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Abstract. Sensors and sensor networks play an important
role in decision-making related to water quality, operational
streamflow forecasting, flood early warning systems, and
other areas. In this paper we review a number of existing
applications and analyse a variety of evaluation and design
procedures for sensor networks with respect to various crite-
ria. Most of the existing approaches focus on maximising the
observability and information content of a variable of inter-
est. From the context of hydrological modelling only a few
studies use the performance of the hydrological simulation
in terms of output discharge as a design criterion. In addi-
tion to the review, we propose a framework for classifying
the existing design methods, and a generalised procedure for
an optimal network design in the context of rainfall–runoff
hydrological modelling.

1 Introduction

Optimal design of sensor networks is a key procedure for im-
proved water management as it provides information about
the states of water systems. As the processes taking place
in catchments are complex and the measurements are lim-
ited, the design of sensor networks is (and has been) a rel-
evant topic since the beginning of the International Hydro-
logical Decade (1965–1974, TNO, 1986) until today (Pham
and Tsai, 2016). During this period, the scientific commu-
nity has not yet arrived at an agreement about a unified
methodology for sensor network design due to the diver-
sity of cases, criteria, assumptions, and limitations. This is
evident from the range of existing reviews on hydrometric

network design, such as those presented by WMO (1972),
TNO (1986), Nemec and Askew (1986), Knapp and Mar-
cus (2003), Pryce (2004), NRC (2004), and Mishra and
Coulibaly (2009).

The design of rainfall and streamflow sensor networks de-
pends to a large extent on the scale of the processes to be
monitored and the objectives to address (TNO, 1986; Loucks
et al., 2005). Therefore, the temporal and spatial resolu-
tion of measurements are driven by the measurement ob-
jectives. For example, information for long-term planning
does not require the same level of temporal resolution as
for operational hydrology (WMO, 2009; Dent, 2012). On
the global and country scale, sensor networks are commonly
used for climate studies and trend detection (Cihlar et al.,
2000; Grabs and Thomas, 2002; WMO, 2009; Environment
Canada, 2010; Marsh, 2010; Whitfield et al., 2012), and are
denoted as National Climate Reference Networks (WMO,
2009). On a regional or catchment scale, applications require
careful selection of monitoring stations, since water resource
planning and management decisions, such as operational hy-
drology and water allocation, require high temporal and spa-
tial resolution data (Dent, 2012).

This paper presents a review of methods for optimal
design and evaluation of precipitation and discharge sen-
sor networks at catchment scale, proposes a framework for
classifying the design methods, and suggests a generalised
framework for optimal network design for surface hydro-
logical modelling. It is possible to extend this framework
to other variables in the hydrological cycle, since optimal
sensor location problems are similar. The framework in-
troduced here is part of the results of the FP7 WeSenseIt
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project (www.wesenseit.eu), and the validation of the pro-
posed methodology will be presented in subsequent publica-
tions. This review does not consider in situ installation re-
quirements or recommendations, so the reader is referred to
WMO (2008a) for the relevant and widely accepted guide-
lines, and to Dent (2012) for current issues in practice.

The structure of this paper is as follows: first, a classifi-
cation of sensor network design approaches according to the
explicit use of measurements and models is presented, in-
cluding a review of existing studies. Next, a second way of
classification is suggested, which is based on the classes of
methods for sensor network analysis, including statistics, in-
formation theory, case-specific recommendations, and oth-
ers. Then, based on the reviewed literature, an aggregation of
approaches and classes is presented, identifying potential op-
portunities for improvement. Finally, a general procedure for
the optimal design of sensor networks is proposed, followed
by conclusions and recommendations.

1.1 Main principles of network design

The design of a sensor network uses the same concepts as
experimental design (Kiefer and Wolfowitz, 1959; Fisher,
1974). The design should ensure that the data are sufficient
and representative, and can be used to derive the conclusions
required from the measurements (EPA, 2002), or to assess the
water status of a river system (EC, 2000). In the context of
rainfall–runoff hydrological modelling, provide the sufficient
data for accurate simulation and forecasting of discharge and
water levels, at stations of interest.

