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Practical Implementation of a Reset Controller to
Improve Performance of an Industrial

Motion Stage
Daniel Caporale , Luke F. van Eijk , Nima Karbasizadeh , Member, IEEE, Stijn Beer ,

Dragan Kostić , and S. Hassan HosseinNia , Senior Member, IEEE

Abstract— In this work, the proportional Clegg integrator
(PCI), a resetting proportional-integrator (PI) element, is studied
with the aim of improving the performance of an industrial
motion stage currently controlled by a linear controller.
A novel parallel continuous reset (CR) architecture, based
on the PI, is presented, along with frequency-based tuning
guidelines, similar to linear time-invariant (LTI) loopshaping
techniques. Open-loop higher order sinusoidal input describing
functions (HOSIDFs) and pseudo-sensitivities computed through
analytically derived approximate closed-loop HOSIDFs were
effectively applied to predict steady-state performance. The
experimental results, obtained on a wire bonding machine,
confirmed that resonance-induced vibrations of the machine’s
base frame can be suppressed more effectively by adopting a PCI-
PID controller compared to the currently used linear controller.
The novel structure does not only reduce unwanted excitation of
higher order harmonics of the base frame resonance, such as the
series CR architecture recently introduced in literature, but also
avoids amplification of noise when implemented in practice. With
the novel parallel structure, a significant (32%) decrease in the
root mean square (rms) of the settling error could be achieved
when compared to the linear controller currently used and the
series CR reset structure.

Index Terms— Clegg integrator, higher order sinusoidal input
describing function (HOSIDF), precision motion control, reset
control systems.
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I. INTRODUCTION

L INEAR time-invariant (LTI) control is indisputably the
most popular choice for motion control strategies, with

the overwhelming majority of industry relying on it [1]. The
success of LTI control can be attributed to the simplicity it
offers regarding the controller design process. This strategy
allows for the use of classical control theory, which offers
frequency-domain analysis tools to predict the steady-state
performance, as well as determine stability and robustness of
feedback systems. All of these analysistools can be deployed
based solely on a nonparametric plant model, i.e., a frequency
response function (FRF). Often, these tools are utilized in
industry to shape the open- and closed-loop transfer functions
to obtain the desired controller characteristics, what is often
referred to as loopshaping [2]. Nevertheless, LTI control
suffers from inherent limitations, such as the “waterbed
effect” [3] and “Bode’s gain–phase relationship” [4]. There-
fore, employing such controllers creates a tradeoff between,
e.g., rise time, tracking precision, noise suppression, and
robustness. Improving one characteristic requires to worsen
at least one of the other characteristics as a consequence.
For this reason, for the last few decades, nonlinear control
has been given great consideration in literature. Analytical
proof, which shows that certain inherent limitations of LTI
control can be overcome, is available for three nonlinear
control elements; the hybrid integrator-gain system (HIGS) [5],
reset control [6], and variable gain control (VGC) [7].
Nevertheless, adoption of nonlinear control techniques in
industry is still scarce [1]. One of the main contributing
factors is that getting a reliable indication of the system’s
steady-state performance in the frequency domain is for most
techniques not possible, thus preventing the use of loopshaping
techniques [8]. In VGC, the gain of the controller is dependent
on the input amplitude, allowing to have a steeper magnitude
slope in the open-loop FRF at low and high frequencies,
respectively, due to the difference in amplitude between
low- and high-frequency disturbances/noise. This technique
allows for better suppression of low-frequent disturbances
and high-frequent noise [9]. However, since the frequency
response of such a filter is also dependent on the amplitude
of the input [10], this control technique is unsuitable for
systems whose reference is unknown a priori, thus for
many industrial applications. The same issue does not occur
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for HIGS and reset control since their nonlinearity is not
amplitude-dependent. Among the two, reset control offers
better frequency-based steady-state performance prediction
methods, including closed-loop methods [10], [11], which are
lacking for HIGS-based systems [12]. Numerous other (more
popular) nonlinear control techniques exist, such as adaptive
sliding mode control [13]. However, for these techniques, there
are no intuitive methods available to design a controller that
outperforms a well-designed LTI controller in an industrial
setting, solely based on a nonparametric model of the plant,
e.g., using frequency-domain analysis tools. With this work,
the authors hope to get one step closer toward this goal for
reset control in specific.

Reset control appeared for the first time in literature
more than 60 years ago [14]. However, only four decades
later, the field of reset control has been given enough
attention to be considered a potentially reliable alternative
to linear control [15]. Recent literature demonstrated that
frequency-domain-based steady-state performance prediction
and stability analysis methods exist for some particular reset
control structures [11]. These methods make it possible to
design and analyze such nonlinear controllers in a similar
way as linear controllers while overcoming the inherent
limitations of their linear counterparts. A considerable part
of literature works are focused on the “constant in gain-lead
in phase” (CgLp) element [16], [17], [18]. Nevertheless, this
reset element is complex to tune and simplicity is of high
importance in industry.

A different structure, known as the proportional Clegg
integrator (PCI), allows a larger low-frequency open-loop gain
compared to an equivalent LTI proportional-integrator (PI)
system, for the same phase margin, based on a sinusoidal input
describing function (SIDF) analysis. This additional gain leads
to improved disturbance suppression when paired with an LTI
PID, thus potentially improving the tracking performance of
the system. Even though the PCI has a simpler structure than
the CgLp element, it has been studied in literature for such
purpose only once. In [19], a PCI-PID system was compared
to a PI-PID system for reference tracking, with the former one
not being able to outperform its linear counterpart. However,
after [19], new steady-state performance analysis tools were
developed. In addition, Karbasizadeh and HosseinNia [20]
recently demonstrated that the performance of a reset element
can be potentially further improved when used in a continuous
reset (CR) architecture, capable of reducing the nonlinearity
of the reset element over a broad frequency band.

The aim of this article is to study the viability of a PCI-
PID controller, within the CR framework, for increasing the
performance of an industrial motion stage. We demonstrate
that while the CR architecture as presented in [20] achieves
good results in simulations when applied in practice, a detri-
mental issue arises: measurement noise is amplified, leading
to poor performance. Therefore, a novel parallel CR structure
is implemented to ensure the low-frequency disturbance
suppression of the PCI and to reduce broadband nonlinearities
of the CR element. State-of-the-art frequency-domain analysis
tools are used to analyze the controllers. The findings are

experimentally validated on the motion stage of an industrial
wire bonder, a machine that creates interconnections between
chips and their packaging.

Section II includes the necessary background theory in
terms of reset control. In Section III, the PCI-PID structure
will be introduced. The advantages and drawbacks of the
series CR architecture are also presented. A novel parallel
CR structure is presented in Section IV, along with tuning
guidelines. In Section V, a discrete-time implementation of
the reset controller is proposed. This implementation is utilized
in Section VI, where experimental results on a wirebonding
machine are discussed. Finally, conclusions and suggestions
for future work are given in Section VII.

