is what will be
used to train a deep model to recognize different locations.
Figure 2 shows more detail about the specific chirp response
than figure 1 since figure 2 shows the difference across mul-
tiple frequencies. This is a key advantage in training a deep
model since figure 2 contains more direct information about
the echoes that the chirps produce.

In this paper, 6 different feature extraction techniques
(FET) will be investigated. Appendix A shows an example
image of each technique. Figure 7 and 8 show an example of
a spectrogram capped between 19.5k Hertz and 20.5k Hertz
where the spectrogram in figure 8 is created with its values
converted to a linear scale.
Figure 9, 10 and 11 show examples of a chromatogram, mel
frequency ceptrogram and a mel-scaled spectrogram respec-
tively. In these examples, a 2 second audio recording is used
with 2ms chirps of 20k Hertz. The mel-scaled spectrogram
shows the clearest image which is a promising feature in rec-
ognizing rooms. The chromagrams and mfcc images show
a vastly different image compared to the other FET’s which
could either mean that their performance will probably be
much better or much worse than the other FET’s.

4 Methodology
To investigate different types of feature extraction, 7 different
locations will be chosen to run the same experiment for each
of the feature extraction techniques. Using chirps with a du-
ration of 2ms and an interval of 100ms, a set of images will
be created for every room and processed using each FET.

• First, the data is collected for a duration of 50 seconds
twice to gain approximately 1000 samples.

• The data is then saved 6 times using different FET’s
combined with different preprocessing

• During recording, the smartphone will be held in the
same position without rotating and moving it too much.
This is done to make sure the recordings from every lo-
cation has the same recording quality.

• After all the data is collected and processed, the same
deep model is created 6 times using each instance of the
saved data

• Finally, the results will be stored in a history graph gen-
erated during the training of the deep mode and a con-
fusion matrix showing how well the model performs on
new input data.

The confusion matrices are created by feeding new data
into the trained model and comparing each prediction with the
actual label. This test data is created from the initial training
data. To create this test set along with the other data sets, the
initial training data is divided into three parts.

• The training set consisting of 80% of the training data.
This is the data that is used to train the deep model

• The evaluation set consisting of 10% of the training
data. This data set is used to evaluate the trained model.

• The test set consisting of 10% of the training data. This
set will be used for the confusion matrices

5 Implementation

The application follows a client-server architecture where the
client is developed as an Android application using Java and
Android Studio. It handles tasks such as emitting and record-
ing audio data, as well as sending and receiving data to and
from the server.

Figure 3: Screenshot showing a part of the Android Application with
the options to set the location (room and location), duration and fre-
quency of the recording.

The chirps consists of a sine wave with a frequency of 20k
Hz. To limit clicking from the speakers, a window is applied
to smooth out the chirps as described by B. Zou et. al. [13].
A frequency of 20k is used since this frequency is inaudible
to the human ear and still within the frequency range that a
smartphone can emit and record. The server is implemented
using the Python Flask library. It receives the audio data from
the client and applies different preprocessing techniques de-
pending on the iteration of the experiment. The data is split
up to gain individual fragments containing the response pe-
riod (around 95ms) of each chirp. This is done by calculating
the enveloped function and retrieving the largest peaks from
that same enveloped function. These peaks are then used to
chop up the recording as shown in Figure 4



Figure 4: This image shows how the sound fragment is divided. The
orange x shows the identified peak while the red lines show how the
individual fragments are created.

Using the Librosa library, each window is then processed
using the following methods:

• librosa.stft.This produces a standard spectrogram as
used in experiments like RoomRecognize [11]. Two ver-
sions are created using this technique: one raw version
and one version where each value is converted to a linear
scale.

• librosa.mfcc.This creates a spectrogram using Mel-
Scaled Frequency Cepstral Coefficients.

• librosa.chroma stft. This creates a chromagram. For this
technique two versions were made as well. One version
where the input data has a high pass filter applied to it
to cut out all lower frequencies and one version without
filter.

• librosa.melspectrogram. This creates a Mel-Scaled
Spectrogram.

To keep the spectrograms relevant. All spectrograms are
capped between 19.5k Hertz and 20.5k Hertz except for one
instance of the chromagrams since the chromagrams display
pitch value and not frequency values.

