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1
Introduction

Man is by nature a social animal; an individual who is unsocial naturally
and not accidentally is either beneath our notice or more than human.
Society is something that precedes the individual. Anyone who either

cannot lead the common life or is so self-sufficient as not to need to, and
therefore does not partake of society, is either a beast or a god.

Aristotle, Politics

1
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2 1. Introduction

1.1. Humans as social beings

Understanding human behaviour, how individuals or groups respond to internal
and external stimuli, has always been a fascinating topic for people from various
professions including philosophers, theologians, artists, and scientists. It’s hard to
imagine a person who has not reflected on his/her own actions or questioned others’
behaviour and the underlying motives. Many brilliant writers, from Shakespeare to
Dostoevsky, from Russell to Camus, delved deep into the human mind and explored
behaviour from a literary perspective, influencing many coming after them, even
scientists. Jean-Luc Godard, the renowned French film director, says ”Art attracts
us only by what it reveals of our most secret self.” [1]. In the 20th century, B.F.
Skinner, a famous psychologist and the father of radical behaviourism, presented a
scientific framework for studying, predicting, and controlling human behaviour [2].
These few examples and countless other attempts show how understanding human
behaviour has always been an intriguing topic for mankind.

Behaviour is not completely individual though. The definition we used in the first
paragraph includes the words ‘groups and external stimuli’, implying behaviour is
also shaped by outside factors. Humans are inherently social beings. Even though
there is an ongoing scientific debate about it, many scientists believe that we are
wired to be social, as a product of evolution [3]. Aristotle argued that a person
who prefers not to be a part of society is either a beast or a god. Karl Marx criti-
cized the traditional conception of human nature as a species that incarnates itself
in each individual, instead arguing that the conception of human nature is formed
by the totality of social relations [4]. Peter Singer said we were social before we
were even human [5]. Our behaviour is shaped by our interactions with the world
and other people. Thus, in order to understand human behaviour completely and
crack open the mysteries of being human, we need to look at social interactions.
The traditional approach in psychology for analysing and understanding social be-
haviour has been by manual analysis of collected data by experts. Although social
psychologists have presented insightful studies over the years, this process is ex-
tremely time-consuming [6] and not all social behaviour might be easily observable
by annotators. With the increasing processing power of computers, it has become
possible to facilitate computational and statistical methods that can automatically
analyse and detect patterns in huge amounts of data relatively quickly. These met-
hods have also shown themselves to be capable of detecting patterns that are not
easily observable by humans. Even though automated methods might not replace
manual analysis currently, they provide valuable and complementary information.
Moreover, the increasing popularity of personal sensing, such as wearable devices
and smartphones, has made it easier to collect data in every day, real life situations.
Motivated by these advances in computing and sensing, this thesis aims to present
novel computational approaches for social understanding and focuses on the use
of wearable sensors in real life scenarios, specifically crowded mingling events and
live performances.
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Figure 1.1: HAL 9000, a machine with ‘Social Intelligence’ from the science fiction book ‘2001: A Space
Odyssey”. The visual characteristics of HAL 9000 shown in this picture are taken from the movie adap-
tation of the book, directed by Stanley Kubrick in 1968.

1.2. Behavioural, affective and social computing
through the years

Previously, we gave examples of philosophers, writers, artists, and psychologists
who tried to investigate the social behaviour of humans. In the last quarter of the
20th century, a new profession became interested in social behaviour; computer
scientists. Rosalind Picard argued that Spock, the first officer of USS Enterprise in
the fictional TV series Star Trek, is seen as the patron saint of computer science,
since he was highly rational, highly intelligent, and non-emotional [7]. This was
certainly true for the early (and even medium) phases of computational studies,
where researchers mainly focused on mathematical absolutes. One of the most
prominent domains of computer science research is the ‘Artificial Intelligence’. Hu-
mans have always been fascinated by humans; how we learn, represent, decide,
and act. Artificial Intelligence (AI), coined by John McCarthy in 1956 for the now
famous Dartmouth workshop [8], is the branch of computer science that aims to
create ‘intelligent’ agents; machines that can mimic the cognitive functions of hu-
mans to solve problems, achieving ‘General Intelligence’.

Even though AI has always been a divided field, with subfields regularly dis-
agreeing with each other on the particular goals and the methods of research, we
can say that most of the early studies focused on providing rigorous theory and
methods of decision making, using either logical reasoning, statistical methods, or
artificial neural networks [9]. In the following years, when research in theoreti-
cal AI became comparatively more mature, some scholars started to argue that
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in order to achieve ‘General Intelligence’, a virtual agent should also have ‘Social
Intelligence’ (Figure 1.1); it should be able to recognize the underlying factors of
human behaviour, such as emotions and social factors. One of the first subfields of
AI that focused on such aspects is ’Affective computing’.

1.2.1. Affective computing
Affective computing is defined as the computing that relates to, arises from or
influences emotions by Rosalind Picard in her 1995 technical report [10]. As she
stated in her invited introduction for the first issue of IEEE Transactions on Affective
Computing; the idea of computing research related to emotions was found ludicrous
by some and many people were sceptical in the beginning [11]. However, in the
following years, Affective computing has become a respectable research area with
its own journal and committed researchers.

From 1995 to 2018, the field of Affective computing has seen many develop-
ments, but the main questions that scholars tried to answer stayed generally the
same. Most of the research in this field focused on the automatic detection of ex-
pressed affective states, either classifying them into discrete states of emotion or
predicting continuous values on the dimensions of affect, such as valence and arou-
sal. During the first years, the research generally focused on two of the most widely
acknowledged forms of sentic modulation; facial expressions and voice which were
generally investigated through video and audio modalities, respectively. We should
note that research on the expression of emotions through different media was not
new but Affective computing provided an automated way of detecting, measuring,
and even transforming them [11].

The majority of affective computing research that employs video or audio, con-
sidered the estimation of basic emotions (anger, joy, sadness, disgust, fear, and
surprise), or a subset of them as the target task. Facial expressions had been the
primary cue for analysing and detecting affect through video. The Facial Action
Coding System (FACS) proposed by Ekman et. al. was the backbone of such rese-
arch [12]. Facial expression analysis focused on the automatic discovery, tracking,
and representation of the Action Units(AU), as well as the detection of expressi-
ons based on these AUs. Throughout the years, many models for the represen-
tation [13–16] were presented and various classifiers [17–19] were used for the
detection [13]. Audio analysis employed a variety of prosodic and acoustic features
[13, 20, 21]. For both of the modalities, there has been a shift from controlled
scenarios to spontaneous natural recordings in recent years. Alongside this, there
has been a surge of representation learning approaches, rather than feature en-
gineering as was done before, where Convolutional [22, 23] and Recurrent Neural
Networks [24] have been employed to automatically obtain features. Also, there
is an increasing preference for using facial expressions and voice together as cues
to analyse the affective state, instead of relying on a single modality [13], which is
compatible with how persons demonstrate affect in a multi-modal way.

Two other cues that have gained importance in recent years are body expres-
sions and physiological signals. Modalities such as video, motion capture, and we-
arable sensing are being used to obtain spatio-temporal affective body features,



1.2. Behavioural, affective and social computing through the years

1

5

aiming to represent body postures, gestures, and movement [25]. Behavioural
science studies showed that body expressions are much more important than pre-
viously thought and indeed are powerful affective communication channels [26, 27].
Although more affective studies started to investigate bodily expressions, either as
the sole signal or in addition to more traditional modalities, most of the research
focused on a limited set of acted body expressions in specific scenarios (dance, gait,
posture, gesture) [25]. Physiological sensing is definitely an interesting direction
for affect computing, since in comparison to other modalities, a computer has more
access to motor output compared to humans [10]. For example, people tend to be
relatively good at detecting affective signals encoded in facial expressions, voice,
and bodily gestures, but they don’t have direct access to physiological information,
such as heart-rate, skin-conductance, respiration-rate, etc. With the increasing pos-
sibility of more pervasive physiological sensing systems and the known connection
between some emotional states and physiological signals, more researchers have
started to investigate in this direction [28].

From the aforementioned studies, we can see one strong commonality in the
Affective computing research: A cognitivist approach is followed where the emotio-
nal states and expressions of people are modelled individually. The social context is
generally not considered. As some argued before in the literature [29], we believe
emotions are inherently social. Hence, to model human behaviour correctly, one
must consider the social context too. This brings us to the emerging domain of
social signal processing that aims to model, detect, and synthesise social signals
and context.

1.2.2. Social signal processing
Social signal processing (SSP) aims to create socially aware computers. The vision
is to provide computers with the ability to sense and evaluate social signals of
people through various modalities of input, resulting in social intelligence. Social
signals are defined as the expression of a person’s attitude towards a social situation
and manifest themselves through various non-verbal cues [30]. These non-verbal
cues were presented under five main categories in the survey by Vinciarelli et. al.
(based on existing social psychology literature): physical appearance, gestures and
posture, face and eye behaviour, vocal behaviour, and space and environment [30].
We can then practically define the aim of SSP research to model and automatically
detect social cues throughout various input modalities and facilitate these social
cues to understand high level social behaviour.

Steps of SSP research
The main steps of a typical SSP study are data collection, detection of people in the
scene, extraction of the informative cues from input data and their interpretation
with respect to the social signals, and context sensitive classification of the social
signals into the social-behaviour-interpretative target categories [30] (Figure 1.2).
Of course, not all SSP studies need to have all of these steps. For example, a study
with wearable sensors will already have the mapping of sensors to the individuals
and will not require the step of person detection.
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Figure 1.2: General workflow of a SSP study, as presented in [30].

For data collection, mostly cameras and microphones are being used; either as
the single sensor capturing an event in a simple fashion [31], or arranged into syn-
chronised multiple sensors to obtain multiple channels of recording [32]. Alternati-
vely, data can be collected using mobile sensing, smartphones or wearable custom
sensor packs that can include accelerometers, proximity sensors and microphones
[33]. Also, physiological sensors might also be present in such customised sensor
arrays, measuring heart rate, blood pressure, skin conductivity, etc. [34]. Less
pervasive sensors, such as functional magnetic resonance imaging (fMRI) [35] and
Electroencephalography (EEG) [36] have also been used to acquire social signal
data.

The main challenges of the data collection relate to privacy aspects and the pas-
siveness of the sensors in [30]. Any data collection experiment should ensure the
privacy of the participants through means of informed consent and anonymisation.
Also, it can be argued that some sensors intrinsically ensure privacy more than
other and thus should be used if possible. For example, recording facial images
and the voice of a person is perceived much more intrusive than recording body
acceleration. Passiveness relates to the unintrusiveness of the sensors [37]. The
intrusiveness of the sensors should be minimized when collecting data for SSP, to
ensure that recordings are as natural as possible. With less intrusive and more pri-
vacy preserving sensors, participants will tend to forget that they are being recorded
at all, ensuring that the data collected will resemble real life closely.

Person detection is generally done as a pre-processing step in the SSP domain
when more than one person is being recorded. For the audio, this process is called
speaker diarisation and first detects speech segments which are then clustered into
personalised streams. Basic features such as energy and autocorrelation, as well
as more specialised ones such as Mel Frequency Cepstral Coefficients (MFCCs) and
Linear Predictive Coding (LPC) are being used for distinguishing between speech
and non-speech segments. Recent approaches tended to combine the steps of
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Figure 1.3: Social signals are produced by the combination of non-verbal behavioural cues. Image is
taken from [30].

speech detection and clustering together by using graphical methods, such as Hid-
den Markov Models or Dynamic Bayesian Networks [38, 39]. Most approaches that
employ video, either try to detect faces in the scene (using appearance features
for representation and statistical learning for classification [40, 41]) or focus on the
detection of the whole body (mostly using edge features and motion information
[42]).

As mentioned, social signals can be grouped into five categories. There are only
a few studies related to the first category of physical appearance, and they mainly
focused on evaluating the beauty of faces [43, 44] (Figure 1.3). Even though some
studies extract body related information (skin-hair color, body type, etc.) [45, 46],
they lack the social aspect. This situation is similar for the second category of ge-
sture and posture, where often the final goal is not understanding social behaviour.
For example, gesture recognition is an active research topic in Computer Vision,
but with the main application as Human-Computer Interaction [47, 48]. Although,
there do exist a few studies that do investigate affect through gestures [25]. Alter-
natively, gait and posture are mainly investigated for biometric recognition [49, 50]
and surveillance [51] purposes.

On the other hand, gaze and face, the third category of social signals, are being
studied from an affective computing point of view; mainly by detecting facial ex-
pressions through AUs, which we already covered in the former subsection. For
vocal behaviours (the fourth category), there exist few studies that aim to detect
non-verbal vocalisations such as laughter [52, 53] and crying [54], whereas others
generally focus on the analysis of linguistic behaviour [55, 56]. There are also
quite a few studies that relate to the final category, social environment and space
understanding. Generally, these focus on the detection of face-to-face interaction
[33, 57].

Goals of SSP research
In recent years, SSP investigated several social phenomena with a focus on social
relationships (roles in interaction) and social attitudes (dominance and personality)
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[30, 58]. Social roles are generally dependent on the context and the nature of the
interaction, and can be divided into two groups: formal and informal roles. Formal
roles are predefined roles with specific functions such as the chair in a meeting
(also known as functional roles). Informal roles are related to social structures.

The automatic detection of formal roles has received the most attention as these
roles show more distinguishable behavioural cues with respect to others in an inte-
raction. The two main detection approaches that are favoured are: the analysis of
speaking behaviour and the choices of lexical content [58], mainly when analysing
meetings [59] or news and radio broadcasts [60]. Cues from speaking behaviour,
such as turn-taking, interventions, and overlaps, were found to be informative for
distinguishing between roles [61, 62]. A few studies were multimodal (using video
in addition to audio for detecting gestures as fidgeting [63]), but mainly the analysis
is solely based on the audio.

Dominance is one of the social attitudes, defined as the impact one has on
the group behaviour. Similar to role detection analysis, dominance detection is
generally determined from speaking activity [58, 64], although movement and gaze
(derived from the video input) seem to improve the results when analysed jointly
with speaking [65].

The personality of an individual is another socially relevant concept that is ex-
pected to influence group interactions. Automatic detection of personality traits
from non-verbal behaviour mainly uses prosodic features of audio (energy, pitch,
etc.), movement and, spatial proximity [66, 67].

Social attitudes have also been studied to see how they influence negotiation
[68], rapport through coordination [69] and agreement or disagreement [70]. In
addition to the speaking behaviour, which was again essential, mimicry and corre-
lation were found to be strong cues for the detection of social attitudes.

From this brief review we conclude that the goals of SSP research is varied but
loosely connected. Not always is the goal to estimate the higher level social concept,
but also essential steps towards this goal might be the topic of study. For example,
when analysing speech behaviour ( which is an important source to detect various
social phenomena) one often first needs to obtain speaking turns which makes the
step of speech detection necessary. Similarly, if one wishes to analyse the dynamics
of interaction in a group, first the groups and their members in the scene should
be detected.

Besides detecting and analysing social signals, the synthesis of social actions,
emotions and attitudes, is also receiving more and more attention but this is outside
the scope of this thesis.

1.3. Mobile and wearable sensing for social com-
puting

As we skimmed through the Affective Computing and Social Signal Processing li-
terature, we have seen that various sensing media were employed for detecting
socially relevant cues. We can say that the focus was mainly on video and audio
input, obtained through stationary sensors. Even though the use of these modali-
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ties was shown to be quite effective for the detection of affective and social signals,
there are some conceptual limitations regarding privacy and passiveness. There
are also some technical limitations regarding the places recordings take place in,
for example, densely crowded gatherings.

1.3.1. Limitations of traditional audio and video sensing
Limitations related to the privacy and passiveness are connected to each other and
related to how people perceive being recorded. People generally do not want to
be recorded as they feel that it is too invasive to their privacy. These concerns are
more extreme for media such as video and audio, since people are easily identifi-
able from them. Of course, there are methods of anonymisation, such as blurring
the faces in a video, or recording descriptive features instead of raw audio. Still,
these are pre- and post-processing steps and participants are expected to fully trust
the researchers. Privacy invasive sensing media also affect the passiveness of the
sensor. Even in cases where the sensor does not explicitly interfere with the people,
such as a mounted camera, people tend to change their behaviour after realising
they are being recorded in a non-privacy respective way, resulting in less naturalistic
representations.

Video and audio sensors are often considered stationary, limiting the experi-
ments to a particular spatial setup. This hampers a general applicability, since
every application will require the same instrumentation (sensor placing). Although,
we do understand the importance of these studies for the analysis of social pheno-
mena in a controlled way, they severely limit the applicability in real-life applications.
Another issue is how stationary sensors perform in specific real-life scenarios. For
example, most of the work focusing on the analysis of facial expressions investigate
constrained scenarios where accurate head, face, and facial tracking are obtainable.
The application of such methods in a real-life event with spontaneously interacting
people is quite hard and will require multiple carefully placed cameras.

The analysis of speaking behaviour is often applied in the setting of a meeting.
In such a scenario, it is relatively easy to obtain accurate speaking turns of par-
ticipants with correctly placed microphones. But in a larger event where multiple
conversations can occur simultaneously, spontaneously and dynamically, stationary
microphones are expected to result in low quality data collection, missing voices of
people. The nature of the problem lies in the number of data channels per parti-
cipant for both video and audio. If the ratio of participants to sensors is high, the
person detection problem becomes harder.

1.3.2. Ubiquitous computing and mobile sensing
We believe a possible solution to the conceptual limitations of traditional sensing
lies in the Ubiquitous computing paradigm. Mark Weiser, a chief scientist at Xerox
Parc, founded the Ubiquitous computing domain with his 1992 essay ‘The Computer
for the 21st Century’ [71]. He proposed that the most profound technologies are
the ones that disappear and argued that the computers should be integrated into
the daily life in a seamless way. He believed that the computing devices should fit
the human environment instead of forcing humans to enter theirs. We support the
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Figure 1.4: A custom made wearable sensor pack. This sensor pack is used in all studies presented in
this thesis.

same for sensing devices. If a sensing device guarantees the users their privacy and
disappears into the background, the users will forget that they are being recorded.
Such an approach will result in a privacy-preserving and passive sensing experience,
guaranteeing naturalistic recordings. Such technologies have been developed for
years, both in terms of hardware and software, bringing Weiser’s vision closer to
reality [72, 73].

Mobile sensing has an organic connection with Ubiquitous computing. As Wei-
ser argued, not everything mobile is ubiquitous and not everything ubiquitous is
mobile but the intersection between these two domains is huge. We believe, as
ubiquitous sensing was an answer to the conceptual limitations, mobile sensing
provides a practical solution to the technical limitations of the stationary sensors.
Social concepts in real life require time to arise and their analysis requires conti-
nuous sensing of multiple people in multiple places. Covering such scenarios with
stationary devices is hard; requiring prior instrumentation of places where might
people go. However, with a personal mobile sensing device, obtaining continuous
sensing is much easier (if we disregard for now issues such as energy consump-
tion). Also, the person detection step can be omitted; avoiding any noise that will
be introduced by the detection process. These properties make mobile sensing a
powerful candidate for computational social analysis studies.

1.3.3. Mobile sensing for SSP
With the increased popularity and accessibility of smartphones with various embed-
ded sensors, mobile sensing has become a hot topic of research. In recent years,
various applications of mobile sensing are proposed, with topics as diverse as trans-
portation, environmental monitoring, health and well being, and social networking
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[74]. The term SSP itself was first used by Pentland to group his and his group’s
pioneering studies related to the social understanding where mobile sensors were
utilised [75]. They used the cell phones’ proximity sensors and microphones to per-
form an automatic analysis of multiple persons’ daily lives for months, which came
to be known as ’Reality Mining’ [33]. After this, the mobile sensors were employed
for analysing various social concepts.

A specific version of mobile sensors are wearable badges (Figure 1.4). One of
the first examples of a custom wearable badge, a Sociometer, is presented by Pent-
land’s group in [76]. These badges are then used in various applications, ranging
from the analysis of real life social networks [77] to the classification of people into
personality traits [78]. Other wearables were also used in SSP for many different
purposes; the detection of social cues as such speech [79], the detection of inte-
racting partners [80], distinguishing between roles [81], detecting social attractors
[82], etc.. In order to obtain less-intrusive and ecologically valid data, all studies
of this thesis solely rely on the use of wearable sensors.

1.4. Current limitations: social actions, dynamics,
coordination, and experimenting in the wild

This section focuses on identifying some conceptual and theoretical limitations of
the current research approaches in SSP. We address these limitations with a similar
categorization used for the steps of a SSP study, moving from data collection to
the detection of social cues as proxies of signals, and then to the social behaviour
understanding. We already briefly discussed the limitations of stationary sensors in
the former section. In order to avoid those limitations, we have proposed the use of
wearable sensing which provides a relatively passive, continuous, and personalised
data collection procedure, eliminating the need for a person detection step.

1.4.1. Detection of social actions
The next step in a SSP study is the detection of behavioural cues that are expected
to act as proxies for social signals. We will investigate this step in the scope of ’social
action’ detection. A social action is defined as an action of an Agent A performed in
relation to an Agent B, who is perceived as a self regulated agent with its own goals
by Agent A [83]. There are two main forms of social actions in real life interaction,
those related to turn-taking and those related to backchannels [58]. Hence, we
can argue that some of the most informative social actions are speaking (for the
analysis of turn-taking behaviour and vocalisations related to backchannels) and
gesturing (hand gestures accompanying speech and head movements related to
the backchannels ).

In the literature, audio and video have been highly favoured for speaking turns
and gesture detection [58]. This is understandable since the physical manifestation
of speech shows itself in audio and gesturing should be distinguishable in videos.
However, when we scrutinise the majority of work on speaking detection from au-
dio, we see that the environment is fairly constrained; closer to lab conditions. In
a real life scenario with many people, obtaining clean audio recordings becomes
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harder. The background noise, possible music, etc. affect the quality of the audio
recordings. One possible solution is to use personalised microphones but we already
discussed privacy concerns related to audio recording. The majority of the efforts
on gesture detection are directed towards alternative methods of human-computer
interaction [47] and understanding sign language [48]. As expected, most of these
works focus on hand gestures and uses unobstructed videos obtained in constrai-
ned settings, where the subject is clearly visible. Obtaining such videos using such
a set up in real life scenarios is unlikely.

One overlooked source of information for the detection of social actions (in our
case speaking and gesturing) is the body movement. This information is easily
obtainable through mobile devices with embedded accelerometers. This sensing
medium is cheap, privacy-preserving, energy efficient, and mobile. However, its
capabilities are highly understudied in terms of the detection of social cues. In this
thesis, we propose to facilitate this information source for the detection of social
actions.

1.4.2. The role of dynamics in interaction
An intermediate step in SSP research that was not explicitly stated in the former
categorisation is the detection of interacting partners. Social concepts generally
arise in the existence of interaction. Hence, detecting who is interacting with whom
in a scene should be a key step in understanding social concepts. However, works
that study interaction in SSP generally assume the existence of interaction between
people in the scene. For example, many investigated small group behaviour in
the SSP domain [84] but such studies do not require the detection of interacting
partners since all people in the meetings are assumed to be potential interaction
partners.

Detecting groups in a scene was studied more for surveillance purposes rather
than understanding social behaviour [30]. Traditionally, single images or videos
were used as the main input and the approaches depended solely on the proxemics;
the spatial position and orientation of participants in the scene. We already argued
that obtaining such information might be hard for cases where social interactions
are most likely to occur in crowded environments. SSP studies facilitating wearable
sensors mainly relied on proximity sensing too, either through Infrared receivers or
radio based sensors. Such studies generally do not provide a quantitative evaluation
of the detection of groups and mainly assume any proximity detection shows a
the existence of conversational interaction [33, 77]. Similar to the video based
approaches, these studies mostly build their solutions on proxemics.

One really important aspect of interaction that has been generally overlooked
is social dynamics. Proxemics is indeed important, since face-to-face interaction
of two spatially distant persons is not possible. However, co-location and even
mutually focused orientation might not exclusively point to the existence of the
interaction. Over the years, a few researchers have focused on the dynamic aspects
of interaction, such as synchrony, however the final aim was not the detection of
groups but medical diagnosis [85, 86]. Another issue is how the temporal aspect is
generally overlooked. Even while using video, the analysis tends to be performed on
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Figure 1.5: Three frames from the video shown to the participants in the experiment conducted by
Heider and Simmel, taken from [90].

still images [87, 88] and studies considering the temporal aspect are few [82, 89].
However, viewing interaction as a static process does not align with how we perceive
interaction as humans.

In a 1944 experiment carried out by psychologists Heider and Simmel [91], par-
ticipants were shown a video of two triangles and one circle, moving around the
space (Figure 4.1). Their movement were designed to be suggestive of humans
moving around and interacting. Participants joining the experiment were inclined
to treat these shapes as humans, primarily because of the dynamics of their mo-
vement. If the participants were just given a still image, they would not see humans
in those shapes. We see interaction on a temporal basis and identify them through,
in addition to proxemics, the coordination of the movements and actions of the par-
ticipants. This also has a basis in social psychology, where coordinated movement
and even mimicry between interacting partners were already identified by resear-
chers [92]. Thus, we believe the dynamics of interaction and more specifically,
the coordination of the partners’ actions and movement, are precious information
sources that are widely understudied. Therefore, in this thesis, we investigate met-
hods of exploiting the coordination of peoples’ movements and actions for detecting
conversing groups.

1.4.3. Effects of coordination on appraisal
The dictionary definition of appraisal is defined as an act of assessing something or
someone. Appraisal theory, a theory in psychology, essentially argues that one’s
evaluation of an external stimuli (appraisal of a situation) will cause relevant af-
fective responses based on the appraisal [93]. Affective computing research drew
from appraisal theory, where researchers investigated how a situation/event emo-
tionally affected people and how these induced emotions connected to the people’s
evaluation of the situation/event. The analysis of a persons’ reaction to an outside
artistic stimulus such as movies, music and live shows are generally performed on
individuals [94]. The main methodology is automatically detecting their affective
states or measuring the changes in affective dimensions with respect to the stimuli
presented to the subjects. Different sensing media are used; video and physiologi-
cal sensing (generally non-pervasive signals such as EEG) being the most preferred
ones. Studies are generally conducted in a constrained lab-like setting, where par-
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ticipants are subjected to the stimuli individually and data is collected with carefully
placed sensors. The main application areas were video summarisation [95], implicit
tagging [96] and finding emotion-eliciting movies and music [94, 97].

This methodology, sensing an individual to analyse affective responses, is accep-
table for cases where the participant is the only person who is subjected to the
external stimuli; for example while they are watching a movie by themselves. Ho-
wever, when people go out and experience an event together with other people,
such as going to a movie or a concert, an undeniable social aspect is introduced into
the equation. There are immediate effects of being with people, reflected during
the event itself. People tend to have coordinated responses (contagious laughter
in comedy movies for example) during the event and their evaluation of the event
can be affected by sharing the experience with other people. Another component is
the delayed effects of sharing an experience with people. Just as being with other
people can affect the immediate experience (affective responses), it can also affect
one’s social behaviour afterwards. These are all interesting questions that were not
considered before. A part of this thesis investigates how the linkage of the body
movements of people attending a live performance can be exploited to estimate
their appraisal of a performance and how attending such events affect their sub-
sequent social behaviour. The term linkage is originally presented for measuring
the dependence of the physiological signals of two people [98]. In this thesis, we
argue that this concept can be extended to the body acceleration.

1.4.4. Experimenting in the wild
Finally, we want to briefly discuss a dominant preference related to the data capture
in the SSP domain. Even though there are many studies that collect data in real
life settings, many researchers still conduct experiments on acted and controlled
data. We believe controlled studies conducted in lab environments are important to
validate hypotheses and measure the effectiveness of novel approaches. However,
they should be treated as a step in scaling up to large real life scenarios where
social interactions occur spontaneously in a natural way. Researchers should test
their approaches in real life scenarios, in the wild, after perfecting them in acted
and controlled settings. We believe that, only in this way can we understand how
social interactions truly unfold in real life and thus provide actual solutions that will
generalise to larger populations. To this end, every experiment presented in this
thesis is conducted on data collected in real life events.

1.5. Challenges: addressing the limitations
In the former section, some limitations of the current methodologies in computa-
tional social understanding studies were identified and possible ways to overcome
them were presented. We proposed to use accelerometers for detecting social
actions, argued for focusing on social dynamics for identifying conversing groups,
presented the linkage of peoples’ actions in live performances as a possible solution
for estimating their evaluations (appraisals) and pushed the need for experimenting
in the wild. Each of these proposed solutions come with their own challenges. In
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this subsection we discuss these challenges.

1.5.1. Detecting social actions with accelerometers
We advocated that accelerometers can be good candidates for detecting social acti-
ons such as speaking, gesturing, etc., since they are privacy preserving, energy
efficient and provides continuous, personalised sensing. However, using accelero-
meters for this purpose is not optimal and comes with its own challenges. Acce-
lerometers were generally used to detect every day activities, such as walking,
running, transporting, etc. [99]. They were also used in health-care for automatic
fall detection [100]. However, for such studies, the connection between the sen-
sing medium and the physical manifestation of the action is direct. When a person
starts to move, it will be directly visible in the acceleration. This is not the case
for speaking and gesturing (if the sensor is not directly attached to the hand or
head), where the connection is relatively indirect. However, in social psychology,
the connection between speech and body movements is already studied, showing
how speaker and listener behaviour differ. This opens a research direction where
this (indirect) connection between the social action and sensing can be investigated
for detection, which is previously understudied.

However, moving into this direction, sensing an action where the connection
is indirect, requires a specialised approach. In addition to the indirectness of the
connection between the action and the sensing medium, social actions tend to be
highly person specific. The nature of the connection and the physical manifesta-
tion of the subsequent behaviour are could differ greatly for each person. Person
specific training is a way of capturing such differences. For simple actions such
as walking, person independent methods have been shown to perform well [99],
but for more person specific actions such as speaking and gesturing, recognition
results were relatively unsatisfactory [101]. Another challenging aspect is related
to the placement and number of the accelerometers used. With more accelero-
meters that are placed at different parts of the body, it will become possible to
detect more complicated social actions. However, such an instrumentation will not
be realistic for a real world scenario. The experiments in this thesis are conducted
with a single body-worn accelerometer per person which also increases the com-
plexity of the problem. To devise a generalisable and satisfactory solution, a way of
training personalised models without requiring data from new subjects should be
investigated.

1.5.2. Interaction dynamics for detecting conversing groups
We have argued that the dynamics of interaction is a widely overlooked information
source for the detection of interacting groups. As mentioned, most of the existing
work relied on the proxemics; the detection of the relative positions and orienta-
tions of people in a scene. Obtaining this information has its own challenges that
was briefly addressed in the former section. But after positions and orientations
are estimated, the problem of detecting groups is relatively well defined. That is,
athough the spatial orientations and positions of people in groups can vary, there
are some conceptual and geometric constraints that makes it easier to formulate
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a solution. For example, two people that are spatially far away cannot be in the
same group. The possibility of two persons that are back to back being in the same
group is quite low. On the other hand, the social dynamics that can arise in con-
versing groups are much more complex. Devising rules for interaction dynamics is
quite hard since there are too many factors that can affect the characteristics of the
interaction. These factors might be related to the characteristics of the people in
the group, such as their personalities and mood, or can be linked to the cardinality
of the group. Combining all these factors for a generalisable solution is challenging
and is not attempted yet.

1.5.3. Estimating appraisal through linkage in real life events
We proposed to utilise the linkage of people’s body movements to estimate their
evaluations of real life performances. For the scenarios mentioned, the use of gene-
rally preferred sensing technologies (video, audio and EEG) become less effective.
A cinema or a concert hall is generally dark, making it harder to capture the faces
of people to analyse their spontaneous affective responses. Other than in a con-
trolled experiment setting, no one would like to wear EEG sensors over their head
when attending a concert. Affective computing has already started to investigate
how emotions connect to the bodily expressions [25]. We believe this is an inte-
resting direction for affective studies that aims to measure people’s reactions to an
outside artistic stimuli. As we stated before, wearable acceleration can be used to
infer body movements which can be then used to capture spontaneous reactions
of participants in live performances. This information can then be used to estimate
higher level affective and social concepts, such as people’s emotional states and
their evaluations of the event.

Of course, not all parts of an event will be equally informative of a partici-
pant’s evaluation. We aim to facilitate participants’ coordinated spontaneous re-
actions throughout the event sensed through a body worn accelerometer. When
the scenarios we are interested in are considered, where participants movements
are expected to be somehow restricted, one might assume there won’t be much
movement, probably resulting in similar linkage values throughout the event. Ho-
wever, previous studies already showed that even in scenarios of limited movement,
the movement behaviour is still indicative of high-level social information, such as
the profession of a person [102]. Following from this result, we argue that it should
be possible to automatically distinguish between parts of the event that are more
informative of a participants evaluation and use this information to estimate the
final appraisal.