The objectives of the sensor network design have been cat-
egorised into two groups, the optimality alphabet (Fedorov,
1972; Box, 1982; Fedorov and Hackl, 1997; Pukelsheim,
2006; Montgomery, 2012), which uses different letters to
name different design criteria, and the Bayesian framework
(Chaloner and Verdinelli, 1995; DasGupta, 1996). The alpha-
betic design is based on the linearisation of models, optimis-
ing particular criteria of the information matrix (Fedorov and
Hackl, 1997). Bayesian methods are centred on principles of
decision-making under uncertainty, in which it seeks to max-
imise the gain in information (Shannon, 1948) between the
prior and posterior distributions of parameters, inputs, or out-
puts (Lindley, 1956; Chaloner and Verdinelli, 1995). Among
the most used alphabetic objectives are the D-optimal, which
minimises the area of the uncertainty ellipsoids around the
model parameters, and G-optimal, which minimises the vari-
ance of the predicted variable, which can also be used as ob-
jective functions in the Bayesian design.

These general objectives are indirectly addressed in the
literature of optimisation of hydrometric sensor networks,
achieved by the use of several functional alternatives. These
approaches do not consider block experimental design (Kirk,
2009), due to the incapacity to replicate initial conditions in
a non-controlled environment, such as natural processes.

On the practical side, the design of a sensor network
should start with the institutional set-up, purposes, objec-
tives, and priorities of the network (Loucks et al., 2005;
WMO, 2008b). From the technical point of view, an opti-
mal measurement strategy requires the identification of the
process, for which data are required (Casman et al., 1988;
Dent, 2012). Considering that the information objectives are
not unique and consistent or that the characterisation of the
processes is not complete, the re-evaluation of the sensor net-
work design should occur on a regular basis. Therefore, the
sensor network should be re-evaluated when the studied pro-
cess, information needs, information use, or modelling ob-
jectives change. Consequently, regulations regarding moni-
toring activities are often strict not in terms of station density,
but in the suitability of data for providing information about
the status of the water system (EC, 2000; EPA, 2002).

The design of meteorological and hydrometric sensor
networks should consider at least three aspects. First, it
should meet various objectives that are sometimes conflicting
(Loucks et al., 2005; Kollat et al., 2011). Second, it should be
robust in the event of failure of one or more measurement sta-
tions (Kotecha et al., 2008). Third, it must take into account
different purposes and users with different temporal and spa-
tial scales (Singh et al., 1986). Therefore, the design of an op-
timal sensor network is a multi-objective problem (Alfonso
et al., 2010b).

The sensor network design can also be seen from an eco-
nomic perspective (Loucks et al., 2005). In most cases, the
main limitation in the deployment of sensor networks is re-
lated to costs, being sometimes the main driver of decisions
related to reduction of the monitoring networks. The valua-
tion between the costs of the sensor networks and the cost
of having insufficient information is not usually considered,
because the assessment of the consequences of decisions is
made a posteriori (Loucks et al., 2005; Alfonso et al., 2016).
In most studies, it is seen that the improvement of infor-
mation content metrics (e.g. entropy, uncertainty reduction,
among others) is marginal as the number of extra sensors in-
creases (Pardo-Iguzquiza, 1998; Dong et al., 2006; Ridolfi et
al., 2011), and thus the selection of the adequate number of
sensors can be based on a threshold in the rate of increment
in the objective function. However, in many practical appli-
cations the number of available sensors may be defined by
budget limitations. Therefore, the optimal number of sensors
in a network is strictly case-specific (WMO, 2008c).

1.2 Scenarios for sensor network design:
augmentation, relocation, and reduction

Scenarios for designing of sensor networks may be cate-
gorised into three groups: augmentation, relocation, and re-
duction (NRC, 2004; Mishra and Coulibaly, 2009; Barca
et al., 2015). Augmentation refers to the deployment of at
least one additional sensor in the network, whereas reduc-
tion refers to the opposite case, where at least one sensor is
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Figure 1. Typical data flow in discharge simulation using hydrological models.

removed from the original network. Relocation is about repo-
sitioning the existing network nodes.

The lack of data usually drives the sensor network aug-
mentation, whereas economic limitations usually push for re-
duction. These costs of the sensor network usually relate to
the deployment of physical sensors in the field, and transmis-
sion, maintenance, and continuous validation of data (WMO,
2008c).

Augmentation and relocation problems are fundamentally
similar, as they require estimation of the measured variable
at ungauged locations. For this purpose, statistical models
of the measured variable are often employed. For exam-
ple, Rodriguez-Iturbe and Mejia (1974) described rainfall
regarding its correlation structure in time and space, Pardo-
Igúzquiza (1998) expressed areal averages of rainfall events
with ordinary Kriging estimation, and Chacon-Hurtado et
al. (2009) represented rainfall fields using block Kriging.
In contrast, for network reduction, the analysis is driven
by what-if scenarios as the measurements become available.
Dong et al. (2005) employ this approach to re-evaluate the
efficiency of a river basin network based on the results of
hydrological modelling.