II. PRELIMINARIES

A. Definition of Reset Element

In this article, the definition from [11], given as

R =


ẋr (t) = Ar xr (t) + Br er (t), if

(
xr (t), er (t)

)
/∈M

x+
r (t) = Aρxr (t), if

(
xr (t), er (t)

)
∈M

ur (t) = Cr xr (t) + Dr er (t)
(1)

is used to describe a single-input single-output (SISO) reset
system R. The first and last lines of (1) describe a standard
LTI system in state space, where Ar ∈ Rnr ×nr , Br ∈ Rnr ×1,
Cr ∈ R1×nr , and Dr ∈ R are the base linear system (BLS)
matrices, xr (t) ∈ Rnr ×1 is the reset element’s state vector with
nr ∈ N number of states, er (t) ∈ R is its input, ur (t) ∈ R is
its output, and t ∈ R+ indicates time. For the sake of brevity,
the dependency on t will be omitted henceforward. The LTI
system description holds true whenever (xr , er ) is not part of
the reset surface M. If, however, (xr , er ) is part of M, the
after-reset state at the reset time instant x+

r = limy→t+0 xr (y) is
determined by the reset matrix Aρ = diag(γ1, . . . , γnr ), with
|γi | ≤ 1 ∀i ∈ N. If Aρ = I nr ×nr , resets do not affect the
system, which thus behaves like its BLS, defined as

R(s) = Cr (s I − Ar )
−1 Br + Dr (2)

with s ∈ C being the Laplace variable.
In this work, we define the reset surface as

M := {er = 0 ∧ (I − Aρ)xr ̸= 0}. (3)

Namely, for this reset condition, a prediction method
has been developed in [10], which can fully accurately
describe the open-loop steady-state performance using higher
order SIDFs (HOSIDFs), based solely on an FRF of the
plant. Furthermore, this method has been extended to also
provide an approximation of the closed-loop steady-state
performance [10], which we will exploit later in this work
(more detail in Section II-C). Another popular reset condition
is the one where resets occur when the input and output have
opposite sign [21]. However, no similar HOSIDF method is
available for this condition. Open-loop performance prediction
based on HOSIDFs has been investigated for one other reset
condition, which initiates resets based on a time-dependent
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Fig. 1. Reset control feedback system architecture (adapted from [11]).

trigger signal [22]. However, no closed-loop performance
prediction method based on HOSIDFs has been developed for
this type of reset condition.

B. Control System Architecture

In [11], the closed-loop reset system architecture depicted
in Fig. 1 was presented. C1 and C2 are SISO LTI filters, G
is the plant, r ∈ R is the reference, u ∈ R is defined as the
controller output, d ∈ R is the disturbance, n ∈ R is the sensor
noise, y ∈ R is the true output, y∗

= y + n is the measured
output, e = r − y∗ is the error, and v = u + d is the plant
input.

C. Predictive Performance

The steady-state input–output relationship of an LTI system
can be straightforwardly computed based on its transfer
function or FRF. As an example, consider SISO LTI system
C1 subject to a sinusoidal input

e(t) = ê sin(ωt + ϕe) (4)

with input frequency ω ∈ R+, amplitude ê ∈ R+, and phase
ϕe ∈ R. Then, this element’s steady-state output signal is given
by

er (t) = |C1( jω)|ê sin
(
ωt + ϕe + ̸ C1( jω)

)
(5)

where C1( jω) is the FRF of the respective LTI system. For
reset controllers as in (1), the output signal is generally not a
pure sinusoid when subject to a sinusoidal input

er (t) = êr sin(ωt + ϕer ) (6)

with input amplitude êr ∈ R+ and phase ϕer ∈ R. However,
since the output is periodic with the same period as the
input signal [23], the output can be described by the Fourier
series [24]

ur (t) =

∞∑
n=1

|Hn(ω)|êr sin
(
n(ωt + ϕer ) + ̸ Hn(ω)

)
(7)

where H1 is called the SIDF and all Hn with n > 1 are referred
to as the HOSIDFs, n ∈ N. A quasi-linear approximation of
a reset controller, equivalent to a Bode plot of an LTI system,
can be created by means of the SIDF [25]. However, (7)
shows that reset control systems suffer from the effect of
harmonic generation. This denotes that the output signal, given
an input sinusoid of a certain frequency, consists of not only
the excitation frequency but also higher order harmonics at
multiples of the excitation frequency [26]. The HOSIDFs
introduced in [24] provide information on the generation of the
higher order harmonics. The HOSIDFs for reset controller R

with the reset condition as in (3) can be analytically computed
using [10, Th. 3.1] (see also [27]), which is for convenience
repeated in Theorem 1.

Theorem 1 [10, Th. 3.1]: For a reset controller R as in (1)
with reset condition (3), the HOSIDFs are given by

Hn(ω) =


Cr ( jωI − Ar )

−1
(
I + j2D(ω)

)
Br + Dr ,

for n = 1
Cr ( jωnI − Ar )

−1 j2D(ω)Br , for odd n ≥ 2
0, for even n ≥ 2

(8)

with j :=
√

−1 and

3(ω) = ω2 I + A2
r

1(ω) = I + e
π
ω

Ar

1r (ω) = I + Aρe
π
ω

Ar

0r (ω) = 1−1
r (ω)Aρ1(ω)3−1(ω)

2D(ω) =
−2ω2

π
1(ω)

[
0r (ω) − 3−1(ω)

]
.

The HOSIDFs can be easily augmented in case LTI systems
are present in series before or after the reset controller,
as depicted in Fig. 1. The resulting open-loop steady-state
output signal given an input sinusoid (4) can be computed
as an infinite sum of sinusoids

u(t) =

∞∑
n=1

|C1( jω)||Hn(ω)||C2(njω)|ê sin
(
n(ωt + ϕe)

+ n ̸ C1( jω) + ̸ Hn(ω) + ̸ C2(njω)
)
. (9)

The effectiveness of loopshaping in case of LTI systems
comes from the fact that the open loop and closed loop can
be easily related through the sensitivity equations. However,
Saikumar et al. [10] showed that HOSIDFs are usually not
negligible in closed loop, even when having a low magnitude,
and simply utilizing the SIDF provides a highly inaccurate
approximation of the closed-loop FRF. In [28, Definition 5],
the so-called pseudo-sensitivity S∞(ω) was proposed, with
magnitude defined as

|S∞(ω)| =
max0<t<2π/ω ess(ω, t)

r0
(10)

where ess(ω, t) is the steady-state error of the closed-loop
reset system excited by a reference input r(t) = r0 sin(ωt),
with r0 ∈ R+. The pseudo-sensitivity allows to combine the
information on closed-loop higher order harmonics into an
analog of a sensitivity function for reset systems, thus helpful
for loopshaping. Although the principle of superposition does
not hold, the pseudo-sensitivity functions can still provide
a reliable quantitative steady-state performance prediction to
effectively design reset controllers for nonsinusoidal inputs,
as shown in [29]. An analytical method that is able to relate
open- and closed-loop HOSIDFs, based on a nonparametric
plant model (FRF) given some assumptions, was established
in [10] and is given in Theorem 2.
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Theorem 2 [10]: Given a closed-loop reset system with
input r = sin(ωt), the steady-state error is given by

ess(t) =

∞∑
n=1

|Sn( jω)| sin
(
nωt + ̸ Sn( jω)