1.5.4. Revising the concept of experimenting in the wild
Experimenting in the wild comes with its own difficulties. However it is a necessary
evil that needs to be addressed if we truly want to understand how social behaviour
is exhibited in real life. By moving to real life data analysis, the constraints and
limitations of real life scenarios will be investigated more, hopefully resulting in
satisfactory solutions that can be used for real life applications. The challenges
start with the data collection. In order to obtain a realistic representation of a real
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life scenario, intervention during the experiment should be kept to a minimum. This
requires careful planning of the event since it will not be possible to stop the event,
fix the problems and restart all over again. Even though the author of this thesis
was a part of the data collection team for all the studies presented in this thesis,
challenges related to the data collection and how they should be addressed are out
of the scope of this thesis. For more information about issues related to the data
collection in the wild, please refer to [103].

Even if the data collection process is considered to be successful, data obtai-
ned from realistic scenarios might be challenging for computational algorithms to
analyse and use. Since the participants are free to act as they wish, it is highly
probable that some classes in the data are going to be under-represented which
might be problematic for pattern recognition approaches. The amount of noise in
real life data is expected to be higher than controlled or acted scenarios in the lab.
Many factors contribute to this, such as less restrictions affecting the sensing pro-
cess (people playing with their sensors throughout the event for example). Since
the event is not acted and flows freely, the actions of the participants cannot be
known beforehand, thus manual annotation of the behaviours observed in the data
might be required which can introduce a new layer of noise. So, any researcher
that is working on data collected in real life events should be aware of these possi-
ble disruptions. They should first analyse the data to detect the existence of such
disruptions, select/modify their methods accordingly and interpret their results with
respect to them.

1.6. Contributions
The works presented in the following chapters of this thesis try to address the
limitations mentioned in the former section in a novel way. All studies in this thesis
explicitly use wearable sensors with embedded accelerometers, in order to cover the
limitations of traditional video and audio recordings mentioned in the Section 1.3.1.
The following four chapters (2, 3, 4, and 5) use data collected in a crowded mingle
scenario where free standing conversational groups exist. The sixth chapter uses
data collected in two live performances with different characteristics. All the data
used in the experiments are collected in real life events with as few constraints
as possible, aiming to provide recordings close to the real life as possible. The
structure of the thesis and the contributions of each chapter are as follows:

Chapter 2 presents a novel transfer learning approach to obtain a generalisable
and scalable solution to the detection of social actions through worn body accele-
ration and specifically focuses on the detection of speaking.

Chapter 3 builds on the results of the former section and focuses on the analysis
of how the performance of the method presented in Chapter 2 is affected by the
training set size. It also presents results for various social actions, discussing how
the nature of the target action affects the performance.

Chapter 4 investigates how the dynamics of interaction, the coordinated actions
and movements of people in a scene, can be used to estimate group membership.
It presents an ensemble selection approach which provides group size awareness.

Chapter 5 acts as a proof of concept study, where we show the social signals
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obtained by the former steps (social actions and interaction) can be used to estimate
higher level social concepts, in this case personality. This chapter has also interes-
ting insights into multimodal sensing, where it is shown that extracting a second
behavioural modality (speaking status) from one physical modality (acceleration)
results in better recognition performance.

Chapter 6 investigates how being affected by the same stimuli simultaneously in
live performances results in coordinated responses of audience members and how
it can be used to automatically infer the reappraisals of the participants. It also
analyses how socialising might change the experience of such an event.

Works presented in Chapters 2 to 6 were already published or accepted for
publication in conference proceedings and journals. For reasons of formality, we
have kept the chapters identical to the publications. However, we acknowledge that
it might be hard for the reader as some parts will be repeated. Below, I rest which
parts are repeated and how the chapters are related in terms of the datasets used:

• The Transductive Parameter Transfer (TPT) method is first presented in Chap-
ter 2.4 in detail. In chapters 3.4, 4.4.1, and 5.4.1 TPT is reintroduced in a
less detailed manner. Reader can omit these sections after reading Chapter
2.4.

• Chapters 2, 3, 4 and 5 use different subsets of a large dataset, in terms
of different annotations, time intervals and included participants. This large
dataset is collected in three different days in real life speed dating events
followed by mingling sessions. This thesis uses accelerometer and proximity
data from the mingling sessions, exclusively. Chapters 2.5, 3.1, 4.3, and 5.3
include information about how the subsets used in each chapter are formed.
We believe, the most general information regarding the large dataset is pro-
vided in Chapter 4.3. For a more detailed explanation of the dataset, we refer
the readers to consult [103]. Chapter 6 uses entirely different datasets which
are explained in Chapters 6.4 and 6.6.1.
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Figure 2.1: A snapshot from the event

2.1. Introduction
This research addresses the analysis of social behaviour in crowded mingling events.
Such events contain a large number of people interacting with each other closely.
These scenarios are interesting since they are concentrated moments for people to
interact, make new contacts, renew existing ones, or even influence each other.

In this paper, we focus on the detailed analysis of how to automatically de-
tect whether someone is speaking in these dense crowded scenarios using just a
single wearable triaxial accelerometer hung around the neck. Different challenges
are introduced with the dense nature of such events, like the high non-stationary
background noise from the audio and the heavy occlusion of people in the video.
On the other hand, wearable sensors such as accelerometers are less affected by
these challenges and their easy scalability makes their use appealing for such scena-
rios. Moreover, perceptions of privacy are often more sensitive to the recording of
audio during conversations, even if the signal is immediately converted into privacy-
sensitive features. In this paper, we focus on the use of accelerometers that could
be embedded in a smart badge such as a conference badge and hung around the
neck.

The use of accelerometers to detect speaking status is generally under-explored
in the literature. However, limited amount of studies have shown that it is possible
to detect whether someone is speaking based on just a single worn accelerometer
[1, 2] by exploiting findings in behavioural psychology that speakers move (e.g.
gesture) during speech [3]. One of the biggest challenges, which has not been
addressed in the literature before, is accounting for the huge variation in ways
in which people move while speaking. This person specific connection between
movement and speech requires special approaches for detection, since relying on
a single unified model to predict the speaking behaviour of everyone leads to large
estimation errors as the size of the test population increases. We have chosen
speech as the focus as our study since it is a vital unit of behaviour to analyse
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social behaviour between people at the conversation level [4]. Some examples of
further, higher level understanding that may follow from speech detection are the
evaluation of an individual’s social activeness, detection of conversing groups [1],
dominance and group hierarchy [5, 6] and, cohesion [7]. In this paper, we propose
to use transfer learning to enable the adaptation of a learnt ensemble model of
speaking behaviour to a new unseen subject, based only on unlabelled data. The
proposed method, Transductive Parameter Transfer [8], has never been used for
this problem. With this method, we provide a solution that can generalise over
large populations without requiring personal labelled data.

The key contributions of our work are: (i) we provide a study of speech detection
through accelerometers, in a real world event (a snapshot is shown in Figure 2.1),
with 18 participants; to our knowledge, no similar study at such scale exists. (ii) we
delve deep into the connection between body movements and speech, showing how
this problem differs from the traditional action recognition (e.g. walking) by provi-
ding results that compare the person dependent and independent models. (iii) we
propose a transfer learning approach, which can generalise over large populations
without requiring personal labelled data, overcoming the restrictions introduced by
the person specific nature of speech. (iv) we present a detailed analysis of the pa-
rameter transfer that connects detection performance to personality which provides
insight into the nature of both speech and transfer learning in this context.

2.2. Related work
2.2.1. Action recognition with accelerometers
Most research that has involved the detection of behaviour from worn accelerome-
ters have tended to focus on the detection of daily activities. In 2004, Bao and
Intille used five accelerometers worn on different body locations to detect 20 dif-
ferent actions which include activities like walking, sitting, running and vacuuming
[9]. The data for the experiment was collected in a lab environment for 20 different
participants. Statistical and spectral features extracted from acceleration data were
used and different classifiers were compared for performance. Their results sho-
wed that, even without using person specific data, high recognition performance
was possible for such actions.

The following year, Ravi et. al. presented their work that aims to detect eight
similar daily activities with single worn accelerometer only [10]. The data collection
was semi-controlled where the ordering of the activities was random. Their study
showed that one accelerometer worn around the thigh area was sufficient for de-
tecting many actions. With the rapid development of this domain, many different
feature extraction techniques and classifiers are considered and compared with each
other, providing a solid knowledge base for the detection of such activities [11].

Another research area that benefits from the utilisation of wearable sensors is
health care, where people presented their work on automatic fall detection [12, 13].
As expected, also in these experiments, the data collection was carried out in a
controlled environment where participants imitate falling. Both studies reported
nearly perfect recognition scores. We show later in the “Comparing Controlled &
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In-The-Wild Settings” section that there are significant differences in the nature
of the data collected in controlled and acted settings compared to less controlled
ecologically valid ones. Moreover, since such high accuracy was already obtained
across a number of different participants, we can conclude that the nature of these
tasks is much less sensitive to person-specific variations.

Unfortunately, none of these studies focuses on addressing the challenges of
real life crowded environments or a social action like speech.

2.2.2. Transfer learning for behaviour recognition
Transfer learning is also used in some studies that focus on activity recognition for
better performance but generally the setup of the transfer differs from our work.
In their survey, Cook et. al. [14] grouped existing transfer learning studies with re-
spect to the modalities used: video sequences [15], wearable [16, 17] and ambient
sensors [18].

Some of these studies aim to transfer knowledge between different data acqui-
sition setups, like van Kasteren et.al. [18]. This study is somewhat close to ours,
since they used transfer learning to exploit existing labelled data sets to learn the
parameters of a model applied in a new home. This was done to eliminate sensor
placement and individual behaviour differences in each house. However, the sen-
sors utilised (ambient sensors such as pressure mats, mercury contacts and passive
infrared) and the detected actions (daily activities such as going to bed, brushing
teeth, etc.) were entirely different than ours.

Another concept studied before is the transfer between actions. For example,
Hu et. al. proposed a method, which focused on cross domain activity recognition
[16]. They transferred the information from an available labelled data of a set of
existing activities to a different yet still related set of activities. This was done by
learning a similarity function between activities using Web search where web pages
related to these activities are extracted and further processed to obtain a similarity
measure (Maximum Mean Discrepancy). Similar to the former study, this study also
presented its results on daily activities and used multimodal data streams as input.

Perhaps the closest study to ours was published by Zhao et. al. [17]. In
this study, the authors presented a transfer learning based personalized activity
recognition method. They used accelerometers embedded in mobile phones to
gather data from different people while performing daily activities such as standing,
walking, running and going upstairs or downstairs. In their method, they integrated
decision trees (DT) and k-means clustering where decision trees were used to learn
optimal parameters for labelled source data. Then, the DT model was transferred
to a new user by classification and the initial parameters for k-means were set with
respect to it. Finally, non terminal nodes of the DT were adapted to the new user,
resulting in a personalized model. We discuss and experimentally show in our paper
that the mentioned activities are less affected from interpersonal differences when
compared to speech. Also, this method could only utilise a single source set for
transfer while our approach can exploit multiple sources simultaneously. However,
this study shows that transfer learning could be a good candidate for eliminating
interpersonal differences.



2.2. Related work

2

31

2.2.3. Social computing with wearables
There are some studies in the literature that focus on analysing social phenomena
using wearable sensors but most of them differ from ours in some aspects like the
different modalities used as input, analysis of less crowded scenarios and lack of
focus on fine time scale detection of social actions such as speech.

Large scale long-term studies
One of the first studies that utilises a wearable sensor for analysis of social phe-
nomena was presented by Choudhury et. al. in 2003 [19]. Authors presented an
automated method of analysing social network structures with the so-called soci-
ometer, a wearable multimodal sensor that has a microphone, IR transceiver and
two accelerometers. The data collection was done in two stages. In the first stage,
8 subjects from the same research group wore the sociometer during working hours
for 10 days. The second stage included 23 participants from four different study
groups wearing the badge for 11 days. In the study, audio data is used to detect
speaking status, IR transceiver data was utilised for detecting interactions but acce-
leration information was not used. Using the frequency and duration of interactions
detected, a social network of participants is formed. It is shown that by analysing
this network, higher level information about the group structures, such as centrality
of a participant, can be obtained.

Olguin et. al. obtained high level descriptions of human behaviour like physical
and speech activity, face-to-face interaction, proximity and social network attributes
using the sociometric badge mentioned earlier [20]. With this high level informa-
tion, the authors classified the personality traits of participants, with respect to the
“Big Five” model. The dataset included 67 participants and was collected for 27
days. Microphones and accelerometers were used to measure speech and physical
activity, respectively. Although the study presented an excellent analysis of social
phenomena throughout time, it did not focus on fine time grained detection of any
action and aims to provide a higher level overview of social phenomena.

In a similar study conducted by Wyatt [21], social ties and collective behaviour
of groups were investigated using a multimodal sensing device with 8 different mo-
dalities. Conversational characteristics of 24 people were analysed over 6 months.
Similar to the former study, speech detection was applied to microphone data.
Since social phenomena in a longer period of time is analysed in these studies, we
expect the speech detection results to be quite rough. We believe participants cur-
rent environment will greatly affect the actual detection performance. Such results
are satisfactory for obtaining general statistics throughout time but if a fine grained
analysis of speech and interaction is required, an approach that can provide more
robust detection results of a fine scale is needed (e.g. over just a few seconds).

Apart from specialised sensor devices, some studies use mobile phones as social
sensors like Madan et.al [22]. They used proximity, call data records and cellular-
tower identifiers to investigate activities and interactions of individuals aiming to
detect social behaviour changes with respect to illness. With the development of
smart phones, this may eliminate the need for special sensing devices and makes
scaling to bigger populations much easier.
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Studies of short-term dense crowded social events
There are also studies that aim to analyse social behaviour in crowded mingling
settings at a short-term level (i.e. minutes or hours rather than weeks or days).
A recent study from Alameda-Pineda et.al. [23] showed that by combining sensor
data from distributed cameras and wearable sensors, it was possible to obtain head
and body pose estimation of people in a real life crowded event, with a fine time
scale. The proposed method combined visual input from four cameras with noisy
estimates of binary speaking status and proximity input obtained fromwearable sen-
sors and estimated the behaviour by learning from noisy incomplete observations
using a matrix completion method. They went on to show that their automatically
extracted head and body poses could be used to infer high level information such
as detecting conversing groups or social attention attractors.

Cattuto et. al. [24] used conference badges equipped with RFID to analyse
face-to-face interactions in crowded social gatherings. The exchange of radio pac-
kets between these badges were used to measure proximity and ultimately detect
face-to-face interactions. The mentioned method was highly scalable and tested in
three different events that include 25 to 575 people. Their analysis of the dynamics
of interaction networks in these events showed a super-linear behaviour between
the number of connections and their durations which can be used to define su-
per connectors. However, this study automatically labelled interactions when two
people came in close proximity but the accuracy of this was never evaluated.

Martella et. al. used accelerometers to predict implicit responses of an audience
to a real life dance performance [25]. 32 spectators of the event were fitted with
accelerometers hung around the neck. Aside from analysing their direct responses
to the performance they also analysed the effects of the dance performance on
the mingling behaviour of participants before and after the event using proximity
sensing. Although the sensor pack was fitted with an accelerometer, no speech
detection was carried out.

2.2.4. Speech detection with accelerometers
Although it is hard to find studies where wearable sensors were used for detecting
speech and/or other social actions, there exists a few. Matic et. al. [26] used
accelerometers for speech detection where accelerometers were tightly attached
to the chest of participants in order to detect acoustic phenomena from speech.
This methodology requires accelerometer to have a sample rate high enough to de-
tect acoustic speech-based utterances and demands strict placement of the sensor
which is impractical for many real life scenarios.

More similar to our work, Hung et. al.[2] presented their method for predicting
social actions such as speaking, drinking, gesturing and laughter in a crowded en-
vironment with a single accelerometer hung around the neck. Spectral features
were used to model these actions and HMMs were used for classification in a non
adaptive learning approach. In a follow up to this study in 2014 [1], random forests
were considered for classification and proved to perform better. In both studies, no
detailed analysis to show variations of performance with respect to interpersonal
differences were presented.
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Figure 2.2: Median variance of acceleration magnitudes for speech & non-speech intervals for 18 people.

2.3. The nature of speech and body movements
In this section, we show how the person specific connection between speech and
body movements shows itself in accelerometer readings by providing simple sta-
tistics computed from accelerometer readings of speech and non-speech intervals.
These statistics, by proving the existence and personal nature of this connection,
acts as a basis for our choice of an adaptive method that can eliminate interpersonal
differences.

Similar to [1, 2], we aim to use movement information, obtained from acce-
lerometers hung around the neck, as the proxy for speech. Fortunately, this as-
sumption is partially backed by existing studies. Prior work has shown that it is
possible to automatically classify conversing participants with an acceptable perfor-
mance using acceleration information only [1, 2]. The connection between body
movements and social behaviour is also extensively studied in social psychology
[3, 27, 28]. For example, McNeill discussed that speakers tend to move noticeably
more when compared to listeners [3]. It was discussed that gestures and speech
are integrated parts of communication where gestures are used to complement the
content of speech by providing visual stimuli acting as “symbols”. Multiple studies
also showed that there is a strong correlation and synchrony between speech and
body movements in conversing groups [27, 28].

However, the connection between speech and body, specifically torso, mo-
vements is not theoretically well defined. Previous studies pointed to the existence
of this connection but none made a precise description of the torso movement that
can be exploited for automated detection that can generalise over large populati-
ons. We believe that this connection is highly personal and should be detectable
from accelerometer readings. To test this assumption, we calculated the variation
of accelerometer magnitudes over a sliding window (3 seconds with 1 second shift)
of speech and non-speech intervals for 18 different people wearing accelerometers
in a real life, crowded mingling event (see Section 2.5 for details).

Figure 2.2 shows the median values of the variation in accelerometer magnitudes
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for speech and non-speech intervals. Each axis of raw acceleration is normalised
using z-score standardization before computing the magnitude and extracting the
variance values with sliding windows of the same length and shift size. We see
huge differences between participants. One can easily see that one participant’s
median variation of accelerometer magnitude for speech intervals can be closer to
another participant’s non-speech feature. One-tailed t-tests applied to this feature
during speech intervals for all pairwise combinations of participants showed that
nearly 50% of these couples have significantly different distributions.

We also see that, for nearly all participants, the median of the variance in acce-
leration magnitude tends to significantly differ for speaking and non-speaking inter-
vals. However, it can be also seen that the amount of this difference varies greatly
per person. These two observations show that there is definitely a connection bet-
ween speech and body movements but the nature of this connection is quite person
specific.

This personal connection between speech and torso movement makes the pro-
blem entirely different and more challenging than traditional approaches to speech
detection using audio. The connection between speech and audio is physically well
defined via articulation of the vocal folds leading directly to resonances in the vocal
tract. Of course, different speakers will have different spectral characteristics de-
pending on their physiology[29] but satisfying speech detection results are already
possible with person independent models [30].

With these findings, a traditional learning approach where the data of different
subjects is amalgamated into a single training set will perform poorly since the de-
cision surface obtained in this way will not be optimal. In our study, we propose
to use Transductive Parameter Transfer [8, 31], an adaptive approach which uses
transfer learning to overcome this issue by computing a personalised decision sur-
face for each subject based on the similarity of a test subject’s data distribution
with those of multiple individuals in a training set.

2.4. The transductive parameter transfer method
With the findings of the last section, we propose to use an adaptive transfer learning
approach, Transductive Parameter Transfer, presented in [8, 31]. The authors of [8,
31] used their method to compute personalized models for facial expression analysis
from video input. To our knowledge, we present the first example of application
of this method to action recognition and more specifically, speech detection from
wearable sensors task. Although the main theory of the method stays the same,
we have some different implementation choices than [8, 31] which we elaborate
on below.

In this approach, with feature space 𝑋 and label space 𝑌, 𝑁 source datasets
with label information and the unlabelled target dataset are defined as 𝐷፬ኻ , ..., 𝐷፬ፍ,
𝐷፬። = {𝑥፬፣ , 𝑦፬፣ }

፧፬።
፣ኻ

and 𝑋፭ = {𝑥፭፣}
፧፭
፣ኻ , respectively. It is assumed that samples 𝑋፬። and

𝑋፭ are generated by marginal distributions 𝑃፬። and 𝑃፭, where 𝑃፭ ≠ 𝑃፬። and 𝑃፬። ≠ 𝑃፬፣ .
𝑃፭ and 𝑃፬። are presumed to be drawn from 𝜌, the space of all possible distributions
over 𝑋, with respect to meta distribution Π.
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This approach aims to find the parameters of the classifier for the target dataset
𝑋፭, without using any label information of 𝑋፭, by learning a mapping between the
marginal distributions of the source datasets and the parameter vectors of their
classifiers. Main steps of the Transductive Parameter Transfer approach are shown
in Algorithm 2 and each step is explained in detail below.

ALGORITHM 1: Transductive Parameter Transfer approach [31]
Input: Source sets 𝐷፬ኻ , ..., 𝐷፬ፍ with labels and the target set 𝑋፭
Output: wt, 𝑐፭
Compute {𝜃። = (𝑤። , 𝑐።)}ፍ።ኻ using (1).
Create training set 𝜏 = {𝑋፬። , 𝜃።}ፍ።ኻ.
Compute the kernel matrix 𝐾 where 𝐾።፣ = 𝜅(𝑋፬። , 𝑋፬፣ ) using (8).
Given 𝐾 and 𝜏, compute ̂𝑓(.) solving (6).
Compute (𝑤፭ , 𝑐፭) = ̂𝑓(𝑋፭) with (7).

2.4.1. Obtaining personalized hyperplane parameters
First, person specific classifiers are trained on each source dataset individually to
obtain the best performing parameter set 𝜃. Instead of a Linear SVM used in [8,
31], we have selected the well known binary class L2 penalized logistic regression
classifier which minimizes Equation (2.1). Since both are linear classifiers and the
format of the resulting parameters is similar, this selection does not require any
extra steps.

𝑚𝑖𝑛
(፰,)

1
2𝑤

ፓ𝑤 + 𝐶
፧

∑
።ኻ
𝑙𝑜𝑔(𝑒𝑥𝑝(−𝑦።(𝑋ፓ። 𝑤 + 𝑐)) + 1), (2.1)

We have used Stochastic Average Gradient descent [32] to solve this optimization
problem, obtaining the optimal parameter sets {𝜃። = (𝑤። , 𝑐።)}ፍ።ኻ for each subject.1
The optimal regularization parameter C is found through k-fold cross validation and
the model is trained on the complete dataset of the participant with this C value.

2.4.2. Mapping from distributions to hyperplane parame-
ters

The second step aims to learn the relation between the marginal distributions 𝑃፬።
and the parameter vectors 𝜃።. The assumption here is that for each participant, the
hyperplane whose parameters are defined by 𝜃። are dependent on the underlying
distribution 𝑃።. By learning this relation, the optimal hyperplane parameters for
the target dataset can be computed without any label information. The actual
underlying distributions are not known, neither for the source datasets Psi nor the
target 𝑃፭, however they can be approximated using the samples 𝑋፬። and 𝑋፭. Thus,
the method aims to learn a mapping from samples to the parameters, ̂𝑓 ∶ 2፱ → 𝜃,
using the training set 𝜏 = {𝑋፬። , 𝜃።}ፍ።ኻ, formed after the first step of the algorithm.
1፰ and  corresponds to regression coefficients and the intercept, respectively.
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Since we assume that elements in 𝜃 are correlated, we employ Kernel Ridge
Regression(KRR), instead of the multiple, independent regressors proposed in [8].
The primal problem for ridge regression is defined as follows [33]:

𝑚𝑖𝑛((𝑦 − 𝑋𝑤)ፓ(𝑦 − 𝑋𝑤) + ‖𝑤‖ኼ) (2.2)

where the optimal solution is given as:

𝑤 = (𝑋ፓ𝑋 + 𝜆𝐼ፃ)ዅኻ + 𝑋ፓ𝑦 = (∑
።
𝑥።𝑥ፓ። + 𝜆𝐼ፃ)ዅኻ𝑋ፓ𝑦 (2.3)

The formulation for ridge regression can be kernelized with the following steps.
First, Equation (3) is rewritten as

𝑤 = 𝑋ፓ(𝑋𝑋ፓ + 𝜆𝐼ፍ)ዅኻ𝑦 (2.4)

Term 𝑋𝑋ፓ in Equation (4) can be directly replaced with the Gram Matrix 𝐾, partially
kernelizing the equation. In order to eliminate term 𝑋ፓ and completely kernelize
the formulation of ridge regression, following dual variables are introduced:

𝛼 ≡ (𝐾 + 𝜆𝐼ፍ)ዅኻ𝑦 (2.5)

With the introduction of dual variables, Equation (4) becomes

𝑤 = 𝑋ፓ𝛼 =
ፍ

∑
።
𝛼።𝑥። (2.6)

After solving for 𝑤, the solution for any variable x can be found as:

̂𝑓(𝑥) = 𝑤ፓ𝑥 =
ፍ

∑
።
𝛼።𝑥ፓ። 𝑥 =

ፍ

∑
።
𝛼።𝜅(𝑥, 𝑥።) (2.7)

It can be seen from Equations (5) and (7), a kernel 𝜅 that can define the simi-
larities between two distributions is needed. Instead of the density estimate kernel
defined in [8], we have selected an Earth Mover’s Distance[34] based kernel which
is discussed in [31]. In our implementation, each sample is treated to be a signature
where all samples have uniform weights. The EMD kernel is defined as

𝜅ፄፌፃ = 𝑒ዅ᎐ፄፌፃ(ፗ። ,ፗ፣) (2.8)

where 𝐸𝑀𝐷(𝑋። , 𝑋፣) corresponds to the EMD between two datasets 𝑋። and 𝑋፣,
the minimum cost needed to transform one into another. 𝛾, a user defined para-
meter, is set to be the average distance between all possible pairs of datasets and
experimentally shown to perform well.
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2.4.3. Classification
By solving (6) for the source datasets, we learn the mapping ̂𝑓 ∶ 2፱ → 𝜃. For any
new target dataset, we can compute the parameter vector 𝜃፭ by plugging 𝑋፭ into
the mapping function ̂𝑓. Classification of the samples in the target dataset is then
obtained by 𝑦 = 𝑠𝑖𝑔𝑛(𝑤፭𝑥 + 𝑐፭).

2.5. Dataset & feature extraction
2.5.1. Dataset
We recorded data in a real pub with 16 male and 16 female volunteers during a
speed dating social event. The first phase involved having three-minute dates with
each member of the opposite sex. After this, participants could get to know each
other better in a mingling session. This phase has the characteristics of a crowded
mingling scenario which we needed for our experiments. All throughout the event,
participants wore a specialised sensor pack around their necks which collects acce-
leration and proximity information. The accelerometer in the sensor pack provides
20 samples per second. In our experiments, we only used accelerometer data. The
area was fitted with multiple video cameras facing down on the scene, covering all
the area participants were present. The video footage was used for labelling the
ground truth.

2.5.2. Annotations & features
Annotation procedure
In this study, we will be focusing on the mingling phase. The mingling session
lasted for approximately an hour. Due to hardware malfunctions, only 28 of the
sensor packs recorded data in this session. Although we would have preferred to
use all the data we have for the classification experiments, the annotation of social
actions (in our case, speech) is extremely time consuming and costly. Also, some
of the participants were at the blind spots of our cameras for the majority of the
event, making robust annotation of their data extremely challenging. These factors
forced us to use a subset of 18 participants for our experiments. This is in keeping
with the numbers of test subjects typically used for studies in activity recognition,
where datasets of varying sizes from 1 to 24 participants are reported [2, 9].

Thus, speaking status for these 18 participants were carefully labelled using the
video for 10 minutes of the mingling phase with a time resolution of one twentieth
of a second. A qualitative inspection revealed a rich dataset including participants
with differing levels of expressiveness, interacting in dyads, larger groups or hardly
interacting with someone at all, covering different types of personal characteristics
and interactions possible in such an event. Detailed inspection of the annotati-
ons also showed that the speaking turn lengths per person vary greatly, from few
seconds to more than half a minute, further showing the variety captured in the
dataset.



2

38 2. Personalized models for speech detection

Figure 2.3: Percentages of speaking-non speaking samples

Feature extraction
Before feature extraction, each axis of the acceleration input is standardised to
have zero mean and unit variance. We selected our features from the literature
and ensuring that were as simple as possible so as to avoid overfitting the data
of the participants. The selected features can be grouped into two categories;
statistical and spectral. As our statistical features, we calculated mean and variance
values. As the spectral features, the power spectral density (PSD) was computed
in the same way as [2], using 8 bins with logarithmic spacing from 0-8 Hz. These
were extracted from 3s windows with one third overlap for each axis of the raw
acceleration, absolute value of the acceleration, and magnitude of the acceleration.
The length of the window was selected to be big enough to capture the speaking
action while preserving a fine temporal resolution. All features were concatenated
to obtain a 70-dimensional feature vector per window.

Dataset analysis
Using the annotations and acceleration from this 10 minute interval, we have ex-
tracted features for each participant. This resulted in the total of 18 feature vectors,
each having 299 samples with 70 dimensions, with varying class distributions. The
class distributions for each participant are shown in Figure 2.3. The mean percen-
tage of the positive samples (speech) across all participants is found to be 33, with
a standard deviation of 10%. Participant 11 had the least number of positive sam-
ples (14%) whereas, person 13 had the highest percentage (51%). This imbalance
in class distribution, which is also person specific, introduces a new difficulty for
robust detection of speech.

In order to see how person specific nature of speech affects the distribution of
samples in feature space, we have applied dimensionality reduction to samples of
four participants and plotted them for the first two principal components. To stan-
dardize the plots, samples from the four participants were collectively normalized
with z-score standardization. We can see from Figure 2.4 even after preprocessing,
distributions are close to each other in the feature space, while the distribution
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Figure 2.4: First two principal components of four participants (18,17,10,11)

Figure 2.5: Performance in terms of AUC for speech detection. Person dependent setup uses data from
the same participant for training and testing and expected to act as an upper bound for the performance.
Person independent and TPT setups use data from other participants in a leave-one-subject-out manner.

of samples and the characteristics of the data still vary greatly between different
participants.

2.6. Experimental results
In this section, we will discuss and compare the performance obtained with different
classification setups and approaches. When presenting classification performance,
we have specifically selected Area Under Curve (AUC) since it provides a more
valid performance estimate in the presence of our imbalanced binary classification
problem. Also, while training any classifier, class weights are set to be inversely
proportional to the number of samples in the class so as to remove any bias caused
by imbalanced class sizes. Of the all setups discussed in this section, only person
dependent one uses the data from a single participant, for training and testing, in
a leave-one-sample out manner. Other setups, person independent and TPT, use
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data from other participants. Thus, person dependent setup is expected to act as
an upper bound on the performance since it is a personalised setting by nature.

2.6.1. Person dependent performance
In the person dependent setup, each participant is trained and tested on their own
data. Since we don’t have enough data to come up with distinct training and test
sets, we applied Leave-One-Sample-Out cross validation scheme for performance
evaluation.2 Based on the findings reported in [35], we made sure that training
set is not contaminated. This means for each fold, any adjacent samples to the
test sample are eliminated from the training set. With this elimination, we aim to
provide an unbiased performance estimate. We have used a logistic regressor as
classifier where the optimal regularization parameter C in Equation (1) is found by
nested k-fold cross validation.

The procedure is applied to each participants’ data separately, obtaining perfor-
mance evaluations for each. This resulted in varying performance scores, ranging
from an AUC score of 55% to 79%. The mean performance across all participants
is 68% ± 6. Individual scores for each participant are shown in Figure 2.5.

The variation in performance scores can be linked to two different factors we
have already discussed. The first is the personal connection between speech and
body movements read through the accelerometer. As expected, the problem beco-
mes harder for people with more subtle movements, resulting in lower performance.
Still, each participants’ performance score is higher than random (50% AUC), pro-
ving that our features are still discriminative.3

Second factor is related to the class distributions. As shown in Figure 5, some
participants’ class distributions are highly skewed towards the negative class. We
can not say that such imbalance always guarantees low performance, since it may
still be possible to train robust models from small numbers of highly informative
samples. However, we already see negative effects of this imbalance in our results.
The participants with the lowest performance scores have small number of positive
samples. There are only two participants with AUC scores lower than 60% (P12:
55% and P15: 57%) and they have the second and third lowest percentages of
positive samples (25% and 16%, respectively) in the whole dataset. So, for these
two participants, we can not be sure if the low performance is caused by subtle
movement while speaking or the small number of positive samples.

