
 
 

Delft University of Technology

Revealing internal flow behaviour in arc welding and additive manufacturing of metals

Aucott, Lee; Dong, Hongbiao; Mirihanage, Wajira; Atwood, Robert; Kidess, Anton; Gao, Shian; Wen,
Shuwen; Marsden, John; Feng, Shuo; Tong, Mingming
DOI
10.1038/s41467-018-07900-9
Publication date
2018
Document Version
Final published version
Published in
Nature Communications

Citation (APA)
Aucott, L., Dong, H., Mirihanage, W., Atwood, R., Kidess, A., Gao, S., Wen, S., Marsden, J., Feng, S., Tong,
M., Connolley, T., Drakopoulos, M., Kleijn, C. R., Richardson, I. M., Browne, D. J., Mathiesen, R. H., &
Atkinson, H. V. (2018). Revealing internal flow behaviour in arc welding and additive manufacturing of
metals. Nature Communications, 9, Article 5414. https://doi.org/10.1038/s41467-018-07900-9
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1038/s41467-018-07900-9
https://doi.org/10.1038/s41467-018-07900-9


ARTICLE

Revealing internal flow behaviour in arc welding
and additive manufacturing of metals
Lee Aucott 1, Hongbiao Dong 2, Wajira Mirihanage3, Robert Atwood 4, Anton Kidess5,10,

Shian Gao2, Shuwen Wen6,11, John Marsden6, Shuo Feng2, Mingming Tong7,12, Thomas Connolley 4,

Michael Drakopoulos4, Chris R. Kleijn5, Ian M. Richardson8, David J. Browne7, Ragnvald H. Mathiesen9 &

Helen.V. Atkinson2,13

Internal flow behaviour during melt-pool-based metal manufacturing remains unclear and

hinders progression to process optimisation. In this contribution, we present direct time-

resolved imaging of melt pool flow dynamics from a high-energy synchrotron radiation

experiment. We track internal flow streams during arc welding of steel and measure

instantaneous flow velocities ranging from 0.1 m s−1 to 0.5 m s−1. When the temperature-

dependent surface tension coefficient is negative, bulk turbulence is the main flow

mechanism and the critical velocity for surface turbulence is below the limits identified in

previous theoretical studies. When the alloy exhibits a positive temperature-dependent

surface tension coefficient, surface turbulence occurs and derisory oxides can be entrapped

within the subsequent solid as result of higher flow velocities. The widely used arc welding

and the emerging arc additive manufacturing routes can be optimised by controlling internal

melt flow through adjusting surface active elements.
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During fusion welding or additive manufacturing of metals,
a localised heat input induces rapid and successive phase
transformations from solid-to-liquid and then liquid-to-

solid through the formation of a molten metal pool. The for-
mation and control of the melt pool is one of the crucial elements
of fusion-based advanced manufacturing processes. Melt pools
formed during fusion welding solidify to form bonded joints in
high integrity products such as automobiles, ships, trans-
continental oil pipelines, and most other large metallic struc-
tures. Additive manufacturing techniques are similarly based on
the concept of successive creation of diminutive melt pools.
Correct control of the melt pool is essential in these advanced
manufacturing processes to avoid catastrophic failures which
could lead to considerable humanitarian, economic and envir-
onmental damage. In the manufacturing process, electric arcs,
flames, plasma, lasers or electron beams can be selected as a
heating source according to the manufacturing method. On
cooling, the molten metal pool solidifies with a different micro-
structure to that of the original material. In welding, the newly
solidified material is commonly termed the fusion zone. In the
case of additive manufacturing, the whole component can be
considered as a collection of successive fusion zones or deposits.
Flow dynamics and geometrical evolution of the liquid melt pool
have been suggested to have strong relationships with the sub-
sequent mechanical properties of additively manufactured1–3 and
welded materials4–6. Consequently, the lifetime and performance
of the additively manufactured components or welded joints, and
hence the entire structural or functional components, can be
significantly dictated by the geometric evolution and flow
dynamics of the melt pool1,2,7–10. Several fundamental physical
phenomena have been identified as governing factors for melt
pool fluid flow; these include buoyancy/convention, electro-
magnetic (Lorentz) force, plasma/arc drag, and surface tension
effects11,12. The prevailing forces may be characteristic of the heat
source being employed, or of the materials being processed. For
steels, it has been suggested that surface tension-driven Mar-
angoni forces dominate the melt pool flow13, and is a key to
determining the shape and penetration of the solidified joint. It
may also have an influence on the final residual stresses, and can
set the conditions for the origin of defects in welded joints14–25 or
additively formed components2,3.