In principle, augmentation and relocation aim to increase
the performance of the network (Pardo-Igúzquiza, 1998;
Nowak et al., 2010). In reduction, by contrast, network per-
formance is usually decreased. The driver of these decisions
is usually related to factors such as operation and mainte-
nance costs (Moss et al., 1982; Dong et al., 2005).

1.3 Role of measurements in rainfall–runoff modelling

The typical data flow for hydrological rainfall–runoff mod-
elling can be summarised as in Fig. 1. For discharge simula-
tion, precipitation and evapotranspiration are the most com-
mon data requirements (WMO, 2008c; Beven, 2012), while
discharge data are commonly employed for model calibra-

tion, correction, and update (Sun et al., 2015). Data-driven
hydrological models may use measured discharge as input
variables as well (e.g. Solomatine and Xue, 2004; Shrestha
and Solomatine, 2006). Methods for updating of hydrologi-
cal models have been widely used in discharge forecasting as
data assimilation, using the model error to update the model
states. In this way, more accurate discharge estimates can be
obtained (Liu et al., 2012; Lahoz and Schneider, 2014). In
real-time error correction schemes, typically, a data-driven
model of the error is employed which may require as input
any of the mentioned variables (Xiong and O’Connor, 2002;
Solomatine and Ostfeld, 2008).

In a conceptual way, we can express the quantification of
discharge at a given station as (Solomatine and Wagener,
2011)

Q= Q̂(x,θ)+ ε, (1)

where Q is the recorded discharge, and Q̂(x,θ) represents
a hydrological model, which is a function of measured vari-
ables (mainly precipitation and discharge, x) and the model
parameters (θ ). ε is the simulation error, which is ideally in-
dependent of the model, but in practice is conditioned by it.
Considering that neither are the measurements perfect nor
the model unbiased, the variance of the estimates is propor-
tional to the uncertainty in the model inputs, σ 2(x), and the
uncertainty in model parameters, σ 2(θ):

σ 2
(
Q̂(x,θ)

)
ασ 2 (x) ,σ 2 (θ) . (2)

2 Classification of approaches for sensor
network evaluation

There is a variety of approaches for the evaluation of sen-
sor networks, ranging from theoretically sound to more prag-
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Figure 2. Proposed classification of methods for sensor network
evaluation.

matic. In this section, we provide a general classification of
these approaches, and more details of each method are given
in the next section.

Although most of the approaches for the design of sensor
networks make use of data, some rely solely on experience
and recommendations. Therefore, a first tier in the proposed
classification consists of recognising both measurement-
based and measurement-free approaches (Fig. 2). The former
make use of the measured data to evaluate the performance of
the network (Tarboton et al., 1987; Anctil et al., 2006), while
the latter use other data sources (Moss and Tasker, 1991),
such as topography and land use.

2.1 Measurement-based evaluation

The measurement-based approach can be further subdivided
into model-free and model-based approaches (Fig. 2), de-
pending on the use of modelling results in the performance
metric.

2.1.1 Model-free performance evaluation

In model-free approaches, water systems and the external
processes that drive their behaviour are observed through ex-
isting measurements, without the use of catchment models.
Then, metrics about amount and quality of information in
space and time are evaluated with regards to the manage-
ment objectives and the decisions to be made in the system.
Some performance metrics in this category are joint entropy
(Krstanovic and Singh 1992), information transfer (Yang and
Burn, 1994), interpolation variance (Pardo-Igúzquiza, 1998;
Cheng et al., 2007), and autocorrelation (Moss and Karlinger,
1974), among others. Figure 3 presents the flowchart for the
case when precipitation and discharge, as the main drivers
of catchment hydrology (WMO, 2008c), are considered in
model-free network evaluation.

Figure 3. General procedure for model-free sensor network evalua-
tion.

Figure 4. General procedure for model-based sensor network eval-
uation.

Fundamentally, the model-free approach aims to minimise
the variance of the measured variable, thereby (and in theory)
minimising the variance in the estimation (Eq. 3). However,
a design that is optimal for estimation is not necessarily also
optimal for prediction (Chaloner and Verdinelli, 1995).

minσ 2
(
Q̂(x,θ)

)
αmin

(
σ 2 (x)

)
(3)

Application of model-free approaches can be found in
Krstanovic and Singh (1992), Nowak et al. (2010), and Li
et al. (2012). Model-free evaluations are suitable for sensor
network design aimed mainly at water resource planning, in
which diverse water interests must be balanced. Due to the
lack of a quantitative performance metric that relates simu-
lated discharge, these kinds of evaluations do not necessarily
improve rainfall–runoff simulations.