Each resulting spectrogram or chromagram is then con-
verted to a 32x5 black white image as described by Song et.
al. [11]. For the deep model, a Convolutional Neural Network
is implemented using the Tensorflow and Sklearn libraries.
This model is implemented using the following parameters:

• A 2D convolution layer with a 16 4x4 filters

• A pooling layer with a 2x2 filter and 2 strides

• A second convolution layer with 32 4x4 layers

• A second pooling layer with a 2x2 filter and 2 strides

• A Dense layer with 1024 ReLu nodes

• And finally another dense layer containing k nodes cor-
responding to k target locations

Figure 5: Image by Q. Song et. al. showing the CNN

Tensorflow is used to implement the model (and therefore
also train and evaluate it) and the Sklearn library is used to
prepare the training data. Each location contains around 1000
images. These images are collected and then split into 3 data
sets as desribed in section 4.
Since the result of every feature extraction method is con-
verted to a 32x5 image, every method can be fed to the same
model.

6 Experimental Setup and Results

6.1 Setup

The objective of the study was to determine the most effective
processing techniques and data for recognizing different loca-
tions and rooms. For this purpose, a local home was chosen
as the test environment. The experiment involved re-running
the same experiment using various techniques as described
earlier. By comparing the results of these experiments, more
can be learned about what techniques affect the performance
of the deep models.



Figure 6: The floorplan of containing the locations that were used in
the experiments

Figure 6 shows most of the locations that were tested.
Here, R1 is a bedroom with location A being the desk and
location B being behind the door between a closet and the
wall. This givens location A a more open space while loca-
tion B is more enclosed. Room R2 is the bathroom with only
one location A. The bathroom has much more echo than the
other rooms which should result in a stronger echo response
for every chirp. Room R3 is a longer room where location A
is in the corner and location B is in a more open space sim-
ilar to location A in room R1. Room R4 is the only room
without any windows and thus completely enclosed between
walls except from the stairs that lead to another floor above
and beneath room R4. R5 is located one floor above the floor
described in figure 6. This location was chosen since the roof
has a slope which differentiates it from the other locations.
These location were chosen to explore different environmen-
tal aspects such as reverb and room size while also testing
the deep model’s ability to distinguish locations that are more
similar to each other such as locations R3 B and R1 A.

6.2 Results
Appendix B shows the validation accuracy per epoch and a
confusion matrix showing the performance after training.

When looking at the results, an order of performance can
be created among each FET:

1. The Mel-Scaled spectrograms
2. The standard spectrograms

3. The standard spectrograms where the values were con-
verted to a linear scale

4. The chromagrams where the input data was filtered us-
ing a high pass filter

5. The chromagrams where the input data was not filtered
using a high pass filter

6. The Mel-Scaled Frequency Coefficients

FET Approximate accuracy

Mel-Scaled spectrograms 85%
Standard spectrogram 80%

Linear standard spectrogram 75%
Chromagram with filter 70%

Chromagram 55%

Mel-Scaled Frequency Coefficients 45%

Table 1: The results from the deep models

Table 1 shows the results from each FET. Figures 15a and
14a show the chromagrams without filter and mel-scaled fre-
quency spectrograms with a performance that is significantly
worse than the other spectrograms with accuracy’s around
50%. Figure 16a shows the results for the chromagrams
where a high pass filter was applied before the conversion
to the chromagrams. Here, the performance is much bet-
ter which does follow a logical pattern as the lower frequen-
cies no longer influence the chromagrams. The best perform-
ing FET’s are shown in figures 12a, 13a and 17a. The two
standard spectrogram version are quite similar in their per-
formance which also makes sense since the only difference
between these two FET’s is the scale of the data. Out of all
6 FET’s tested in this research, the mel-scaled spectrograms
perform the best with an accuracy of around 85%. Given the
images shown in section 3 this is not that suprising since the
mel-scaled spetrograms were the clearest among all other im-
ages.

7 Responsible Research
The main concern that might come up when talking about
recordings to identify a location is privacy. Since the record-
ing are made on a regular basis if a user want real time in-
formation about their indoor location, any privacy sensitive
information might be recorded without permission. For most
of the FET’s used in this paper, the only data that is saved are
small audio samples with a frequency between 19.5k Hertz
and 20.5k Hertz. This mostly eliminates the privacy concerns
stated earlier. For one of the chromagrams however, the fre-
quency range was not limited. This increases the privacy risk
when deployed. However, since the accuracy of these chro-
magrams was among the lowest of all the FET’s that were
tested, the chance is less likely that the unfiltered chroma-
grams will be used for any future acoustic location sensing.
Another issue lies within the future of this research. Nowa-
days, a lot of applications that use location data, sell this data
to third party companies [3]. When indoor location sensing
becomes more mainstream, the same issue might occur as



companies can now also get access to more indoor location
data which can be even a larger breach of privacy.