In order for melt pool flow and evolution to be better under-
stood, significant efforts2,13,18,25–32 have been placed upon
computational modelling of fluid flow and heat transfer in
welding. Typically, model predictions were compared to final
geometrical and structural features, without attention to the
transient nature of the process7. Some validation of models has
been attempted with data from simulated transparent systems
such as NaNO3

33–35. Such experiments, studying transparent
systems, can only roughly guide computational models, as dis-
tinct physical property-driven differences exist between these
analogous materials and metallic alloys; for example, in the
Prandtl number. Such distinctive dissimilarities make metal
analogous materials an insufficient tool for the rigorous validation
of melt pool models. Thus, there is a need for real-time melt pool
evolution data in welding or additive manufacturing, generated
with real metallic alloys, such as steels or light metal alloys.
Provision of such results would solve one of the key obstacles
thwarting the progress of advanced computational models of
welding, e.g. refs. 9,10,18,26,36–38. Common flow quantification
techniques, such as positron emission particle tracking39, particle
image velocimetry, or laser Doppler anemometry40, cannot be
applied due to the high temperature, opacity, and fast dynamics
of the liquid flow in metallic melt pools. However, application of
very bright high-energy X-rays, generated from synchrotron
sources, has opened interesting new avenues for experimental

exploration. For example, Zabler et al.41 used an in situ micro-
radiography technique to observe particle and liquid motion in
semi-solid Al alloys. Mirihanage et al.42, implemented fast syn-
chrotron X-ray diffraction to study rapid liquid–solid phase
transformations in welding. Aucott et al.43,44 employed fast
synchrotron X-ray radiography to investigate initiation and
growth kinetics of solidification cracks within a melt pool during
welding. Leung et al.45 used a similar technique to study defect
and molten pool behaviour in powder based laser additive
manufacturing, where melt pools are relatively small and melt
vaporisation and recoil pressure play a dominant role compared
to the case presented in our contribution here.

In this study, a high-energy synchrotron micro-radiography
technique is employed to observe melt pool formation and flow
dynamics during advanced manufacturing of metallic alloys.
Time-resolved images are used to quantify morphological evo-
lution and flow dynamics within the melt pool in situ. The widely
used arc welding and the emerging arc additive manufacturing
routes can be optimised by controlling internal melt flow through
adjusting surface active elements.

Results
In situ X-radiography. In situ experiments were performed on
the I12 (JEEP) beamline at Diamond Light Source, UK46. Melt
pools were created in solid steel bars using an electric arc gen-
erated from Tungsten Inert Gas (TIG) welding equipment. The
experimental setup, illustrated in Fig. 1, was positioned to
transmit the incoming high-flux synchrotron white beam through
the molten metal pool. X-ray radiographs of the molten region,
illustrated in the bottom image of Fig. 1, were captured by
employing a scintillator coupled fast CMOS camera, at 1 or 2 kHz
frame rates, covering the whole molten region in the field of view
(FoV).

Tungsten (W) and tantalum (Ta) particles, ~50 µm in size,
were employed as tracers to visualise the flow in the melt pool by
investigating their spatiotemporal distribution. Due to their high
melting points, the particles remain solid in the melt pool for a
sufficient amount of time for them to be tracked. The particles
were placed on top of the sample surface before the start of the
rapid melting process. As the melt pool began to form, the
particles were immersed into the molten metal and moved
according to the flow. In comparison to the iron and other
constituting elements of the sample material, W and Ta particles
exhibit significantly higher X-ray attenuation. Thus, those solid
particles in the melt pool appear darker than the surrounding
liquid metal in the projected images, as illustrated in the example
radiograph in Fig. 1. While the particles will likely affect the
microstructure of the solidified fusion zone, they have an
insignificant effect on the flow patterns and velocities in the
liquid melt pool as the sinking speed is negligible in comparison
to the highly dynamic flow velocities characterised.