2.1.2 Model-based performance evaluation

In the model-based approach, the performance of sensor net-
works is carried out using a catchment model (Dong et al.,
2005; Xu et al., 2013). In this case, measurements of precip-
itation are used to simulate discharge, which is compared to
the discharge measurements at specific locations. Therefore,
any metric of the modelling error could be used to evaluate
the performance of the network. Figure 4 presents a generic
model-based approach for evaluating sensor networks.

In the model-based design of sensor networks, it is as-
sumed that the model structure and parameters are adequate.

Hydrol. Earth Syst. Sci., 21, 3071–3091, 2017 www.hydrol-earth-syst-sci.net/21/3071/2017/
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Therefore, it is possible to identify a set of measurements (x)
which minimise the modelling error as

minσ 2 (ε) αmin
(∣∣∣Q− Q̂(x,θ)∣∣∣) . (4)

The need for the catchment model and possible high com-
putational efforts for multiple model runs are some disad-
vantages of this approach. The computational load is espe-
cially critical in the case of complex distributed models. It is
worth mentioning that particular model error metrics (Nash
and Sutcliffe, 1970; Gupta et al., 2009) may qualify the net-
work by its ability to capture certain hydrological processes
(Bennet et al., 2013), affecting the network evaluation.

2.2 Measurement-free evaluation

As is seen from its name, this approach does not require the
previous collection of data of the measured variable to eval-
uate the sensor network performance. The evaluation of sen-
sor networks is based on either experience or physical char-
acteristics of the area such as land use, slope, or geology.
In this group of methods, the following can be mentioned:
case-specific recommendations (Bleasdale, 1965; Wahl and
Crippen, 1984; Karasseff, 1986; WMO, 2008a) and physio-
graphic components (Tasker, 1986; Laize, 2004). This ap-
proach is the first step towards any sensor network develop-
ment (Bleasdale, 1965; Moss et al., 1982; Nemec and Askew,
1986; Karasseff, 1986).

3 Classification of methods for sensor network
evaluation

In this section, we classify the methods used to quantify the
performance of the sensor networks based on the mathe-
matical apparatus used to evaluate the network performance.
These methods can broadly be categorised as statistics-based,
information theory-based, expert recommendations, and oth-
ers.

3.1 Statistics-based methods

Statistics-based methods refer to methods where the per-
formance of the network is evaluated with statistical un-
certainty metrics of the measured or simulated variable.
These methods aim to minimise either interpolation vari-
ance (Rodriguez-Iturbe and Mejia, 1974; Bastin et al., 1984;
Bastin and Gevers, 1985; Pardo-Igúzquiza, 1998; Bonac-
corso et al., 2003), cross-correlation (Maddock, 1974; Moss
and Karlinger, 1974; Tasker, 1986) or model error (Dong et
al., 2005; Xu et al., 2013).

3.1.1 Interpolation variance (geostatistical)

Methods to evaluate sensor networks considering a reduction
in the interpolation variance assume that for a network to be

optimal, the measured variable should be as certain as possi-
ble in the domain of the problem. To achieve this, a stochas-
tic interpolation model that provides uncertainty metrics is
required. Geostatistical methods such as Kriging (Journel
and Huijbregts, 1978; Cressie, 1993) or copula interpolation
(Bárdossy, 2006) have an explicit estimation of the interpola-
tion error. This characteristic makes it suitable for identifying
areas with expected poor interpolation results, (Bastin et al.,
1984; Pardo-Igúzquiza, 1998; Grimes et al., 1999; Bonac-
corso et al., 2003; Cheng et al., 2007; Nowak et al., 2009,
2010; Shafiei et al., 2013).

In the case of Kriging, the optimal estimation of a variable
at ungauged locations is assumed to be a linear combination
of the measurements, with a Gaussian distributed probabil-
ity distribution function. Under the ordinary Kriging formu-
lation, the variance in the estimation (σ 2) of a variable at
location (u) over a catchment is

σ 2(u)= C0−

n∑
α=1

λα (u)−C(uα − u), (5)

where C0 refers to the variance of the random field, and λα
are the Kriging weights for the station α at the ungauged lo-
cation u. C (uα − u) is the covariance between the station α
at the location uα and the interpolation target at the location
u. n represents the total number of stations in the neighbour-
hood of u and used in the interpolation.

Therefore, as an objective function the optimal sensor net-
work is such that the total Kriging variance (TKV) is mini-
mum:

TKV=
U∑
u=1

σ 2(u), (6)

where U is the total number of discrete interpolation targets
in the catchment or domain of the problem.