We expect these results to act as an upper-unbiased limit for speech detection
performance.

2.6.2. Person independent performance
In the person independent setup, we have used Leave-One-Subject-Out cross vali-
dation for performance evaluation, where each participants’ samples are classified
with the model obtained from other participants’ data. So, the training set is for-
med by concatenating and standardising all other participants data. Similar to the

2In LOSO-CV, classifier is trained on n-3 samples and tested on one in each fold.
3A random classifier gives 50% AUC in expectation regardless of the class balance [36]
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person dependent setup, logistic regressor is used as the classifier and optimal
regularization is then found on the training set with cross validation.

With this setup, we obtained an average AUC score of 58%, with a standard
deviation of 7%. The individual scores for participants varied from 45 to 60%. The
individual scores obtained with the person independent setup are also shown in Fi-
gure 2.5, together with the results of other setups. Apart from two participants (7
and 8), where the person independent setup yielded slightly better AUC scores than
the dependent one, the person dependent setup always outperforms the indepen-
dent setup. We compared the performances of person dependent and independent
setups per person using a paired one-tailed t-test. As expected, the result of the
t-test showed that the person dependent setup yields significantly better results
than the independent one (𝑝 < 0.01).

In the ideal learning paradigm, training with more samples should yield a better,
more robust model, contradicting what we see. However, it is also assumed that
the samples in the dataset are coming from the same independent and identically
distributed (i.i.d.) probability distribution. From what we see from Figures 2.3 and
2.4, it is more likely that every participant has their own probability distribution
that their samples are drawn from. Thus, concatenating the data of all participants
and training a model on this dataset results in an unreasonable and impractical
decision boundary. These person independent results strengthen our claim of the
personal nature of connection between speech and body movements and motivate
the requirement of an adaptive model.

2.6.3. Transductive parameter transfer performance
Our TPT experiments also employed a Leave-One-Subject-Out setup, where each
participant is treated to be the target dataset while all other participants acted as
source sets. This setup is similar to the person independent one, since the labels
of only other participants are used for classification. With TPT, an average AUC of
65%± 6 is obtained. Individual performance values are included in the Figure 2.5,
in addition to those of the person dependent and independent setups.

It is clearly seen that TPT outperformed the person independent setup for ma-
jority of the participants (16 out of 18), providing an AUC score close to the person
dependent setup. One-tailed t-test between the TPT and the person independent
scores showed that TPT is significantly better than the other (𝑝 < 0.01). For few
cases, TPT even outperforms the person dependent setup (participants 2, 7, 8,
11), however, the person dependent results are still significantly better than TPT
(𝑝 < 0.02). This result is quite interesting and might be caused by different factors.
When the performance for participants 7 and 8 are inspected, it can be seen that
even the person independent setup outperforms that of the person dependent one.
This suggests that for these participants, using more data (even belonging to other
participants) provides a better estimation of the decision boundary. In such a case,
we may expect TPT to outperform all other setups. Although the same pattern is
not present for participants 2 and 11, we might still argue that these participants
benefited from the use of the data of other participants, most probably the ones
having a similar distribution.
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Figure 2.6: Comparison with the state-of-the-art as presented in [11] (RF and HMM) & [33] (TPT)

These results prove that it is still possible to generalise over unseen data, with
an acceptable performance, if an adaptive method like TPT is employed. In 10
minutes one might argue that there is relatively little variation in an individuals’
behaviour. However, assuming that between-person variation remains fairly high
over this interval, as it can be seen from Figures 2 and 3, it is particularly interesting
that we get good results, showing the robust generalisation ability of our method
even with a limited amount of data. With the proposed transfer learning approach,
performance results that are always better than the random baseline are obtained
and statistical significance tests showed that our proposed method guarantees to
perform better than traditional non-adaptive person independent learning.

2.6.4. Comparison with the state-of-the-art
This section compares the performance of our Transductive Parameter implementa-
tion with the state-of-the-art approaches. Firstly, we present the person indepen-
dent results obtained with Random Forests (RF) and Hidden Markov Model (HMM)
based approaches proposed in [1]. Secondly, we present the results obtained with
the TPT implementation given in [8] and discuss in detail how our different choices
affected the final performance. Individual performance scores obtained with all four
methods, including ours, can be seen in Figure 2.6.

Non-adaptive person independent methods
We have implemented the methods presented in [1]. We have used the exact same
setup they defined which includes the features they used (PSD 0-8Hz), window sizes
for feature extraction (5s for RF, 3.5s for HMM), number of trees in Random Forest
classifier (500) and number of states in HMM (2). We compare with the Leave-One-
Subject-Out cross validation setup reported in [1].

With the RF, we obtained an average AUC score of 55%±6. The HMM performed
slightly better, providing an average AUC of 59%±6. When compared to our person
independent results obtained with logistic regression, neither RF nor HMM provided
a significantly better result. This is an interesting finding since it shows that a
linear model is as powerful as a nonlinear model for the speech detection problem,
in a Leave-One-Subject-Out setup. Our proposed TPT method, on the other hand,
significantly outperforms both of these methods. There are only 3 participants
that have better performance scores than our proposed implementation of TPT;
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Table 2.1: Performance and significance of the four modified TPT implementations compared to ours,
which had an average AUC score of ዀ%± ዀ (**(pጺ0.01),*(pጺ0.05)).

Modification (Our implementation)

AUC
± Std

SVM (LR) SVRs (KRR) DK (EMD) SV (WD)
60 ± 4 ** 63 ± 7 * 65 ± 7 61 ± 5**

participants 1 and 3 for RF and participants 1 and 11 for HMM. One tailed t-tests
between our TPT results and both RF and HMM showed TPT performs significantly
better (𝑝 < 0.01 for both RF and HMM). The authors of [1] applied their non-
adaptive method on a limited dataset that includes only 9 people. We believe,
with the increasing number of participants, the person specific nature of speech is
magnified and the requirement for adaptive methods increases.

Detailed comparison with state-of-the-art TPT implementation
Our proposed TPT implementation improves upon that presented in [8]. Although
the basic framework of the method remains, our implementation choices made the
method more suitable to the nature of our problem, as demonstrated by the per-
formance results. We have used the implementation provided by [8] and obtained
performance results with that setup, resulting in an AUC of 62% ± 6. Our imple-
mentation outperforms it for 15 out of 18 participants.The paired one-tailed t-test
between performance scores shows that our implementation is significantly better
than [8] (𝑝 < 0.01).

There are four main differences between our implementation and the one in
[8]. TPT implementation in [8] uses: (i) a SVM instead of logistic regression (LR),
(ii) independent Support Vector Regressors (SVRs) instead of KRR, (iii) a density
kernel (DK) instead of EMD kernel, (iv) support vectors (SV) instead of the whole
data (WD) to estimate distributions of source sets. To investigate which modification
affected the performance most, we carried out four follow-up experiments. In these
experiments, we replaced one of our choices with the original one in [8]. Table 2.1
shows the average AUC and standard deviation over all participants obtained with
each of these modifications. One tailed t-tests were used to quantify differences
between our full implementation and one of the modified approaches.

Table 2.1 shows that the most effective change uses a logistic regressor instead
of a Linear SVM. The two setups where our logistic regressor is replaced by a SVM
(SVM and SV in Table 2.1) have the lowest performances. It is an unexpected result
since the two classifiers are quite similar. However, the logistic regressor was more
successful than the Linear SVM when person specific classifiers were being trained
which we believe resulted in this performance difference.

Since our features are often correlated with each other, we preferred to use a
KRR instead of the SVRs which is also supported by [31]. The performances shown
in Table 2.1 backs our decision since our method with KRR performed significantly
better than the SVRs method. The average performance difference between two
methods could be low but our method provides significantly better results.

Finally, we can see that replacing EMD with a density kernel (DK) does not affect
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Figure 2.7: Performance in terms of AUC for walking

the performance at all. For our data, a density kernel was as successful as the EMD
kernel in estimating the similarities of distributions. This is quite different than the
findings in [31] but we believe it is related to the distribution characteristics of our
data.

2.7. Comparing speech detection with walking
We investigated how different the nature of the speech detection problem was
compared to other more traditional actions in the action detection literature to see if
speech detection from body motion really requires a different approach. To address
this question, we have conducted a follow-up experiment where we compared the
speech detection results to an action which is widely studied in the action detection
literature, walking.

Here, we used the same setup from our speech detection experiments. Simi-
lar to the former section, we obtain two performance scores for each participant;
one for each of the person dependent and independent setups. We used a subset
of the participants from 9 people who had enough walking samples. In order to
obtain an acceptable number of samples, we only included participants that conti-
nuously walked more than 3 seconds with at least 15 seconds total walking time. To
make the problem similar to our speech detection experiments, we added a random
number of non-walking samples to each participant, creating possibly imbalanced
distributions. The performances for this experiment are shown in Figure 2.7.

The person dependent setup yielded an average AUC of 83% ± 6. With the
person independent setup we have obtained an average AUC of 80%±7. We have
also applied TPT to the walking data with the same leave-one-participant-out setup
of the former experiments where data from other participants acted as sources for
the transfer. TPT obtained an average AUC of 84% ± 7. The pairwise t-tests bet-
ween setups showed that no single setup is significantly better than the others and
all might provide better performance for an unseen participant. From Figure 2.7,
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we can see that the pattern here is entirely different than the speech detection
one. First, both person independent and person dependent setups yielded relati-
vely high performances, when compared to performances of the speech detection
experiments reported in Section 2.6 (average AUC of 68% ± 6 versus 83% ± 6 for
the person dependent setup and 58%± 7 versus 80%± 7 for the person indepen-
dent one). This is an expected result, since the connection between speech and
body movements are not as universally characterizable as the connection between
walking and body movements. Secondly, in many cases, better performances than
the person dependent setup are actually obtained with the independent one.

Interestingly, the best overall performance score is obtained with the TPT, re-
sulting in an average score slightly higher than the person dependent one. This
is definitely different than the speech detection problem where the person depen-
dent setup and TPT performed significantly better than the person independent
one. We can still argue that the relatively smaller sample sizes compared to the
speech detection experiments might have caused the person dependent setup to
perform sub-optimally, explaining the cases where person independent and TPT se-
tups outperformed the dependent one. Yet, these experimental results show that
the detection of walking is less challenging, is not influenced by personal differen-
ces as much as speech-related body movements and it is still possible to achieve
high performance with a non-adaptive model, unlike our speech detection task. In
addition, high performances obtained with the TPT, even for a problem that see-
med to be less person specific, show that the proposed method is quite robust and
still preferable to the traditional person-independent setup in such cases.

2.8. Comparing controlled & in-the-wild settings

To experimentally demonstrate the restrictions introduced by a real event, we or-
ganised a small controlled experiment where one participant imitated speaking,
walking and standing in a structured way while wearing an accelerometer. The
participant alternated between actions where each action is performed for at least
15 seconds, resulting in a dataset that has 125, 139 and 110 seconds of standing,
speaking and walking, respectively. The participant did not exaggerate any action
to make them distinguishable from others. It should be noted that, the standing
parts also include the imitation of listening, where head-hand gestures and body
shifts natural to listening were randomly acted by the participant.

We have used the same experiment setup of the person dependent experi-
ments discussed in Section 2.6. Thus, the logistic regressor is used as the clas-
sifier, the same set of features and Leave-One-Sample-Out evaluation scheme is
utilised. Even though we had three different classes, we treated the problem as a
binary classification task, where the samples corresponding to walking and standing
formed the negative class. This results in roughly one third of the samples being
positive.

Using this controlled data, we achieved an AUC score of 84%. More detailed
analysis shows that 4% of walking samples and one third of standing samples
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are misclassified as speech. This is consistent with former experiments, showing
that distinguishing between speech and walking is relatively easy. On the other
hand, listening-standing is often confused, probably because similar gestures occur
in both. Still, the majority of standing samples are classified correctly. Also, the
trained model is quite robust in detecting speech, only misclassifying 8% of speech
samples as non-speech.

The performance score obtained in a controlled environment outperforms all our
previous experiments with real in-the-wild data. We believe this is related to the
two main differences between the setups. First, in the controlled environment we
have precise annotations for each action. The noise introduced in the annotation
procedure tends to affect the learning procedure. Even not guaranteed, since we
don’t have a robust way of measuring the quality of the annotations we have for
the real life event; better annotations may increase performance. However, the
annotation quality may also not be related to the essence of the difference between
the real life and controlled events.

Secondly, the actions performed by the participant in the controlled experiment
is highly structured and limited. However, the actions of participants in a real life
event is completely unstructured. There is no limit to the type of actions they may
perform and the transitions between them. Participants can even perform multiple
actions at the same time. It is nearly impossible to cover all the possibilities that
may happen in a real life event in a controlled environment. So, we believe that the
results obtained from controlled experiments will be always positively biased and
would not reflect the true phenomena as it occurs in the wild.

2.9. Analysis of transfer source quality
While using TPT, we employed a Leave-One-Subject-Out learning scheme where
data of all other participants acted as sources. Some source sets might be more
informative than others. Conversely, some source sets may negatively affect the
mapping function learned, dropping the final performance. Thus, we hypothesised
that there might be optimal source subsets for each participant. To check this
hypothesis, we classified each participant with every possible triad of source sets.
Then, we selected the top 10 best performing triads for each participant. We should
note that, all of these setups were somewhat optimal, performing better than the
setup where all sources were used.

Figure 2.8 visualises links between the best performing subset where the size
of each node indicates the number of times it was in one of the best performing
source sets. A directed edge from node A to B (where the end of the edge is
slightly wider) means that participant B was at least in one of participant A’s best
performing source sets. The width of the edges are proportional to the number of
times B was in A’s source sets.

From the Figure 2.8, we can see that participants 3, 4, 8 and 13 are the optimal
sources for the majority of others. Still, the directed edges show that there is no
single perfect source for everyone, meaning multiple sources are needed to cover
a larger population. When we inspected the person dependent performances and
class distributions for these participants, we did not see any distinguishing features
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Figure 2.8: Visualisation of optimal source sets for each person.

to indicate their quality as sources. Closer inspection of the video of the event
confirmed no spatial connection or presence of interaction was necessary for one
participant to act as a good source for another. We believe these findings show that
the success of these participants as sources comes from something more inherent,
most probably related to connection between speech and torso movements.

We analysed whether being a good source might be related to personality. Each
participant filled in the HEXACO personality inventory [37] before the event. The
HEXACO scale measures personality in 6 dimensions and can broadly be considered
similar to the more well-known Big Five personality traits except with an additional
sixth dimension measuring humility or honesty. The dimensions are mapped onto a
5-point likert scale. We observed that all these four participants have relatively high
extraversion (3.8, 3.6, 3.9, 3.6) and openness (4.1, 3.6, 4.2, 3.4) scores which may
contribute to them being good sources. Further analysis of the connection between
personality and transfer is left for future work.

2.10. Analysis of gender differences in transfer
One interesting aspect we haven’t investigated in the former sections is how gender
specific attributes affect the proposed method. In all of the former TPT experiments,
we either used all remaining participants as sources or fetched all possible triads
without considering the gender of the participants. In a traditional speech detection
setup, where audio recordings are used as input, gender is expected to be a dis-
tinctive feature because of the frequency differences in male and female voices. In
this section, we present a detailed analysis to see if such a difference exist for our
method which relies on accelerometer readings instead of sound. Luckily, we have
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Figure 2.9: Performance scores of TPT for gender based transfer (Participant IDs are same with the
ones shown in previous figures)

a balanced dataset in terms of gender, 9 females (Participant IDs 1-9 in Figure 5
and 6) and 9 males (Participant IDs 10-18 in Figure 5 and 6).

In order to check if there are any gender specific characteristics affecting our
method, we devised three different experiment setups. The first setup is entirely
the same as the one presented in Section 2.6.3, where we use all other participants
as sources. For the second setup, we only use participants as sources who are the
same sex with the target participant. The last setup is the reverse of the second one
where all sources are the opposite sex of the target participant. Figure 2.9 shows
the performances for all these three setups applied on male and female participants.
The items in the legend correspond to all three setups where All corresponds to
setup 1, F2F (female sources, female targets) and M2M (male sources, male targets)
are setup 2 (same gender transfer) and M2F (male sources, female targets) and
F2M (female sources, male targets) are setup 3 (transfer from the opposite gender).

As it can be seen from the Figure 2.9, there seems to be no significant difference
between any of these setups. When we use the all participants as sources, the
average AUC scores for female and males are 66% ± 6 and 64% ± 6, respectively.
For the same gender transfer, F2F and M2M setups, the average AUC scores are
66% ± 8 and 63% ± 6. Finally, for the opposite sex transfer, M2F and F2M, we
have obtained average AUC scores of 65% ± 4 and 63% ± 7, respectively. The
individual performances of participants seem to be slightly changing with respect
to the setups, however, there is no apparent pattern suggesting a convincing effect
of gender on the transfer quality. This is further proved by the t-tests between all
different pairs of setups that showed no significant difference.

These results are somehow expected since we are not trying to infer speech from
vibrations in the chest which might be strongly affected by the frequency differences
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of sound between genders. Our method is based on the connection between body
(mostly torso) movements and speech which is expected to be affected less by
any gender specific differences. These results are also on par with the analysis of
the last section where we identified optimal sources for transfer. Three out of four
optimal sources were found to be females in this analysis, however, they were good
sources for participants from all genders. Thus, we can conclude that even though
there might be some gender specific gesturing, we haven’t seen any strong effects
of it on the success of transfer in our data.

2.11. Conclusion and future work
In this study, we presented a transfer learning approach for detecting speech in
real world crowded environments, using accelerometers. By comparing speech
detection task to a traditional action recognition problem (e.g walking), we have
shown the requirement for a specialised approach that can address the person
specific nature of the speech and body movements. As a novel contribution, for
the first time, Transductive Parameter Transfer [8] was used to address the person
specific patterns of estimating speech from body acceleration. We also analysed the
parameter transfer in detail by considering different source sets, providing insights
into the nature of transfer and the task of speech detection.

Results obtained with the proposed method outperformed the state-of-the-art,
providing performance scores close to person dependent setups. We discussed the
challenges that are introduced by a more ecologically valid setting when compa-
red to controlled experiments and experimentally showed how they affected the
detection performance. Analysis of transfer quality demonstrated that an optimal
subset of sources could be identified for each target set. Moreover, we found that
some participants generally acted as good sources for subsets of the population in
our data. We observed that this connection was not related to the spatial distance
or to their corresponding interaction partners but something more inherent in the
individuals.

As future work, we plan to explore automated methods of selecting source sets
for each target. Another direction we would like to pursue is testing our method in
a different environment, for example, a seated scenario where different variety of
actions can be examined.
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3.1. Introduction
In this chapter, we will present a case study on social behaviour analysis, focusing
on automatic social action detection in complex conversational scenes. Various (so-
cial) actions will be discussed with respect to their physical manifestation and their
connection to the worn sensing device, the required approaches, and available data
size. In our case the sensing device we focus on is a single tri-axial accelerometer
which is embedded in an ID badge hung around the neck.

When analysing human behaviour, past analysis has tended to assume that this
is more or less person-independent. Throughout the text, ‘person-independent’
will be used for settings where data for training a model comes from different
sources (people in our case) compared to the test data. Much work has been
done on estimating daily activities such as walking or running from accelerometer
data, showing promising results with a person independent setup [1, 2]. There is
a direct connection between the sensing medium and the physical manifestation
so that behaviours such as walking and stepping results in acceleration readings
that are easy to discriminate directly from the magnitude of the signal. This makes
making a person independent setup for discriminating such behaviour quite easy
to implement.

However, some of the actions observed in crowded social settings tend to be
much more person specific and the connection between the existence of these acti-
ons and the accelerometer readings is more ambiguous. In our case, the physical
manifestation of speaking comes from vibration of the vocal chords, so unless the
subject has a very sensitive accelerometer attached tightly to the body (e.g. the
chest [3, 4]), there won’t be a direct connection between the action and the sensing.
However, speaking also has a physical non-verbal aspect, and it has been shown
in previous works that the connection between body movements and speech can
still be exploited for detecting if someone is speaking or not [5, 6]. Actions like
speaking, which are loosely connected with the sensing medium, are expected to
be harder to detect and may require specialised approaches.

To examine this, we conducted a number of experiments on a dataset that is
collected from a real life, ‘in the wild’ event. The dataset is comprised of mingling
events from 3 separate evenings where each evening includes data from approx-
imately 32 people. Each participant wore a sensor hung around the neck that
records individual triaxial acceleration at 20Hz. Note that the sample rate is not
high enough to detect vocal chord vibration. However, it is high enough to capture
body movements such as gestures. Different social actions are manually labelled by
trained annotators for 30 minutes of the mingling sessions. For more information
about the dataset, please refer to [7]. We have focused on the mingling session
from the first day for the experiments presented in this chapter.

3.2. Feature extraction and classification
We have extracted features for each of the 26 subjects with valid accelerometer
data. Statistical and spectral features are extracted from each axis of raw and
absolute values of the acceleration and the magnitude of the acceleration, using 3s
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Table 3.1: AUC scores for various actions

AUC(%) Std(±) Annotator Agreement
Stepping 76.0 10.5 0.51
Speaking 69.5 8.3 0.55
Hand Gestures 70.4 9.1 0.61
Head Gestures 64.4 7.4 0.25
Laughter 67.8 12.5 0.39

windows with 1.5s overlap. As the statistical features, mean, and variance values
are calculated. The spectral features consist of the power spectral density binned
into 8 components with logarithmic spacing between 0-8 Hz.

We have used L2 penalized Logistic Regressor as the classifier. Performance
evaluation is done with leave-one-subject-out cross-validation. Hyperparameter
optimisation for regularisation is carried out with nested cross-validation. Stepping,
speaking, hand and head gestures, and laughter are selected as the target actions.
Since the class distributions for each participant are different, we have chosen the
AUC (area under the ROC curve) as the performance metric. Performances obtained
with the aforementioned setup is presented in Table 3.1. We also present the mean
annotator agreement for each action using Fleiss’-Kappa for 3 annotators. Values
higher than 0.4 are considered to be of moderate agreement.

We can see that the results presented in Table 3.1 support the claim that actions
that are loosely connected to the physical manifestation of the behaviour are harder
to detect. Stepping, as expected, has the highest performance of all. We also see
that performance tends to drop with the reducing connection between the physical
manifestation of the action itself and the acceleration. For example, head gestures
labels in the dataset, social action with the lowest detection rate, include many
subtle nods which are harder to capture via acceleration, compared to a step or
hand gesture.

It should be noted that there might be a second factor at play here. In real life
events, it is generally harder to obtain annotations. Thus, the annotations must
be made later manually.1 This of course introduces some differences in annotator
agreement which differs with respect to the type of the action. Table 3.1 shows
the annotator agreements as reported on a subset of the data taken from [7]. It
can be seen that the lowest annotator agreement values are for the head gestures,
followed by laughter. Variation in agreement (due to behavioural ambiguity or visual
occlusion of the person being annotated) in the labels might have also contributed
to the low performance of these actions, in addition to the nature of the connection
between the action and the sensing medium. Thus, noisy labels, at least for some
actions, are a reality of data collection in wild which needs to be taken into account
when evaluating the perception performance. A further discussion of the trade-offs
between using crowd sourced annotations compared to on-site annotators are also
discussed in [7].

1Our annotators labelled the social actions by watching a top-down video of the event.
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3.3. Performance vs. sample size

In the former experiment, thirty minutes of data from each participant was used.
The results obtained showed that thirty minutes was enough to capture a variety of
actions with various different situational contexts (i.e. differing conversing partners
with different levels of conversational involvement), obtaining acceptable perfor-
mance even for more subtle actions. But what is the minimum required amount of
data for acceptable performance? Will the patterns be similar if we had less data?
Since it is not guaranteed to have a continuous stream of 30 minutes of data, we
conducted another experiment, where we used the earlier setup but with gradually
increasing amounts of data for each participant, starting from 5 samples to a total
of 1198 that covers the whole 30 minutes. As mentioned in the former section, each
sample is extracted with a sliding window of 3 seconds with 1.5 seconds shift. Thus,
we can say that 5 samples corresponds to 9 seconds of data, 40 samples roughly
correspond to one minute, and so on. We still used a leave-one-subject-out setup
where for each fold, all the data from one participant corresponded to the test set.
However, the training set is formed randomly by selecting 𝑛 samples from each of
the other participant’s data. Since the selection is random, the process is repeated
𝑚 times which was also dependent on the number of samples selected. For compu-
tational reasons, we gradually reduced the number of repetitions from 150 to 15 and
from 5 to 1000 samples.We have selected two relatively well performing actions,
stepping and speaking. These actions have different characteristics as described
earlier with stepping being more closely connected to the physical manifestation of
the behaviour compared to speaking, which relies on detecting bodily gestures that
are related to speech. In addition, this selection is based on former studies that
showed the connection between speech and acceleration is highly person specific
compared to stepping-walking[6]. The mean of the AUC scores of all repetitions,
with increasing data size, are shown in Figure 3.1 with standard deviation.

First, from Figure 3.1 we observe the higher standard deviation for smaller sam-
ple sizes. This is related to the decreasing number of repetitions but we argue that
is not the only factor. We believe there are parts of the event that are less infor-
mative than others and if the selected samples are coming from such intervals the
performance tends to be low, and therefore fails to generalise over the whole event.
This issue will be discussed further later in this chapter where we will present re-
sults of an experiment where the samples are not randomly sampled but selected
chronologically. We also also observe that the standard deviation for both actions
converge to small values with the increasing sample size.

We can see from Figure 3.1 that the pattern for both actions are quite similar.
Performances for the actions increase with a steep curve in the beginning and after
120 samples the increase gets smaller. This suggest that 3 minutes of data from
each person is enough to cover the variations in each type of action in such an
event. The question then becomes if it is possible to provide a specialised solution
which can guarantee better results even if the number of samples is relatively low.
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Figure 3.1: AUC scores of stepping and speaking with respect to data size

3.4. Transductive parameter transfer (TPT) for per-
sonalised models

Following on from the results of [6], where it was shown that a transfer learning
approach that guarantees personalised models in a person independent setup tends
to perform better for person specific actions, we repeated the former experiment
with a personalised model. The method is named Transductive Parameter Transfer
(TPT) and was first proposed for personalised facial expression recognition [8] and
then modified for social action detection from a body worn accelerometer in [6].

TPT aims to find the parameters of the classifier for the target dataset 𝑋፭, wit-
hout using any label information of 𝑋፭, by learning a mapping between the marginal
distributions of the source datasets and the parameter vectors of their classifiers.
𝑁 source datasets with label information and the unlabelled target dataset are de-
fined as 𝐷፬ኻ , ..., 𝐷፬ፍ, 𝐷፬። = {𝑥፬፣ , 𝑦፬፣ }

፧፬።
፣ኻ

and 𝑋፭ = {𝑥፭፣}
፧፭
፣ኻ , respectively. The main steps

of the TPT are shown below (for a detailed explanation, please refer to [6]):

1. Compute {𝜃። = (𝑤። , 𝑐።)}ፍ።ኻ using L2 penalized Logistic Regression.

2. Create training set 𝜏 = {𝑋፬። , 𝜃።}ፍ።ኻ.

3. Compute the kernel matrix 𝐾 that defines the distances between distributions
where 𝐾።፣ = 𝜅(𝑋፬። , 𝑋፬፣ ).

4. Given 𝐾 and 𝜏, compute ̂𝑓(.) with Kernel Ridge Regression.
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5. Compute (𝑤፭ , 𝑐፭) = ̂𝑓(𝑋፭) using the mapping obtained in former step.

We conducted the performance vs. sample size experiment explained in the
former section, with the addition of TPT. TPT is also used in a person independent
setup, where data from other participants are treated as source datasets with label
information whereas the data to be classified is the target dataset. Although [6]
suggests the use of an Earth Mover’s Distance (EMD) kernel for computing the
distance between distributions, we employed a Density Estimate kernel [8] since
it is computationally less complex and more suitable for many random repetitions.
The resulting AUC scores are plotted in Figure 3.2.

Figure 3.2: AUC scores of stepping and speaking with respect to data size

According to Figure 3.2, TPT outperforms a traditional person independent se-
tup when using small sample sizes for both actions. It seems to generalise better
even with a small amount of data. For speaking, with the increasing data size, the
gap between the two methodologies starts to close, showing that the single logistic
regressor in the person independent setup has seen enough diverse cases to ge-
neralise better. A one tailed paired t-test between AUC scores showed that up until
320 samples, TPT provides significantly better performance (𝑝 < 0.05 for 40 sam-
ples and 𝑝 < 0.01 for the rest). After that point, the mean scores provided by TPT
seemed to be still higher than the person independent setup but the significance
is not guaranteed (some results such as those at 400 and 600 samples are still
significant though). We can say that with the increasing data size, both methods
converge to similar performances. However, especially for smaller sample sizes, we
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can still conclude that for estimating an action in a person specific manner, TPT is
more robust.

For stepping, the trend shown is different. For extremely small amounts of
data of 5, 10 and 20 samples, TPT outperforms the traditional person independent
setup (significantly for 5 and 10 samples). With increasing data sizes, the person
independent setup clearly outperforms TPT. It can be argued that this is related
to the nature of the action. Stepping is less person specific than speaking and the
connection between the sensor and the physical manifestation of the action is more
direct. Thus, it can be expected that the representations of such an action should
not vary too much between participants. With the increasing number of samples,
the person independent classifier will see more samples and since samples from
different participants can be expected to be equally informative for all, a more
optimal and general decision boundary can be obtained, unlike for speaking. So
although we can advocate the use of TPT for really small sample sizes, a traditional
person independent setup seems to be a more robust selection for less person
specific actions.

Now, we want to go back to our claim that some parts of the event are more
informative than others. The first parts of the dataset correspond to the beginning
of the event, when groups are just starting to be formed. We might expect people
to be less involved in the conversation as the discussions are not yet in full flow.
This might result in samples that are not representative of all variations of actions
that can occur in a real life event, throughout time. So, we did a follow up ex-
periment where we compared the performances of TPT and the traditional person
independent setup for speaking detection. However, this time for each participant
in the training set, we increased the number of samples in chronological order.
Thus, 𝑛 samples for a participant correspond to the first 𝑛 samples in time. Since
there are no repetitions, the means and the standard deviations are computed on
the individual performances of all participants. The results of this experiment are
shown in Figure 3.3.

The first thing we observe from Figure 3.3 is how the performances of the
person independent method is lower compared to those from Figure 3.2. Using
random selection of the samples throughout the event, the person independent
method was providing an AUC of roughly 61% for 5 samples. However, in the
temporally increasing setup, the performance for the same number of samples is
roughly 56%. The pattern is similar for the following sample sizes and the perfor-
mance of temporally increasing selection is only able to reach the level of random
selection if at least 320 samples are used for training. TPT on the other hand
still provides similar results to the random selection method and provides relatively
satisfactory results even with samples that were less informative for a traditional
person independent approach.

One other interesting observation is the relatively high standard deviations for
both methods, even with increasing number of samples. This shows that, for some
participants, classifying the action is harder compared to others regardless of the
sample size, further showing the person specific characteristics of speaking. These
results further strengthen the claim that TPT should be considered for person spe-
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Figure 3.3: AUC scores of speaking with temporally increasing data size

cific and indirect actions such as speaking.

3.5. Discussion
With the presented perception analysis results, a few issues emerge that are all
related to the ‘in the wild’ nature of the experiment. When collecting data from real
life events, many challenges arise. Some of these restrictions and difficulties come
from the unrestricted nature of the event: the variety and frequency of actions
might cause some cases to be under or over-represented making detection harder.
The difficulty of the annotation process (either due to the ambiguity of the behaviour
or occlusion) can also result in label noise. Thus, when designing and conducting
experiments on real life data, a researcher should always first consider how these
issues will affect the machine perception problem to be solved.