Morphological evolution of melt pool. It is known that low S
and high S steels, when welded under exactly the same conditions,
exhibit post solidification weld shapes that differ distinctively47.
The morphological (geometric shape) evolution of low S (0.0005
wt% S) and high S (0.3 wt% S) steel melt pools are presented in
Fig. 2. Both melt pools were created using exactly the same
process parameters and sample dimensions. The images represent
three instances to assess the overall geometric evolution in respect
to time, until the melt pools grow to their maximum size. The
graphs within Fig. 2 quantify melt pool evolution in terms of
width, depth and width/depth ratio at 100 ms intervals. The
maximum temporal resolution available is 1 ms, but 100 ms is
sufficient to quantify geometric shape evolution. Qualitative
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analysis of the radiographs shows that the evolution of the melt
pool shape significantly differs between the two samples. Quan-
titative measurements of melt pool width evolution show that in
the initial 500 ms the width evolution is nearly identical. After
500 ms, the low S sample begins to grow wider than the high S
sample. The difference in the depth evolution is much more
pronounced between the two samples. The high S sample
immediately grows at a higher rate than the low S sample and
continues to grow further from that of the low S sample as the
melt pool evolves. The melt pool of the low S sample reached only
1.34 mm depth after 2000 ms from the start of the melting. The
high S steel melt pool appears to favour downward growth to
penetrate a depth of 3.59 mm, over 150% deeper than the low S
melt pool. As a result, the aspect (width to depth) ratio of the melt
pool in the low S sample is three times higher than the high S
sample throughout melting. The aspect ratio is also very con-
sistent throughout the melting process, especially in the high S
sample. Furthermore, the total volume of alloy melted after 2000
ms is ~200% greater in the high S (~72.47 mm3) sample com-
pared to the low S (~23.84 mm3) sample, yet the heat input to
both alloys is the same.

Flow dynamics. Melt pool flow dynamics have been quantified to
rationalise the morphological evolutions observed in Fig. 2. The
maximum temporal resolution of the experiment (1 ms) was
exploited to capture the fast flow dynamics in the melt pool. For
low S steel, the flow dynamics are illustrated in Fig. 3. The

coloured lines indicate the travel path of tracer particles. The
tracer particles were tracked over an 80 ms time span (across 80
consecutive frames), starting at ~1 and ~2 s, respectively, from the
inception of melting, after igniting the arc. Flow pattern obser-
vations suggest that melt pool shape evolution is mainly deter-
mined by the characteristics of flow. At both time instances (~1 s
and ~2 s) illustrated in Fig. 3, the tracer particles follow anti-
clockwise paths in the left-half of the melt pool and clockwise
paths in the right-half of the melt pool cross section, i.e. there is
an outward flow in the upper part of the melt pool, and in inward
flow in its lower part. Consequently, the highest temperature
liquid metal under the heat source is being convectively trans-
ported horizontally away from the melt pool centre towards its
lateral extremities. This stimulates growth of the shallow and
wide melt pool depicted in Figs. 2 and 3.

The experimental observations for high S steel melt pools
indicate flow in the opposite direction to the low S steel, as
illustrated through a representative example in Fig. 4. The flow
patterns tracked by tracer particles reveal inward flow in the
upper part of the melt pool, and outward flow in its lower part
with a close symmetry of the projected melt pool cross section. It
appears, in high S steel, the highest temperature liquid metal in
the upper centre region of the melt pool is transported vertically
downwards to the centre bottom of the melt pool. Thus, the
bottom of the melt pool receives more heat load, which stimulates
further melting of the solid substrate beneath the solid–liquid
interface at the bottom of the melt pool. As a result, the melt pool
depth/width ratio increases.

Heat
source

High speed
camera 

Optical lens

Scintillator

Mirror

Steel sample

X-ray beam

Heat
source

Steel
sample

Synchrotron X-ray beam passing
through the melt pool  

Air

Solid steel

Heat source

Melt pool

Solid W tracking
particles on
surface and

flowing within the
melt pool

Sample holder

Wiggler

Slit

Fig. 1 Schematic diagram of the experimental setup and an example radiograph annotated to show the key elements under observation during the
experiment. A polychromatic (white) beam of ~50–150 keV was used to maximise the X-ray photon flux. The beam size was 12 × 50mm2 (H ×W) and was
transmitted through the entire melt pool. The detector was a Vision Research Phantom v7.3 CMOS camera, lens-coupled to cadmium tungstate or cesium
iodide scintillators. With an optical magnification of ×1.8, the linear resolution was 13 µm per pixel. Imaging was acquired at frame rates up to 2 kHz at
800 × 600 pixels per frame. Scale bar= 1 mm
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An indication of approximate instantaneous flow velocities can
be determined from the measurement of distance and time
between consecutive tracer positions. Figure 5 shows velocities for
low and high S steel melt pools. These figures suggest that the
flow velocities can exceed 0.5 m s−1 in high S steels, whereas, in
low S steels, flow velocities did not exceed 0.3 m s−1.