Bastin and Gevers (1985) optimised a precipitation sen-
sor network at pre-defined locations to estimate the average
precipitation for a given catchment. Their selection of the op-
timal sensor location consisted of minimising the normalised
uncertainty by reducing the network. The main drawback of
their approach is that the network can only be reduced and
not augmented. Similar approaches have also been used by
Rodriguez-Iturbe and Mejia (1974), Bogárdi et al. (1985),
and Morrissey et al. (1995). Pardo-Igúzquiza (1998) ad-
vanced this formulation by removing the pre-defined set of
locations (allowing augmentation). Instead, rain gauges were
allowed to be placed anywhere in the catchment and its sur-
roundings. A simulated annealing algorithm is used to search
for the optimal set of sensors to minimise the interpolation
uncertainty.

Copula interpolation is a geostatistical alternative to Krig-
ing for the modelling of spatially distributed processes (Bár-
dossy, 2006; Bárdossy and Li, 2008; Bárdossy and Pegram,
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2009). As a geostatistical model, the copula provides met-
rics of the interpolation uncertainty, considering not only the
location of the stations and the model parameterisation, but
also the value of the observations. Li et al. (2011) use the
concept of a copula to provide a framework for the design of
a monitoring network for groundwater parameter estimation,
using a utility function, related to the cost of a given decision
with the available information.

In the case of copulas, the full conditional probability dis-
tribution function of the variable is interpolated. As such, the
interpolation uncertainty depends on the confidence interval,
measured values, parameterisation of the copula, and the rel-
ative position of the sensors in the domain of the catchment.
More details on the formulation of copula-based designs can
be found in Bárdossy and Li (2008).

Cheng et al. (2007), as well as Shafiei et al. (2013), recog-
nised that the temporal resolution of the measurements af-
fects the definition of optimality in minimum interpolation
variance methods. This change in the spatial correlation
structure occurs due to more correlated precipitation data be-
tween stations at coarser sampling resolutions (Ciach and
Krajewski, 2006). For this purpose, the sensor network has
to be split into two parts, a base network and non-base sen-
sors. The former should remain in the same position for long
periods, to characterise longer fluctuation phenomena, based
on the definition of a minimum threshold for an area with ac-
ceptable accuracy. The latter is relocated to improve the ac-
curacy of the whole system, and should be relocated as they
do not provide a significant contribution to the monitoring
objective.

Recent efforts have used minimum interpolation variance
approaches to consider the non-stationarity assumption of
most geostatistical applications in sensor network design
(Chacon-Hurtado et al., 2014). To this end, changes in the
precipitation pattern and its effect on the uncertainty esti-
mation were considered during the development of a rainfall
event.

3.1.2 Cross-correlation

The objective of minimum cross-correlation methods is to
avoid placing sensors at sites that may produce redun-
dant information. Cross-correlation was suggested by Mad-
dock (1974) for sensor network reduction, as a way to iden-
tify redundant sensors. In this scope, the objective function
can be written as

ρ
(
Xi, Xj

)
=

n∑
i=1

n∑
j=i+1

cov(xi,xj )
σ (xi)σ (xj )

, (7)

where cov is the covariance function between a pair of sta-
tions (i,j), and σ is the standard deviation of the observa-
tions.

Stedinger and Tasker (1985) introduced the method called
network analysis using generalised least squares (NAUGLS),
which assesses the parameters of a regression model for

daily discharge simulation based on the physiographic char-
acteristics of a catchment (Stedinger and Tasker, 1985;
Tasker, 1986; Moss and Tasker, 1991). The method builds a
generalised-least-square (GLS) covariance matrix of regres-
sion errors to correlate flow records and to consider flow
records of different lengths, so the sampling mean squared
error can be expressed as

SMSE=
1
n

j∑
i=1

XTi

(
XT3−1X

)−1
Xi, (8)

where X[k,w] is the matrix of the (k) basin characteristics
in a window of size w at discharge measuring site i. 3 is
the GLS weighting matrix, using a set of n gauges (Tasker,
1986).

A comparable method was proposed by Burn and Goul-
ter (1991), who used a correlation metric to cluster similar
stations. Vivekanandan and Jagtap (2012) proposed an alter-
native for the location of discharge sensors in a recurrent ap-
proach, in which the most redundant stations were removed,
and the most informative stations remained using Cooks’ D
metrics, a measure of how the spatial regression model at a
particular site is affected by removing another station. The
result of these types of sensors is sparse, as the redundancy
of two sensors increases with the inverse of the distance be-
tween them (Mishra and Coulibaly, 2009).