Specifically, for the case study presented in this chapter, when focusing on the
detection of actions through wearables, there are some important points to consider.
First, one should understand the connection between the physical manifestation
of the action, and the sensing medium they are using. This is required for the
valid selection of features and models that will be used for classification. In real
life scenarios, it is not guaranteed to have each action perfectly represented in
all its possible variations for each participant. This is particularly true because
natural ‘in the wild’ behaviour samples only come into being as the result of the
dynamics of a conversation as it unfolds over time. That is, a monologue in a group
would yield more positive examples of speaking for the speaker of the group but
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no speaking samples for the members of the group who are just listening. So, the
experimental setup and methodology chosen should encapsulate this together with
the physical nature of the action. The experiments presented in this chapter are a
good examples of this, where two approaches for the detection of two actions tend
to perform differently, because of the physical nature of the actions in relation to
the sample sizes.
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4.1. Introduction
In most social scenarios, be it a small private gathering or a crowded music festival,
people tend to interact with each other, forming groups of varying size. Automatic
detection of such conversing groups has a wide variety of possible applications,
ranging from surveillance to detailed analysis of socially relevant behaviour. For
example, a deeper understanding of how people interact throughout an event can
provide valuable information regarding the success of the event, such as the mood
of the participants, their evaluations, whether they will return and recommend the
event to others[1]. Such information is potentially important for organizers. Also,
examples in the literature show that when an interacting group is identified, it is
possible to estimate social attributes such as dominance [2], leadership[3] and
cohesion[4] through behaviour of participants, which are especially valuable for or-
ganizational scenarios. In order to obtain such information, a deeper understanding
of social interactions between people is definitely required, which we address in this
paper.

This paper focuses on the automatic detection of conversing groups using a sin-
gle accelerometer in real life crowded social scenarios, more specifically mingling
events. Differing from the majority of the existing work that relies solely on the
proxemics (spatial distance and relative orientation of the participants), our pro-
posed method focuses on a widely overlooked rich information source: interaction
dynamics; the coordinated behaviour of people during a conversation. The appro-
ach presented in this paper aims to represent interaction dynamics through pe-
ople’s actions and movement patterns which are inferred with a single body worn
triaxial accelerometer. Importantly, our proposed approach considers how inte-
raction patterns vary in different sized groups. This is achieved by training multiple
classifiers with respect to the group cardinality and classifying a new sample by a
meta-classifier which is trained with the probability outputs of the group based clas-
sifiers. This ensemble fusion technique is known as stacked generalization (stacking
in short) in the literature [5]. Unlike the traditional stacking approaches, we use
only the data from the local neighbourhood of the test sample while training the
meta-classifier. Influenced by the findings in social psychology related to the spea-
ker and listener behaviours in groups, we aim to provide a scalable and ubiquitous
solution to the detection of conversing groups while preserving the privacy of the
participants. Our method works solely on accelerometer data obtained by a custom
sensor pack worn around the neck by participants like an ID badge. This makes the
approach ubiquitous and viable for dense crowded scenarios, where other modali-
ties such as video and sound may fail due to the crowded characteristics. Results
are presented on a real life, in-the-wild mingling dataset, collected during three
unique instances, showing the generalization of the proposed method. No recor-
ding of raw speech is done; participants’ privacy is not invaded. Since only a single
sensor is being used, our method is highly power-preserving, making it deployable
for large and long scenarios.

We can list the novel contributions of this paper as follows: We (i) propose and
utilise a new feature set (overlap statistics) together with some others that were
previously used in other domains to capture interaction dynamics through social
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behaviour, (ii) propose an approach that considers interaction dynamics of groups
related to cardinality and show how it beats the state-of-the-art,(iii) perform various
analyses to investigate the nature of this problem further: performance in relation
to the group sizes, feature effectiveness, comparison of feature types in terms
of performance and the effects of meta-level classifier on the local neighbourhood
instead of the whole dataset. Following subsections aim to provide more insight into
the problem and the proposed method by presenting a formal problem formulation
and discussions related to the use of social dynamics instead of proxemics and the
necessity for group size awareness.

4.1.1. Proxemics vs. dynamics
Explicitly, we are trying to detect pairwise F-formation membership; if two partici-
pants are in the same interacting group or not. We built our problem formulation
on the definition of F-formations from the social psychologist Adam Kendon [6].
F-formations are specific types of focused encounter, where participants spatially
and orientationally organize themselves into a group which makes it possible to
facilitate conversation.

There are many examples of existing work in the literature that aim to F-
formations. However, many of these works solely focus on the proxemics, either
by working on the proximity information obtained with infrared (IR) sensors [7, 8]
or by employing still images and videos for obtaining head and body orientations in
addition to the spatial location [9–11]. This focus on proxemics is understandable
and coherent with the definition of F-formation itself. If a person was asked to
decide from a still image if a participant is part of a group, most probably they will
first check the physical proximity and the orientation of the people. However, we
argue that even though spatial distance and orientation are extremely strong cues,
they overlook one important aspect of the interaction; the dynamic behaviour and
actions of the participants.

Social scientists have already shown that interacting people tend to coordinate
their movements [12] and even start to mimic each other in terms of posture,
mannerism and other behaviours [13]. We believe such patterns can be used as in-
formative cues for distinguishing between interacting and non-interacting partners.
Thus, in this study we show how solely the dynamics related to the social behaviour
of participants can be exploited to infer the conversational group membership of
participants in real life scenarios.

Another reason to use the proposed method in this study is the practical limi-
tations of inferring the spatial location and orientation of the people. In a real life
scenario, images or video of the scene might not be always available. A method that
relies on video input for conversing group detection will require a similar instrumen-
tation in every event, making the solution less generalizable and non-ubiquitous.
Also, characteristics of the event, for example the density of the crowd or location
of the cameras can affect the performance of the method. Another reason is the
privacy, not every participant will be comfortable with their videos being taken,
since it is more intrusive than recording body acceleration. Another option is to use
indoor localization solutions but they have been shown to perform poorly in a high
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density scenario, where a commercial indoor GPS system was tested in [14].

A more pervasive solution than video based methods can be obtained with we-
arable sensors that provide proximity information but they also have weaknesses.
Two technologies are generally used for inferring proximity with wearable sensors;
infrared (IR) and bluetooth. A recent study that evaluated the use of wearable
sensors in organizational settings investigated a custom sensor pack, sociometric
badges [15], which uses these sensors for proximity detection [16]. Their expe-
riments show that bluetooth had greater accuracy in detecting the co-location of
participants. However, detections were generally overly optimistic, indicating prox-
imity even when there were obstacles between the sensors such as a separating
wall. IR, on the other hand, was more pessimistic in its detections, requiring clean
line of sight and strict face-to-face orientation. In the types of crowded scenarios
that we are interested in, a bluetooth based approach will most probably put many
participants in the same group whereas an IR based method will tend to miss par-
ticipants in larger groups since it requires strict face-to-face orientation, making
those less suitable for precise group detection.

4.1.2. Group cardinality

We hypothesise that the dynamics of the interaction differ greatly with respect to
the cardinality of the group. Previous studies in computer vision have already shown
how a cardinality sensitive approach can improve performance [17]. We believe,
the effect of group cardinality on the interpersonal dynamics is even greater. The
assumption of one conversational flow per F-formation may not be always true. For
large groups, sustaining a single informal conversation is not possible [18]. Even
though multiple participants can be in the same F-formation of a larger cardinality,
they might still form sub-groups inside, exhibiting behaviour of smaller cardinali-
ties. For example, a four person F-formation can have many different interaction
characteristics. It could be an egalitarian group where everyone contributes to the
interaction equally. However, there can be also two sub-groups exhibiting dyadic
interaction characteristics. We hypothesise that with the increasing cardinality, pos-
sibilities for different interaction characteristics in the group increases significantly.

We empirically demonstrate that interactions in different sized groups should
be considered separately for meaningful results. Thus, we propose to use a multi-
stage approach where multiple classifiers are trained with respect to the group size.
Prediction for a newly observed sample is then obtained by a linear combination of
these classifiers, which is dynamically learned using only the training samples from
the local neighbourhood of this newly observed sample. We will refer to our method
as GAMUT, short for ‘Group bAsed Meta-classifier learning using local neighbour-
hood Training’. Our method can therefore learn appropriate pairwise interaction
dynamics tuned to the particular group cardinality directly from the data while ha-
ving no prior knowledge about the interaction status or the group size of a given
pair of people.
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4.2. Related work on the detection of conversing
groups

Automatic detection and analysis of interacting groups through computation has
been a hot topic for computer science researchers under various names such as
F-formation detection, modelling of human networks, detection of free standing
conversing groups, etc. In this section we aim to provide a brief overview of such
existing studies to show the foundations of our approach. Of course, we should
also note that the analysis of human behaviour in groups and interaction dynamics
are extensively studied in other disciplines, especially social psychology [6, 13].
Findings and insights from those studies greatly affected and influenced computer
science researchers.

Categorization of the existing work on group detection can be made with respect
to various criteria, such as the temporal length of the studies, employed sensor
modalities, and the focus on proxemics or dynamics related to social behaviour.
Most of the existing studies have multiple of these aforementioned characteristics.
Thus, the categorization we present in this section is by no means strict.

4.2.1. Long-term studies with pervasive devices
Earlier studies generally analysed large scale long-term (in the order of months)
social phenomena. Such studies did not explicitly aim to detect conversing groups
but they focused on obtaining a rough estimation of face-to-face interaction to ana-
lyse long term social concepts. Choudhury et. al. presented one of the first studies
on the topic in 2003 [7]. They used custom built wearable sensor packs called so-
ciometers, which have accelerometers, IR transreceivers and a microphone. Data
collection was done in two different stages, first one including 8 subjects and co-
vering a time period of 10 days and the second one with 23 subjects for 11 days.
IR transreceiver data was mostly used for detecting face-to-face interactions and
shown to be quite noisy. As a slight shift to the dynamics, authors used audio
to fetch speaking status, which was then used to refine the results of interaction
obtained with the IR. As the final step of understanding social concepts, they sho-
wed that by analysing this interaction network, it was possible to obtain information
related to group structures, such as centrality of a user.

Using a similar device, a sociometric badge, Olguin et. al. focused on analysing
and measuring organizational behaviour in their 2009 work [19]. They employed
IR to detect face-to-face interactions and bluetooth for measuring physical proxi-
mity. They also made use of accelerometers for detecting physical activity levels
and microphones for speech detection. Data collection took 27 days and included
67 participants. Then, interaction characteristics sensed through these multiple
modalities were used to classify personality traits of participants into the “Big Five”
model.

There are also examples of work focusing on long-term characteristics that do
not employ specific wearable sensors. Eagle and Pentland came up with their study
“Reality Mining” in 2006, that focused on the utilization of mobile phones for sen-
sing complex social structures [20]. They collected data from 100 mobile phones
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over the period of 9 months. They aimed to infer various social concepts, such as
recognizing social patterns in daily life, identification of significant relations, mo-
delling organizational rhythms and, most interesting to us, recognition of social
interactions. They relied on bluetooth communication of mobile phones to detect
people in close proximity. No quantitative evaluation of the proximity networks
was provided, but they showed that various social groups, such as friends and daily
occurrences can be distinguished and this information can be used for further social
understanding.

Similarly, Madan et. al. used mobile phones as social sensors in their 2010 work
that aimed to detect behaviour changes with respect to illness [21]. For detecting
social interactions of participants, they relied mainly on spatial distance, inferred
from proximity and cellular-tower identifiers.

Wang et. al. presented their continuous sensing application, StudentLife, in
2014 [22]. A class of 48 students used the application for a 10 week term on their
phones. The main aim of the study was to connect the automatic sensor data
to the mental health and educational outcomes of the participants. Activity data
and indoor and outdoor mobility were inferred from the accelerometer recordings.
Audio from microphones are used to extract conversation data. A mix of cues
related to light, activity, phone usage and sound are used to detect the sleeping
patterns of the participants. Finally, location data is gathered from the GPS and co-
location with other students are inferred through bluetooth. Number of significant
correlations with various mental well-being surveys were found. Assuming the co-
location and conversation related measures are proxies for interaction, the results
indicate that students with frequent social interactions tend to be less depressed
and more flourishing.

4.2.2. Short-term studies with pervasive devices
There are studies in the literature that uses pervasive devices, custom sensor packs
or mobile phones, for the analysis of short term social interactions. By short term,
we mean studies that focus on a single event that generally spans multiple hours.
Gips and Pentland employed a custom sensor pack, UbER-Badge, embedded in
a badge worn by conference attendees, to analyse interest and affiliation [23].
Specifically for affiliation, Gips argued for the use of cues related to wearer activity,
inferred from accelerometers, in addition to proximity information obtained from IR
encounters. In agreement with this study, he proposed to use pairwise measures,
more specifically mutual information of the motion energy between pairs (MIME),
to detect interacting partners in his thesis [8]. However, no qualitative performance
evaluation was presented for the detection of interacting partners.

Similarly, Cattuto et. al. analysed face-to-face interactions in various crowded
social settings, including 25 to 575 people, by using custom conference badges
equipped with RFID [24]. Exchange of radio packets between badges were tre-
ated as a proxy for inferring spatial distance between participants and ultimately
used to detect face-to-face interactions. They focused on analysing the dynamics
of interaction networks, showing a super-linear behaviour between the number of
connections and their durations. However, this study assumed an interaction bet-
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ween two people in close proximity and the actual performance of this assumption
was not quantitatively evaluated.

A relatively recent study from Matic et. al. used mobile phones to detect two
parameters, interpersonal distance and relative body orientation, which were then
used as proxies for inferring social interaction between participants [25]. Authors
used a time frame of 10s, aiming to capture dynamic changes in social interactions.
Their experiments showed that, using the standard deviation of body orientation
throughout 10s windows as a feature in addition to the distance and body orienta-
tion, improves the correct detections of social interactions.

4.2.3. Static image based methods
More recently, with the increasing success of computer vision methods, researchers
started to use images and video as main input modalities. Cristani et. al. focused
on unconstrained scenarios and employed solely visual cues to detect social inte-
ractions in their 2011 work [26]. Their proposed method took the positions and
head orientations of people in the scene as input and employed a voting strategy
built on the Hough transform. They presented their results on synthetic data and
videos of real life indoor and outdoor scenarios, discussing how automatic detection
of positions and head orientations in real life affects the performance. Promising
performance on both real life datasets (outdoor and indoor) were presented.

In the same year, Hung and Krose presented their work on detecting F-formations
with a graph clustering algorithm that was formulated as the identification of do-
minant sets [27]. In addition to the proximity between people, body orientation
information was used as a cue for detection. They proposed to use socially mo-
tivated estimate of focus orientation (SMEFO), which was calculated from location
information only, as the body orientation feature and experimentally showed that
the addition of this feature to location increased the performance.

In 2013, Setti et. al. compared these two main approaches of detecting F-
formations from images and presented their advantages and disadvantages over
different scenarios [9]. They concluded that the Hough-based method [26] per-
forms better when using position and orientation together, showing good robus-
tness to noise; whereas dominant set based method [27] is better for scenarios
when only position information is available.

In the same year, Setti et. al. published another work that advocates a multi-
scale approach for F-formation discovery [17]. It is one of the first papers that takes
the cardinality of the interacting groups into consideration in the detection process,
as we also advocate. The proposed approach was built on the Hough voting policy
of [26] and based on a competition of different voting sessions, specialized for a
specific group cardinality, which are then evaluated with an information theoretic
criteria to obtain final set of groups. They showed promising results on various
datasets, synthetic and real life.

Setti’s work in 2015 [28] presented a detailed review of current group detection
algorithms for single images, including the ones mentioned here, and proposed a
graph-cut based approach that outperformed others. They reported their results in
five datasets with various characteristics and presented a deep analysis of methods
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robustness to noise. This is also one of the few studies (that we are aware of) that
includes a performance analysis related to the cardinality of the target groups.

4.2.4. Video based analysis
All the computer vision studies mentioned in the former subsection lack the temporal
information. Even though they took video as input, the detection of groups as
performed on single frames. Vascon et. al. proposed a game-theoretic approach for
detection of F-formations and presented their results on single and multiple frames,
integrating temporal information with the multi-payoff evolutionary game theory
[10]. They showed that the integration of multiple frames augments the overall
group accuracy, especially in cases of strong noise in the positions and orientations.

Another study that uses the temporal information was Alameda-Pineda et.al.’ s
work[11]. They presented a multimodal approach that combined data from cameras
and wearable sensors for estimating head and body pose of participants in the
scene. Estimated head and body poses were then used for detection of F-formations
and social attractors. Wearable sensors were used to obtain noisy estimates of
speaking status and proximity input, which was then used in combination with
the visual features in a matrix completion formulation for obtaining head and body
poses. Their optimization included a coupling of body and head pose estimates and
a temporal constraint, making it certain that detected head and body estimates are
jointly estimated and temporally viable.

Depth sensors were also utilized in the literature for the estimation of spatial
distance and orientation of the participants in a scene. An example study was pre-
sented by Gan et. al. in 2013, that used multiple Kinects for obtaining spatial
location and orientation of each participant in the scene [29]. This information was
then employed by the heat-map based feature representation proposed in the pa-
per. Qualitative evaluation of the proposed feature representation was done on a
synthetic dataset only, where the authors found their temporal encoded IS perfor-
med slightly worse than the one without temporal information. Authors then argued
that this result was mainly caused by the characteristics of their ground truth.

4.2.5. Moving beyond just group detection
There are also works in the literature that aim more than the detection of interacting
groups. Tran et. al. employed a dominant sets based approach for F-formation
detection, which was followed by group activity representation and recognition [30].
For group discovery, authors presented and compared two social cues, personal
distance and visual focus of attention, which are basically spatial distance and head
orientation. For representing group activity, they used a bag-of-words approach
that represented videos as a histogram of codewords and employed Support Vector
Machine for activity classification.

Zhang and Hung presented their method to detect differing levels of social in-
volvement, more specifically discovering associates of F-formations, people who
are attached to an F-formation but do not have the status of full members [31].
They introduced novel multi-annotator annotations of the associates and compared
two methods for detecting them. They also proposed a spatial-context-aware F-
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formation detector, that focuses on modelling people’s frustum of attention. They
showed that detecting and cleaning in-group associates improved the performance
of F-formation detections.

4.2.6. Dynamics related to social behaviour
Up until now, all the works we mentioned solely focused on the proxemics of the in-
teraction (aside from [7] and [23] that used speaking status and movement energy,
respectively, as cues for detection). Although some studies included temporal in-
formation, they mainly focused on modelling the temporal changes in the spatial
location only. Perhaps the closest study to our work was published by Hung et. al.
in 2014, where the authors used a single accelerometer to classify social actions
of participants in a crowded gathering [32]. These classified actions were used to
extract pairwise mutual information that aims to capture interaction characteristics
between dyads. Interacting partners were then detected by thresholding these va-
lues. The authors found that the mutual information computed from the pairwise
speaking turns performed the best when using 40 second windows, compared to
other social actions, raw acceleration and window sizes. The results were presented
on a relatively limited dataset that included 10 minutes data from 26 subjects.

4.3. Dataset
To test our method and assess its generalization capabilities, we used a dataset
collected during a speed dating event, in a real pub, for 3 days [33]. The first
phase of each day involved members of the opposite sex having three minute seated
dates. This phase was then followed by a mingling session that for approximately an
hour. These second phases of the events had free-standing conversational groups
in a crowded environment; the scenario we are interested in. The mingling area
was limited to ensure a high spatial density of people. However, people were not
instructed in any specific way, so they could freely move and interact with their
peers. For more detailed information about this dataset, please refer to [33].

Throughout the event, participants wore a custom made sensor pack around
their necks, that records tri-axial acceleration at 20Hz. Top-view videos of each
event are also captured, which is only used for the labelling of the ground truth,
both participants’ social actions and F-formations. Example screenshots are shown
in Figure 4.1.

Figure 4.1: Example Snapshots from the mingling phase of Day 3. Taken from [33]
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4.3.1. Dataset statistics
The dataset includes working sensor readings of the mingling session for 26, 22
and 22 participants, respectively for days one, two and three. For each day, a ten
minute segment was manually annotated for the F-formations, resulting in three
different segments from each day. A variety of social actions of participants were
also manually annotated, including the speaking status, hand gestures and head
gestures that are used in our experiments. We should note that our proposed
method is fully automatic, so the ground truth related to these social actions is
only used for the training phase of social action classification (see Section 4.4.1 for
further details).

Table 4.1 shows the number of unique interactions and mean and standard
deviation of interaction lengths in seconds per group cardinality, for each day.

Table 4.1: Number of unique interactions, average length and standard deviation of interactions with
respect to the group cardinality, for each day. They are extracted from the ground truth labels of F-
formations by counting each unique occurrence of a group. All statistics related to length of interactions
are in seconds.

Day1 Day 2 Day3
Cardinality # Int Avg length Std length # Int Avg length Std length # Int Avg length Std length
2 Persons 24 160 163 10 126 108 21 152 169
3 Persons 17 53 51 11 157 119 5 89 56
4 Persons 9 79 77 4 134 104 14 110 161
5 Persons 3 29 18 3 127 97 0 - -
6 Persons 1 26 - 5 55 48 0 - -
7 Persons 0 - - 5 81 123 0 - -

The number of groups with a specific cardinality vary greatly with respect to
the day of the event. For example, we can see for Day 1, the number of unique
interactions reduces with increasing cardinality. Similarly, for Day 3, most of the
interactions are in two, three and four person groups. The number of dyadic inte-
ractions and the length of these interactions for Day 1 and 3 are much higher than
Day 2.

When we inspect the statistics related to the speed dates [33], we can see that
the number of matches (pairs where both participants stated they would like to see
each other in the future) for Day 1 and 2 (70 and 79 respectively) are higher than
Day 3 (61). This might be the reason why we see more dyadic interactions in Day
1 and 3, where participants tended to stay in mostly dyads. Day 2 has much more
variation with respect to the group cardinality, having the only examples of seven
person groups. These statistics show that even with the same setup of events,
various configurations of the group cardinalities can arise and a preferred solution
should be able to generalise over the dynamics of all cases.

Another interesting statistic is related to the mean and standard deviation of
the interaction lengths. For nearly all cardinalities and days, standard deviations of
the interaction lengths are quite high with respect to the mean. This suggests that
the dataset contains a wide distribution of conversation lengths. Manual inspection
of the lengths of various unique interactions supported this observation; there are
groups staying together for matter of seconds (splitting, one person leaving, etc.)
and groups staying together for the entire 10 minute interval.



4.4. Methodology

4

73

4.4. Methodology

Figure 4.2: Flow diagram of the proposed method. ፃ፭፫ and ፃ፭፬፭ correspond to entire training and test
sets, respectively. ፃ፭፫፧ is a subset of ፃ፭፫ which is formed by the positive samples coming from groups
of cardinality ፧ and all the negative samples. ፂ፧ is the group-based classifier that is trained with ፃ፭፫፧ .

Our method aims to estimate pairwise F-formation membership for each pair in
the scene. We define the problem as a binary classification task, where the final
aim is to classify whether a pairwise feature representation 𝑃።፣ indicates that person
𝑖 and person 𝑗 belong to the same conversing group or not. Thus, data from all
participant pairs are used to obtain a joint representation which corresponds to the
samples in the classification process. A flow diagram of the proposed method is
shown in Figure 4.2. Here are the basic steps of the proposed method:

1. Preprocessing

(a) Social action classification

(b) Pairwise feature extraction

2. Group-based meta-classifier learning using local neighbourhood training (GA-
MUT)

(a) Training multiple classifiers with respect to the group cardinality.

(b) Prediction of a new test sample with meta-level classifier training using
the local neighbourhood of the test sample 1

Each of these steps will be explained in detail in the following subsections.

1We define local neighbourhood as the K-nearest samples of the training set, in the feature space.
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4.4.1. Preprocessing
The preprocessing steps convert the raw triaxial acceleration signal from partici-
pants into pairwise feature representations. Some of the pairwise features are
computed on the social action streams of the participants, so the first step of pre-
processing is the classification of social actions; speaking, hand gestures and head
gestures. This step is then followed by the actual feature extraction, where the raw
acceleration and social action streams are used to obtain pairwise representations.
These pairwise features are our samples in GAMUT.

Social action classification
To provide a generalized solution, our action classification method should be person
independent, where data from the test subjects are not used in the training. There
are examples of person independent methods for action classification in the litera-
ture [34, 35] but they mainly focus on daily activities such as walking and running.
On the other hand, manifestations of actions such as speaking and gesturing are
highly person specific, making their detections harder tasks for generalisation. We
employed a transfer learning method, Transductive Parameter Transfer(TPT), which
is experimentally shown to outperform traditional person independent approaches
for person specific actions [36].

Transductive Parameter Transfer(TPT) is an adaptive transfer learning approach
that aims to learn a mapping between the distribution of a dataset and the parame-
ters of the optimal classifier for it. Sangineto et. al. proposed the method in 2014,
for personalized facial expression detection from portrait images [37]. A speciali-
zed version for social action detection was then proposed by Gedik and Hung [36],
which we employ in this study. TPT finds the parameters of the optimal classifier for
a target dataset 𝑋፭ (test set in a traditional setting) by learning a mapping between
the marginal distributions of the source datasets (the training set in a traditional
setup) and the parameter vectors of their optimal classifiers. A formal definition of
the 𝑁 source datasets (with label information) and the target dataset (without label
information) can be made as 𝐷፬ኻ , ..., 𝐷፬ፍ, 𝐷፬። = {𝑥፬፣ , 𝑦፬፣ }

፧፬።
፣ኻ

and 𝑋፭ = {𝑥፭፣}
፧፭
፣ኻ, respecti-

vely . Algorithm 2 presents the main steps of TPT (A more detailed explanation can
be found in [36]).

We used the same feature extraction and classification setup of [36] for obtai-
ning the social action labels for all the participants used in the experiment. Statisti-
cal (mean and variance) and spectral (power spectral density with 8 logarithmically
spaced bins between 0-8 Hz) features were extracted from each axis of raw and
absolute values of acceleration and the magnitude of the acceleration. 3s windows
with 1.5s overlap, experimentally shown to perform well in [36], were used.

Classification was done in a Leave-one-subject-out fashion. So, in each fold, we
treated one participant as the target set and all others (including participants from
other days) as the source sets. This procedure was replicated for each correspon-
ding social behaviour type; speaking, hand gestures and head gestures. Since the
labels were imbalanced for many participants, we chose to evaluate using Area Un-
der Curve(AUC).The performances obtained with TPT are shown in Table 4.2. For
each participant, we obtained classified labels corresponding to a 3s window for
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ALGORITHM 2: Transductive Parameter Transfer approach
(Taken from [36])
Input: Source sets 𝐷፬ኻ , ..., 𝐷፬ፍ with labels and the target set

𝑋፭
Output: wt, 𝑐፭
Compute {𝜃። = (𝑤። , 𝑐።)}ፍ።ኻ using L2 penalized Logistic
Regression.
Create training set 𝜏 = {𝑋፬። , 𝜃።}ፍ።ኻ.
Compute the Earth Mover’s Distance (EMD) kernel matrix 𝐾
that defines distances between distributions where
𝐾።፣ = 𝜅(𝑋፬። , 𝑋፬፣ ).
Given 𝐾 and 𝜏, compute ̂𝑓(.) by Kernel Ridge Regression.
Compute (𝑤፭ , 𝑐፭) = ̂𝑓(𝑋፭) using the mapping obtained by
step 4.

Social
Action

Mean
AUC(%)

Std
+-

Speaking 66 6
Hand Gestures 67 10
Head Gestures 60 9

Table 4.2: Performances of
social action detection with
TPT

each action, with 1.5s overlap. In terms of the 1.5s overlap of labels, we favoured
positive ones. Specifically, if a positive label was followed by a negative one, or
vice versa, the overlapping 1.5s was considered to be positive.

Pairwise feature extraction
We mentioned in the beginning of this section that each possible pair of participants
in a scene is treated as a single entity in the classification process. Each of these
features are extracted from the pairs of data (either social actions or raw accele-
ration) coming from the two participants in the pair and generally aims to define a
measure of behavioural coordination.

Figure 4.3: Synthetic visualisation of
two F-formations with cardinality of
two and their pairwise representati-
ons (lines). All possible pairwise re-
presentations form a sample.

Feature Dim. Computed on ID
Correlation 1 Acceleration[mag1-mag2,Y1-Y2,Z1-Z2] 0-2

(N)Mutual information 1
Acceleration[mag1-mag2, Y1-Y2, Z1-Z2, Y1-Z2 ],
S1-S2 S1-Ha2, S1-He2, S2-Ha1, S2-He1 3-21

Boolean turn activity[38] 6 S1-S2, S1-Ha2, S1-He2, S2-Ha1, S2-He1 22-52
Overlap statistics 4 S1-S2, S1-Ha2, S1-He2, S2-Ha1, S2-He1 53-73
Event synchrony[39] 2 S1-S2, S1-Ha2, S1-He2, S2-Ha1, S2-He1 74-84

Table 4.3: Pairwise features for joint representation. Acro-
nyms used: Mag: Magnitude, Y: Y axis, Z: Z axis, S: Binary
speaking status, Ha: Binary hand gesture status, He: Binary
head gesture status, (N): Shows both the mutual information
and the normalized mutual information are calculated, Num-
bers: Shows which participant in the pair that the stream co-
mes from.

Figure 4.3 is a synthetic visualization of a simple possible scene, where four pe-
ople are interacting in two groups. We assume that every participant is connected
to all other participants in the scene with hypothetical connections and these hypot-
hetical connections represent samples in the classification process. The aim of the
classification is to decide if these hypothetical connections connect two participants
that are in the same conversing group or not. Here, green lines indicate positive
samples or true connections and red lines are negative samples or false connecti-
ons.
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These hypothetical connections correspond to our pairwise features that provi-
des a joint representation of the data of the participants connected by the line. We
have used various features that are already employed in the literature and propo-
sed a new one, which we named overlap statistics. Table 4.3 shows all the features
that are used in our experiments. It also presents the dimensionality of the afore-
mentioned feature, from which pairwise data streams they are extracted and their
assigned IDs. The table is followed by the detailed explanation of each feature.
Correlation: Pearson correlation coefficient of two input streams. Calculated as:

𝜌 = 𝑐𝑜𝑣(𝑋, 𝑌)
𝜎𝑋, 𝜎𝑌 (4.1)

(1ormalized) Mutual information: Mutual information of two input streams.
Calculated as:

𝐼(𝑋; 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) (4.2)

where 𝐻(𝑋) and 𝐻(𝑌) are the marginal entropies and 𝐻(𝑋|𝑌) is the joint entropy.
For the calculation of entropies, we used binned individual and joint counts. From
there, normalized mutual information per sample is also calculated as:

𝑁𝐼(𝑋; 𝑌) = 𝐼(𝑋; 𝑌)
√𝐻(𝑋)𝐻(𝑌)

(4.3)

Both normalized and non-normalized mutual information values are used in the
experiments.
Boolean turns activity(BTA): Selection of measures presented in [38], that aims
to provide statistics related to turn taking in dyadic interaction. This is applied to
two binary social action streams where a 1 indicates the presence of the action.
For the sake of easier representation, we will call it being ’active’. Here are the
measures defined for this feature set:

1. Ratio of participant 1 being active (over the whole period).

2. Ratio of participant 2 being active (over the whole period).

3. Ratio of total active time for both participants over the whole period.

4. Ratio of total inactive time for both participants over the whole period.

5. Synchrony ratio of participant 1 with respect to participant 2, which is com-
puted as the ratio of times participant 1 became active after a predetermined
time (3s) that participant 2 was active to the total number of times participant
1 was active.

6. Synchrony ratio of participant 2 with respect to participant 1, computed as 5.

Overlap statistics: We propose a new feature set, mainly inspired by BTA. It aims
to statistically represent co-occurring events:
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1. Number of unique times that participant 2 was active while participant 1 was
active.

2. Mean length of the active intervals of participant 2 where participant 1 is
active.

3. Median length of the active intervals of participant 2 where participant 1 is
active.

4. Standard deviation of the length of the active intervals of participant 2 where
participant 1 is active.

Event synchrony: A method to measure synchronicity and time delays between
two univariate signals was presented in [39]. The synchronicity and time delay
patterns of two signals are represented by symmetrical (𝑄Ꭱ) and anti-symmetrical
combinations (𝑞Ꭱ) of events happening in the signals. Events correspond to unique
continuous active regions of the signals. The formulation for two univariate signals
𝑥 and 𝑦 is as follows:

𝑐Ꭱ(𝑥|𝑦) =
፦፱
∑
።ኻ

፦፲

∑
፣ኻ
𝐽Ꭱ።፣ (4.4)

where 𝑐Ꭱ(𝑥|𝑦) is the number of times that an event happens in x shortly after y and
vice versa, 𝜏 is a predefined lag between the signals and

𝐽Ꭱ።፣ = {
1 if 0 < 𝑡፱። − 𝑡

፲
፣ ≤ 𝜏

1/2 if 𝑡፱። = 𝑡
፲
፣

0 else
(4.5)

where 𝑡፱። and 𝑡
፲
፣ (𝑖 = 1, .., 𝑚፱; 𝑗 = 1, .., 𝑚፣) correspond to event times. With this

formulation, 𝑄Ꭱ and (𝑞Ꭱ) are then computed as:

𝑄Ꭱ =
𝑐Ꭱ(𝑦|𝑥) + 𝑐Ꭱ(𝑥|𝑦)

√𝑚፱𝑚፲
, 𝑞Ꭱ =

𝑐Ꭱ(𝑦|𝑥) − 𝑐Ꭱ(𝑥|𝑦)
√𝑚፱𝑚፲

(4.6)

With this feature extraction setup, we end up with samples with the dimension
of 85. As it can be seen, each feature tries to represent some type of pairwise
measure between data streams of participants, may it be correlation, synchrony,
lag, commonly occurring events, etc. The IDs correspond to the order of the stre-
ams given in Table 4.3 and their explanations. For example, IDs 53 to 57 maps to
overlap statistics, as in given order in the explanation, of the speaking streams.