Discussion
The results presented in this study demonstrate the capability of
synchrotron X-ray imaging to capture, visualise and particularly
quantify melt pool evolution in situ in real metallic alloys for the
first time. These novel experimental observations allow us to
observe and comprehend how melt pool formation and evolution
progress under realistic fusion welding conditions or other rela-
tively moderate size melt pools associated with manufacturing
processes such as wire arc additive manufacturing.

Our observations confirm some theoretically and computa-
tionally predicted melt pool forming mechanisms. For example,
they agree qualitatively with high speed motion pictures of melt
pool size evolution30,48 and confirm the suggested mechanisms
for formation of fusion zone shape (shallow with shrunken cen-
tres for low S steels, deep with risen centres for high S steels)
through metallography analysis of weld joints49,50. Changing the
steel composition from low S to high S not only changes the flow
direction, but also increases the flow velocities and melt pool
dimensions. As a result, Reynolds numbers in high S weld pools
are up to 2.5 times larger than in low S weld pools. Furthermore,

the total volume of alloy melted is ~200% greater in the high S
sample yet the heat input to both alloys is the same. As a result,
one would assume a lower superheat in the liquid of high S steel
and/or a lower temperature gradient G. This would in turn lead to
a different evolving Hunt G–V diagram51 in both cases, and
therefore, a different columnar to equiaxed transition (CET) and
equiaxed zones. This behaviour was predicted by Kidess et al.36

and proves a strong evidence of the link between surface energy/
temperature derivative, weld pool shape and microstructure.

Related to metal casting, Campbell52 classified two types of
flow within solidifying metals. Firstly, bulk turbulence, i.e. the
chaotic eddying flow of the bulk liquid, assessed by Reynolds
number, and secondly, surface turbulence, which causes the
chaotic breaking up of the surface of the liquid, allowing the
surface oxide film to become incorporated into the bulk melt.
While the avoidance of bulk turbulence is probably impossible in
welding, Campbell’s derived estimation for the critical velocity for
surface turbulence in liquid metals is ~0.5 m s−1. The flow velo-
cities quantified in this study must be assessed in relation to the
melt pool in which they exist, the measured velocity is lower than
those predicted value of 1 m s−1 by modelling in very large size
melt pool. In this study, the 10 mm sample was specifically
chosen as it was the maximum size feasible for the X-ray beam to
penetrate and provide high resolution images for subsequent
analysis. Other factors may also affect the discrepancy between
the measured velocity and the simulated ones. Firstly, we are
essentially measuring the speed in a 2D projection, which may be
much lower than the true speed in three dimensions, as we will
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Quantitative analysis of melt pool evolution

with 100 ms temporal resolution
t  = 500 ms t  = 1000 ms t  = 2000 ms

t  = 500 ms t  = 1000 ms t  = 2000 ms

ed f
d = 0.69 mm d = 0.79 mm d = 1.34 mm

w = 3.81 mm w = 4.99 mm w = 6.55 mm

kj l
d = 1.86 mm

w = 3.89 mm

d = 2.55 mm

w = 4.50 mm

d = 3.59 mm

w = 5.85 mm

Fig. 2 Quantitative analysis of time dependent evolution of melt pool morphology. a–l Synchrotron X-ray radiographs of the evolving melt pool at three-
time instances in situ. The corresponding measured geometries are below the respective radiographs. The melt pools are created using the same melting
parameters and sample dimensions. Panels a–f are from a low S steel melt pool, while g–l are from a high S steel melt pool. Melt pool size evolution is
quantified with 100ms temporal resolution in m and n. It is evident that the high S melt pool favours downward growth to penetrate a depth of 3.59mm,
over 150% deeper than the low S melt pool. All scale bars= 1 mm
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likely never encounter a particle travelling exactly perpendicular
to the imaging plane. Secondly, referring to computed results in
literature may be misleading, since most papers neglect turbu-
lence in their computations. However, turbulence will reduce the
maximum velocity obtained due to increased thermal and
momentum diffusivities. The quantified flow velocities from the
experimental results presented in this study show that low S steels
exhibit flow velocity values below this critical range for the given
process parameters, as well as relatively low bulk Reynolds
numbers. This suggests the absence of surface turbulence and
probably also of bulk turbulence for such materials for the given
operating conditions. Conversely, the higher flow velocities and
higher bulk Reynolds numbers in the high S steel melt pool,
highlight the potential for both bulk and surface turbulence and
oxide entrapment within the fusion zone. These findings are in
agreement with the work of Kidess18,53, Xiao & Den Ouden54 and
Mills et al.55 but opposite to those of Kou et al.56