3.1.3 Model output error

These methods assume that the optimal sensor network con-
figuration is such as satisfies a particular modelling purpose,
e.g. a minimum error in simulated discharge. Considering
this, the design of a sensor network should be such as min-
imises the difference between the simulated and recorded
variables:

minf
(∣∣∣Q− Q̂(x, θ)∣∣∣) , (9)

where f is a metric that summarises the vector error such
as bias, root mean squared error (RMSE), or Nash–Sutcliffe
efficiency (NSE); Q are the measurements of the simulated
variable, and Q̂ are the simulation results using inputs x and
parameters θ . Bias measures the mean deviation of the results
between the observations (Q) and simulation results (Q̂) for
t pairs of observations and simulation results:

Bias=
1
n

t∑
i=1

(
Q̂i −Qi

)
. (10)

This metric theoretically varies from minus infinity to infin-
ity, and its optimal value is equal to 0. The RMSE measures
the standard deviation of the residuals as

RMSE=

√√√√1
n

t∑
i=1

(
Q̂i −Qi

)2
. (11)
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The RMSE can then vary from 0 to infinity, where 0 repre-
sents a perfect fit between model results and observations.
As RMSE is a statistical moment of the residuals, the result
is a magnitude rather than a score. Therefore, benchmark-
ing between different case studies is not trivial. To overcome
this issue, Nash and Sutcliffe (1970) proposed a score (also
known as the coefficient of determination) based on the ratio
of the model results in variance over the observation variance
as

NSE= 1−

t∑
i=1

(
Q̂i −Qi

)2

t∑
i=1

(
Qi −Qi

)2 , (12)

in which Q are the measurements, Q̂ are the model results,
and Q is the average of the recorded series.

Theoretically, this score varies from minus infinity to 1.
However, its practical range lies between 0 and 1. On the one
hand, an NSE equal to 0 indicates that the model has the same
explanatory capabilities as the mean of the observations. On
the other end, a value of 1 represents a perfect fit between
model results and observations. Model output error formula-
tions have been used to identify the most convenient set of
sensors that provide the best model performance (Tarboton
et al., 1987) to propose measurement strategies regarding the
number of gauges and sampling frequency.

Another application is provided by Dong et al. (2005),
who proposed evaluating the rainfall network using a lumped
HBV model (Lindström et al., 1997). They found that the
model performance does not necessarily improve when ex-
tra rain gauges are placed. A similar approach was presented
by Xu et al. (2013), who evaluated the effect of diverse rain
gauge locations on runoff simulation using a similar hydro-
logical model. It was found that rain gauge locations could
have a significant impact and suggests that a gauge density
of less than 0.4 stations per 1000 km2 can negatively affect
the model performance.

Anctil et al. (2006) aimed at improving lumped neural net-
work rainfall–runoff forecasting models through mean areal
rainfall optimisation, and concluded that different combina-
tions of sensors lead to noticeable streamflow forecasting
improvements. Studies in other fields have also used this
method. For example, Melles et al. (2009, 2011) obtained op-
timal monitoring designs for radiation monitoring networks,
which minimise the prediction error of mean annual back-
ground radiation. The main drawback of this approach is that
multiple error metrics are considered, as specific objectives
relate to different processes.

3.2 Information-theory-based methods

The use of information theory (Shannon, 1948) in the design
of sensor networks for environmental monitoring is based on
communication theory, which studies the problem of trans-
mitting signals from a source to a receiver throughout a

noisy medium. Information theory provides the possibility
of estimating probability distribution functions in the pres-
ence of partial information with the less biased estimation
(Jaynes, 1957). Some of its concepts are analogous to statis-
tics concepts, and therefore similarities between entropy and
uncertainty, such as mutual information and correlation, can
be found (Cover and Thomas, 2005; Alfonso, 2010; Singh,
2013).

Information theory-based methods for designing sensor
networks mainly consider the maximisation of information
content that sensors can provide, in combination with the
minimisation of redundancy among them (Krstanovic and
Singh, 1992; Mogheir and Singh, 2002; Alfonso et al., 2010a,
b, 2013; Alfonso, 2010; Singh, 2013). Redundancy can be
measured by using mutual information (Singh, 2000; Steuer
et al., 2002), directional information transfer (Yang and
Burn, 1994), or total correlation (Alfonso et al., 2010a, b;
Fahle et al., 2015), among others.