)
(11)

with

Sn( jω) =



S1( jω), for n = 1

−
Ln( jω)

1 + LBLS(njω)

(
|S1( jω)|e jn ̸ S1( jω)

)
.

for odd n ≥ 2
0, for even n ≥ 2

(12)

and

S1( jω) =
1

1 + L1( jω)

Ln( jω) = G( jnω)C2( jnω)Hn(ω)C1( jω)e j (n−1) ̸ C1( jω)

as long as the following assumptions hold true.
1) The system is input-to-state convergent.
2) The resets are a result of only the first harmonic of er .
The first assumption of Theorem 2, on input-to-state

convergence, holds when the reset system satisfies the
Hβ-condition [28]. The second assumption allows the signal
er to be nonsinusoidal, as long as the zero crossings of
the first harmonic and the actual signal coincide. When the
controller is designed such that the higher order harmonics
of er are kept small compared to the first harmonic, this
second assumption shows to be useful. Namely, the accuracy
of closed-loop steady-state performance prediction can be
improved compared to the SIDF method, as shown in [10].

Remark 1: In Theorem 2, the effect of measurement noise
is not considered, although it can potentially have an effect on
the reset instants. In this work, we assume that the effect of
measurement noise on error e is negligible. However, this does
not necessarily mean that measurement noise is negligible in
signal er , which is further discussed in Section III.

D. Practical Aspects When Tuning With HOSIDFs

HOSIDFs are the prevailing method to perform steady-
state performance prediction for reset systems in the frequency
domain. Nevertheless, some aspects must be considered when
utilizing this method. First, in this work, the control design
is done in such a manner that the magnitude of all higher
order harmonics is low compared to the first harmonic such
that they do not have a major impact on the response. Namely,
in that case, the closed-loop steady-state performance can be
accurately predicted using Theorem 2. If the higher order
harmonics are not small, it is unclear what the steady-state
performance of the system looks like. Furthermore, given that
the first harmonic is dominant, the SIDF can still be a useful
aid in the control design procedure.

Theorem 1 allows to compute open-loop HOSIDFs only
for reset controllers with continuous dynamics for the BLS.
In case of a discrete implementation of the base linear
dynamics, we will therefore assume that the sampling
frequency is high enough to assure that the change in

the HOSIDFs caused by discretization is negligible in the
frequency range of interest.

As shown in (11), the greater the number of HOSIDFs
that are accounted for in the sum, the more accurate the
result. However, as for the open-loop method, when using a
plant FRF, which is the common practical industry standard,
information on the nth HOSIDF can be provided only for
frequencies ω ≤ ωmax/n, where ωmax ∈ R+ is the largest
frequency for which FRF data is available. This makes the
accuracy of the method frequency dependent: the higher the
frequency, the less HOSIDFs can be taken into account,
and hence, the more inaccurate the result. Nevertheless, this
still provides more information and thus a more accurate
solution than solely using the SIDF to compute the closed-
loop HOSIDFs. In fact, the method was utilized in [10] for
design of the controller for a precision positioning stage.

A pseudo-sensitivity can be viewed as a “worst case
scenario” closed-loop sensitivity in terms of steady-state
performance, as only information on the maximum amplitude
is regarded. This conservative approach ensures that the reset
controller does not excessively amplify signals of certain
frequencies in the closed loop. A constraint on the peak of
the pseudo-sensitivity is not equivalent to robustness, but it
prevents large amplification of the reference profile.

III. PCI-PID

A PCI is a resetting integrator with corner frequency
ωr ∈ R+. The state-space matrices of a PCI are given by

Ar = 0, Br = ωr , Cr = 1, Dr = 1, Aρ = γ. (13)

The nonlinearity affects mostly the low frequencies in the
range ω < ωr , where the resetting leads to a smaller phase lag
compared to a linear integrator and a constant positive offset
in magnitude. Nevertheless, contrary to a PI, a PCI cannot
be utilized to suppress steady-state errors. This is due to the
fact that resetting causes the stored energy from the integral
action, required to avoid a steady-state error, to be eliminated,
introducing a limit-cycle behavior [30]. Therefore, instead of
replacing the “PI-part” of the linear PID controller with a PCI
element, the PCI element can be utilized in addition to the
existing linear PID.

Industrial motion stages are commonly controlled by
cutting-edge feedforward controllers, which are capable of
tracking a predetermined reference. Feedback control is then
needed mostly to increase tracking precision by suppressing
disturbances or to compensate for the dynamics not modeled
in the feedforward controller. For improved tracking precision,
increasing the open-loop gain at low frequencies is necessary.
Due to Bode’s gain–phase relationship, increasing this gain
affects the phase margin of the system and thus its stability and
robustness. With reset control, this limitation can be overcome,
allowing a larger low-frequency open-loop gain compared to
an LTI system for the same phase margin, according to the
SIDF. However, note that a PCI also introduces phase lag,
be it in a reduced extent compared to a PI. Therefore, a system
controlled by a PCI-PID controller has an increased magnitude
peak in the pseudo-sensitivity compared to the same system
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Fig. 2. Magnitude and phase characteristics of the SIDF and 3rd harmonic
of three PCI elements with different combinations of ωr and γ resulting in
a phase lag of 10◦ at 200 Hz. The gain was adjusted to keep the crossover
frequency ωBW at 200 Hz.

controlled solely by the same PID controller. This magnitude
increase must be accounted for, by assuring that the PCI is
used with an LTI controller with a high phase margin. A PCI-
PID is then constructed by selecting C1 = 1, R as a PCI and
C2 as an LTI PID controller, defined as

CPID(s) = kP︸︷︷︸
P

(
1 +

ωI

s

)
︸ ︷︷ ︸

I

((
1 +

s
ωD

)/(
1 +

s
ωT

))
︸ ︷︷ ︸

D

(14)

with kP ∈ R and ωI , ωD , ωT ∈ R+ in rad/s.
As a PCI only has two parameters, ωr and γ , its tuning

is relatively straightforward. By increasing ωr , the magnitude
and phase behavior of the SIDF and HOSIDFs can be
shifted to the right. This increase will lead to a higher
gain at frequencies lower than the bandwidth but also larger
magnitude for the HOSIDFs and a lower phase margin.
A similar effect is given by γ . A decreasing γ leads to a
smaller phase lag and slightly greater gain at the cost of larger
magnitude for the HOSIDFs. As depicted in Fig. 2, the same
phase margin can thus be achieved for different combinations
of γ and ωr . Note that the magnitudes of the PCI’s HOSIDFs
with n > 3 have a similar shape as that of the 3rd HOSIDF
but with a lower gain, as portrayed in Fig. 3. For this reason,
only analyzing the 3rd HOSIDF is usually sufficient in order
to comprehend the behavior of all HOSIDFs [10].