4.4.2. GAMUT: Group-based meta-classifier learning using
local neighbourhood training

As mentioned earlier, the scenarios we are interested in can include a variety of
groups. Differing interaction dynamics are expected to arise in groups of different
cardinalities. For example, we will expect two groups in Figure 4.3 to have relatively
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similar characteristics with identifiable turn-taking patterns. But, the pairwise inte-
ractions in a group of three with participants A, B and C might differ compared to a
group of two. On the other hand, participants A and B can be in a dyadic interaction
where both are active in the conversation, still resembling the dynamics of the two
person groups mentioned. However, in such a case, the pairwise interaction dyn-
amics of participant C with the others is expected to be different, since C will be
in a listener role. Variations in interaction dynamics increase with the increasing
cardinality.

Moving on from this assumption, we form the hypothesis that a classifier trai-
ned specifically for capturing the dynamics of a single cardinality should perform
better on test samples of the same cardinality compared to a classifier trained on
the data from other cardinalities. Moreover, this cardinality specific classifier might
also perform better in capturing subgroups in larger group sizes. In order to ad-
dress varying interaction dynamics of different sized groups, we propose to train
different classifiers for different group sizes. It is not possible to directly choose the
optimal classifier (or classifiers) for a new sample since the group size of a sample
is unknown. We propose to overcome this difficulty by employing a transductive
approach where the local neighbourhood of the the test sample in the training set
is used as an additional information source in the test phase. We expect the local
neighbourhood of a test sample in the feature space to be more informative than
the entire training set. Thus, a meta-level classifier is trained only with the pro-
bability outputs of the group based classifiers based on the training samples from
this local neighbourhood. This meta-level classifier is then used to classify the test
sample.

Formally, the whole training dataset is defined as 𝐷፭፫ = {x። , 𝑦። , 𝑔።}፧
፭፫
።ኻ where

x። ∈ ℝ፝ , 𝑦 ∈ {0, 1}, 𝑔። ∈ {0, 2, ..., 𝑚} and 𝑚 is the largest possible group size. Here,
x። is the pairwise feature vector, 𝑦። is the binary labels of pairwise F-formation
membership, 𝑔 is the cardinality of the group that the sample is coming from and
𝑛፭፫ is the total number of samples in the training set. Then we define the set
of negative samples in training as 𝐷፭፫ኺ = {x። ∣ 𝑦 = 0}፧፭፫።ኻ and positive samples in
training coming from a specific group size 𝑘 as 𝐷፭፫፤ = {x። ∣ 𝑔 = 𝑘}፧

፭፫
።ኻ where 𝑔 > 0.

With this setup, the steps for training and testing is shown in Algorithm 3. The
following two subsections explain the training and testing procedures in detail.

Training multiple classifiers with respect to group cardinality
Figure 4.4, which includes two conversing groups of size two and one of size three,
is provided to visualize the training of group level classifiers. It uses a similar
representation to Figure 4.3, where lines correspond to pairwise features; a sample
in the classification process. As it can be seen, while training a classifier for detection
of groups of size two, pairwise samples from the two person groups are treated as
positives and all samples that are extracted from a pair that is not in the same group
as negative. Positive samples from the three person group are not included in the
training. Similarly, the right side of the image visualizes the case for the classifier of
size three, where positive samples come from the three person group and positive
samples from two person groups are not used.
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ALGORITHM 3: Training and testing phases for the GAMUT
Input: Training and test sets, 𝐷፭፫ and 𝐷፭፬፭
Output: Classified labels (and/or probabilities) for 𝐷፭፬፭
Training:
Train a set of classifiers 𝐶 = {𝐶ኼ, 𝐶ኽ, .., 𝐶፦} where 𝐶፤ is trained on the dataset 𝐷፭፫፤ ∪ 𝐷፭፫ኺ .
Test:
for each sample xj in 𝐷፭፬፭ = {x፣}፧

ᑥᑤᑥ
፣ኻ do

Find Ψ, the K-nearest neighbours of xj in 𝐷፭፫.
Train a meta-level classifier, 𝐶፦፞፭ፚ, on the probability outputs of 𝐶, all pre-trained
group size based classifiers, on Ψ.
Use 𝐶 and 𝐶፦፞፭ፚ to classify (or obtain probabilities of) xj.

end

Figure 4.4: Visual explanation of the training of group cardinality based classifiers, namely ፂኼ (left) and
ፂኽ (right). The same convention as Figure 4 is used where all possible pairwise representations are
shown with connecting lines between participants. The scene includes three conversing groups, two of
cardinality two and one of cardinality three. As the lines suggest, while training ፂኼ, positives samples
from the three person group are excluded and vice versa for ፂኽ.

We have selected the L2 Regularized Logistic Regression for training, which
minimizes the unconstrained optimization problem shown as follows:

𝑚𝑖𝑛
(፰,)

1
2𝑤

ፓ𝑤 + 𝐶
፧

∑
።ኻ
𝑙𝑜𝑔(𝑒𝑥𝑝(−𝑦።(xፓ። 𝑤 + 𝑐)) + 1), (4.7)

where 𝑥። is the pairwise feature vector, 𝑦። is the binary pairwise F-formation mem-
bership labels, 𝑐 and 𝐶 are the bias and regularization terms, respectively. We used
stochastic average gradient descent as the optimizer in our experiments[40]. The
pairwise formulation causes the classes to be extremely imbalanced. Participants
are not in the same conversing group with the majority of the others at the events,
resulting in many negative samples. This phenomena can be easily seen from Fi-
gures 4.3 and 4.4, where the number of negative samples is much higher than the
positive ones, even in these simple scenarios. To account for the imbalance, the
weights are adjusted to be inversely proportional to the class frequencies.
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Class prediction of a new sample by meta-classifier training (stacking)
using its local neighbourhood
For a test sample, we first define its local neighbourhood in the training set, similar
to a transductive setting. We first obtain probability outputs for training samples
in this local neighbourhood with each of the (already trained) group size based
classifiers. Then, we train a meta-level classifier using these probability outputs
and the labels of these samples in the local neighbourhood. This process, stacking,
is known to reduce the generalisation error rate of multiple classifiers by reducing
their biases [5]. Using only the samples from the local neighbourhood makes it
possible to consider samples with similar characteristics to the current test sample,
for further tuning the weights learned for the meta-level classifier. This process is
repeated for every test sample. In other words, different meta-level classifiers are
trained for each test sample. Similar to group size based classifiers, we chose a L2
Regularized Logistic Regressor as the meta-level classifier.

4.5. Results
4.5.1. Experiments setup
We tested GAMUT on the dataset of Section 4.3. We randomly kept 10% of the
dataset as the test set while the remaining samples were used in the training. In
order to test the generalization capabilities of the proposed method, this random
selection process and the following evaluation is repeated 500 times, each produ-
cing a performance score of it’s own. While forming the training and test sets, we
made sure that there is no data from the same pair of people in both training and
test sets to avoid contamination.

Our proposed approach is compared to various baselines. Firstly, we imple-
mented the method proposed in [32], which is closest to our setting in terms of
approach and modality; the state-of-the-art in our problem. This approach finds
the optimal threshold value using the mean mutual information values calculated
over speaking and gesturing streams of pairs in the training set. This threshold
value is then used to classify the samples in the test set. Secondly, we conside-
red an approach where group cardinalities were not considered in the training. In
this approach, all the features we propose are used, but training is performed with
Logistic Regression on all the dataset without any distinction related to the group
sizes.

For selecting the size of the local neighbourhood (K value), we used an empi-
rical approach. Since we have samples coming from six different group sizes, we
expected 𝑛፭፫/6 samples should be representative as a local neighbourhood. In an
optimal case where the number of samples are equally divided between cardinalities
and the samples from same group sizes have similar representations in the feature
space, this neighbourhood will be formed by the training samples of the same cor-
responding group cardinality as the test sample. However, this is not always the
case and there might be regions where distinguishing between the characteristics of
different sized groups are harder, so we experimented with various neighbourhood
sizes, ranging from 𝑛፭፫ (no local information, all samples are used in the stacking
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Figure 4.5: Performance scores (mean AUC±STD (%)) of various approaches on pairwise F-formation
membership detection. Mean and standard deviation of the AUC scores of 500 runs are visualised with
the points and error bars, respectively.

process) to 𝑛፭፫/6.
We have imbalanced data, thus we chose Area Under Curve (AUC) as the per-

formance metric. Since we expect various dynamics to arise in different temporal
resolutions, we present our results for different pairwise feature extraction window
lengths, ranging from 15 to 200 seconds. If the two participants of a sample are
in the same group for at least two thirds of this interval, the sample is treated as
a positive. Empirically the best performing local neighbourhood sizes for window
sizes of 15, 30, 60, 120 and 200 seconds were found to be 𝑛፭፫/4, 𝑛፭፫/3, 𝑛፭፫/3,
𝑛፭፫/3 and 𝑛፭፫/5, respectively. The mean AUC and the standard deviation of 500
runs of the aforementioned methods are presented in Figure 4.5.

4.5.2. Performance scores
The method presented in [32] performed worst, even providing AUC scores lower
than the random baseline (AUC of 50%). The reason of this becomes clear when the
statistics of the dataset presented in [32] are investigated. The authors reported
a performance value better than random on a subset of their dataset that includes
nine participants with only dyadic interactions. The low performance obtained with
this approach is extremely important since up until this point, existing work solely
relied on pairwise mutual information of various streams for investigating speaking
turns and conversing groups detection through dynamics [32, 41]. Our empirical
results show that when a realistic scenario with groups of various sizes is considered,
such approaches fail to provide satisfying results.

The contribution of our newly proposed features is already demonstrated by the
performance of the logistic regressor without the group size based training. Even
with this setup, AUC scores that are better than random and outperforming state-
of-the-art are always obtained. A more detailed analysis of the effectiveness of
features will be presented in Section 4.6.

Our proposed approach, GAMUT, performs significantly better than all other
approaches regardless of the window size (𝑝 < 0.01, with a paired t-test computed
on the performance values of 500 runs). The contribution of our method is more
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Figure 4.6: Mean and standard deviation of AUC% scores of ፂ፤ and GAMUT on ፃ፭፬፭፤ for all ፤ with window
sizes of 120 (left) and 200 (right) seconds. Each group of bars visualises one classifiers performance on
various group cardinality based subsets of the data.

clearly visible for larger window sizes. Also, we generally see a pattern for all
methods: Increasing window size results in better performance. This is expected,
since various interaction dynamics can arise in longer intervals and it becomes easier
to capture such dynamics in longer window sizes. Even though the performance
was increasing, we stopped our experiments at 200 seconds, since the number of
usable samples from some group sizes would reduced drastically, making training
and testing impossible. These results clearly show that in order to capture variations
in real life, a method that is group size aware is definitely required.

4.6. Further analysis
In this section, we further investigate the nature of the problem by presenting
various analyses and ablation studies.

4.6.1. Performances of group size based classifiers and GA-
MUT on datasets of different group cardinalities

In this subsection, we provide an analysis of how group size based classifiers and
GAMUT perform on datasets that include positive samples only from a specific group
cardinality. This way, we empirically show that our hypothesis in Section 4.4.2 (that
a classifier trained specifically for capturing the dynamics of a single cardinality
should perform optimally for the samples of the same group size) holds.

Formally, we present the performances of classifiers 𝐶፤ and GAMUT on 𝐷፭፬፭፤ ∪𝐷፭፬፭ኺ
, where 𝑘 ∈ {2, 3, 4, 5, 6, 7}, all possible group cardinalities in our dataset. Similar to
the training phase, we create subsets of our test dataset, where positive samples
come from one specific cardinality. For simplicity, we will refer to the whole test
subsets, that also includes the negative samples, as 𝐷፭፬፭፤ in this section.

Figure 4.6 presents the results for two window sizes, 120 and 200 seconds, for
the sake of space. In the plots, each collection of bars corresponds to the mean
AUC score of one classifier (𝐶፤ or GAMUT) on six different group cardinality based
subsets of the data, calculated over 500 runs of leaving 10% of the data out for
testing. The error bars correspond to the standard deviation of the AUC scores.
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Figure 4.7: Performances of GAMUT with the ground
truth
or classified social action labels.
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Figure 4.8: Performances of GAMUT with raw acce-
leration or social action based features

Figure 4.6 supports our hypothesis and shows the power of our proposed ap-
proach. For both window sizes, the best performing group size based classifier for
a subset is the one with the matching cardinality. We also see that some group
based classifiers performed relatively well on subsets with different cardinalities.
This supports our second hypothesis that for some cases, a classifier might capture
dynamics of the groups of other sizes. More importantly, nearly for each subset
regardless of the window size, GAMUT guarantees to be the second best perfor-
ming classifier after the matching group size based classifier. Note that in practice,
GAMUT is therefore the best performing classifier as the group size from which a
test sample is drawn is not known.

4.6.2. Effects of social action classification performance
on pairwise F-formation membership detection

As mentioned in the former section, the first step of our proposed approach is the
classification of social actions. The performance of the social action classification
is by no means perfect and faulty labellings in this step are expected to have an
effect on the final pairwise F-formation membership detection.

In order to see the effects of the performance of social action detection on the
final goal, a follow up experiment was performed where we used the human an-
notated labels (ground truth) for speaking, hand gesturing, and head gesturing to
extract pairwise features, instead of the automatically generated labels with TPT. Fi-
gure 4.7 shows the pairwise F-formation membership detection scores with ground
truth and classified social action labels.

As expected, GAMUT with ground truth social action labels always performs
better. This result shows that our features tend to perform better in capturing
interaction dynamics if the social action labels are entirely correct. Fortunately,
the difference in performance is not a lot, showing that our social action detection
approach still provides valuable information that can be used to infer pairwise F-
formation membership relatively satisfactorily.
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4.6.3. Contributions of raw acceleration and social action
based features

Pairwise features used in GAMUT can be grouped into two categories with respect to
which type of streams are used in their extraction: Raw acceleration (IDs 0-11) or
social action labels (IDs 12-84). In this section, we present an ablation study where
we use these feature groups separately in the training, to further understand their
contribution to the final performance. Figure 4.8 shows the performances obtained
when these features are used separately and together.

Using both sets results in higher performance compared to using either separa-
tely. This is an interesting outcome showing how additional higher level information
extracted from the same source can act in a complementary manner. We also see
that the raw acceleration based features tend to perform better than the social
action based ones. This is especially true for small window sizes where raw acce-
leration based features clearly outperform the social action based ones. However,
with the increasing window size, the gap between the performances of two feature
sets seems to close, showing that the social action based features require more
time to be informative. This is expected since many social concepts require time
to unfold and it is harder to capture them in shorter time resolutions. Also, the
social action labels used for extracting the features are results of a classification
process (Section 4.4.1) and by no means perfect. As discussed in Section 4.6.2,
if the ground truth labels are used for the extraction of social action based featu-
res, the overall performance increases significantly. This is another factor that can
explain the gap between the performances of the two feature sets.

4.6.4. Correlation analysis of features and pairwise F-formation
labels

To have a deeper understanding about the contributions of each feature, we con-
ducted a correlation analysis between the vectors of single features and the ground
truth for pairwise F-formation membership. In order to investigate how the cor-
relation of features change with respect to the group cardinality, subsets of the
whole dataset that had positive samples coming from a single group cardinality
were used. We used the whole dataset for computing the Pearson correlation coef-
ficients, without any distinction between training and test sets. 𝐷፤ ∪ 𝐷ኺ, a subset
where positive samples are coming from the groups of cardinality 𝑘, will be deno-
ted as 𝐷፤ for simplicity. The correlation coefficients are calculated for all window
sizes per subset but to preserve space, only the results for two window sizes are
presented in Figure 4.9.

The highest correlation coefficients tend to be around 0.1 or -0.1 which are con-
sidered to be weak correlations. Still, even weak correlations have information and
we expect our classifier to combine such weakly informative features to tackle the
problem. Thus, we will be considering features with at least weak correlation coef-
ficients as marginally informative and analyse their occurrences. Only the features
with statistical significance (p<0.05) are investigated below.

The most striking observation from Figure 4.9 is how the features with highest
correlation coefficients vary with respect to the group cardinalities. This supports



4.6. Further analysis

4

85

Figure 4.9: Pearson correlation coefficients (r) and significance (p) values calculated between feature
vectors and the F-formation membership ground truth on group cardinality based subsets (ፃ፤) of the
data. Correlation values (r) are presented as the color of the cells where as the value inside the cells
correspond to the significance. While presenting the significance values, we have used one decimal
places, thus a value of 0.0 corresponds to p < 0.05. Each row in one matrix has correlation and
significance values for ten features. For example, the first row corresponds to feature IDs 0 to 9 and
so on. Matrices in the left and right columns correspond to the correlation coefficients computed on the
feature vectors extracted from 60 and 120 second windows, respectively. The correspondence of IDs to
features are presented in Table 2.
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our claim that groups with differing sizes have different interaction characteristics
and might be more discriminative with different features. Another interesting as-
pect is how correlations of some features increase (or decrease) with the increasing
window size, supporting that some dynamics of interactions are only captured in
specific temporal resolutions. In the following paragraphs, we will analyse informa-
tive features (according to the correlation values) per group size in detail.

• D2 ∶ Over the range of all window sizes, the correlation of the Z-axis of the
accelerometer readings (ID 2) seems to have the highest correlation coeffi-
cients. Z-axis captures the forward-backward acceleration of the body. The
high correlation value is not surprising, since in two person groups, people
are expected to move synchronously. Couple of features that are easily noti-
ceable in 200 second windows are the synchrony ratio of speaking and hand
gestures (ID 32) and the median length and standard deviation of the hand
gestures co-occurring between the participants (IDs 68 and 69). With the
increasing window size, correlation coefficients of the features related to the
co-occurrence of speaking and hand gesturing increase, pointing to a more
involved interaction.

• D3 ∶ It can be directly seen that there are four features with high coefficients
that are consistent over different windows, IDs 46, 47, 49 and 71. The first
three correspond to the Boolean Turn Activity features between streams of
speaking and hand and head gesturing, more specifically the synchrony ratio
and co-occurrence of these actions. Feature 71 is the mean length of head
gestures occurring while the other person is speaking. Features with high
correlations seem to be more representative of the listening behaviour, such
as head nods occurring while the other participant is speaking. Features based
on mutual information of the raw acceleration improve in correlation with the
increasing window size, such as IDs 4, 5, 6, 9 and 10. This might be connected
to the increasing variance in interaction characteristics, pointing to mimicry
and synchrony emerging between the pairs within longer intervals.

• D4 ∶ Features with relatively high correlations are sparse for 𝐷ኾ. The correla-
tions of features 5 and 9, non-normalized and normalized mutual information
between the Z-axes of the acceleration, seem to be comparatively higher
than the rest for the window size of 60 seconds. Correlations for features
31 (co-occurrence of not speaking and not hand gesturing) and 63 (standard
deviation of the length of the head gestures during speaking) marginally im-
prove with the window size of 200 seconds. This collection of comparatively
highly correlated features covers concepts both from 𝐷ኼ (measures related to
the Z axis of raw acceleration) and 𝐷ኽ (measures between social actions of
speaking and gesturing), and represents the dyadic interactions where both
participants are active in conversation and the listener behaviour in a three
person group, that might both occur in a group of four.

• D5 ∶ Similar to 𝐷ኾ, there are not many features with high correlations for
the window size of 60 seconds. However, correlation coefficients of various
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features improve with the increasing window size. The most notable features
are 11, 16, 17 and 20, which are all (normalized) mutual information measures
between two speaking status streams, speaking-hand gesturing streams and
speaking-head gesturing streams. As the group size increases, we see that
many social action pairs are more strongly correlated.

• D6 ∶ Comparatively high correlations are only present in the window size of
200 seconds, most notably features with IDs of 4, 8, 64 and 65. The first
two are (normalized) mutual information values between the Y-axis, the right
to left acceleration of the participant. The second two are the overlap sta-
tistics calculated from the streams of speaking and gesturing axes. This is
the only group cardinality where the movement in the Y-axis has a higher
correlation value than any other acceleration based measure. This can be re-
lated to the more frequent occurrences of listener-listener pairs in such large
groups, where synchronized posture shifts are captured through side to side
movements of the body.

• D7 ∶ Unlike other large sized groups, we a see a few features with comparati-
vely higher correlation coefficients at the window size of 60 seconds, such as
3, 7, 24, 42 and 48. This collection of features already covers different con-
cepts, such as the mutual information between raw acceleration streams and
boolean turn activity features between two speaking statuses, speaking sta-
tus and head and head gestures. These features also either retain or increase
their correlation values with increasing window size. There are also features
with relatively higher negative correlation coefficients in both window sizes.
Two examples are features 39 and 45, synchrony ratios of speaking with hand
and head gestures. This result suggests that in larger groups, there might be
multiple parallel interactions happening at the same time, resulting in pairs
with non-synchronized social actions.

In summary, our proposed feature sets, perhaps apart from event synchrony,
intrinsically carry information about the different aspects of the problem. In parti-
cular, for dyadic interactions measures between the raw acceleration readings are
seen as desirable cues. Compatible with the observations of Section 4.6.3, even
with the second level of information encoded in the social actions, raw acceleration
still holds much information. Especially for groups with high cardinalities, measures
that include gestures, especially head gestures, seem to gain importance, probably
representing active listening behaviour.

4.6.5. Comparison of ensemble learning methods
GAMUT combines the prediction probabilities of the group based classifiers by trai-
ning a meta-classifier (stacking). There are other options for combining predictions
of multiple classifiers in the literature [42]. In this section, we compare the perfor-
mance of GAMUT to two other ensemble learning techniques; maximum and mean
fusion. In these methods, final prediction for a test sample is obtained by compu-
ting the maximum or mean of the probabilities provided by the multiple classifiers.



4

88 4. Detecting conversing groups through social dynamics

��� ��� 	�� ���� ����
������������������������

��

��

	�

	�


�


�

�
��
��
��
�
�
��
��
��
�

����
�����������
����������

Figure 4.10: Performances of GAMUT, mean and
max fusion
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Figure 4.11: Performances of GAMUT with stacking
on local neighbourhood and the entire training data

Figure 4.10 shows the performances of maximum and mean fusion in addition to
GAMUT.

GAMUT outperforms both ensemble learning methods regardless of the window
size. Since the performance difference between the methods are relatively low,
we applied a paired t-test (computed on the results of 500 repetitions for each)
to see if these differences are statistically significant. Apart from the mean fusion
for 120s, all results are found to be statistically significant with 𝑝 < 0.01. In other
words, GAMUT guarantees better performance for almost all cases in comparison
to other ensemble learning methods. When compared to Figure 4.5, we can see
that even the mean and maximum fusion methods outperform logistic regression
without group size based training and the method of [15]. Thus, we can conclude
that, regardless of the combination technique, employing group based classifiers
will always provide better performance than methods that ignore this.

4.6.6. Effects of using the local neighbourhood in meta-
classifier training

GAMUT uses data only from the local neighbourhood of a test sample while training
the meta-classifier, expecting the local neighbourhood to be more informative than
the entire training set. This subsection investigates the effects of this setup by
comparing the performances of GAMUT where the meta-classifier training is either
performed on the local neighbourhood or the entire training set. Results are shown
in Figure 4.11.

GAMUT with the local neighbourhood meta-classifier training always outper-
forms the cases where the entire training set is used. Paired t-tests for each window
size showed that the differences are significant with 𝑝 < 0.01. Still, the differences
are not too high in terms of percentage. We believe this is caused by the dataset
statistics and the random selection process used while forming the training and
testing splits. Investigation of the distributions of group sizes in different runs have
shown that in some runs, the number of samples in the training set coming from
some group sizes are too low to be representative. In such cases, the probability
of having representative samples in the local neighbourhood reduces and using the
entire training set might prove to be superior. However, with more data, it will
be possible to have a training set that includes enough samples from all group si-
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zes. Then, the use of the local neighbourhood should be more optimal, providing
a higher increase in the performance.

4.7. Conclusion and future work
4.7.1. Conclusion
We presented our study that focuses on the detection of pairwise F-formation mem-
bership in real life crowded scenarios. Our solution exploits a widely overlooked
information source for this problem; the interaction dynamics. Instead of relying
on spatial distance and orientation, our method is based on the interaction patterns
between pairs of participants, inferred by a single tri-axial body worn accelerometer.
The main idea was that two people in the same group should exhibit distinguishing
interaction dynamics embedded in their movement and social actions, which will
not be present in unrelated pairs.

We argued that the dynamics of interaction is expected to vary with respect
to the cardinality of the group in which interaction is taking place. We hypothesi-
sed that a classifier that is trained on the data coming from a group of a specific
cardinality should perform better for samples obtained from groups with the same
cardinality. Our solution, GAMUT, was based on training multiple group size based
classifiers. Final prediction of a new sample was then performed by combining the
predictions of these classifiers by training a meta-classifier with the samples from
the local neighbourhood.

Our proposed method was fully automatic; taking the acceleration readings as
the input and providing the binary pairwise F-formation membership labels as out-
put. We defined a new feature set (overlap statistics) and utilised some others that
previously used in other domains for the joint representation of the participants
interaction. They are extracted using raw acceleration and automatically classified
social action labels.

We tested our approach on a real world mingling dataset, that includes groups
of different sizes and various types of interactions between people. Our proposed
method outperformed the state-of-the-art, methods without group size based trai-
ning, and other ensemble fusion methods and guaranteed the best performance
regardless of the window size.

We presented various analyses for further understanding. Performances obtai-
ned when ground truth labels are used showed there is room for improvement. We
then focused on how different group size based classifiers (𝐶፤) perform on subsets
of the data containing positive samples from a single cardinality, 𝐷፤. We saw expe-
rimental proof of our hypotheses, where all group sized based classifiers performed
best on subsets with the same group cardinality.

Our experiments showed that feature sets extracted from raw acceleration and
social action streams to be complementary. To further understand the contribu-
tion of the features, we analysed how individual feature vectors correlate with the
ground truth labels. We have seen that the majority of the features, apart from
event synchrony, had some correlation, suggesting that they are indeed informa-
tive. Weakly correlated features tended to differ for different group cardinalities,
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further showing varying interaction dynamics of different sized groups.
GAMUT was shown to be superior to other ensemble learning techniques in

terms of performance. The higher performance of these ensemble learning techni-
ques compared to the approaches not considering group sizes further proved the
importance of group size based training. Finally, when compared to using the
entire training set, only using samples from local neighbourhood always provided
better results. This suggests that samples with similar interaction characteristics
and group cardinalities tend to be also closer in the feature space.

4.7.2. Future work
We believe there are still many possibilities for the improvement of the method. The
analysis of the features showed that each group size based classifier has different
optimal feature sets. This information can be exploited in the method, where the
classifiers are trained with a subset of the features, automatically selected in the
training phase. This way, redundant and weak features can be eliminated, providing
group size based classifiers truly specific to one cardinality.

The main aim of the method was to provide pairwise F-formation membership.
This information can be used as a starting point for creating a connectivity graph,
that includes all the participants in the scene. While doing so, incorrect estimati-
ons of our method can be refined by introducing constraints related to the group
membership and temporal consistency. A possible option is to use the posterior
probability estimates that our method provides as edge strengths in the connecti-
vity graph. There are already successful methods in the literature mainly used for
optimizing connectivity graphs, that can be modified to be suitable for our problem
formulation [27].

The size of the local neighbourhood used in GAMUT is set empirically per window
size and for all the test samples the same neighbourhood size is used. A dynamic
local neighbourhood selection step might be beneficial and considered as a future
addition to GAMUT. In such an approach, the size of the local neighbourhood will
be automatically inferred for each test sample, possibly with an informativeness
criteria. This way, for each test sample, an optimal local neighbourhood reflecting
the characteristics of the said sample can be used while training the meta-classifier.
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(a) (b)
Figure 5.1: Example snapshots of mingling events (a) a less crowded event taken from [2], (b) the more
crowded mingle event from our scenario.

5.1. Introduction
In the past 15 years, the automatic recognition of displayed personality has received
increasing interest due to the pursuit of intelligent systems that can adapt to every
individual [1]. In this paper, we focus on crowded mingling events, such as cocktail
parties (see Figure 5.1), which are intriguing scenarios for investigation due to their
dynamic nature, the large number of simultaneous interactions, and the varied goals
of each individual.

Specifically in the domain of self-assessed personality recognition during dyna-
mic face-to-face social interactions, many previous applications focused on scena-
rios with a pre-defined task (eg. meetings). Also, the majority of prior work studied
scenarios with a limited number of simultaneously occurring social interactions (ge-
nerally just one such as meetings [3]), and certainly lower than 5 [2]. In contrast,
in this paper, we investigate a scenario with on average over 15 simultaneous in-
teractions occurring freely and dynamically.

Furthermore, audio-visual approaches are predominant in the field for predefi-
ned task scenarios due to the low number of people involved [1]. The characteristics
of such scenarios enables them to set up several cameras , typically directed fron-
tally or near frontally on participants, and microphones that capture relatively clean
audio data.

However, for crowded mingle events, the visual boundaries between persons
become harder to discriminate in the video and the noise of the event itself makes
the extraction of speech features robustly from audio more challenging. Moreover,
one could imagine that recording each individual’s voice could have higher per-
ceptions of privacy invasion. Thus, wearable devices are an appealing alternative,
as they inherently encapsulate the sensor data of a single individual and are per-
vasive enough to avoid disturbing normal behaviour and easily scalable to larger
populations.

In this paper, we present an approach to automatically recognize the self-
assessed personality traits from the HEXACO inventory using an accelerometer and
proximity sensors embedded in a wearable device hung around the neck. HEXACO
is a personality inventory which includes items analogous to the well known Big-
Five [4]. In addition, HEXACO also includes the trait for Honesty-Humility, which
measures sincerity, fairness, greed avoidance, and modesty.
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Our main contributions in this study are: (i) we address the problem of clas-
sifying self-assessed personality recognition in more complex and crowded mingle
scenarios than previous work, where several social interactions are occurring dy-
namically; (ii) our approach is solely based on sensors that can be embedded in
a wearable device which makes it easily scalable, and (iii) we propose a reliable
approximation of speaking status from acceleration using a transfer learning ap-
proach, resulting in improved recognition performance even when fusing cues from
two behavioural modalities originating from a single digital modality.

5.2. Related work
Here, we focus our discussion on works estimating self-assessed personality, alt-
hough many efforts have been made in automated third-party attribution-based
personality recognition [5]. There has also been much work focused on persona-
lity estimation in social media, which is also beyond the scope of this paper. A
comprehensive review of the related personality computing literature can be found
in the review by Vinciarelli and Mohammadi [1]. Within the domain of automa-
ted self-assessed personality estimation, works can be grouped mainly into those
considering meetings and mingle scenarios.

As an example of the meeting setting, Pianesi et al. [3] proposed a method
to recognize Extraversion and the Locus of Control during multi-party meetings
of 4 people. The setting in this study has a pre-defined task and a controlled
environment, where cameras and microphones were recording every participant
individually. Batrinca et al. [6] presented a method to analyse self-presentations
performed by participants in front of a camera during a Skype call, which simulated
an interview, to recognize all traits in the Big-Five. Although they collected data for
89 people, they only interact with the interviewer for a part of the call while the
main segment for non-verbal cue extraction was a monologue.

To the best of our knowledge, we are the first to address the complexity of
crowded mingle scenarios using solely wearable devices. The closest work to our
own was presented by Zen et al. [2]. In a considerably less crowded mingle event
than ours, the authors proposed a classification method to recognize Extraversion
and Neuroticism (from the Big-Five) using proximity related features extracted from
multiple cameras. These features were motivated by findings from social psycho-
logy about the relationship between proxemics and the 2 personality traits in ques-
tion. Compared to this work, with a total of 7 participants, we present a significant
increase with experiments evaluated on 71 people. Finally, unlike their distance-
based proximity features, ours rely on binary neighbour detection from simple a
radio-based sensing mechanism in each wearable device (see Section 5.3).