8 Discussion
Investigating what data set should be collected and how it
should be processed is a broad subject that contains a huge
amount of different options to research. In the rather short
time span of this research, not all possible FET’s could be
given equal attention. This means that many other FET’s have
not been tested that might achieve a better accuracy than the
FET’s tested in this paper. The FET’s that were used might
also have an incorrect processing. Since these methods of fea-
ture extraction are quite different from each other, converting
them to a 32x5 image might not work in the best interest of
some FET’s. Secondly, cutting of the lower frequencies in
some of the resulting spectrograms might have causes valu-
able data loss..
A second limitation could have been the amount of locations
that were used in the experiment. Using more locations will
make results more reliable than the results shown in this pa-
per. Another possible limitation is the hardware of the smart-
phone that was used in the experiments. Using chirps of 20k
Hertz is something that the smartphone used in the experi-
ments had difficulties with so the raw recorded data might
already have been slightly unreliable.
In the end, the scale of this experiment was of a rather small
size which might not have yielded the best results. For a bet-
ter understanding of the performance that different FET’s can
deliver, an experiment of a larger scale using more rooms with
more distinct features might be needed.

9 Conclusions and Future Work
9.1 Conclusion
In this paper, different methods were tested to see which of
these methods performed better on recognizing different lo-
cations. 7 different locations where used to investigate which
feature extraction technique performed with the highest ac-
curacy. The experiments included the use of standard spec-
tograms, Mel-Scaled spectrograms, Mel-Scaled Frequency
Cepstral Coefficients and chromatograms. The results show
that the standard spectrograms, Mel-Scaled spectrograms
and filtered chromagrams deliver a higher accuracy than the
mfcc’s and chromagrams without filtering. The resulting ac-
curacies ranged between 45% for the worst performing FET’s
and 85% for the FET’s that had the best performance. Out of
all the 6 techniques that were tested, the Mel-Scaled spectro-
grams turn out to be the best fit for indoor location sensing.

9.2 Future work
This paper shed some light on the way audio data should be
captured and processed for effective indoor location sensing.
While there are a lot of researches that have implemented
quite successful classifiers, there is still more work needed
before this technology can be used on a wider scale:

1. Data size: the size of the data set grows rather quickly.
For this experiment, the total size of the data set grew to
4.55MB with 30 MB size taken on disk for only seven

locations. This means that for a database containing
multiple buildings with a large amount of rooms, a huge
data set is needed to train a deep model.

2. Robustness. The training environment used in this paper
contained almost no interference and the phone was not
moved or rotated during the training. This means that
most applications where a user does frequently move or
rotate might not get the same accuracy as shown in this
paper.

3. World wide integration. Should this technology one
day be integrated into applications such as Google Maps
to enhance the navigation to indoor locations, more re-
search is needed on the scalability of this technology on
a large scale.

A Examples
Standard spectrograms

Figure 7: Example of a standard spectrogram.

Figure 8: Example of a standard spectrogram where the values are
converted to a linear scale.

Chromatograms



Figure 9: Example of a chromatogram.

Mfccs ceptrograms

Figure 10: Example of a Mel-frequency cepstral spectrogram.

Mel-scaled spectrograms

Figure 11: Example of a mel-scaled spectrogram.

B Accuracy results
Standard method

(a) Performance per epoch
(b) corresponding confusing
matrix

Figure 12: Training results using the standard spectrograms

Standard method (converted to linear scale)

(a) Performance per epoch
(b) corresponding confusing
matrix

Figure 13: Training results using the linear scaled standard spectro-
gram

Mfccs

(a) Performance per epoch
(b) corresponding confusing
matrix

Figure 14: Training results using the mfccs spectrograms

Chromatogram



(a) Performance per epoch
(b) corresponding confusing
matrix

Figure 15: Training results using the chromatograms

Chromatogram with high pass filter

(a) Performance per epoch
(b) corresponding confusing
matrix

Figure 16: Training results using the chromatograms

Mel spectrograms

(a) Performance per epoch
(b) corresponding confusing
matrix

Figure 17: Training results using the mel-scaled spectrograms
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