A. Lowering HOSIDFs

The tradeoff between HOSIDFs and low-frequency gain
poses a constraint on the tuning of a PCI element. Therefore,
lowering the HOSIDFs without affecting the SIDF would be
beneficial, which can be achieved by using the CR architecture
developed in [20]. The principle can be explained from (9).
The magnitude of the nth HOSIDF is directly proportional
to |C1( jω)| and |C2( jnω)|. Therefore, to minimize the
HOSIDFs, a lead element should be placed in C1 and a lag
element in C2. An nl th-order lead filter Fl can be defined as

Fl(s) =

(
s

ωd
+ 1

s
ωt

+ 1

)nl

, ωd < ωt (15)

Fig. 3. Magnitude and phase characteristics of the odd-order HOSIDFs of
a PCI as in (1), (3), and (13), with ωr = 2π and γ = 0.

with ωd , ωt ∈ R+ in rad/s and nl ∈ N. When the PID is kept
in C2, but Fl and F−1

l are added to C1 and C2, respectively,
tuning the magnitude of HOSIDFs and their active region
is possible without affecting the SIDF. Furthermore, when
stability is assessed by means of the Hβ-condition [31], filters
Fl and F−1

l have no influence on the analysis. To determine
the range in which HOSIDFs have the most significant effect
and which HOSIDF has the greatest effect, the power spectral
density of the error signal when utilizing a PCI-PID without
CR can be analyzed. In case feedforward control is employed,
most of the power is usually caused by either external
disturbances or resonances not modeled in the feedforward.
If a disturbance/resonance is present at frequency ωdis, the
nth HOSIDF will show undesired excitation of higher order
harmonics at frequency nωdis. By choosing ωd = ωdis and
ωt = nωdis, the relative suppression of the nth HOSIDF at
ω = ωdis caused by adding the CR elements can be defined as
Hς (ωdis, n) = |Fl( jωdis)||F−1

l ( jnωdis)|. The lead filter order
nl can then be increased such that the amount of suppression
is also increased by a factor nl Hς (ωdis, n).

B. Effect of Noise

As shown in [20], having C1 as a first-order lead filter
results in the reset instants being affected not only by e but
also by ė. The change in reset instants will affect steady-state
performance in case noise is present in the system. To compute
the open-loop SIDF and HOSIDFs, Theorem 1 assumes that
the input is a sinusoid, which allows to predetermine the
reset instants tk . When noise is present in the system, the
reset instants could differ. With a greater power of the noise,
there is a higher chance for one of these undesired resets.
A lead element such as Fl increases the magnitude of the high-
frequency content of the output signal. The power of the noise
present in the error signal e at ω is therefore increased with
increasing Hς (ωdis, n), hence causing the SIDF and HOSIDFs
to be more unreliable.

Next, the effect of noise on the CR architecture will be
visualized through an example. A PCI-PID was tuned for
a plant resembling a highly damped noncollocated double
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Fig. 4. Series CR PCI-PID block diagram.

TABLE I
PARAMETER VALUES OF G1 , PID1 , PCI, AND

Fl , USED FOR CR1 AND CR2

mass-spring-damper system

G1(s) =
ds + k

m1m2s4 + d(m1 + m2)s3 + k(m1 + m2)s2 (16)

with parameter values given in Table I. The parameter values
of the respective LTI PID controller PID1 and the PCI are also
given in the table. The open-loop block diagram is pictured in
Fig. 4. PID1 was tuned such that the LTI part of the open-loop
system has ≈40◦ phase margin at ωBW = 200 Hz, allowing
the PCI to have 10◦ phase lag at 200 Hz for the open-loop
SIDF phase margin to be 30◦. Two different Fl and F−1

l pairs
were tuned allowing to utilize two CR architectures, CR1 and
CR2, respectively, with the corresponding parameter values
also given in Table I. Both Fl and F−1

l pairs have the same
ωd and ωt , while nl = 1 for CR1 and nl = 2 for CR2, and both
pairs are tuned assuming a disturbance d = sin(ωdist), where
ωdis = 50 Hz, which is acting on the system. Thus, through
the tuning, we assure that Hς (ωdis, 3) < 0 dB. In fact, for
CR1, Hς (ωdis, 3) = −6.02 dB, and for CR2, Hς (ωdis, 3) =

−12.04 dB. The resulting open-loop FRFs are visualized in
Fig. 5. The figure shows that the HOSIDFs are lowered with
increasing Hς (ωdis, n), whereas the SIDF remains unchanged.
The magnitude plots of the pseudo-sensitivities are given in
Fig. 6, which have been computed using Theorem 2 after
discretizing all LTI parts of the system at 8 kHz using Tustin’s
approximation. As expected, a decrease in Hς (ωdis, n) at
low frequencies corresponds to a lower magnitude of the
pseudo-sensitivity. Hence, better disturbance suppression can
be achieved, caused by the suppression of the HOSIDFs.

A Simulink simulation was then performed with inputs
r(t) = 0, n(t) = 0, and d(t) = sin(ωdist), where ωdis =

50 Hz. The resulting closed-loop errors are given in Fig. 7.
The cumulative power spectral density (CPSD) of the PCI-
PID system without CR shows that the power spectrum has
peaks at odd multiples of ωdis, such as 150 and 250 Hz.
These power peaks are the peaks of the third and the fifth
harmonics resulting from the 50-Hz disturbance frequency.
The improvement in performance resulting from the lower
HOSIDFs at ωdis introduced by the CR architecture is clearly
to be seen. While the peak at 50 Hz in the CPSD remains
almost identical, showing that the SIDF does not change, the

Fig. 5. Magnitude and phase characteristics of the SIDF and 3rd harmonic
of the open-loop system with G1 as the plant, PID1 as the PID controller,
and PCI as R and without CR architecture, with CR1 or CR2, respectively.
All SIDFs are identical and therefore plotted on top of each other.

Fig. 6. Pseudo-sensitivity magnitudes computed through the approximate
method (Theorem 2) of the closed-loop system with G1 as the plant, PID1 as
the PID controller, and PCI as R and without CR architecture, with CR1 or
CR2, discretized at 8 kHz.

peaks at 150 and 250 Hz decrease with decreasing Hς (ωdis, n).
The simulation shown in Fig. 7 is repeated with n being white
noise in Fig. 8. The figure shows that an increase in Hς (ωdis, n)

still results in lower excitation of higher order harmonics;
however, in this case, the three signals have a different
suppression of the disturbance frequency itself, confirming that
the SIDF is less reliable in the presence of noise.