5.3. Our data
We collected data during three separate 2-hour social evenings in a public bar-
restaurant involving a real speed dating event followed by a mingle session.

During each event, between 30 and 32 different participants, with a total of
94 participants for the 3 events, were asked to use a wearable device hung around
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their neck , which recorded triaxial acceleration at 20Hz. Each device communicated
with other devices using a radio-based beacon communication by emitting its own
ID to all other devices around it in a 2-3 meter radius, allowing them to synchronize
with each other every second . The detection of a device is considered as a binary
proximity detection.

A 30 minutes segment from the mingle was selected to maximize the number of
people interacting. We used this part for the experimental validation in our paper.
Due to hardware malfunction, only 71 of the devices recorded data during this
segment. Finally, 5 GoPro Hero +5 cameras recorded the event from above. Note
that the video data was only used to label the speaking status (ground truth) of 18
participants for 10 minutes to train our speaking status detector. This 10 minute
segment was extracted in a non-overlapping part of the mingle from the 30 minute
segment we used for testing. A snapshot of the event can be seen in Figure 5.1,
where we contrast the density of our event with that used by Zen et al. [2].

Prior to the event, each participant filled in the HEXACO personality inventory
[4], for which six dimensions are extracted: Honesty(H), Emotionality (E), Extraver-
sion (X), Agreeableness (A), Conscientiousness (C), and Openness to Experience
(O), by means of the HEXACO-PI-R survey [7].

5.4. Non-verbal cues
We can group our cues, originating from 2 digital modalities (wearable accelera-
tion and proximity), into 3 behavioural modality categories: speaking turns, body
movement energy, and proximity. A detailed description of each set of cues is
presented below. Table 5.2 summarizes our derived features per cue type with a
reference number.

5.4.1. Speaking turns
Building on prior findings that people’s speaking status is representative of their
personality [1, 3, 6], we extracted them from each individual’s accelerometer sig-
nal. The use of this non-traditional modality to detect speech is motivated by the
well-studied relationship between bodily gestures and speaking [8]. We have used
a novel transfer learning method, Transductive Parameter Transfer (TPT) [9], which
is experimentally shown to perform significantly better than a traditional machine
learning approach. We hypothesize that TPT is much better in capturing the person
specific nature of the connection between body movements and speech. Speaking
turns are then used to extract high-level features representing the interaction cha-
racteristics of a participant.

Transductive Parameter Transfer (TPT)
For a feature space 𝑋 and label space 𝑌, 𝑁 source datasets with label information
𝐷፬። = {𝑥፬፣ , 𝑦፬፣ }

፧፬።
፣ኻ

and an unlabelled target dataset 𝑋፭ = {𝑥፭፣}
፧፭
፣ኻ are defined. It is

assumed that samples 𝑋፬። = {𝑥፬፣ }
፧፬
፣ኻ and 𝑋፭ are generated by marginal distributions

𝑃፬። and 𝑃፭, where 𝑃፭ ≠ 𝑃፬። and 𝑃፬። ≠ 𝑃፬፣ . This approach aims to find the parameters
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of the classifier for the target dataset 𝑋፭ by learning a mapping between the mar-
ginal distribution of the datasets and the parameter vectors of the classifier in the
three following steps:

1. Train source specific classifiers on each source setDs
i : Instead of using

the Linear SVM presented in [9], we have selected a L2 penalized logistic
regressor as our classifier which is experimentally shown to perform better
with our data. Chosen classifier minimizes Equation (1).

𝑚𝑖𝑛
(፰,)

1
2𝑤

ፓ𝑤 + 𝐶
፧

∑
።ኻ
𝑙𝑜𝑔(𝑒𝑥𝑝(−𝑦።(𝑋ፓ። 𝑤 + 𝑐)) + 1) (5.1)

Thus, for every source dataset 𝐷፬። , parameters 𝜃። = (𝑤, 𝑐)። are computed.

2. Learn the relation between the marginal distributions Psi and the
parameter vectors 𝜃። using a regression algorithm: Training set 𝑇 =
{𝑋፬። , 𝜃።}ፍ።ኻ is formed by samples 𝑋፬። and parameters 𝜃። obtained from each
source dataset. A mapping ̂𝑓 ∶ 2፱ → 𝜃, which takes a set of samples and
returns the parameter vector 𝜃 needs to be learned. Assuming that elements
in 𝜃 may be correlated, we have employed Kernel Ridge Regression [10],
instead of the independent Support Vector Regressors used in [9]. Since we
need to define the similarities between distributions 𝑋፬። instead of independent
samples, we employ an Earth Mover’s Distance [11] based kernel. EMD kernel
is computed as:

𝜅ፄፌፃ = 𝑒ዅ᎐ፄፌፃ(ፗ። ,ፗ፣) (5.2)

In Equation (2), 𝐸𝑀𝐷(𝑋። , 𝑋፣) corresponds to the minimum cost needed to
transform 𝑋። into 𝑋፣. The user defined parameter 𝛾 is set to be the average
distance between all pairs of datasets.

3. Use ̂𝑓 to obtain the classifier parameters on the target distribution:
After computing ̂𝑓(.), we directly apply this mapping to target data 𝑋፭ to obtain
𝜃፭. With 𝜃፭ known, we can infer the labels for the target dataset.

TPT for extracting speaking turns
For detecting speaking turns with TPT, we selected simple statistical (mean and
variance) and spectral features (power spectral density, using 8 bins with logarithmic
spacing from 0-8 Hz as presented in [12]) that are expected to be representative
of speech related body movement. These features were extracted from each axis
of the raw acceleration, the absolute values from each axis of the acceleration, and
magnitude of the acceleration using 3s windows with a 2s shift. Using the labelled
data of 18 participants as sources, we obtained speaking turns for all 71 participants
during 30 minutes. Finally, derived features were extracted from the speaking turns
as shown in Table 5.2.
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5.4.2. Body movement energy
For each wearable device, a single acceleration magnitude from the 3 axes is com-
puted. Next, we apply a sliding window calculating the variance over the magnitude
of the acceleration, using a 3s windows with a 2s shift (similar to Section 5.4.1).
This gave us a better representation ofmovement energy over time than the accele-
ration magnitude. To obtain a single value for the 30 minute segment, we calculate
2 features to represent the movement energy; the mean and variance of the energy
values in all windows. Finally, we create 2 multi-modal behavioural features from
the mean and variance of the energy values in all windows during the detected
speaking turns.

5.4.3. Proximity
As stated before, each wearable device has a binary proximity detector based on
beacon communication with other devices. So, each device emits its own ID to all
other devices and a detection of a particular ID is treated as a neighbour. From these
binary detections, a dynamic (in time) binary proximity graph can be generated for
each participant. To eliminate false neighbour detections, the method proposed by
Martella et al. [13] was applied.

Then, 2 features were calculated for each participant from the proximity graphs:
the largest size of group participated in and the total number of people interacted
with during the event. Since we do not have actual distances, these features allow
us to represent statistics related to the number of people’s interactions during the
event. To consider stable interactions in our proximity features, 2 nodes are only
accounted as neighbours if they detect each other for more the one minute in the
proximity graphs.

5.5. Experimental results
Table 5.1: Mean accuracy (%) ± std. error. M:Movement; S:Speaking turns; MS: Movement+Speaking
turns; P:Proximity. Statistical significance against a random baseline is indicated:- ∗∗(p<0.01),
∗(p<0.05).

Concatenated Features Combinations
M S MS P M+S M+MS M+P S+MS S+P MS+P M+S+MS M+S+P M+MS+P S+MS+P M+S+MS+P

H 59 ± 22 66 ± 17∗∗ 68 ± 17∗∗ 44 ± 12 62 ± 20∗ 69± 15∗∗ 47 ± 20 58 ± 16 57 ± 14 62 ± 14∗ 58 ± 18 61 ± 22 63 ± 13∗∗ 56 ± 17 62 ± 18∗
E 47 ± 7 43 ± 13 52 ± 3 52 ± 3 48 ± 12 48 ± 7 52 ± 3 45 ± 13 46 ± 13 52 ± 3 48 ± 10 46 ± 13 52 ± 3 49 ± 11 52 ± 3
X 52 ± 12 46 ± 9 48 ± 12 53 ± 15 51 ± 4 48 ± 10 59 ± 17 46 ± 13 50 ± 12 60± 12∗ 49 ± 7 51 ± 7 61± 14∗ 50 ± 12 54 ± 9
A 54 ± 9 52 ± 10 54 ± 8 55 ± 14 53 ± 15 55 ± 6 56 ± 15 53 ± 17 58 ± 18 59 ± 15 62 ± 10∗ 53 ± 12 54 ± 20 60 ± 15 65± 14∗

C 46 ± 19 49 ± 19 57 ± 13 46 ± 8 52 ± 16 55 ± 13 42 ± 19 56 ± 12 53 ± 13 50 ± 13 66 ± 15∗∗ 55 ± 14 49 ± 16 55 ± 20 69± 15∗∗

O 58 ± 1 56 ± 5 58 ± 1 69± 17∗ 55 ± 9 53 ± 9 63 ± 17 58 ± 1 66 ± 14 60 ± 19 53 ± 13 48 ± 17 65 ± 18 51 ± 12 56 ± 19

5.5.1. Performance of TPT on detecting speaking turns
First, we tested the performance of the TPT method against a traditional person
independent machine learning approaches on the subset of 18 participants with la-
bels for speaking turns. In this test, we used Leave-one-out cross validation. With
the TPT method, each participant acted as target and all others acted as sources,
once. For the traditional approaches, the other participants’ data was concatenated
to form the training set for each participant. Different linear (logistic regression)
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Table 5.2: Summary of our features. S.T.= Speaking turns, E.T.=entire event

Feature Modality
1 mean of accel. magnitude var. per window during E.T Movement (M)2 var. of accel. magnitude var. per window during E.T
3 maximum length of S.T.

Speaking turns (S)

4 mean length S.T.
5 variance of length for S.T.
6 maximum length of non-S.T.
7 mean length non-S.T.
8 variance of length for non-S.T.
9 total length of S.T.
10 mean of accel. magnitude var. per window for S.T. Movement +
11 var. of accel. magnitude var. per window for S.T. Speaking turns (MS)
12 largest size of group interacted with Proximity (P)13 total number of people interacted with

Table 5.3: Correlations between selected features and traits (፩ ጺ ኺ.ኺ for all correlations)

Feature 7 8 9 12 13
H -0.419 -0.235 0.261 x x
X x x x 0.254 0.307
O x x x -0.291 x

and non-linear classifiers (Hidden Markov Models and random forests) were used in
the comparison. Paired one-tailed t-tests between performances (Area under the
curve (AUC)) of these methods (Mean AUC for LR:58%, HMM:59%, RF:56%) and
TPT (%65) showed TPT significantly (𝑝 < 0.01) outperforms all of them. Compared
to the implementation in [9], which yielded an average AUC of %60, our implemen-
tation provided significantly better results (𝑝 < 0.05). These tests show that using
TPT to extract speaking turns provides more robust and reliable results, which will
allow us to have a proxy for speaking status without needing audio.

5.5.2. Feature-trait correlation
Table 5.3 shows the correlations of the features. In this Table, only those compari-
sons between features and traits with a significant value are summarized. For the
trait of Honesty (H), those cues related with speaking turns tend to have an inverse
correlation with the trait, suggesting that honest people may tend to be more vocal.
Interestingly, all proximity features are directly correlated with the Extraversion (X)
trait. This supports the impact of proxemics (management of spatial relationship
and personal space) on this trait, as found by Zen et al. [2].

5.5.3. Classification of HEXACO traits
We treated the personality detection as a binary classification problem, where each
item of the HEXACO inventory yielded one label for each participant, as positive or
negative. This labelling is obtained by finding the median value for each item and
placing participants with higher (and equal) values than the median in the positive
class and the rest in the negative one. This labelling procedure resulted in fairly
balanced class distributions. The distributions of the values for each item is shown
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Figure 5.2: Distributions of personality scores per trait (Red: Negative class Blue: Positive class)

in Figure 5.2, where the red and blue parts correspond to negative and positive
classes, respectively.

By extracting the features in Table 5.2, we obtained 71 samples with 13 di-
mensions each (when all the features were used). Since we have a low number
of samples and feature dimensions, we selected the logistic regressor as our clas-
sifier. For performance evaluation, we have used 10-fold cross validation. The
optimal regularization parameter C for the logistic regressor was set using nested
cross validation. The accuracies obtained with this setup, for each item and with
different feature combinations are provided in Table 5.1.

Table 5.1 shows that apart from Emotionality, we were able to classify items in
the HEXACO inventory significantly better than a random baseline classifier. This
random baseline classifier assigns all samples the most frequent label in the training
set. To test significance for a given trait detection task, we applied a paired one-
tailed t-test to the performance values of our method and the random baseline
classifier which are computed from each stratified test fold.

From Table 5.1, it can be seen that using the multimodal feature set that in-
cludes all features (M+S+MS+P) provides the best general result where significant
performances are obtained for three items: Honesty (H), Agreeableness (A) and
Conscientiousness (C). For Honesty, significant results are obtained when speaking
turn based features are in the feature set. This is quite interesting, when compa-
red to the non-significant result obtained with just the movement energy features
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since it shows that we were able to extract distinguishing information (that imitates
another modality) from acceleration only. On closer inspection, we have seen that
Feature 10, the mean of the acceleration magnitude variance in speaking turns, has
the largest weight of all the features in the feature set M+MS.

Compatible with the correlation analysis of Section 5.5.2, we see that significant
results for Openness (O) and Extraversion (X) are obtained with feature sets that in-
clude proximity based features. Significant results for Extraversion (X) are obtained
when movement and proximity features are used together. This is most probably
caused by the fact that extroverts tend to (i) interact with more people (which is
captured by the proximity data), and (ii) to display more body movement energy.
For Openness (O), using proximity based features only were enough to obtain signi-
ficant results. The contribution of multimodality is more apparent for Agreeableness
(A) and Conscientiousness (C), where satisfying results are only obtained by using
all features (corresponding to different behavioural modalities but extracted from
the same digital modality; acceleration) in combination and adding features from
another digital modality (proximity) to this combination resulted in noticeable in-
creased performance.

5.6. Conclusion
We presented a novel approach to recognize self-assessed personality during cro-
wded mingling events using accelerometers and proximity sensors embedded in
wearable devices. To the best of our knowledge, we are the first to address this
complex problem using wearable devices alone and with such a high number of
subjects in such a scenario. We also applied a novel transfer learning method,
TPT [9], to our problem to extract reliable speech information from acceleration.
This allowed us to have a proxy for speech in a noisy environment like a crowded
mingle event and improve our performance by fusing cues from two behavioural
modalities originating from the same digital modality. Our best performing traits
were Honesty (H) with a 69% accuracy when using movement (M) in combination
with speech-based movement (MS) and Conscientiousness (C) with 69% accuracy
when using all modalities. When estimating all other traits, except for Emotiona-
lity, our method performed significantly above a random baseline. Finally, we show
that adding the information from proximity and therefore exploiting multiple digital
modalities increases the accuracy of almost all traits. A more detailed analysis of
the contribution of the behavioural cues to the different personality traits is left for
future work.
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6. Predicting how live performances are experienced from crowd

movement with wearable sensing

6.1. Introduction
Institutions that organise live performances (be it artistic, cultural or generic), incre-
asingly require being able to quantify the response to the service they provide. Such
quantification enables institutions to design more targeted events, make better mo-
netary decisions and provide members of the public more polished and enhanced
experiences. Quantitative data about audience response should eventually allow us
to demonstrate the contribution of live performances to the lives of individuals and
their well-being. While art and cultural events may appear to be a luxury to have in
society, numerous studies have shown the benefits of such events for stimulating
the social life of public spaces [1], health and mental well-being [2–5] and percei-
ved quality of life [6]. In this paper, we investigate ways to automatically measure
the response to live performances as a means of enhancement for both consumers
and practitioners.

According to the appraisal theory, one’s evaluation of a situation (in our case,
the performance a person attends) causes related affective responses [7]. In ot-
her words, a person’s appraisal of an event will be reflected, to an extent, in the
emotional responses the person exhibits throughout the event itself. In this study,
we present a method that uses this connection to detect an audience’s appraisal
of a live performance, based on the assumption that an audience’s individual and
jointly characterised body movements capture some form of affective response. We
will be using a similar language used in implicit tagging literature [8] to distinguish
between self reported evaluations of the event and immediate responses obtained
through sensing. Questionnaire answers correspond to explicit responses provided
by the participants, indicative of their reappraisal of the event. We use the term re-
appraisal since questionnaires are not immediate and filled after the event finishes.
Sensors on the other hand, capture immediate responses and act as implicit cues
for the appraisal of the event. We use the term implicit for evaluations obtained
through sensing since it exploits the non-verbal reactions of the participant instead
of direct responses. Thus, we aim to automatically predict explicit evaluations of
participants through sensor recordings that captures their non-verbal reactions. We
do not explicitly detect any affective tags or emotional states but we try to connect
immediate body movements to explicit evaluations of the event.

The automatic detection of peoples’ affective states is a widely studied topic in
affective computing, with a majority of works in literature focusing on facial ex-
pressions [9] and/or speech [10]. However, most of these studies are generally
conducted in lab environments and have restricted or controlled characteristics,
both in terms of data acquisition (high-quality video and audio collection) and ge-
neration (posed facial expressions, carefully designed stimuli) when compared to
the real-life performances we are interested in. The practical characteristics of
real-world performances are different from the pre-designed lab experiments and
introduce important restrictions on the use of aforementioned modalities. For ex-
ample, robustly detecting audience members’ facial expressions in a dark concert
hall from video input is a challenging task. Luckily, recent studies have shown that
body movements also convey affective expressions which might be exploited for the
detection of emotional states [11, 12]. Even though most of the existing studies
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investigating affective body expressions use either video [13, 14], motion capture
[15] or pressure sensors [16], we hypothesised that it is still possible to capture
enough of these body movements through the commonly available wearable sen-
sors that are suitable for audiences in real-world settings.

We further realised that, in live performances, multiple people are simultane-
ously exposed to the same stimuli. This makes it possible to analyse and exploit the
collective spontaneous response to the stimuli, as it has been shown that the link
between multiple people’s responses can be exploited to detect salient moments of
movies using physiological sensing [17]. Building on these findings, we propose a
novel method to measure the audience’s collective response to live performances.
In contrast to prior work that exploits fairly reliable but less pervasive biosignals or
physiological sensing [18, 19], we hypothesise that individual and collective body
movement patterns of audience members, as measured through the accelerome-
ters, could also be used to measure affective responses to a performance. The
proposed method exploits the linkage between audience members’ body movement
to detect distinctive time intervals in the performance. Individual movement pat-
terns of participants in these distinctive parts are then used to classify the general
evaluation of the performance.

By working closely for the last 2 years with Holland Dance (HD), an organization
whose role is to promote dance in The Netherlands, we have identified some key
challenges to measuring audience response in live performances:
The limits of survey responses: Organisers of live performances are always
interested to gauge audience opinions about the performance they organise — if
they enjoyed a performance or enjoy similar types of performances in general, they
are more likely to recommend it to others, thus sustaining the popularity of the
art form. Survey responses must be obtained after the performance, at a time
when audience members are not necessarily eager to fill in questionnaires, and
do not capture the audience’s spontaneous response to specific moments of the
performance. Note that the sentiment about a performance can also be assessed
via social media, but this again requires audience members to actively participate
in putting forward an opinion publicly [20].
Obtaining implicit measurements on a large scale: To our knowledge, most
related work that tries to use implicit responses to visual stimuli such as movies
[18, 19] or live performances [21] have tended to rely on physiological or brain
activity measurements. While such signals are considered fairly reliable, the equip-
ment to sense this data is still not particularly pervasive. As social norms would
dictate, one tries to stay as quiet and still as possible when sitting and watching a
live performance, making the measurements from pervasive sensors such as acce-
lerometers less noisy and more meaningful.
Obtaining detailed audience responses on a large scale: Even when sur-
vey responses are available for a performance, typical Likert scale questions cannot
provide detailed insights into what parts or aspects of a performance could have
triggered someone to dislike or like it. One way to circumvent this problem in-
volves using free text answers, which can provide richer — yet still incomplete —
information about someone’s experience, but these need to be manually proces-
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sed. Interviews are another possibility and provide a very rich medium for those
few who are willing to spend more time reflecting on their experience. They are,
therefore, at best limited to an even smaller subset of an entire audience.
Quantifying the impact of a performance on our social lives: To our kno-
wledge, most work focuses exclusively on measurements obtained during the per-
formance, measuring direct responses to it. However, the value of a performance
can stretch beyond this period and affect people long after they witnessed it. In
particular, it could affect one’s mood immediately after the experience or serve
as a topic of stimulating discussion over drinks, thus leading to positive feelings
about the entire performance and socialising experience. In an ideal case, its ef-
fects should last far beyond the performance itself, perhaps even providing lasting
memories that are recalled collectively by friends. Identifying this is perhaps the
greatest challenge but, if answered even in part, would provide a broader metric to
quantify the value of arts and cultural events.

We address these challenges by making the following novel contributions in this
study: we show, using multiple real-life events (two modern dance performances
and a collection of music-art-technology presentations which has similar characte-
ristics to a TED-X event), that (i) when people are watching a live performance,
their spontaneous reactions result in body movements that can be captured with a
standard acceleration sensor, (ii) some moments of spontaneous collective reaction
correspond to memorable events of high affective output in the performance as can
be verified by survey responses relating to the performance, (iii) audience members’
reactions can be used to predict their enjoyment of the performance, whether they
felt immersed in the experience, would recommend it to others, or thought dance
performance changed their mood positively, (iv) the physical distance and joining
the event with acquaintances might have an effect on the evaluation of the event,
(v) the side neighbours of audience members can be approximated with an accep-
table performance with proximity sensing, (vi) and finally by considering the social
context that surrounds the activity of going to a live dance performance, we also
provide initial results, using acceleration and proximity sensors, that suggest that a
change in the mood of a person as a result of watching a live dance performance
is reflected in their general body behaviour while mingling.

6.2. Related work
When the measurement of responses to a performance is approached from an
appraisal theory angle, where affective responses are considered to be linked to the
final evaluation [7], it becomes important to first investigate affect recognition itself.
The automated detection of human affective behaviour has been gaining increasing
interest, mostly because of its implications on better human-computer interaction
and affect-related research including behavioural science, psychology, etc. A large
number of studies have been published on this topic in the last decades [10]. Most
of the early work on this area was focused on video (for detecting facial expressions)
and/or audio inputs [9], and the datasets used in these early studies tended to use
a single input modality [22], include a limited set of deliberate affective displays (six
prototypical emotions) [23] and be recorded under highly constrained conditions,
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generally covering exaggerated-artificial affective expressions [24]. More recent
studies, on the other hand, generally aim to detect spontaneous affective displays
[25], prefer to use multimodal information [26] and focus on detection of non-basic
affective states [14].

With these new approaches in affective computing domain, cues other than
facial expression and speech have started to gain importance, bodily expressions
being one. The idea to use bodily expressions for affect detection is supported
by existing work in social psychology literature that shows the strong connection
between body movements and affective expressions [27, 28]. The decreasing cost
and increasing availability of whole-body sensing technologies made it feasible to
investigate the recognition of bodily expressions for affect perception and detection.
This is reflected in the increasing number of studies that are discussed in recent
surveys [11, 12] which rely on various approaches for capturing bodily expression
such as computer vision [13, 14], motion capture [15] and pressure sensors [16],
and generally aim to automatically map bodily expressions into well-known affective
states. These affective states might be categorical (such as anger, happiness and
neutral [29]) or continuous (valence and arousal [30]). Most of the datasets used in
such studies include acted bodily expressions [29, 30], however, recent studies tend
to focus more on non-acted, real life data [31]. The used methodology tends to be
similar for most of the studies, where features (representative of bodily expressions)
are extracted from sensor data, followed by the training of statistical models for
automatic affect detection. Importantly, one key distinction between these and our
approach is that while such studies explicitly focus on detecting affective states,
our approach does not. Instead, we build on the results of these studies and show
that spontaneous bodily movements captured by simple accelerometers (which may
implicitly reflect affective states) are sufficient to infer one’s experience of a live
event. We do not try to discriminate between complex bodily movements or map
them to affective states in our work.

Existing literature on the evaluation of events traditionally investigates the re-
sponse of an audience to a live performance using self-reports, such as surveys and
interviews [32, 33]. Digital technologies can overcome some limitations of surveys
and interviews and give more direct and fine-grained insights into the response of
an audience. For example, the explosion in popularity of social media such as Twit-
ter, and mobile computing have broadened the borders of a live performance, as
fans comment and post information and opinions live to the online community [34].
Practitioners are interested in measuring the activity of their audience in social me-
dia, both to understand their response and to leverage their activities as marketing
tools for their performances [35, 36]. For example, some theatres, including Broad-
way, have experimented with so-called “tweet-seats” reserved for customers who
promised to tweet about the performance live [37].

Other sensor technologies, albeit rather less pervasive, have also been used to
overcome the granularity issues of surveys. For example, work in neuroaesthe-
tics use fMRI scanning to relate viewer responses to the aesthetics of the perfor-
mance [38–40]. Similarly, the tracking of eye gaze from video has been used when
trying to distinguish novice from expert observers of dance [41]. Finally, physiolo-
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gical sensing such as galvanic skin response (GSR) sensors have been investigated
to measure the arousal of individuals watching a video of a dance performance, and
its relationship with the individuals’ self-reports [42]. GSRs have also been used to
measure the response to other types of live performance, such as comedy [21] and
movies in a cinema [19]. One specific example we would like to point is the work
of Chenes et. al., where GSRs had been used to detect highlights in movie scenes
[17]. The focus of this study was to exploit the inter-user physiological linkage
which is calculated with simple sliding window correlation over pairs of participants’
GSR readings. This study shows that when people are exposed to the same stimuli
(even at different times), they tend to give synchronous physiological responses
which can be used to detect salient parts of those stimuli. We build our study on a
similar base where we hypothesize such linkage might be also computed with body
movements, yielding a similar result.

These attempts show an increasing interest in quantifying the experience of live
performances. Unlike these approaches, we advocate the use of pervasive sensors
which are readily available in smartphones. As such, they enable less obtrusive
measurements, on a massive scale, compared to those obtained via physiological
sensing. This makes them much more readily deployable, and vastly increases their
practical use.

In this work, we rely on acceleration and proximity sensors to measure people’s
reactions to live performance. These sensors have thus far been limited to other
contexts, and have been used to measure very different phenomena. Specifically,
most work that considers accelerometers and people addressed the problems of re-
cognising daily activities such as walking, running, sitting, climbing the stairs [43],
recognising daily household activities such as eating, drinking, vacuuming, scrub-
bing or lying down [44], and identifying modes of transportation taken [45]. There
is a trend moving towards the detection of medically relevant events, such as fall
detection [46, 47], but all of these approaches focus resolutely on physical activities
where the behaviour can be represented directly by quite specific movements of
the body.

It is possible to classify these types of activities with excellent performance, yet
these activities are very different to analysing the response to a live performance.
Little work exists where less specific body movements have been classified. For
example, Matic et al. also used acceleration to detect speaking status by strap-
ping an accelerometer to the chest so that vibrations directly caused by speaking
could be detected [48], Hung et al. [49] used body movements to predict soci-
ally relevant actions with a device hung loosely round the neck or for detecting
conversations[50]. Gedik et al. proposed a personalised solution for detecting
speaking turns from acceleration in 2017[51]. Such works highlight the potential of
measuring spontaneous bodily responses to external stimuli using more pervasive
sensing.

Apart from focusing on different activities and tasks, the above mentioned works
measure behaviour in environments that are far less challenging than a theatre,
where the audience sits in silence and where the link between activity and beha-
viour is not as direct. The most similar work to our own was presented by Engle-
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bienne and Hung [52] who found that they were able to identify audience members
as professors and non-professors from their behaviour while attending an inaugural
lecture. Although they were sitting, the small movements made in reaction to parts
of the lecture demonstrated implicit responses of interest to particular moments
and content delivered during the lecture. However, they did not analyse whether
reactions from the audience to the lecture correlated with enjoyment of the lec-
ture, for example. Another closely related work where the audience response was
measured was presented by Bao et al. [53] who investigated how users watching
movies on a tablet could have their implicit responses sensed by a wide variety of
modalities from the tablet itself including the video, audio, tablet interactions, and
accelerometer. In this case, movements from the tablet that the user was holding
were used to gauge responses. Using a multimodal approach, they were able to
predict the user’s ratings of the movies they watched. However, in this case, the
user sat alone to watch the movies and was not inhibited by the social norms usually
adhered to in a public space.

Proximity sensors have been used to study the interactions between individuals
with approaches more similar to complex network analysis. Cattuto et al. [54]
used wearable sensors to analyse social interactions in crowded social settings,
by means of proximity data collected through RFIDs. Martella et al. [55] used
data collected by a series of wearable proximity sensors to identify the different
communities attending a multi-disciplinary ICT conference. Roggen et al. [56]
and Wirz et al. [57] proposed the usage of wearable sensors to discover spatio-
temporal relationships between a number of individuals in the context of crowd
dynamics. While these studies show that social relationship between individuals can
be captured by means of spatio-temporal information, none of these works focus
on the measurement of spatio-temporal relationship information in the context of
live performances as we aim to do.

6.3. Data collection
6.3.1. Dataset 1: Dance performance
The sensor set-up: This study took place during a live dance performance that
lasted almost an hour and a half without intermission. It consisted of mainly dan-
cing, interspersed with monologues, in Italian, by the performers. The music was
mainly based on live cello arrangements but also included pre-recorded songs. We
recorded 41 participants watching the performance with triaxial accelerometers and
IR cameras (for additional data verification). The accelerometers were located in a
custom-made device hung around each participant’s neck. These devices recorded
acceleration at 20Hz and were kept synchronised to a global time through wireless
network communication. Due to various hardware malfunctions, however, only 32
devices recorded acceleration data. In addition, the performance was recorded
using a GoPro Hero +3 to analyse salient moments (i.e. favourite moments that
were reported by the participants). We used ∼79 minutes of sensor data in our
experiments, starting just before the first piece, when all participants are seated
and ending when the final piece of the performance finishes.
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The custom-made device used in the study is also equipped with a wireless
radio, which broadcasts the device’s unique identifier (ID) every second up to a
distance of some 2-3 meters. The reception of such broadcast by the devices
nearby is considered a proximity detection. The device logs each detection on the
on-board storage along with their timestamps. We used an energy-efficient MAC
protocol [58] to allow the devices to communicate their IDs and detect each other’s
proximity.
Survey responses: All 41 participants filled in a questionnaire after the per-
formance. These questionnaires consisted of 12 questions on four topics (three
questions per topic), measuring “enjoyment”, “recommendation (to a friend)”, “im-
mersion” and “mood changes”. All questions used a ten-point Likert scale, where
one means “I completely disagree” and ten means “I completely agree”. For me-
asuring “enjoyment”, we adapted and selected questions presented in [59]; for
“immersion”, we selected involvement questions from the Igroup Presence Ques-
tionnaire [60]; for “recommendation” we used items from O’Brien’s questionnaire
[61]. Each of these questions was carefully chosen to measure each task and slig-
htly adapted to match our scenario. We formed the questions regarding mood by
ourselves. Given that the majority of the audience members were Dutch, we used
a back-translation procedure to ensure that each questionnaire item was accura-
tely matching the original English wording. This involved finding three different
Dutch speakers to translate the questions from English to Dutch, then from Dutch
to English and then from English to Dutch again ensuring that the finally chosen
words best matched the original English. The complete set of questions asked in
this questionnaire in both English and Dutch are listed in the Appendix. From the
total number of participants, 32 responded with the Dutch questionnaire and 9 to
the English one.

Of the 32 participants with working accelerometers, 25 reported a favourite
moment of the performance. Two moments were particularly memorable: the mo-
torcycle sequence was declared as favourite by 32% of the participants, and the
bolero finale, favourite of 52% of the subjects. Note that in some cases participants
declared more than one favourite moment.