3.2.1 Entropy

The principle of maximum entropy (POME) is based on the
premise that probability distribution with the largest remain-
ing uncertainty (i.e. the maximum entropy) is the one that
best represents the current stage of knowledge. POME has
been used as a criterion for the design of sensor networks,
by allowing the identification of the set of sensors that max-
imises the joint entropy among measurements (Krstanovic
and Singh, 1992), in other words, to provide as much infor-
mation content, from the information theory perspective, as
possible (Jaynes, 1988).

In the design of sensor networks, the objective is to max-
imise the joint entropy (H) of the sensor network as

H (X1,X2, . . .,Xn)=−

k∑
i=1

. . .

m∑
j=1

p
(
xi1, . . .xjm

)
logp

(
xi1, . . .xjm

)
, (13)

where p(X) is the probability of the random variable X tak-
ing a discrete value xm. As in many applications, X is a con-
tinuous variable which has to be discretised (quantised) into
intervals (k, m) to calculate its entropy. The probabilities are
calculated following frequency analysis, such that the proba-
bility of a variable X taking a value in the interval i, . . . , j is
defined by the number of times in which this value appears,
divided by the complete length of the dataset. When calcu-
lating the entropy of more than one variable simultaneously
(joint entropy), joint probabilities are used.

Krstanovich and Singh (1992) presented a concise work on
rainfall network evaluation using entropy. They used POME
to obtain multivariate distributions to associate different de-
pendencies between sensors, such as joint information and
shared information, which was used later either to reduce the
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network (in the case of high redundancy) or to expand it (in
the case of a lack of common information).

Fuentes et al. (2007) proposed an entropy-utility crite-
rion for environmental sampling, particularly suited for air-
pollution monitoring. This approach considers Bayesian op-
timal sub-networks using an entropy framework, relying on
the spatial correlation model. An interesting contribution of
this work is the assumption of non-stationarity, contrary to
traditional atmospheric studies, and relevant in the design of
precipitation sensor networks.

Hydraulic 1-D models and metrics of entropy have been
used to select the adequate spacing between sensors for wa-
ter level in canals and polder systems (Alfonso et al., 2010a,
b). This approach is based on the current conditions of the
system, which makes it useful for operational purposes, but
it does not necessarily support the modifications in the water
system conditions or changes in the operation rules. Studies
on the design of sensor networks using these methods have
been on the rise in recent years (Alfonso, 2010; Alfonso et
al., 2013; Ridolfi et al., 2014; Banik et al., 2017).

Benefits of POME include the robustness of the descrip-
tion of the posterior probability distribution since it aims to
define the less biassed outcome. This is because neither the
models nor the measurements are completely certain. Li et
al. (2012) presented, as part of a multi-objective framework
for sensor network optimisation, the criteria of maximum
(joint) entropy, as one of the objectives. Other studies in this
direction have been presented by Lindley (1956), Caselton
and Zidek (1984), Guttorp et al. (1993), Zidek et al. (2000),
Yeh et al. (2011), and Kang et al. (2014).

More recently, Samuel et al. (2013) and Coulibaly and
Samuel (2014) proposed a mixed method involving re-
gionalisation and dual entropy multi-objective optimisation
(CRDEMO), which is a step forward when compared to
single-objective optimisation for sensor network design.

3.2.2 Mutual information (trans-information)

Mutual information is a measurement of the amount of infor-
mation that a variable contains about another. This is mea-
sured as the relative entropy between the joint distribution
and the product distribution (Cover and Thomas, 2005). In
the simplest expression (two variables), the mutual informa-
tion can be defined as

I (X1,X2)=H (X1)+H (X2)−H (X1, X2) , (14)

where H(X1) and H(X2) is the entropy of each of the vari-
ables, andH(X1,X2) is the joint entropy between them. The
extension of the mutual information for more than two vari-
ables should not only consider the joint entropy between
them, but also the joint entropy between pairs of variables,
leading to a significantly complex expression for the multi-
variate mutual information. Regarding this issue, the multi-
variate mutual information can be addressed as a nested prob-

lem, such that

I (X1,X2, . . .,Xn)= I (X1, X2, . . .,Xn−1)

− I (X1, X2, . . .,Xn−1|Xn) , (15)

where I (X1,X2, . . . ,Xn) is the multivariate mutual informa-
tion among n variables, and I (X1,X2, . . . , Xn−1|Xn) is the
conditional information of n−1 variables with respect to the
nth variable. The conditional mutual information can be un-
derstood as the amount of information that a set of variable
share with another variable (or variables). The conditional
mutual information of two variables (X1 and X2) with re-
spect to a third one (X3) can be quantified as

I (X1,X2|X3)=H (X1|X3)−H (X1|X2, X3) , (16)

where H(X1|X3) is the conditional entropy of X1 to X3 and
H(X1|X2, X3) is the conditional entropy of X1 with respect
to X2 and X3 simultaneously. The conditional entropy can
be understood as the amount of information that a variable
does not share with another. The joint entropy between two
variables can be quantified as

H (X1|X2)=

k∑
i=1

m∑
j=1

p
(
X1i,X2j

)
log

p(X1i)

p
(
X1i,X2j

) , (17)

where p(X1,X2) is the joint probability, for k andm discrete
values, of X1 and X2.