IV. PARALLEL CR PCI-PID

With the CR architecture, HOSIDFs can be successfully
reduced in a certain frequency range, without affecting the
SIDF. Nevertheless, the architecture suffers from limitations,
caused by the effect of amplifying the high-frequent power
content in the error signal through Fl . To avoid this, a novel
parallel CR architecture is proposed. The block diagram of
the structure is depicted in Fig. 9. In order to make use
of the performance analysis methods presented in Section II,
the parallel CR architecture must be able to be represented
using (1). A reset system R in parallel with Cpar, as given
in Fig. 9, can be described by an augmented reset system R
given by

Ar =

[
Âr 0
0 ACpar

]
, Br =

[
B̂r

BCpar

]
Cr =

[
Ĉr CCpar

]
, Dr =

[
D̂r + DCpar

]
Aρ =

[
Âρ 0
0 I nCpar ×nCpar

]
, C1 = 1 (17)
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Fig. 7. Normalized closed-loop steady-state error signal (only four periods
shown) resulting from a Simulink simulation of a system with G1 as the plant,
PID1 as the PID controller, and PCI as R and without CR architecture, with
CR1 or with CR2. The inputs to the system are r(t) = 0, n(t) = 0, and
d(t) = sin(ωdist), where ωdis = 50 Hz.

Fig. 8. Normalized closed-loop steady-state error signal (only four periods
shown) resulting from a Simulink simulation of a system with G1 as the plant,
PID1 as the PID controller, and PCI as R and without CR architecture, with
CR1 or CR2. The inputs to the system are r(t) = 0, n(t) is white noise with
power 1 × 10−5 m2 Hz−1, and d(t) = sin(ωdist), where ωdis = 50 Hz.

Fig. 9. Parallel CR PCI-PID block diagram.

with Âr , B̂r , Ĉr , D̂r , and Âρ the state-space matrices of the
resetting part of R (e.g., a PCI) and nCpar ∈ Z+ the number
of states of Cpar. Using this definition, all theorems presented
in Section II hold.

For a fully LTI system (i.e., R = R), one can observe
that the parallel CR architecture is equivalent to the series
CR architecture when choosing Cpar(s) = R(s)

(
Fl(s) − 1

)
.

However, when resetting is introduced, this is no longer true.

Fig. 10. Magnitude and phase characteristics of the SIDF and 3rd harmonic
of the PCI in the series CR2 architecture and a parallel CR2 architecture with
PIpar = R, without the PID and plant.

Therefore, in case R is a PCI, an approximation with

Cpar(s) = PIpar(s)
(
Fl(s) − 1

)
, PIpar(s) = 1 +

ωipar

s
(18)

can be utilized instead. When R ̸= R, the open-loop
SIDF is not identical to the equivalent system without CR,
contrary to the conventional series CR architecture. This
is confirmed in Fig. 10, where the PCI in series with
CR2 is compared to a parallel CR architecture with the same
parameters, thus with ωipar = ωr . For low frequencies, the
parallel CR structure approximates the series structure: for
limω→0 |Cpar| = ((2ωipar(ωt − ωd))/ωdωt ), which is negligible
compared to limω→0 |PCI| = ∞. For high frequencies,
the magnitude of the parallel architecture approaches ω2

t −ω2
d

ω2
t

.

Namely, limω→∞ |F−1
l | =

(
ωd
ωt

)2
, and limω→∞ |Cpar| =

ω2
t −ω2

d
ω2

d
,

which is dominant over limω→∞ |PCI| = 1. For low ωd , this
is a good approximation for the series architecture, which
instead approaches 1. However, in the mid-frequency range,
the parallel architecture has a smaller gain and lower phase.
Furthermore, the HOSIDFs are also different between the two
structures, with the parallel architecture having significantly
lower HOSIDFs in the frequency range ω > ωd . This is due
to the fact that in a series CR architecture, the magnitude
of the HOSIDFs depends on |C1( jω)|, whereas in a parallel
CR architecture, it is not dependent on |Cpar( jω)|. In fact,
control element Cpar only contributes to the first harmonic, as
illustrated in Fig. 11. For a parallel CR system such as the
one shown in Fig. 9, with C2 = F−1

l PID, (9) becomes

u(t) = |Cpar( jω)||C2( jω)|ê sin
(
ωt + ϕe + ̸ Cpar( jω)

+ ̸ C2( jω)
)
+

∞∑
n=1

|Hn(ω)||C2( jnω)|ê sin
(
n(ωt + ϕe)

+ ̸ Hn(ω) + ̸ C2( jnω)
)
. (19)

Since the HOSIDFs in the parallel CR architecture are
significantly lower than the series CR architecture in the
range ω > ωd , this allows for γ to be lowered while still
maintaining lower HOSIDFs in the range of interest compared
to a PCI-PID without CR. The effect of γ on the parallel CR
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Fig. 11. Magnitude and phase characteristics of the SIDF and 3rd harmonic
of the PCI in the parallel CR2 architecture for different values of ωipar without
PID or a plant. All 3rd harmonics are identical and therefore plotted on top
of each other.

Fig. 12. Magnitude and phase characteristics of the SIDF and 3rd harmonic
of the PCI in the parallel CR2 architecture for different values of γ , without
PID or a plant.

architecture is portrayed in Fig. 12. The HOSIDFs increase
over the entire frequency range, while the SIDF increases
in the low- and mid-frequency ranges. The proposed tuning
procedure for a parallel CR PCI-PID is thus as follows.

Tuning Procedure (Parallel CR PCI-PID): The procedure is
given as follows.

1) Tune a series CR PCI-PID first according to [20].
Initially choose nl = 1.

2) Choose ωipar = ωr as an initial guess and compute Cpar
using (18).

3) Transform the series CR PCI-PID into a parallel CR
PCI-PID, by setting C1 = 1 and adding Cpar in parallel
of R.

4) Lower γ until the difference between the SIDF and the
HOSIDFs (in dB) over the entire frequency range of
interest (i.e., where expected disturbances are located) is
the same or greater than with the series CR architecture.

5) Lower ωipar until the phase at ωBW is the same as with
the series CR architecture.

Fig. 13. Magnitude and phase characteristics of the SIDF and the 3rd
harmonic of the PCI in the series CR2 architecture, a parallel CR2 architecture
with ωipar = 30 Hz and γ = −0.3, as well as an LTI PI element with
equivalent phase lag at 200 Hz.

6) Adjust gain kP to set the crossover frequency at ωBW.
7) In case the peak of the pseudo-sensitivity magnitude

must be decreased further (i.e., it is higher than the
acceptable level, e.g., 6 dB), return to step 5, however
aiming at obtaining a higher phase at ωBW.