6.3.2. Dataset 2: A day of Wonder
The sensor set-up: As a follow up to the first dance performance event, we
organised a second study in the ‘A day of Wonder’ festival that took place at the
TU Delft. This one-day festival is advertised as a combination of technology, music,
food and art where different events take place in parallel, on different stages. Our
study focused on one specific event that comprises two adjacent sets; namely ‘Tales
for the Curious Mind’ and ‘Enhancing Classical Music’. The first set included three
presentations from various researchers and designers, who shared stories about
their latest findings and inventions. The first presenter talked about a minimally-
invasive surgical instrument, the second one explained his smart wedding dress
with controllable LED lights and the final speaker introduced a micro air vehicle, a
drone that weighs a mere 20 grams. The second set was an innovative classical
concert experience, a lecture-performance focusing on enhancing the experience
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of both performers and the audience using technology. This set started with a
solo piano performance, followed by the talk of the performer and concluded with
the classical music piece Zigeunerreisen, performed by a duo of violin and piano.
The whole festival was free to attend and was open to the public, attracting a
vast demographic of participants. Participation in the data collection was voluntary
and participants were allowed to leave whenever they wanted. Limited seats were
available, thus some of the participants were seated while others were standing.

Like the ‘Dance Performance’ dataset, participants wore our custom-made sen-
sor pack hung around their necks, recording tri-axial acceleration and proximity
information with the same setup (20 Hz and synchronised globally). A GoPro Hero
+3 camera recorded the stage for further verification. We have treated the two
sets, ‘Tales for the Curious Mind’ and ‘Enhancing Classical Music’, as two separate
events. In total, 56 accelerometers are used in the experiments. After filtering
non-valid data, either due to a technical problem, a participant leaving too early or
lack of a questionnaire for the participant, we end up with valid data for 23 people
in the first part and 21 in the second part. For the ‘Tales for the Curious Mind’, we
used a ∼42 minutes interval in our experiments that started with the introduction
of the presenters and ended with the final presentation. ‘Enhancing Classical Music’
lasted a bit shorter, totalling at ∼22 minutes.
Survey responses: After a participant left the event, we asked them to fill a
questionnaire which had six questions, identical to the ones used in ‘Dance Per-
formance’ for ‘enjoyment’ and ‘immersion’. The same ten-point Likert scales were
used. Questionnaires were taken separately for the two sets, ‘Tales for the Curi-
ous Mind’ and ‘Enhancing Classical Music’. Thus, a participant joining only one of
these events filled in the relevant questionnaire only. For the first set, 48% of the
participants stated they really enjoyed the drone presentation (delfly) while 62% of
them chose the ‘real’ presentation of the surgical device as the top moment.1 For
the second set, only 6 participants noted a favourite moment. This was same for
everyone, which was the musical performance at the end of the presentation, the
piece Zigeunerreisen.

6.4. Data analysis
In this section, we analyse the datasets in terms of shared experience and shared
movement. Our assumption was that both the participants’ subtle and more expan-
sive movements are related to the experience of the event. We used the variance
of the magnitude of the accelerometer readings to act as a proxy for the physi-
cal activity level of the participants. We calculate the variance in a sliding window
of 2 seconds (40 samples) with 1 second shift (20 samples) to capture the subtle
variations in motion while preserving a fine time scale. Before calculating the va-
riance, z-score of the magnitude is computed to remove interpersonal differences.
Then, for each dataset, we computed the Mutual Information (MI) of the variance
of magnitude signals from every possible pair of participants, creating a pairwise
co-occurrence measurement of the physical activity over time. These signals were

1Participants were allowed to choose multiple favourite moments.
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computed over a sliding window with a size of 60 samples and shifted by one sam-
ple, resulting in a vector reflecting co-occurrence of motion, over time, between
two participants.

For the first dataset, we also have the information of where people are sea-
ted. Thus, for this dataset we also provide an analysis of how spatial distance of
people affects their movement patterns and evaluations and investigate ways of
automatically obtaining neighbourhood information through proximity sensing. Be-
fore moving on to the analysis, we first explain how we obtain binary labels from the
questionnaire answers, since binary labels for enjoyment are used for distinguishing
between people who enjoyed the event or not in Section 6.4.2.

6.4.1. Binary labels for evaluation
As described in Section 6.3, we set up the questions to be redundant with three
questions per aspect, which we averaged to obtain a single numerical value. This
way, for each participant, we obtain four and two different labels each, for Datasets
1 and 2. We divided the participants into two classes for each task, corresponding
to a “positive” and “negative” report on their experience of the performance. Parti-
cipants whose averaged answer was below 5 for a task’s three questions was placed
in the negative class for that task, meaning the participant, respectively, did not
enjoy the event, did not feel immersed throughout the performance (for both of our
events), would not recommend the performance or did not think the performance
uplifted their mood (only for the Dataset 1 ). The class distributions of all tasks for
each event obtained with this setup are given below.
Dataset 1: For “enjoyment” and “recommendation”, the majority of participants
(26 out of 32) gave positive answers. 22 participants thought “the performance af-
fected their mood positively”. The distribution for the “immersion” task is relatively
more balanced with 17 participants in the positive class.
Dataset 2: 21 out of 23 participants and 18 out of 20 participants gave positive
responses to the “enjoyment” questions for the first and second parts. The imba-
lance for the “immersion” task was not as bad as the “enjoyment” task, where 16
out of 23 and 9 out of 20 participants responded positively for the first and second
sets, respectively.

6.4.2. Dataset 1
There are three things we wanted to investigate for this performance: 1)Do mo-
ments when people move in synchrony correspond to salient moments of the per-
formance? 2)Is the proximity of people in the audience a factor that also triggers
synchronous motion and does it affect the evaluations? 3)Will it be possible to
automatically identify sitting neighbours through proximity sensors?

Synchrony and salient moments
We hypothesised that salient moments should correspond to a high MI among all
participants. We used an Otsu threshold [62] on the the mean pairwise MI of all
possible pairs (computed as explained in Section 6.4) to select parts where co-
occurrence of the physical activity is relatively high. Traditionally, Otsu thresholding
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Figure 6.1: Mean co-occurrence measurement distance over time for all participants using Mutual Infor-
mation (MI) for Dataset 1. Moments that were reported as salient are highlighted in red, together with
number of times they were reported.

is used for converting grayscale images (continuous pixel values from 0 to 1) to black
and white (binary). Since our MI values also lay between 0 and 1, we employed
this method to detect moments of high physical activity co-occurrence. Figure
6.1 shows parts where the average MI for all pairs is more than the threshold,
in blue, as well as the favourite moments reported, in red, together with their
reporting frequency. Notice that all of the reported favourite moments show up
in the MI, including the two moments declared as favourites for the majority of
participants (motorcycle and bolero finale), and that most moments of high MI
correspond to reported moments. This shows that memorable moments for people
during these events can be captured by their coordinated movements, as they share
the experience.

Role of music
Second, the role of music during the performance is also interesting and we want
to understand its effect, if any, on the collective behaviour of the participants. To
do so, we looked at the sound intensity of the performance as obtained from the
video and annotated song changes. Figure 6.2 shows the sound intensity of the
performance (green) compared to the normalised co-occurrence measurement for
MI (blue). The performance’s songs are also highlighted in this figure in red. Here,
it can be seen that although the music had a correlation with the response of the
public in a performance in certain sequences, other moments of high mean MI are
also correlated with acts with no music. This suggests that the music may not
have been the only factor stimulating coordination between our participants. We
decided, therefore, that the song changes would not be useful for the classifica-
tion experiments (reported in Section 6.5) and focused solely on acceleration data
instead.

Impact of proximity
In this section, we analyse the impact of proximity in the enjoyment of the event.
For this event, the participants were seated throughout the performance, making
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Figure 6.2: Sound intensity of the performance (green) compared against the normalised co-occurrence
measurement calculated by MI (blue) for Dataset 1.

people’s relative location static. During the setup phase, we identified where each
participant was sitting during the performance and used this ground truth informa-
tion for the analysis in this subsection. Figure 6.3 shows the mean MI (calculated
over the whole event) between neighbouring participants (side, front and back neig-
hbours). In addition, red subjects represents those who did not enjoy the event
while the green ones did.

Figure 6.3 has 41 connections between neighbouring participants. Similar to the
former analysis, MI between two people is considered low if the value is less than
the Otsu threshold computed on all connected pairs. When all four neighbours are
considered, there are 15 and 12 connections of high and low average MI between
people who enjoyed the event, respectively. The values are 7 and 6 if only side
neighbours are considered. Higher number of connections with high MI shows that
proximity might have an effect on the evaluation but the low difference between
numbers of high and low MI connections makes it harder to come up with hard
conclusions.

We must also account for the people that came together to the event. The
groups of participants that are known to come together to the event are shown in
Figure 6.3 as dashed black lines. Although the pairwise MI and enjoyment of the
event is comparatively high for some of the participants that came together, this
does not generalise for all groups of acquaintances. Also, there are five cases where
two participants shared a high MI but their enjoyment of the event differed. We
hypothesise that such high co-occurrences in their movements are due to shared
comments or other shared actions that had no relation with the performance. We
cannot directly prove this hypothesis since we do not have video recordings of the
audience.
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Figure 6.3: Mean MI between participants sitting together during the Dataset 1. Green dots indicate
subjects who did enjoy the performance, red dots indicate subjects who did not, and black dots indicate
empty seats (or people for which no data is available). The width of the blue bars indicate the average
MI value throughout the performance, while dashed lines are non relevant MI relations.

Identifying sitting neighbours
In this section, we investigate whether we can leverage the proximity data to iden-
tify who is sitting close to whom. Basically, we are trying to see if it is possible to
construct a connectivity graph similar to Figure 6.3 automatically, using the proxi-
mity detections of our sensors. The proximity sensing is omnidirectional, however
how the shielding effect of the body influences the detection of individuals sitting
sideways, front or behind is unclear. Furthermore, even assuming neighbours can
be detected, it is unclear how far they can be sensed and how this relationship can
be characterised since no signal-strength is recorded by the sensors.

To start, one would assume that the closer two individuals sit together, within
the detection range of the sensor of 2-3 meters, the more frequently their nodes
will detect each other. With this assumption, we investigate which neighbours are
frequently detected through sensing by the following methodology:

1. For every node 𝑢።,፣ (participant sitting at row 𝑖 and column𝑗), count how often
each ID was detected over the duration of the event,

2. Keep top 𝐾 IDs as the candidate neighbours,

3. Check if these 𝐾 candidate neighbours correspond to:

(a) 1-Hop side neighbours(𝑢።,፣ዅኻ,𝑢።,፣ዄኻ )
(b) Front and back neighbours (𝑢።ዅኻ,፣,𝑢።ዄኻ,፣)
(c) 1 and 2-Hop side neighbours (𝑢።,፣ዅኻ,𝑢።,፣ዄኻ,𝑢።,፣ዅኼ, 𝑢።,፣ዄኼ)
(d) Diagonal neighbours (𝑢።ዅኻ,፣ዅኻ, 𝑢።ዅኻ,፣ዄኻ, 𝑢።ዄኻ,፣ዄኻ ,𝑢።ዄኻ,፣ዅኻ)

For evaluating a and b, 𝐾 is selected to be 2 and for c and d, 4. Frontal and
diagonal neighbours yield low recalls of 0.37 and 0.24 respectively, while 1-hop
neighbours yield precision of 0.62 and recall of 0.86. When we add also 2-hop
neighbours, we obtain a precision of 0.59 and a recall of 0.84. These suggest that
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Figure 6.4: Mean co-occurrence measurement distance over time for all participants using Mutual In-
formation (MI) for Dataset 2. The 2 main sets of the event are highlighted in red and the talks in
green.

some of the neighbours detected for the 1-hop neighbours (with 𝐾 = 2) are 2-
hop neighbours (lowering the precision), but 2-hop neighbours are not consistently
detected such that precision and recall are still similar with 𝐾 = 4. The other source
of error in precision in both cases are the rare detections of frontal and diagonal
neighbours, which are not detected consistently but sometimes appear in the top-K
list for some individuals.

To conclude, it is not possible to satisfactorily detect diagonal, front and back
neighbours through proximity sensing. However, the precision and recall values
obtained when classifying 1-hop and 2-hop neighbours show that it is possible to
detect who is sitting at the sides of an individual with some sampling of frontal and
diagonal neighbours. This information is valuable in analysing events where people
are seated but the seating arrangement is unknown.

6.4.3. Dataset 2
Same analysis of synchrony and salient moments in Section 6.4.2 was carried out for
this dataset. Figure 6.4 shows the mean MI among all participants along with the
separations between the sections of the event (parts and talks). One key difference
between the two datasets is their structure. Dataset 1 is collected in a continuously
flowing event with smooth transitions between scenes, whereas the Day of Wonder
has clearly delimited talks on different topics. This structure of the event can be
clearly seen in Figure 6.4, where after each talk a high MI value is observed. These
correspond to the rounds of applause by the audience and possible relocations of
people between talks. This behaviour was not present in the Dance Performance
as that event only had a single round of applause at the end of the performance.
We also see the highest peaks between the two talks and after the second talk
ends. People were allowed to leave at these points, corresponding to global high
co-occurrences of physical activity.

However, different than the same analysis of Dataset 1, we don’t see that many
peaks during the talks. There are possible factors related to the nature of the
event that can cause this. First of all, the crowd in this event was a mix of seated
and standing people. This might cause an overall drop at the global pairwise MI,
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since the volume of the reactions of seated and standing people are expected to be
different. Secondly and more importantly, there are many parts where everyone in
the audience reacts, such as the ending of the talks. Such parts are shown to be
have high global MI, and they might suppress co-occurring subtle responses to the
event (representative of salient moments in the talks) by increasing the threshold.
So, if the aim is to find salient moments in an event like this, moments like applause
or people leaving should be excluded from the analysis.

6.5. Immediate effects:
Analysing the performance

We investigate on both datasets, whether it is possible to predict questionnaire
responses about the performance from data collected with wearable sensors. The
participants of Dataset 1 were seated and watched an actual dance performance,
while the participants of Dataset 2 were not forced to sit and could come in and leave
at any time. In the following sections, we perform classification experiments, where
we present our methodology for automatically predicting a participant’s evaluation
of the events.

6.5.1. Classifying experience
Methodology
To emphasise the connection between the information contained in the motion data
and the participants’ experience of the event, in our classification experiments we
focus on a simple set of features and a well-understood classifier. Our features
are the variance of acceleration along each axis and of acceleration magnitude and
our classifier is a Linear Support Vector Machine (SVM [63]). Since the number of
samples is limited, we opted for a model with few parameters. We evaluated the
performance of our method with leave-one-participant-out cross validation. The
hyperparameters of the SVM are selected using nested cross validation on the trai-
ning set. Variance values of each window are treated as a features, resulting in
high dimensional feature vectors. Since we do not expect all intervals to be equally
informative, we used a feature selection filtering approach which selects the featu-
res corresponding to informative intervals. The steps of feature extraction, feature
(interval) selection and classification are presented below:
Feature Extraction

1. For each participant, compute variances of the X,Y,Z axes and the magnitude
of the acceleration using a sliding window of 2s with 1s shift, resulting in 4
features representing a specific time window of 2s.

2. Concatenate computed variance values for each window to obtain a single
representation (feature vector) of the whole event, per participant.

Feature (Interval) Selection

1. Compute Dynamic Time Warping(DTW) [64] values over the variances of the
magnitude of accelerations (computed with a sliding window of 2s with 1s
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shift) for each possible pair with a new sliding window. Each sample included
in this new window corresponds to a specific interval of 2 seconds. So, if
5 sample windows are used in the DTW computation, each computed DTW
value corresponds to 20 features in the feature vectors (4 features per each
2s window.)

2. Obtain a threshold with OTSU using all computed DTW values.

3. Select windows where the computed DTW scores are higher than the OTSU
threshold.

4. For each participant, keep the features that correspond to the selected win-
dows. For example, if 3 windows are selected in this phase, with DTW com-
puted over 5 samples, resulting feature vector for each participant will have
a dimension of 60.

Classification

1. For further dimensionality reduction, apply principal component analysis (PCA)
on the feature vectors. Keep the principal components which preserve the 99
percent variance of features.

2. For each participant 𝑝:

(a) Train a Linear SVM using the feature vectors of 𝑛 − 1 participants where
𝑛 is the total number of participants, excluding 𝑝.

(b) Classify the feature vector of 𝑝.

Our assumption for feature selection is that the intervals with significantly high
average DTW distances between each pair are more discriminative than the rest.
In an ideal scenario, intra-class distances should stay relatively stable throughout
the event, so the parts where the average DTW distance between pairs is high cor-
respond to intervals where the inter-class distances are maximised. We expect this
metric to provide better discrimination between classes than mutual information,
where windows with high mutual information would correspond to moments where
the classes would be almost indistinguishable, but requiring better synchronicity in
people’s movements. Empirical results using MI supported this claim, with perfor-
mance scores significantly lower than the proposed method for the majority of the
tasks.

Features (variance values) are computed over 4705, 2503 and 1293 windows
for the Dataset 1 and Dataset 2 Parts 1 and 2, respectively. Each window corre-
sponds to an interval of 2 seconds, where 4 features are extracted. The number
of remaining intervals after feature selection depends on the window size for the
computation of the DTW values, where we experimented with window sizes ran-
ging from 1 sample to 80 samples, each with a 1 sample shift. For Dataset 1, the
number of selected intervals ranged from 44 to 1065. For the first and second parts
of Dataset 2, number of selected intervals ranged from 166 to 802 and 55 to 935.
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After the PCA, dimensions of the feature vectors used in the classification experi-
ments of Dataset 1 ranged between 18 and 28, whereas the range for Dataset 2
was 15 to 22.

Results and discussion
In this subsection, the performances obtained for both datasets will be presented
and discussed in detail. Table 6.1 reports the performance results for both datasets,
for different window size selections and using the thresholded DTW distance for pre-
filtering salient intervals. This table also includes the performance scores obtained
without interval selection. The results that are statistically significantly better than
using the whole event are indicated with an asterisk. Significance was computed
using an asymptotic McNemar’s test with misclassification costs that are inversely
proportional to the class distributions. As mentioned earlier, the class distributions
are highly imbalanced in our dataset. In order to avoid artificially inflating our
results by favouring the most common class, we used weighting in the training of
our Linear SVM where the samples are weighted inversely proportional to the class
frequencies.
Dataset 1: The first thing we see that, without interval selection, the results (fi-
nal row of Table 6.1) are generally unsatisfactory. Any task other than predicting
recommendation has a balanced accuracy score at, or below, chance level. We
should note that we did apply PCA to the feature vectors for the non-filtered met-
hod. These scores showed that, without interval selection, PCA requires many more
components to keep the same amount of variance in order to model the many non-
informative intervals, supporting our claim of interval selection is necessary.

We were able to get perfect classification results for the “Enjoyment” task when
performing interval selection, with window sizes ranging from 1 to 20 samples.
In addition, all other window sizes still yielded significantly better performance
(p<0.05) compared to using the whole event or to a random classifier. It can be
seen that the performance tends to drop with increasing window size, suggesting
a small window size might be more suitable for detecting enjoyment. Further sup-
porting this claim, using data from the whole event fails to give results better than
random, strengthening the decision of pre-filtering with DTW. Even though compu-
ting DTW over single-sample windows might sound counter-intuitive, the filtering
approach is still able to find informative intervals. This works, probably because
even a single sample has temporal information, since its value is extracted from a
2 second window.

Results for the Recommendation task show similar characteristics to the task of
Enjoyment. Perfect classification, significantly better than the whole event approach
(p<0.05), is achieved with window sizes of 5 and 10 and the performance tends to
drop with the increasing window size. Interestingly, using features from the whole
event still provides performance better than random with a balanced accuracy of
65%. This might simply mean that recommendation can be inferred from the whole
event with an acceptable performance but some parts of the event might be still
more indicative, providing finer results.

The performance for the tasks of Immersion and Mood is relatively poor compa-
red to others. These tasks are less immediately related to the performance itself,
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Method \ BAcc (%) Enjoyment Recomm. Immersion Mood
DTW IS(1 Sample) 100∗∗ ∣ 48 ∣ 50 92∗ 58 ∣ 58 ∣ 100∗∗ 46
DTW IS(5 Sample) 100∗∗ ∣ 50 ∣ 50 100∗∗ 65∗ ∣ 65 ∣ 100∗∗ 47
DTW IS(10 Sample) 100∗∗ ∣ 48 ∣ 50 100∗∗ 59 ∣ 68 ∣ 90∗ 53
DTW IS(20 Sample) 100∗∗ ∣ 63 ∣ 50 92∗ 65∗ ∣ 58 ∣ 90∗ 56
DTW IS(40 Sample) 92∗∗ ∣ 53 ∣ 47 90∗ 52 ∣ 71 ∣ 94∗∗ 47
DTW IS(80 Sample) 81∗∗ ∣ 48 ∣ 44 73 52 ∣ 68 ∣ 84∗ 49
Whole Event 48 ∣ 48 ∣ 44 65 46 ∣ 68 ∣ 52 51

(* → p<0.1) (** → p<0.05)

Table 6.1: Prediction performances for both datasets. Scores for Dataset 2 parts 1 and 2 are shown in
bold and italic, respectively as second and third values at cells of Enjoyment and Immersion.

and may be harder to report objectively. For Immersion, highest performance is 65
percent, obtained with 5 and 20 sample windows which is still significantly better
than using the whole event (p<0.1). The performance for this task does not seem
to be changing too much between 1 to 20 samples, and fluctuates between 58
and 65. However, similar to the former tasks, using larger windows result in poor
performance, ultimately reaching 46% with the data from whole event. For the
Mood task, highest obtained performance is 56% with a window size selection of
20 samples. Most of the other window sizes resulted in performances worse than
random and the performance of the whole event (51%).

The changes in performance obtained with different window sizes for different
tasks have some interesting implications. Optimal window size for each task tends
to differ. This could suggest that some tasks are reflected in shorter time scales
than others. However, it can be also seen that most tasks performed best when
small to medium sized windows, indicating that large window sizes fail to capture
the connection between participants’ movements.

We experimented with computing DTW distances on the raw accelerometer
magnitude signal instead of the variance over a window. This experiment resulted
in performance scores that were worse than random for “immersion” and “mood”.
Highest balanced accuracy scores for tasks of “enjoyment” and “recommendation”
were 58 and 68 percent, respectively. For all tasks, using the variance rather than
raw signal in DTW distance computation resulted in relatively better performance.
We can conclude that variance in acceleration is a useful feature, both as a feature
for prediction and for the interval selection using the thresholded DTW distance.
This is probably because the variance of acceleration reflects the amount of mo-
vement rather than the precise movement and its direction, leading to more robust
recognition.
Dataset 2: As shown in Table 6.1, for the first part of the event, we were able to
obtain better-than-random performance for both tasks, but the very limited number
of negative examples make it impossible to make hard conclusions. The highest
performance for the Enjoyment task was 63%, obtained with a window size of 20
samples. Compared to the balanced accuracy of 48% obtained with the whole event
setup, this result supports the pre-filtering with DTW. However, all other window
sizes failed to capture any meaningful information, providing either slightly higher
or lower performances than a random baseline. This result is quite different than
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the first dataset one where high performances are obtained with many different
choices of window size, suggesting that optimal window size for a task might also
change with the characteristics of the event. For Immersion task, window size
choice seems to be quite arbitrary. Highest performance, 71%, is obtained with 40
samples. However, using features from the whole event also results in a balanced
accuracy of 68%which is not significantly different than the best score. Thus,for the
first part of this event, Immersion can be detected with an acceptable performance
without requiring filtering.

Results are quite different for the second part of the event. For the Enjoyment
task, most of the window sizes resulted in a balanced accuracy of 50%, showing the
classifier fails to learn anything from the data and always favours the majority class.
Multiple factors related to the characteristics of the dataset might have caused this.
First of all, we only had 2 negative samples in the whole dataset. Even though
it was also the case for the first part, having only one negative sample in the
training makes classification extremely hard. We believe the negative samples for
the first part were more informative than the second one, making it possible to
obtain better performance. Secondly, the length of the second part, is the shortest
of our all datasets. In order to capture a complex concept as enjoyment, temporally
large data might be required. Finally, this part was the closing act. Even though
majority of the people reported this part as one of their favourites, 1) there may be
a memory effect in play, where people report the event that’s most fresh in their
mind as the favourite, and 2) movement patterns of people might tend to change
when nearing the end of events, explaining the poor performance.

We were able to get perfect classification for the Immersion task with windows of
1 and 5 samples. Contrary to the first part, using the features from the whole event
results in a balanced accuracy of 52% and the results with filtering are significantly
better. This supports our claim that the optimal window size depends not only on
the task, but also on external factors to the task.

These follow-up experiments with an event of differing characteristics show that
whether people are standing or sitting does not really affect our capacity to analyse
people’s response to the event. Our proposed methodology still provides compe-
titive results, even in the quite unruly, noisy, real-world situation of these festival-
style event.

6.5.2. Further analysis of salient moments with respect to
enjoyment

It is interesting to revisit the salient moments of the performance in the light of the
classes identified in Section 6.4.1. For space reasons, we focus on the enjoyment
task. The pairwise similarity measurements from the previous qualitative analysis
were separated into two groups for each task: the ones who completely agreed
with the statement and everyone else. For each group, we computed the same
unified similarity measurement and obtained the salient moments as in Section 6.4.
Since the goal is to assess the similarity of people within the same class, we focused
on pairs within the class and left out pairs from different classes.
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Figure 6.5: Salient moments for the Dataset 1 from mean MI discriminating people in class ’Enjoy’ and
’Not Enjoy’
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Figure 6.6: DTW distance using a sliding window for each class in the enjoyment task in the Dataset 2.

Dataset 1
Figure 6.5 shows the measurements of mean MI over time (still using a sliding
window, same as Figure 6.1) for both classes in the enjoyment task. Notice how
the two moments considered as favourites for the majority of participants reappears
for the mean MI in the group that enjoyed the performance but not for those who
disliked it. Actually, there is almost no overlap between the salient moments for the
classes. This reaffirms that specific acts or sequences in a performance can have a
significant impact in the final assessment of enjoyment.

Furthermore, Figure 6.6 shows the mean DTW distance calculated over a sliding
window (similar to Figures 6.1 and 6.5) for members within the ‘Enjoy’ class (blue),
the ‘Not Enjoy’ class (green) and all pairs in opposing classes (red), separately.
The ‘Not Enjoy’ class resulted in a higher overall DTW distance over the complete
performance, compared to the ‘Enjoy’ class. This might indicate a lack of direct
synchrony among people who dislike the performance, which echoes findings by
Wang and Cesar with Galvanic Skin Response measures to an audience’s reaction
to a live performance [65].

Notice that there is a subtle difference between the measurements in Figures
6.5 and 6.6. The DTW distance measures the direct similarity between the two
signals, while the MI measures the co-occurrence in movement between signals
which also includes movements that are concurrently consistently different. This
might explain why not in all the moments where the DTW distance is high, the MI
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Figure 6.7: Salient moments for the Dataset 2 from mean MI discriminating people in class ’Enjoy’ and
’Not Enjoy’

is low.

Dataset 2
Figure 6.7 shows a similar analysis of pairwise MI, separating the responses bet-
ween people that did and did not enjoy the event. Due to the separation of this
event into 2 parts, the mean MI over time of each group was calculated separately
(for each part) and then concatenated for visualisation. The questionnaires have
scores for each part but not separations between talks. Thus, a talk by talk analysis
was not possible. Similarly to Figure 6.5, Figure 6.7 shows a difference between the
MI from the people who enjoyed the event and those who did not. However, for
this event, the peaks in pairwise MI do overlap for the classes implying that some
parts of the event caused a mixed reaction. In addition, a difference between parts
1 and 2 can be seen for the movement of the people that did not enjoy the event.
Overall, the MI peaks are more sparse in part 2 compared to part 1. As mentio-
ned, this first part corresponds to 3 TED-X style talks, where the most of the dislike
peaks are localised in the surgery talk, which might imply that the topic was unple-
asant for these participants. On the contrary, part 2 corresponds to classical music
presentations and the peaks are sparse within the performance. This suggests that
the participants who dislike the performance might have an overall dislike of the
classical music than those who did enjoy the presentation.

6.6. Delayed effects:
Analysing social behaviour

There is clearly a context that surrounds the event itself — typically, people will
attend a performance with friends and/or family, may come for a drink beforehand
and stay for more afterwards. We hypothesised that people’s social behaviour could
also be affected by watching a performance. As a business model, HD was already
co-organising networking events around dance performances together with two
local networking organisations. The idea was that the dance performance could be
an occasion to enhance the networking event, and the co-located networking event
would encourage more people to watch dance.
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Figure 6.8: Snapshots of the instrumented mingling room.

To investigate this hypothesis, we decided to investigate whether we could me-
asure differences in how people socialized during the event. Hence, we measured
mingling behaviour during two networking sessions, one right before a dance per-
formance and another right after it. With HD and regional networking groups, we
co-organised a networking event with 48 (35 of whom had valid data) volunteers,
which were instrumented with the same sensing devices described in Section 6.3.
An example snapshot of the mingling data is shown in Figure 6.8. Although a net-
working event differs in some ways from the more casual meetings that people
might attend socially after live performances, we believe this initial investigation
provides a feasibility study for larger-scale, less controlled studies in the future.

Similar to previous work using proximity sensors to analyse social behaviour in
conferences [55], musea [54], and work-places [66], we used proximity sensors as
proxies for face-to-face social interactions, together with accelerometer data.

6.6.1. Setup
Volunteers participated, in this order, to an initial networking session, a dance per-
formance, and a second networking session. After the second session, people were
asked to fill in a questionnaire. We conjectured that attending the dance perfor-
mance may cause differences in 1) duration of the interactions, 2) the number of
people that a person might interact with at a certain time, i.e., the size of interacting
groups, and 3) how many people a person would interact with over the duration
of the networking session. In addition, we evaluated whether we could predict
self-reported changes in their mood from our participant’s measured behaviour.

We measured whether people were interacting or not by processing the proxi-
mity detections (which is explained Section 6.3.1) collected by the devices as fol-
lows. We used a density-based filtering technique to increase the sensitivity of the
signal for detecting face-to-face proximity [67]. For each pair of individuals, we
computed the intervals where pairs were continuously facing each other, formally
[𝑡። , 𝑡፣] where 𝑡። is the timestamp of the first detection and 𝑡፣ is the timestamp of the
last detection of the interval. Because pairs can be close for multiple time intervals
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Figure 6.10: Distribution of the number of interacti-
ons for round 1 and round 2 across all the individu-
als.

during the same measurement, we computed multiple intervals for the same pair.
Here, we refer to an interval of proximity between any pair as an interaction. For
our experiments we considered only intervals of proximity longer than 60 seconds
to indicate interactions.

6.6.2. Proximity-based results
Our first conjecture is that there might be a difference in the length or the number
of interactions between the two sessions. In Figure 6.9, we present the distribution
of the length of the interactions for the two networking sessions (from here on re-
ferred to as round 1 and round 2) across all the individuals. In both rounds shorter
interactions are predominant. During both rounds, individuals often left a conver-
sation to fill their glass and went back right afterwards to the same conversation,
which would be measured as two distinct interactions. No significant mean diffe-
rence was seen between the distribution in interaction length for the two rounds.
In Figure 6.10 we present the distribution of the number of distinct interactions for
round 1 and round 2 across all the individuals.

Our second conjecture is that the size of conversational groups might change.
For example, people could be engaged in conversations involving more people, or
conversely more one-to-one conversations, perhaps to discuss the content of the
performance. We define a neighbourhood as the set of nodes a sensor 𝑎 detects at
a given moment in time, i.e. the individuals in physical proximity of the individual
wearing sensor 𝑎. In Figure 6.11 we present the distribution of neighbourhood size
with respect to the amount of time they were observed together, expressed as a
ratio over the round duration. In other words, it represents the amount of time
individuals have spent in proximity to another 𝑛 individuals. The results show a
peak around four individuals, a reasonable group size for a conversation. Similar to
the interaction lengths, the two distributions look very similar.

The third hypothesis regarded changes in conversational partners. For example,
people could be interacting with the same individuals as before the performance, or
be stimulated to engage with others. To this end, for each individual we computed
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Figure 6.12: Distribution of the jaccard similarity
across the individuals.

the Jaccard similarity between the set of participants an individual has interacted
with during the two rounds. Given two sets of IDs 𝑅ኻ and 𝑅ኼ, the Jaccard similarity
function is defined as 𝐽(𝑅ኻ, 𝑅ኼ) =

|ፑኻ∩ፑኼ|
|ፑኻ∪ፑኼ|

and computes a value in the interval [0, 1].
Figure 6.12 presents the distribution of the Jaccard similarity across all individuals
between round 1 and round 2. The results show that although the mingling pattern
of the individuals did not change between the two rounds, they did interact with
different individuals. In particular, they changed at least 50% of their interaction
partners between round 1 and round 2 (mean 0.278 and standard deviation 0.121).