One of the key achievements of this research is in situ
experimental confirmation of the profound influence of the var-
iation of surface tension (γ) with temperature on the melt pool
flow. When ɗγ/ɗT is negative, such as in iron or low S steel,
higher temperature at the centre of the melt pool introduces a
lower surface tension compared to the value at edge of the melt
pool, resulting in a radially outward flow57. Observations repor-
ted in this contribution qualitatively confirm the predictions from
model simulations of such melt pools18,36,57,58, and confirm
predicted behaviour in a melt pool without surface active agent.
However, high S content within the melt pool is widely accepted
as a means to increase the depth of the weld. It changes the
temperature-dependent surface tension co-efficient of molten
iron from negative to positive. Our study rationalises its effect
through the observed reversal of the flow orientation in the melt
pool.

Different forces have been suggested in literature to drive the
melt pool flow in additive manufacturing or welding, including
surface tension gradients, buoyancy, electromagnetic forces, arc
and plasma pressure7,57,59. Despite the presence of this array of
driving forces, our experimental evidence shows a distinct change
in flow patterns as a result of varying the surface tension. This
strongly suggests that surface tension effects are the dominant
melt pool flow driving force for the materials and conditions
examined here.

An important final remark is that the reported flow observa-
tions were 2D radiographic projections, even though the weld
pool flow is 3D in nature. In order to quantify flow velocities, it
was essential to select tracer particles that moved in the plane
orthogonal to the synchrotron beam. To ensure selection of such
orthogonal in-plane particles, only particles that flowed at the

a t = 2007 ms

Start of
tracking

End of
tracking

b t = 2011 ms

Fig. 4 Fluid flow observed in high S steel melt pool. Tracer particles are tracked
using a 1ms temporal resolution—the maximum temporal resolution available.
a Tracks two tracer particles movement from 2.00 to 2.007 s. The loci joining
each tracer position show the path of each particle and indicates an opposite
flow path to that observed in Fig. 3. In the high S steel melt pool, a clockwise
flow path is observed in the left-hand side of the melt pool with inward flow in
the upper part of the melt pool, downward flow along the centre, and outward
flow in the lower part of the melt pool. b Repeated recirculation of the particles
tracked from 2.00 to 2.011 s. All scale bars= 1mm

a bt = 1005 ms t = 1008 ms

Start of tracking

End of tracking

dc t = 2005 ms t = 2008 ms

Start of tracking

End of tracking

Fig. 3 Fluid flow observed in low S steel melt pool. Tracer particles are tracked
using a 1ms temporal resolution—the maximum temporal resolution available.
a Tracks a tracer particles movement from 1.00 s to 1.005 s. The loci joining
each tracer position show the path of the particle and indicates an anti-
clockwise flow path in the left-hand side of the melt pool with outward flow in
the upper part of the melt pool, inward flow in the lower part, and upward flow
along the centre of the melt pool. b Repeated recirculation of the particle
tracked from 1.00 to 1.008 s. Two-time instances are assessed to demonstrate
consistency throughout the melt pools life and c Identical tracer particle flow
orientation tracked from 2.00 to 2.005 s. d Repeated recirculation of the
particles tracked from 2.00 to 2.008 s. All scale bars= 1 mm
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Fig. 5 Instantaneous particle velocity measurements in a low S steel, and b high S steel ~1 and 2 s after the inception of melting, respectively. r and z denote
the distance in the radial and vertical axis, respectively
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extremities of the melt pool were tracked for quantifications.
Existing X-ray tomographic methods to provide 3D spatial
information are incapable of imaging the very dynamic processes
discussed here. For example, to realise data even at half the time
resolution presented in this paper, the sample should be rotated at
15,000 rpm and more than 100k images would be required,
imaging at 300 kHz. This is technically unfeasible for synchrotron
imaging, currently, and imaging through a relatively thick and
dense metal further increases the technical challenge. Even when
the technical requirements related to photon flux and fast pre-
cision rotation are met, such fast rotations would distort the flow
in the melt pool due to inertial and rotational forces.

Our findings provide insight into internal melt pool flow
during arc melting. The widely used arc welding and the emer-
ging arc additive manufacturing routes can be optimised by
controlling internal melt flow through adjusting surface active
elements.