8) In case the peak of the pseudo-sensitivity magnitude can
be increased further (i.e., it is lower than the acceptable
level, e.g., 6 dB), return to step 5, however aiming at
obtaining a lower phase at ωBW.

9) Increase nl and repeat steps 2–8. Choose the controller
whose pseudo-sensitivity results in the lowest gain at the
desired frequency range.

The tuning procedure was performed to convert the series CR2
PCI-PID controller into a parallel CR controller. The gain was
adjusted to keep the 200-Hz crossover frequency such that
ωipar = 30 Hz and γ = −0.3 were found. The controller’s
SIDF and HOSIDFs are depicted in Fig. 13 where an LTI
PI controller with the same phase at the crossover frequency
as the two CR PCI controllers is also shown. For the same
phase margin and a greater difference between the first and
third harmonics in the range ω > 50 Hz, the parallel CR PCI-
PID achieves a greater SIDF gain in the low-frequency range.
However, in the range [70, 200] Hz, the series CR architecture
provides a slightly greater gain. Nevertheless, compared to
the LTI system, the parallel CR system still has a larger
gain. Furthermore, at higher frequencies, the series CR PCI
has a slightly lower SIDF and thus provides better noise and
disturbance suppression.

V. PRACTICAL IMPLEMENTATION
OF A RESET CONTROLLER

So far, we assumed that the reset controller acts in the
continuous time domain. However, in reality, a discrete-time
reset controller is implemented in the physical system. In order
to describe the dynamics of a discrete-time reset controller, (1)
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Fig. 14. (a) ASMPT wire bonder whose motion stage was utilized in this
work. (b) Isolated XY Z -motion platform of the wire bonder.

was modified to

R̃ =


xr,k+1 = Ãr xr,k + B̃r er,k, if (er,k, er,k−1) /∈ M̃
xr,k+1 = Ãr Aρxr,k + B̃r er,k, if (er,k, er,k−1) ∈ M̃
ur,k = C̃r xr,k + D̃r er,k, if (er,k, er,k−1) /∈ M̃
ur,k = C̃r Aρxr,k + D̃r er,k, if (er,k, er,k−1) ∈ M̃

(20)

with

M̃ := {er,ker,k−1 ≤ 0} (21)

where Ãr , B̃r , C̃r , and D̃r are the state-space matrices of the
discretized BLS and k ∈ N is the sample index. Resetting is
based on the condition that er in the current sample changes
sign compared to the previous sample, as in (21). Therefore,
the sampling time imposes a time-regularization constraint,
as in-between samples no resetting can occur. The condition
is beneficial as it avoids the occurrence of Zenoness, a cause of
ill-posedness, defined as the presence of infinite reset actions
in a finite time [32].

VI. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

The isolated motion stage of a wirebonding machine
[Fig. 14(a) and (b)] is utilized to experimentally validate
the results obtained in this work. The wire bonder’s motion
platform is subdivided into an X -, a Y -, and a Z -stage,
allowing the end-effector to translate in three degrees of
freedom. The positions of the three stages are measured by
high-resolution optical encoders, resulting in low measurement
noise levels compared with the error signals. The motion
platform is designed and calibrated in such a manner that
each motion axis can be assumed to be SISO LTI within its
operating regime. In this work, only the X -stage is utilized,
which represents the plant G in Fig. 1. The nonparametric
plant model of the X -stage is given in Fig. 15, which shows
the identified FRF from the actuator current that is applied
to the X -stage to its measured encoder position. The FRF from
the actuator of the Y -stage to the X -stage encoder position is

Fig. 15. Identified FRF between X - (IX ) and Y -stages (IY ) actuator current
and X -stage encoder position (OX ) at the center position.

also portrayed in the figure, which shows that the influence
of cross couplings can be neglected until beyond the aimed
control bandwidth frequency. One can also observe that the
system suffers from a transport delay, which limits the control
system’s bandwidth [33]. Due to confidentiality, the frequency
axis in the figure has been scaled by an arbitrary constant α.

Currently, SISO LTI feedback and feedforward control is
employed to regulate the motion of each of the three stages.
The feedforward controller makes sure that the errors during
motions are reduced to acceptable levels. However, the base
frame that connects the stage to the ground is excited during
motion, which results in undesired low-frequent disturbance
forces that are acting on the system even after the motion has
finished. The resulting positioning error has to be compensated
by means of feedback control. After the end of motion,
high-precision wirebonding processes have to take place.
By reducing the positioning error, these processes can start
faster and wirebonding becomes more accurate. Therefore,
improving the feedback controller is crucial for the system’s
overall performance.

B. Experimental Results

An LTI PI-PID controller was tuned first using the tuning
procedure from [34], which requires first selecting a bandwidth
frequency ωBW based on the plant’s resonances and phase
lag, as seen from its FRF (Fig. 15), and then assigning
the PID parameters given in (14) based on rules of thumb.
A PI was then added, which decreased the phase margin.
This was recompensated by increasing the D-action, thus
slightly decreasing ωD and slightly increasing ωT . A notch
filter was also added to suppress the plant’s resonance. The
PID parameters were adjusted until a high bandwidth and
a peak of sensitivity of 6 dB were assured. The PI was
then converted into a PCI. Subsequently, the PCI’s integrator
frequency ωI could be increased due to the lower phase
lag, thus allowing to increase the low-frequency gain without
affecting the peak of sensitivity. A series CR PCI-PID was
tuned next following the tuning procedure in [20]. This series
structure was then converted to a parallel CR PCI-PID using
the tuning procedure in Section IV. The controllers’ parameter
values are not revealed due to confidentiality. The scaled open-
loop FRF plots are portrayed in Fig. 16, whereas the respective



1460 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 32, NO. 4, JULY 2024

Fig. 16. Magnitude and phase characteristics of the SIDF and 3rd harmonic
of the open-loop system with the wire bonder’s X -stage (at the center position)
as the plant and different reset control structures. The SIDFs of the series CR
and No CR PCI-PID are identical and therefore plotted on top of each other.

Fig. 17. Magnitude characteristics of the pseudo-sensitivities for the
closed-loop system (Fig. 1) with the wire bonder’s X -stage (at the center
position) as the plant and different reset control structures.

magnitude plots of the pseudo-sensitivities, computed through
the approximate method, are plotted in Fig. 17. The figures
show that all reset systems have greater open-loop gain
at low frequencies compared to the LTI system, for the
same magnitude-peak of the pseudo-sensitivity. Moreover,
as expected, the parallel CR system has a larger open-loop
magnitude compared to the respective series CR systems
with the same Fl . However, for the case without CR, the
larger open-loop gain—compared to the LTI system—does not
translate into a lower magnitude of the pseudo-sensitivitiy in
a part of the low-frequency range. This undesired behavior
is caused by the excitation of higher order harmonics, and,
as expected, is reduced significantly by utilizing the series
CR architecture. By utilizing the parallel CR system, the
magnitude of the pseudo-sensitivity can be lowered even
further compared to the series CR architecture. Nevertheless,
in a certain range before ωBW, the magnitude of pseudo-
sensitivities of the system controlled by the parallel CR
PCI-PID is higher compared to the system controlled by
the respective series CR PCI-PID. This behavior is related
to the tradeoff of the magnitude of parallel CR architecture
in the mid-frequency range already mentioned in Section IV.