6.6.3. Acceleration-based results
The image emerging from the above proximity measurements is that of an ordinary
mingling event. Overall, these results indicate that the volunteers, as a group,
applied a consistent pattern in their mingling behaviour during the two rounds, a
pattern that they used, however, to target different conversational partners between
the two rounds. The measurements picture a socialising context, but it is difficult
to reach conclusions about the impact of the performance. For this reason, we
focused on the acceleration data as well.

Similar to the direct approach, we used variance in the acceleration magnitude
as the main feature. We then correlated the participant’s self-reported behaviour
with our findings. Correlation between the answers to question ”Do you think the
performance had an effect on your mood? Yes|No” and the difference between
the acceleration magnitude variance in round 1 and 2 is computed. Since not all
participants filled in the post event-survey and some accelerometers failed due to a
firmware bug, we were only able to use the accelerometer data from 14 participants.

The variance values are extracted using the whole intervals for round 1 and 2.
A statistically significant (𝑝 = 0.02) positive correlation value of 0.60 was obtained
between the variance in acceleration and a self-reported effect on the mood. This
correlation supports our hypothesis that the mood change can be linked to impli-
cit behaviour as measured by acceleration. In conclusion, the results suggest that
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while individuals acted similarly as a group in terms of networking behaviour cap-
tured by the proximity sensors, the quality of those interactions seemed different
between the two sessions, as captured by the accelerometers.

6.7. Conclusions
In our study, we have investigated how an audience’s perception of a performance
can be perceived and measured from their body movements using an accelerome-
ter that exists typically in smart phones. We have presented our results on two
datasets which were collected during two live performances with different charac-
teristics, both in terms of the performance itself and the audience demographics.
Using findings from appraisal theory and affective studies that show how a stimulus
creates an affective response and that response can be connected to experience,
we analysed whether subtle and complex concepts — such as “enjoyment”, “im-
mersion”, an improvement in mood as a result of the performance, and whether
participants would “recommend” dance in general — would be reflected in the body
motion measured by a simple accelerometer hung around the neck. Using the va-
riance of the acceleration, we were able to predict the audience’s self-reported
experience in both events, in terms of aforementioned complex concepts.

Importantly, joint coordination in the variance in acceleration, the linkage in body
movements of participants, helps to distinguish salient from non-salient moments
of the performance. Knowing these leads to significant improvements over using
each person’s body movements from the entire performance period. We analysed
how the spatial layout of a seated audience might affect its members’ experience of
the performance and presented a proximity-based method that can automatically
detect neighbouring participants with satisfying performance.

As well as the obvious usefulness to the entertainment industry of such direct
measurements of an audience’s reaction, we have also made an attempt to measure
the role that a live performance can have on the social behaviour that precedes
and follows it. Our experiments shows huge promise in enabling us to measure
the implicit responses of people while watching a live performance without the
need for more traditional sensing approaches using physiological or brain signals.
However, and perhaps more importantly, our experiments demonstrate the potential
of quantifying the experience of ‘a cultural night out’, highlighting the relevance of
the social context in moderating an individual’s enjoyment of an event.

6.8. Appendix
Post-event Questionnaire (English)

1. The dance performance was interesting.(∗)

2. The dance performance was exciting.(∗)

3. The dance performance was enjoyable.(∗)

4. I lost track of the world while I was watching the dance performance.(∗∗)
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5. I still paid attention to my surroundings while I was watching the dance
performance.(∗∗)

6. I was completely captivated by the dance performance.(∗∗)

7. I will definitely want to come to another dance performance again.(∗∗∗)

8. I will recommend dance performances to my friends.(∗∗∗)

9. Dance performance was worthwhile.(∗∗∗)

10. This dance performance uplifted my mood.(∗∗∗∗)

11. This dance performance energized me.(∗∗∗∗)

12. This dance performance made me feel more cheerful.(∗∗∗∗)

13. It was natural for me to wear the sensors during the performance

14. Did you came with friends or family?

15. Did you have a favourite moment? If yes, please describe it.

Post-event Questionnaire (Back-translated Dutch)

1. De voorstelling was interessant.(∗)

2. De voorstelling was opwindend.(∗)

3. De voorstelling was aangenaam.(∗)

4. Ik vergat de wereld om me heen gedurende de voorstelling.(∗∗)

5. Ik had gedurende de voorstelling aandacht voor mijn omgeving.(∗∗)

6. Ik was volledig in de ban van de voorstelling.(∗∗)

7. Ik kom zeker terug voor een andere dansvoorstelling.(∗∗∗)

8. Ik zal dansvoorstelling aan mijn vrienden aanraden.(∗∗∗)

9. Dansvoorstellingen zijn de moeite waard.(∗∗∗)

10. Deze dansvoorstelling heeft me opgebeurd.(∗∗∗∗)

11. Deze dansvoorstelling heeft me een energetisch gemaakt.(∗∗∗∗)

12. Deze dansvoorstelling eeft me blij gemaakt.(∗∗∗∗)

13. De sensoren voelden gedurende de voorstelling niet onnatturlijk ann

14. Bent u met wrienden of familie gekomen?

15. Had u een favoriet moment? Zo ja, gelieve dit te omschrijven:
(∗)Enjoyment [59], (∗∗)Immersion [60], (∗∗∗)Recommendation [61], (∗∗∗∗)Mood.
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Discussion

The ultimate end of all revolutionary social change is to establish the
sanctity of human life, the dignity of man, the right of every human being to

liberty and well-being.

Emma Goldman
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In the former chapters of this thesis, we identified some limitations of computa-
tional social behaviour studies and addressed these limitations by providing novel
solutions. We focused on the use of wearable sensing (mostly accelerometers) and
presented our results on data captured in-the-wild from real life experiments.

In Chapter 2, as an answer to the limitations of traditional audio and video sen-
sing in crowded scenarios, we proposed to use accelerometers for the detection
of social actions and focused specifically on speaking. We showed empirically how
peoples’ movements vary greatly while speaking, demonstrating that the manife-
station of speaking through body movements is highly person specific. In order to
address this issue, we used a transfer learning approach, Transductive Parameter
Transfer (TPT), which significantly improved upon traditional person independent
approaches. We compared the detection of speaking to the less person specific
activity of walking and found that performance differences between a traditional
method and TPT were indeed smaller. In order to experimentally demonstrate the
challenges of experimenting in-the-wild, we organised a small experiment where a
participant imitated speaking, walking and standing in a structured way. The high
performances obtained for this setup showed how controlled lab experiments fail to
capture all the possible variations of actions in a real life scenario. We also analysed
the transfer source quality and identified that there is no single perfect source for
everyone. However, some participants were found to be optimal sources for the
majority of others. Interestingly, no connection between the quality of a source
and it’s person dependent performance, actual physical distance to the target, gen-
der, or similarities of the data distributions were found, showing it is most probably
related to something more inherent such as personality.

Following on from the study in Chapter 2, we compared the classification of dif-
ferent actions such as speaking, stepping and gesturing in Chapter 3. Our results
further demonstrated that there is a direct connection between the physical mani-
festation of the action, annotation quality and the classification performance. We
tried to identify the minimum amount of data required for covering all variations in
actions by experimenting with gradually increasing training set sizes. Performances
for both TPT and a traditional setup seemed to converge when at least 3 minutes of
data from each participant were used for training, identifying an empirical minimum
limit. The higher performance of TPT with a low number of samples in the training,
for both speaking and stepping, made it preferable for scenarios where obtaining
large amounts of training data is not possible. TPT outperformed the traditional
person independent setup for classifying speech regardless of the data size but fai-
led to do so for the less person specific action of stepping, supporting the results of
the former chapter. Performance scores obtained with the setup where the number
of samples were increased in a chronological order showed that there are indeed
parts of the event that are more informative than the others. To conclude, our
results showed that identifying such intervals and using a personalised approach
such as TPT, acceptable performance can be still obtained for small training sizes.

In Chapter 4, we focused on the detection of conversing groups using social
dynamics, coordination of partners’ actions and movements, rather than the prox-
emics widely preferred in the literature. In order to account for various interaction
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dynamics that can arise in non-controlled real life scenarios, we presented a novel
approach that has ‘group size awareness’. Our proposed method out-performed
the state-of-the-art by dynamically selecting classifiers trained on data from diffe-
rent sized groups and estimating final membership of a new sample by fusing the
selected classifiers’ probability outputs. Further analysis of how group size based
classifiers perform on data from groups of specific cardinalities where classifiers and
test sets matched in terms of group size performed the best, strengthened the need
for such an approach. We also found that the importance of features changes with
respect to the group cardinality suggesting that when modelling the characteristics
of different sized groups, different representations might be needed. Finally, we
presented an analysis of our results based on the roles in the interaction, suggesting
new directions for the research on the detection of groups.

Chapter 5 acted as a proof of concept study where we used speaking statuses
and group memberships for classifying a higher level social concept; personality.
We focused on a real life mingle event, which is not traditionally considered in
the literature for personality detection, and showed it is still possible to infer this
information in such a complex scenario with a non-traditional sensing medium. Per-
formance differences in the estimation of various traits showed that some sensing
media might not be optimal for recording all behavioural aspects of the personality.
Most importantly, our results showed that it is possible to imitate two behavioural
cues (speaking and movement) from a single digital modality (acceleration) and
their joint use results in better estimation performance.

Chapter 6 investigated how the social context moderates an individuals’ eva-
luations of an event. During various live performances, we captured reactions of
the audience with mobile sensors and used the linkage between these spontane-
ous reactions to evaluate different aspects of participants’ appraisals of the event,
such as enjoyment and immersion. We showed that the linkage of participants’
body movements are representative of an events’ informative parts. Intervals with
high linkage were found to be highly correlated with the salient moments reported
by the participants. We then used the linkage levels to detect intervals that are
highly informative and used samples from only these intervals to automatically es-
timate participants’ evaluations. This procedure was shown to be successful since
the method without interval selection performed poorly compared to the method
using it. Finally, we investigated how attending a live performance might affect an
individuals’ social behaviour. We did so by organising a two session mingling event
with a dance performance in the middle and quantifying the differences between
participants behaviour in the two sessions. The high correlation between an indi-
viduals’ physical activity level and the self reported effects of the performance on
their mood suggested that the experience of an event might change the subsequent
social behaviour.

While conducting the research presented in this thesis, we were able to identify
current weaknesses that are yet to be addressed, new challenges, and possible
directions to follow. In the following subsections, we will mention and briefly discuss
some limitations of our work, present possible directions for future research, and
identify general issues in the computational social behaviour understanding domain
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that need to be addressed.

7.1. Who to transfer from? Finding good sources
when estimating socially relevant behaviour

In Chapter 2, we argued that personalised concepts, such as the connection bet-
ween speaking and body movements, require approaches that can provide persona-
lised models. Although we studied the specific context of speaking, we believe this
to be valid for any person specific concept. TPT, the method we proposed as the
solution, computes personalised models with transfer learning by regressing over
the parameters of source datasets of other participants. Theoretically, TPT should
inherently suppress bad sources since it computes the similarities between data
distributions of participants and the transfer occurs with respect to this similarity.
However, our further analysis of source quality showed that the distance between
data distributions is not enough for finding the optimal sources for a specific target.
By exhaustive search, we were able to identify optimal source sets for each target
and found some participants to be better sources than the others. Thus, as future
work, the following questions should be answered: Which properties make a good
source? If the similarity of data distributions is not enough for identifying the best
subset for training, what can?

We analysed the importance of gender and the actual physical distance on
source quality but could not find any meaningful connections. We were able to
find some cues related to the personalities of good sources for them to be extro-
verts and open to experience but these cues were not enough for solid conclusions
to be made. However, these cues point to a highly possible direction: The quali-
ties that make a good source are inherently personal and might be more complex
then expected. The question to answer then becomes: What factors can make two
people act similarly when they are speaking (or behave similarly in general)?

There are various possibilities covering personal and social characteristics of pe-
ople, both short and long term. We already briefly investigated how personalities of
individuals can make them good sources. If we were to speculate, we can say that
it might be more than just one persons’ personality that make them good sources
but the similarity between personalities of people might cause them to act similarly.
Another possibility is the mood of the participants, how they are experiencing the
interactions that they are in. This might change how people behave and people
with similar moods and experiences might behave in a similar manner. At a finer
granularity, even the roles in the current interaction might temporarily change be-
haviour characteristics. We can then argue the detection approach for behaviour
should be more dynamic and temporally aware. Perhaps the differences are related
to longer term constructs, such as the cultures of different societies. Some cultures
are known to be more expressive than others in interaction. The crowd of the event
of Chapter 2 was formed by many international students and this property might
have an effect on the source quality. None of the possibilities mentioned here are
investigated thoroughly yet and stand as open questions. Answering them will give
us a better understanding of the underlying factors of social behaviour and allow
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us to provide satisfactory solutions.
The problem of finding people that express their behaviours similarly, can be

formulated more generally, outside of the scope of transfer learning. If we were to
identify people that are expected to act similarly, we can specify a subset to use
for training our models. Recommender systems already do something similar by
suggesting content that are known to be liked by friends and people with similar
tastes, neglecting data from millions of others. However, the problem we have is
much more complex. Since there are no direct categorisations of behaviour, cor-
rectly identifying similarities or concepts contributing to the similarity of behaviour is
quite challenging. Even assuming we can do this satisfactorily, there is also another
dimension to consider; ethical constraints. Take personality for example. Even it is
common practice in today’s work application procedures, categorising one’s perso-
nality traits without their permission can be considered as profiling and obtaining
strictly personal information. Even identifying one’s nationality is quite sensitive
and can be interpreted as intrusive. One possible direction is directing the research
on context sensing. Without going into areas that might be private to some, if we
manage to model the context that the people are in, we can analyse how it affects
their behaviour and use this knowledge for the task at hand. However, the problem
of sensing context in real life scenarios is quite difficult to solve. We believe, ana-
lysing behaviour in the longer terms and in relation to others can be a good point
to start. The context information will also allow us to detect similarities between
events with different characteristics, aims, and atmospheres and make knowledge
transfer between them possible.

7.2. Social dynamics in group detection: Chal-
lenges for a new frontier

In Chapter 4, we showed that social dynamics, coordination of people’s actions,
and movement, are indeed rich information sources for the detection of conver-
sing groups. However, the results we obtained were still flawed in some aspects.
Even though our proposed approach is specialised to capture various interaction
dynamics arising in different sized groups, detailed analysis of the results showed
that we are still far from satisfactorily capturing some types of interaction, such as
speaker-listener behaviour. In order to use the full potential of the rich information
embedded in dynamics and provide solutions that will significantly outperform tradi-
tional proxemics based approaches, the current weaknesses need to be addressed.

One aspect that is not investigated in Chapter 4 is the role of a participant in
the interaction. This information can be used to analyse the performance of pairs
or can be employed in the training in a similar manner to group cardinality used
in Chapter 4. We believe that utilising the role information is an interesting future
direction that might provide insights into the nature of the problem. Most basic
approach in this direction is defining two roles (speaker and listener) which results
in three possible interaction types: Speaker-Speaker, Speaker-Listener and Listener-
Listener. In order to define the roles, simple heuristics on the speaking statuses
of the participants can be used. However, we believe for capturing all possibilities
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of interaction, a more detailed representation might be needed. We can argue
that there are various types of speakers and listeners, some speakers are more
dominant, some listeners are more responsive and active than others, etc. The
behaviour of specific roles might also change with respect to the group size the
participants are in. Not considering these varieties in behaviour will result in poor
representation. However, it should be possible to model these varieties at least to
some extent and obtain a more detailed role representation. One can expect active
listeners to be more physically active which can be measured through acceleration.
They should use backchannels such as head nods or short vocalisations more which
can be extracted through their social action streams. For the speakers, a similar
approach that takes their physical activity levels and statistics of their social actions,
individually and with respect to other group members, into consideration will make it
possible to obtain a more detailed categorisation (dominant-nondominant speakers,
for example). With a more detailed representation of the roles, it might be possible
to move from role based analysis to actually using this information in the training
phase of the model itself. A mixed representation that considers both complex roles
and group sizes should be able to cover more variations of interaction dynamics.

As mentioned in Chapter 4, the majority of the work that aims to model social
interaction generally focused on strict dyadic interaction and proposed ways of re-
presenting this behaviour through concepts like synchrony, coordination of actions,
and mimicry [1]. Even most of the features we used aim to represent one to one
interactions where a specific pattern of action is followed (first participant speaks,
signals the other, stops speaking and the second one starts speaking, etc.). By
the addition of gesturing into the equation and providing some statistical measures
related to how they coincide with speaking, we tried to model backchannels that
are typical of listener behaviour. It was successful to some extent since our met-
hod provided better performance than approaches that only focuses on speaking
related joint measures.

However, we believe that our attempts still do not fully represent Speaker-
Listener and Listener-Listener pairs. To obtain a better representation, as a first
step, the importance of our features with respect to the roles can be analysed, in
a similar manner to the group size analysis done in Chapter 4. In this way, we
can identify subsets of features that are more informative for each role pair. While
doing so, having a better categorisation of roles will help to identify more precise
and specialised subsets. Finally, we can define new features that are more power-
ful representations of these concepts. There are two possible paths to take here.
First, we can rely on representational learning methods where features will be auto-
matically extracted by an artificial neural network. This will of course require huge
amounts of data and the interpretability of extracted representations will be low.
The second possibility is to consult social science findings on group behaviour. By
identifying distinguishing aspects of speaker and listener behaviour with the help of
social science and devising ways to computationally represent them, we may finally
be able to model all possible interactional role pairs.

At the end of Chapter 4 as future work, we mentioned the use of a post-
processing step that moves from pairwise representations to a connectivity graph
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including all participants which is a more general representation of the scene. In
our current methodology, all the representations are pairwise, training and esti-
mation is performed on pairwise data samples. We already discussed some ways
of achieving this final connectivity graph using existing methods in the literature
[2] and providing a possible formulation where posterior probabilities obtained by
classification are used as edge weights in the graph.

A more interesting question is having a complete representation of the scene
from the start. Instead of performing classification on pairwise representations,
we could try to train and test our computational models on the whole data of a
scene represented directly as groups. Such an approach will need to consider all
possible groupings for all participants for the feature extraction, training and tes-
ting phases and will be extremely computationally complex. However, there could
be ways to reduce this complexity by considering only plausible groupings that are
detected through additional information. One additional information source is proxi-
mity. Instead of completely disregarding proxemics for conversing group detection,
we can utilise this information for better estimation. Only considering possible grou-
pings of participants that are spatially close will already reduce the complexity a lot.
We could then fuse the two main components of interaction, proxemics and dyna-
mics, and obtain a complete representation of a scene directly.

7.3. Joint estimation of actions and interactions
In our experiments of Chapters 2, 3, 4, and 5 we treated the connection between
social actions and interactions to be one-way. That is, we assumed that the social
actions of an individual were estimated solely from that person’s sensor data. So no
information from the behaviour of others who they are interacting with was used
to estimate their behaviour. The first thing to investigate is how the information
from interacting partners can be utilised for the better estimation of social actions.
If we know the actions of other people in the group, we can use this information
to refine the social action estimations of the current participant. For example, it is
quite unlikely that two people in the same group are speaking at the same time.
We implicitly used this while detecting conversing partners but did not try to use it
for the detection (or the refinement) of the social actions. However, while trying to
detect social actions of a person, requiring the knowledge of the social actions of
their interacting partners is a chicken and egg problem. A more realistic approach
will be using the raw data from interacting partners as additional cues in the de-
tection process. Of course, such an approach will still require the identification of
interacting partners. A noisy estimation of this can be obtained through proximity
sensing.

However, the most interesting and challenging problem is the actual joint esti-
mation of social actions and interactions, where no information regarding the both
is present beforehand. Since we argue that they influence one another, estimating
them simultaneously in the same classification procedure might be the optimal way
for detection. This joint estimation is of course more complex than separately esti-
mating actions or interactions but might be achievable by a well defined joint cost
function and an optimisation procedure. Currently, we are not proposing any final
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formulation but an optimisation procedure that alternates between minimising two
cost functions corresponding to the existence of an action and the interaction sta-
tus seems like a plausible option. As a starting point, this joint estimation problem
can be realised in a pairwise manner where two individuals’ social actions and their
interaction status are simultaneously estimated. A harder challenge will be incor-
porating this into the direct group sensing we mentioned in the former subsection.
We believe, this is one of the directions that needs to be investigated for obtaining
more refined estimations of both actions and interactions.

7.4. Socially relevant appraisal analysis: Inter-
pretations to facts

The study presented in Chapter 6 acts as a first step in utilising the social aspect of
being together with others while attending a cultural event. It mainly focused on
the detection of the informative parts of the event through the linkage of audience
responses and utilised such moments to distinguish between audience members
with differing evaluations. Various interpretations of the results are presented and
possible hypotheses related to the factors affecting these results are proposed. One
example is why there were some people coming to the event together that had high
mutual information throughout the event but their evaluations were different (the
hypothesis was that their high linkages were unrelated to the what was happening
during the event). There are various examples of such hypotheses throughout the
study and most of them are not experimentally confirmed. This study identified a
possible direction that is worth investigating rather than drawing solid conclusions.

One possibility for reaching solid conclusions is capturing more information with
more modalities of sensing. We actually installed IR cameras for one of the ex-
periments, aiming to visually capture the movement patterns and reactions of the
audience. Sadly, the video quality was not good enough to reach any robust conclu-
sions. Better quality video data of the audience should make it possible to visually
confirm some of the hypotheses. Especially for unconstrained scenarios like the
second case study presented in Chapter 6, such information will be quite valuable
since it will be easier to identify audience members that are sitting, standing or
leaving, etc. . In this way, specialised approaches for these possible variants can
be developed. Another complementary modality that will be helpful in verifying our
approach is physiological sensing. Physiological sensing is traditionally used in the
literature for detecting emotional responses of people to external stimuli [3, 4]. The
connection between some physiological data (heart-rate, skin-conductance, etc.)
and emotions are well studied in Affective Computing. Thus, using this modality
together with acceleration will help us identify more inherent reasons for reacti-
ons we detect in acceleration, allowing us to have a better understanding of our
results. However, we should be clear that we are not proposing to use video or
physiological sensing as parts of the final solution. We propose instead to use these
complementary modalities to verify the information we obtained with accelerome-
ters, experimentally confirm the hypotheses, and finally to develop our acceleration
based algorithms with respect to these findings.
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Apart from insufficient verification of the results, there were also some expe-
rimental shortcomings in Chapter 6 which are mainly related to the generalisation
capabilities of the method. First of all, in all the experiments, the number of nega-
tive evaluations were generally quite few. From a pattern recognition perspective,
this might result in poor representation of the negative class. We might not be cap-
turing all possible variations of audience members with negative evaluations. Also
the method is only tested on a limited number of datasets, two to be exact. Even
though we had organised a follow up experiment to verify our methods, the setup
of this second experiment had different characteristics. So, this follow up experi-
ment showed how the method generalises to events with different characteristics
but provides no information on how the method will work on a different iteration
of the same event. Conducting more experiments, with similar and different cha-
racteristics, will allow us to capture a more varied set of audience evaluations and
will provide a better assessment of the robustness of the approach. To conclude,
this study paves the way for further study but in order to generate more conclusive
findings, more detailed analysis and further experimentation is needed.

7.5. Computational social behaviour research: Ge-
neral advice and concerns

As the closing section of this thesis, we first want to briefly mention what the
contributions of this thesis mean for the domain of behavioural computing more
generally. This thesis mainly focused on the use of wearable sensors, more specifi-
cally accelerometers, for social behaviour understanding, showing how informative
body movements are. So the main aim is to direct future research into this specific
direction. More specifically, we (i) advocated focusing on generalisable persona-
lised models for inherently personal concepts, (ii) suggested a new direction for
group detection studies based on the dynamics of social interaction by providing
a group size awareness based solution to the complexity introduced by the many
possible variations of interaction dynamics, (iii) showed how personality traits can
be classified in a complex real life scenario using the social actions and interaction
information, and (iv) showed the importance of the social aspect of attending an
event and how it affects the evaluations of participants. We believe that all the
chapters in thesis provide novel ideas to follow for researchers in social behaviour
computing.

As the final remarks, we would like to discuss more general ideas, recommenda-
tions, and concerns regarding the future of computational social behaviour research
and even the AI domain in general. First of all, we would like to mention again the
importance of experimenting in-the-wild. As the small experiment of Chapter 2
already showed, capturing all the variations of social phenomena is rather difficult
in controlled lab experiments. However, capturing and working on real life data is
quite difficult for many reasons [5] and because of it, a concern is that researchers
are reluctant to do so.

This brings us to the second point of our discussion; data sharing and repro-
ducibility of the experiments. Reproducibility is already a concern for nearly all
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domains of research. We might argue that socially related computing is one of the
domains in AI where data collection is the hardest. It is not possible to obtain real
life datasets for the analysis of social concepts by crawling through thousands of
web pages, extracting images with respect to the tags and retrieving annotations
by assigning HITs on Amazon Mechanical Turk. We are not trying to undermine
the efforts of such studies but capturing a real to life event requires more precise
work and can not be automated easily. The experiments need to be precisely de-
signed by considering all possible scenarios, people need to be recruited to attend
the event and annotators need to be trained for labelling the data. If some part
of the experiment design fails, the whole experiment might fail, resulting in no va-
lid data at all. In such a case, repeating an experiment is not easy. With these
properties in mind, we might argue that data sharing is even more important for
social understanding studies. With more and more people collecting and sharing
data, it will be possible to test the generalisation capabilities and the reproducibility
of the proposed approaches. Thus, the data collection procedure should not be
undermined and it should be seen as an essential part of the research.

Finally, we would like to say a few words about the ethics of the studies in social
behaviour computing and AI in general. We already mentioned how the sensing
procedure should be private but we think it is just a part of the whole picture.
The ethical implications of AI research are already debated heavily where the main
focus is on subjects like what AI should do in an ethical dilemma, automation of jobs,
and if robots will kill us one day or not. Even though we believe each one of these
are valid discussion points, they partially miss what is already happening today.
AI is already being used for many different purposes in various domains such as
business, politics and security, having vast societal impacts. Hopefully, this aspect
is seeing more interest nowadays, even having its own specialised conference being
organised (e.g. the ACM Conference on AI, Ethics and Society).

If the input of the computational models are human data and the output is the
interpretations of their behaviour, just like in social behaviour computing, ethics be-
come more important. Apart from the requirements for data collection, we believe
one of the most important aspects is how the results of computational methods are
interpreted. Computational methods or AI in general are not perfect. They ‘learn’
through data and if the data is already biased, its results will be also biased. Inter-
preting the outcomes of computational models directly as facts is then extremely
dangerous, if the data is not properly analysed beforehand. Especially with the
rise of representation learning where all the features are automatically learned and
hard to interpret for humans, more and more studies with poor analysis are being
published. So, we believe before making any final conclusions, researchers should
know the data well with all its aspects, identify its shortcomings and biases, and
construct their narrative with respect to this knowledge. Thus, as the concluding
few words, we can say that we support more shared, real to life, ethical and pri-
vacy preserving sensing and analysis, and propose these properties as necessities
for further research.
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Summary
Understanding human behaviour has sparked the minds of many throughout cen-
turies. One intriguing aspect of human behaviour is the social part; how humans
react to each other and their environment. Scientifically studying such behaviour
is hampered because of the need for manual annotations, so that social scientists
limited themselves to observing only short time intervals in limited settings. With
the growing processing power of computers and increasing possibilities of robust,
continuous, and mobile sensing, collecting and analysing large amounts of real-life
behaviour data has become possible. Moreover, computational methods make it
possible to go beyond traditional approaches for social understanding, since they
detect patterns that are not easily distinguishable for humans.

However, even with powerful computational models, investigating human be-
haviour is quite challenging as behaviour is personal and contextual, resulting in
huge variations. This thesis proposes novel computational solutions for analysing
human social behaviour. It focusses on data collected from people with wearable
accelerometers in crowded events where people freely mingle with each other. It
provides solutions to robustly detect actions and interactions, as well as how to use
the detected information to derive higher level social understanding.

The thesis starts by introducing novel ways of detecting social actions and in-
teractions. To deal with intra personal variations, we show how general action
predictors can be adapted to become personalized models using the transfer lear-
ning methodology. Further, we show that the detection of conversing groups can
be deduced from interaction dynamics, instead of the mainly preferred modality of
proximity. Large variations of interaction patterns that might arise in unrestricted
scenarios are addressed by a novel method that considers the sizes of the groups;
both in training and detection phases.

The thesis continues with a proof-of-concept study that shows how detected
action and interaction patterns of people can be used to infer an individuals’ psy-
chological construct. We show that it is possible to detect the construct of persona-
lity in a real life event by imitating two behavioural cues (speaking and movement)
from one digital modality (acceleration). Additionally, we describe a detailed inves-
tigation of how social context moderates an individuals’ evaluation of a live perfor-
mance. Through a novel approach, we infer audience members’ evaluations from
informative parts of the event, identified by the linkage of body accelerations.

Taken together, with this thesis we show that with the increased sensing and
computing power, the understanding of human social behaviour in more dynamic
social situations is within reach.
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Samenvatting
Het begrijpen van menselijk gedrag heeft velen aan het denken gezet in de ge-
schiedenis. Een intrigerend aspect van menselijk gedrag is het sociale deel; hoe
mensen op elkaar en op de omgeving reageren. Onderzoek naar sociaal gedrag
is lastig doordat observaties gedaan moeten worden door wetenschappers ‘met de
hand’ (bijv. door het kijken naar een video en aantekeningen te maken). Om deze
rede moeten sociale wetenschappers zichzelf vaak beperken tot onderzoeken van
korte duur, of moet onderzoek gebeuren in gecontroleerde omstandigheden (zoals
in een lab). Met de opkomst van betere mobiele sensoren is het mogelijk geworden
om grote hoeveelheden data van menselijk gedrag in een natuurlijke omgeving te
verzamelen. Met de opkomst van snellere rekenkracht van computers is het mo-
gelijk geworden om deze grote hoeveelheden data automatisch te analyseren. Met
moderne computermodellen is het zelfs mogelijk om sociaal gedrag nog beter te
begrijpen dan met traditionele methoden, omdat deze modellen patronen kunnen
detecteren in data die lastig zijn te herkennen voor mensen.

Zelfs met zulke krachtige modellen is het onderzoeken van menselijk gedrag
nog steeds zeer uitdagend. Dit komt doordat gedrag verschilt van persoon tot
persoon en afhangt van context. Hierdoor is er grote variatie in menselijk gedrag.
Dit proefschrift introduceert nieuwe computationele methoden voor het analyseren
van sociaal gedrag. Dit werk richt zich op een experiment waarbij mensen met
draagbare sensoren gezellig met elkaar omgaan op een druk evenement. In dit
werk worden technische oplossingen gegeven om op een robuuste manier acties
en interacties te herkennen aan de hand van sensordata. Deze informatie wordt
vervolgens gebruikt om tot abstractere sociale inzichten te komen.

Dit proefschrift introduceert nieuwe manieren om sociale acties en interacties
te herkennen. Om slim om te gaan met intra-persoonlijke variatie, laten we zien
hoe algemene modellen om acties te voorspellen kunnen worden gepersonaliseerd
door middel van transfer learning. Vervolgens laten we zien dat conversatie groe-
pen afgeleid kunnen worden van interactie patronen, in plaats van het gebruik van
afstand tussen personen zoals gebruikelijk. Grote variatie in gedragspatronen die
voorkomen in een natuurlijke omgevingen vormen een uitdaging. Een nieuwe com-
putationele methode die rekening houd met groepsgrootte (gedurende de train en
detectie fase) pakt dit probleem aan.

Vervolgens gebruiken we een proof-of-concept studie om te laten zien dat inter-
actie patronen van mensen gebruikt kan worden om het psychologisch profiel van
een persoon te achterhalen. We laten zien dat de persoonlijkheid in te schatten
is door middel van twee gedragspatronen (spreken en beweging) en van één sen-
sor (acceleratie). Vervolgens beschrijven we een gedetailleerd onderzoek dat laat
zien hoe sociale context invloed heeft op hoe men een life-optreden beoordeelt.
Met een nieuwe methode kunnen we voorspellen hoe mensen in het publiek het

151



7

152 Samenvatting

life-optreden gaan beoordelen door middel van bewegingssensoren.
Samenvattend illustreert dit proefschrift dat met de toegenomen kracht van sen-

soren en computerkracht het begrijpen van menselijk gedrag in dynamische sociale
situaties binnen handbereik is gekomen.
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