Methods
Materials and welding. 10 mm (diameter) × 50 mm (length) samples were used
for the experiments. Low S and high S steels were chosen to study the effect of S.
The low S steel had a nominal chemical composition (wt.%) of C—0.145, Mn—
1.02, Si—0.014, Fe—98.81, P—0.001, S—0.0005, Cr—0.005, and Ni—0.005, while
the high S steel’s nominal chemical composition was C—0.15, Mn—2.0, Si—1.0, Fe
—67.35, P—0.2, S—0.3, Cr—19.0, and Ni—10.0. These samples present real
industrial materials with low and high S content. In order to investigate the surface
active element role, in an ideal situation one would utilise samples from the same
material with different active element contents. Doping was disregarded as it would
likely lead to inhomogeneous surfactant concentration. An alternative of placing S
particles on the sample surface was also disregarded as the particles would be
blown away unless glued and glue would introduce further chemical uncertainty.
The main difference in our sample chemistry, other than S content, are the high Cr
and Ni content of the S303 stainless steel. Cr and Ni are not surface active and thus
do not have an influence on the driving force of the flow. During the experiments, a
three second (10 V, 125 A) tungsten inert gas (TIG) spot weld was made in the
centre of the specimens. The welding process used a non-consumable tungsten
electrode in DCEN polarity. The target distance from the electrode tip to the
workplace was 1 mm. In reality this may have increased up to 1.2 mm for some
experiments. For the images presented in this paper, the exact distance between the
electrode tip and workpiece was measured in ImageJ using the pixel numbers and
pixel size (13 µm per pixel). At the start of the test (before welding begins), the
distance is 1.027 mm for the low S sample and 1.092 mm for the high S sample.
Argon was used as the shielding gas, with an 8 l min−1 flow rate. Owing to the
metallic nature of W and Ta particles, limited lives of the tracer particles were
observed during the experiments. Even though both elements melting point is
above the expected weld pool temperatures, their metallic nature caused them to
dissolve in the weld pool. The dissolution rate was very high for Ta particles in
contrast to W particles. As such, Ta tracers were not effective for more than a
fraction of a second. However, W particles survived for a few seconds to provide
quantitative information of the flow velocities in the weld pools.

Fast synchrotron radiography. Experiments were performed at the I12 Joint
Engineering, Environment and Processing beamline of Diamond Light Source, UK.
Polychromatic (white) beam of ~50–150 keV delivered by a 4.2 T superconducting
multipole wiggler was used to maximise the X-ray photon flux at the sample
position, located approximately 50 m away from the source. The beam size was
12 × 50 mm2 (H ×W). The beam was transmitted through the entire weld pool.
The detector was a Vision Research Phantom v7.3 CMOS camera, lens-coupled to
cadmium tungstate and cesium iodide scintillators. With an optical magnification
of ×1.8, the linear resolution was 13 µm per pixel. Imaging was acquired at frame
rates up to 2 kHz at 800 × 600 pixels per frame.

Image analysis and quantification. All image analysis was completed using
ImageJ software60. To retain image integrity, minimal processing was implemented
to the raw data. The routine started by applying a 3D Hybrid median filter to
eliminate high contrast speckle noise. In order to observe the weld geometry,
minimum intensity stacks were made of all the images in a test sequence. The
overlay of the tracking particles, coupled with the density increase in the liquid
phase, results in a clearly visible (darker) region where the molten weld had been
during welding. The increased density of the liquid phase has been attributed due
to the partial melting of tantalum particles during welding. The tantalum enriched
weld offers a higher absorption co-efficient to that of the plain steel. Fluid flow
analysis was carried out using the manual tracking plugin to ImageJ. This plugin
provides a way to retrieve XY coordinates as well as velocity, distance covered
between two frames and intensity of the selected pixel. In order to realise

satisfactorily precise quantification flow velocities, selection of tracers that moves
relative in the plane orthogonal to the synchrotron beam was essential. To ensure
selection of orthogonal in-plane flow, only particles that flowed at the extremities of
the weld pool were tracked for quantifications. The flow velocities indicated here
from the experiments are actually the travelling velocities of the tracer particles. As
these tracer particles are heavier than the metallic melts in the pool, 100%
momentum transfer cannot be anticipated and a minor discrepancy, in favour of
higher flow velocities, can be expected.

Data availability
Representative samples of the research data are given in the figures. Other datasets
generated and/or analysed during this study are not publicly available due to their
large size but are available from the corresponding author on reasonable request.
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