The scaled resulting error signals, for a typical reference
trajectory, are portrayed in Fig. 18. The reference trajectory
consists of a smooth forward and backward move from 0 to
rmax and from rmax back to 0, which primarily contains energy
below the control bandwidth frequency. Fig. 18 also shows the
CPSDs of the error signal in the phase after the motion has

Fig. 18. Normalized error signals and CPSDs of the steady-state phase
obtained from experiments for a typical reference trajectory (the reference is
scaled).

TABLE II
NORMALIZED erms OBTAINED IN EXPERIMENTS
WITH DIFFERENT CONTROLLER STRUCTURES

ended. This phase is defined as the period between sample
kset ∈ N, the sample at which the reference signal reaches
0 after the backward move and the final sample. The root mean
square (rms) of the error after the end of motion is defined as

erms =

√√√√√ 1
1 + kn − kset

 kn∑
k=kset

e2
k

 (22)

where kn ∈ N is the total number of samples. This metric is
a good indicator for the accuracy of the wirebonding process.
The resulting rms errors, normalized with respect to the erms
resulting from the LTI PI-PID system, are given in Table II.
The PCI-PID system without CR has a greater erms than the
fully LTI system due to the prevalence of HOSIDFs. The
excitation of higher order harmonics is accounted for partially
using the series CR architecture, which shows significantly
lower power in the higher frequencies. However, at the same
time, the series CR structure results in increased power at
the first harmonic. This shows that the noise present in the
system is amplified by this architecture to the point where
performance deteriorates. Finally, the highest suppression of
the first harmonic is achieved by the parallel CR structure.
The parallel CR architecture reduces the rms error by 32%
compared to the LTI system.

Remark 2: The feedback control output that is generated
by reset controllers can in some cases be significantly larger
than for an LTI controller [20], which can potentially lead
to actuator saturation. However, note that for the application
considered in this work, the feedforward controller takes up
the majority of the control output. Therefore, the control effort
that is desired by the reset controller is not an issue.
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VII. CONCLUSION

In this work, a novel parallel CR architecture is developed.
Furthermore, tuning guidelines for a parallel CR PCI-
PID controller, based on loopshaping, are presented. These
guidelines are obtained by employing open- and closed-
loop HOSIDFs as a frequency-domain-based steady-state
performance prediction tool. The parallel CR architecture
allows to overcome a practical limitation of the existing
series CR architecture: high-frequency noise amplification.
This benefit is achieved by avoiding using a lead filter before
the reset element as in the series CR architecture, which causes
amplification of the high-frequent power content in the error
signal.

The findings are validated through experiments, consisting
of tracking a typical reference signal on a wirebonding
machine, in the presence of both feedforward and feedback
control. The PCI-PID system without CR architecture
shows how the system’s main disturbance is suppressed
more effectively compared to a PI-PID system with the
same bandwidth and peak of (pseudo)sensitivity. However,
excitation of higher order harmonics of the disturbance
frequency led to a significant decrease in performance. The
series CR PCI-PID demonstrated its effectiveness at lowering
the excitation of higher order harmonics. However, the series
CR structure shows an overall worse performance compared
to the LTI PI-PID system, evidencing that when tuned
inappropriately the noise can cause significant performance
degradation in systems employing the series CR architecture.
The parallel CR architecture achieves the best performance,
with a 32% reduction in the rms error after the end of motion
when compared to the LTI PI-PID controller. Although this
work highlights the potential of the parallel CR architecture,
we should note that this solution is designed specifically for the
wirebonding machine and might not be generally applicable.
For example, this method is only applicable if the frequency
of the problematic vibration in the error signal is significantly
smaller than the sampling frequency.

We have several recommendations for further research.
First, existing stability analysis tools that apply to parallel
CR systems, such as the classical Hβ-condition, still require a
parametric plant description. Recently, the so-called Nyquist
stability vector (NSV) [11] method has been proposed
for some types of reset systems that are similar to the
ones containing a parallel CR architecture. This method is
equivalent to the Hβ-condition but also allows to use a
nonparametric plant description (FRF). A recommendation for
future work is thus to augment the NSV method to include the
parallel CR architecture. In fact, an augmented NSV method
for a reset element with a similar structure as (17) was already
presented in [11]. Second, a further limitation in the design
of reset controllers is given by the assumptions required to
use the approximate method to compute pseudo-sensitivities
(Theorem 2). Especially, when HOSIDFs are high, the method
can result in inaccurate results. For this reason, improving the
current method in future works would be beneficial. Finally,
studying the transient performance of the proposed control
architecture in more detail is of particular interest.
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fundamental time-domain performance limitation by nonlinear control,”
Automatica, vol. 67, pp. 277–281, May 2016.

[8] K. J. Åström and T. Hägglund, “The future of PID control,” Control
Eng. Pract., vol. 9, no. 11, pp. 1163–1175, 2001.

[9] M. Heertjes and M. Steinbuch, “Stability and performance of a variable
gain controller with application to a dvd storage drive,” Automatica,
vol. 40, no. 4, pp. 591–602, Apr. 2004.

[10] N. Saikumar, K. Heinen, and S. H. HosseinNia, “Loop-shaping for reset
control systems: A higher-order sinusoidal-input describing functions
approach,” Control Eng. Pract., vol. 111, Jun. 2021, Art. no. 104808.

[11] A. A. Dastjerdi, “Frequency-domain analysis of ‘constant in gain lead
in phase (CGLP)’ reset compensators,” Ph.D. dissertation, Dept. Precis.
Microsystems Eng., Delft Univ. Technology, Delft, The Netherlands,
2021.

[12] L. F. van Eijk, S. Beer, R. M. J. van Es, D. Kostic, and H. Nijmeijer,
“Frequency-domain properties of the hybrid integrator-gain system and
its application as a nonlinear lag filter,” IEEE Trans. Control Syst.
Technol., vol. 31, no. 2, pp. 905–912, Mar. 2023.

[13] V. Utkin and A. Poznyak, “Adaptive sliding mode control,” in Advances
in Sliding Mode Control. Berlin, Germany: Springer, 2013.

[14] J. C. Clegg, “A nonlinear integrator for servomechanisms,” Trans. Amer.
Inst. Elect. Eng., II, Appl. Ind., vol. 77, no. 1, pp. 41–42, 1958.

[15] Y. Chait and C. V. Hollot, “On Horowitz’s contributions to reset control,”
Int. J. Robust Nonlinear Control, vol. 12, no. 4, pp. 335–355, 2002.

[16] N. Saikumar, R. K. Sinha, and S. H. HosseinNia, “‘Constant in gain lead
in phase’ element–application in precision motion control,” IEEE/ASME
Trans. Mechatronics, vol. 24, no. 3, pp. 1176–1185, Jun. 2019.

[17] N. Karbasizadeh, N. Saikumar, and S. Hossein Nia Kani, “Fractional-
order single state reset element,” Nonlinear Dyn., vol. 104, no. 1,
pp. 413–427, 2021.

[18] N. Karbasizadeh, A. A. Dastjerdi, N. Saikumar, and S. H. HosseinNia,
“Band-passing nonlinearity in reset elements,” IEEE Trans. Control Syst.
Technol., vol. 31, no. 1, pp. 333–343, Jan. 2023.

[19] E. Akyüz, N. Saikumar, and S. H. HosseinNia, “Reset control for
vibration disturbance rejection,” IFAC-PapersOnLine, vol. 52, no. 15,
pp. 525–530, 2019.

[20] N. Karbasizadeh and S. H. HosseinNia, “Continuous reset element:
Transient and steady-state analysis for precision motion systems,”
Control Eng. Pract., vol. 126, Sep. 2022, Art. no. 105232.

[21] L. Zaccarian, D. Nesic, and A. Teel, “First order reset elements and
the Clegg integrator revisited,” in Proc. Amer. Control Conf., vol. 1,
Jun. 2005, pp. 563–568.

[22] J. A. G. Prieto, A. Barreiro, and S. Dormido, “Frequency domain
properties of reset systems with multiple reset anticipations,” IET
Control Theory Appl., vol. 7, no. 6, pp. 796–809, 2013.

[23] Y. Guo, Y. Wang, and L. Xie, “Frequency-domain properties of reset
systems with application in hard-disk-drive systems,” IEEE Trans.
Control Syst. Technol., vol. 17, no. 6, pp. 1446–1453, Nov. 2009.

[24] P. Nuij, O. Bosgra, and M. Steinbuch, “Higher-order sinusoidal input
describing functions for the analysis of non-linear systems with
harmonic responses,” Mech. Syst. Signal Process., vol. 20, no. 8,
pp. 1883–1904, 2006.

[25] M. Vidyasagar, Nonlinear Systems Analysis, 2nd ed. Upper Saddle River,
NJ, USA: Prentice-Hall, 1993.



1462 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 32, NO. 4, JULY 2024

[26] D. Rijlaarsdam, P. Nuij, J. Schoukens, and M. Steinbuch, “A comparative
overview of frequency domain methods for nonlinear systems,”
Mechatronics, vol. 42, pp. 11–24, Apr. 2017.

[27] N. Saikumar, K. Heinen, and S. H. HosseinNia, “Corrigendum to
‘Loop-shaping for reset control systems: A higher-order sinusoidal-input
describing functions approach’ [Control Engineering Practice 111 (2021)
104808],” Control Eng. Pract., vol. 137, Jun. 2023, Art. no. 105565.

[28] A. A. Dastjerdi, A. Astolfi, N. Saikumar, N. Karbasizadeh, D. Valério,
and S. H. HosseinNia, “Closed-loop frequency analysis of reset control
systems,” IEEE Trans. Autom. Control, vol. 68, no. 2, pp. 1146–1153,
Feb. 2023.

[29] A. A. Dastjerdi, N. Saikumar, and S. H. HosseinNia, “Tuning of a class
of reset elements using pseudo-sensitivities,” in Proc. Eur. Control Conf.
(ECC), Jun. 2021, pp. 1187–1192.

[30] A. Barreiro, A. Baños, S. Dormido, and J. A. González-Prieto, “Reset
control systems with reset band: Well-posedness, limit cycles and
stability analysis,” Syst. Control Lett., vol. 63, pp. 1–11, Jan. 2014.

[31] O. Beker, “Analysis of reset control systems,” Ph.D. dissertation, Dept.
Elect. Comput. Eng., Univ. Massachusetts Amherst, Amherst, MA, USA,
2001.

[32] A. Baños and A. Barreiro, Reset Control Systems, vol. 9. London, U.K.:
Springer, Oct. 2012.

[33] L. van Eijk, “Nonlinear motion control designs and performance
evaluation on an industrial motion stage,” M.S. thesis, Dept. Mech. Eng.,
Eindhoven Univ. Technol., Eindhoven, The Netherlands, 2021.

[34] R. Munnig Schmidt, G. Schitter, and J. van Eijk, The Design
of High Performance Mechatronics. High-Tech Functionality by
Multidisciplinary System Integration. Amsterdam, The Netherlands: IOS
Press, 2011.

Daniel Caporale received the M.Sc. degree (cum
laude) in mechanical engineering with specialization
in mechatronics from Delft University of Technol-
ogy, Delft, The Netherlands, in 2022.

He is currently working as a Mechatronics
Engineer at ASML, Veldhoven, The Netherlands.

Luke F. van Eijk received the B.Sc. (cum laude) and
M.Sc. (Hons.) degrees in mechanical engineering
from Eindhoven University of Technology, Eind-
hoven, The Netherlands, in 2018 and 2021, with
a focus on dynamics and control. He is currently
pursuing the Ph.D. degree within the Department
of Precision and Microsystems Engineering, Delft
University of Technology, Delft, The Netherlands.

He is working as a Mechatronics Engineer at
ASMPT, Beuningen, The Netherlands. His research
interests are in the analysis and design of (non)linear

feedback controllers, with a particular focus on reset control and the hybrid
integrator-gain system.

Nima Karbasizadeh (Member, IEEE) received the
M.Sc. degree in mechatronics engineering from
the University of Tehran, Tehran, Iran, in 2017,
and the Ph.D. degree in mechatronic system
design from Delft University of Technology, Delft,
The Netherlands, in 2023, with a focus on reset
and complex-order control.

In 2023, he joined ASML, Veldhoven,
The Netherlands, where he has been working as a
Mechatronics Engineer focusing on high-precision
mechatronics for semiconductor manufacturing.

His research interests include precision motion control, nonlinear precision
control, reset control, complex-order control, and mechatronic system design.

Stijn Beer received the B.Sc. degree in mechanical
engineering and the M.Sc. degree in systems and
control from Eindhoven University of Technology,
Eindhoven, The Netherlands, in 2017 and 2019,
respectively.

He started his professional career at ASMPT,
Beuningen, The Netherlands, as a Mechatronics
Engineer. He is currently working at ASML,
Veldhoven, The Netherlands, as an Integration
Engineer for the wafer handler of lithography
systems. His research interests include system

identification, modeling of dynamical systems, and data-based and nonlinear
motion controller design.
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