An optimal sensor network should avoid collecting repeti-
tive or redundant information; in other words, it should re-
duce the mutual (shared) information between sensors in
the network. Alternatively, it should maximise the trans-
ferred information from a measured to a modelled variable
at a point of interest (Amorocho and Espildora, 1973). Fol-
lowing this idea, Husain (1987) suggested an optimisation
scheme for the reduction of a rain sensor network. His objec-
tive was to minimise the trans-information between pairs of
stations. However, assumptions of the probability and joint
probability distribution functions are strong simplifications
of this method. To overcome these assumptions, the Di-
rectional Information Transfer (DIT) index was introduced
(Yang and Burn, 1994) as the inverse of the coefficient of
non-transferred information (NTI) (Harmancioglu and Yev-
jevich, 1985). Both DIT and NTI are a normalised measure
of information transfer between two variables (X1 and X2).

DIT=
I (X1,X2)

H (X1)
(18)

Particularly for the design of precipitation sensor net-
works, Ridolfi et al. (2011) presented a definition of the max-
imum achievable information content for designing a dense
network of precipitation sensors at different temporal resolu-
tions. The results of this study show that there exists a linear
dependency between the non-transferred information and the
sampling frequency of the observations.
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Total correlation (C) is an alternative measure of the
amount of shared information between two or more vari-
ables, and has also been used as a measure of information
redundancy in the design of sensor networks (Alfonso et al.,
2010a, b; Leach et al., 2015) as

C (X1, . . ., Xn)=

n∑
i=1

H(Xi)−H(X1, . . ., XN ), (19)

where C(X1,X2, . . . , Xn) is the total correlation among
the n variables, H(Xi) is the entropy of the variable i, and
H(X1,X2, . . . , Xn) is the joint entropy of the n variables.
Total correlation can be seen then as a simplification of the
multivariate mutual information, where only the interaction
among all the variables is considered. In the design of sensor
networks, it is expected that the mutual information among
the different variables is minimum; therefore, the difference
between the total correlation and multivariate mutual infor-
mation tends to be minimised as well. The advantage of total
correlation is the computational advantage that represents as-
suming a marginal value for the interaction among variables.

A method to estimate trans-information fields at ungauged
locations has been proposed by Su and You (2014), employ-
ing a trans-information–distance relationship. This method
accounts for spatial distribution of precipitation, supporting
the augmentation problem in the design of precipitation sen-
sor networks. However, as the relationship between trans-
information between sensors and their distance is monotonic,
the resulting sensor networks are generally sparse.

3.3 Methods based on expert recommendations

3.3.1 Physiographic components

Among the most used planning tools for hydrometric net-
work design are the technical reports presented by the
WMO (2008c), in which a minimum density of stations de-
pending on different physiographic units, are suggested (Ta-
ble 1). Although these guidelines do not provide an indica-
tion about where to place hydrometric sensors, rather they
recommend that their distribution should be as uniform as
possible and that network expansion has to be considered.
The document also encourages the use of computationally
aided design and evaluation of a more comprehensive de-
sign. For instance, Coulibaly et al. (2013) suggested the use
of these guidelines to evaluate the Canadian national hydro-
metric network.

Moss et al. (1982) presented one of the first attempts to use
physiographic components in the design of sensor networks
in a method called Network Analysis for Regional Informa-
tion (NARI). This method is based on relations of basin char-
acteristics proposed by Benson and Matalas (1967). NARI
can be used to formulate the following objectives for network
design: minimum cost network, maximum information, and
maximum net benefit from the data-collection programme, in

a Bayesian framework, which can be approximated as

logσ
(
S
(∣∣∣Q̂−Q∣∣∣)α)= a+ b1

n
+
b2

y
, (20)

where the function S(|Q̂−Q|)α is the α percentile of the
standard error in the estimation ofQ, a, b1, and b2 are the pa-
rameters from the NARI analysis, n is the number of stations
used in the regional analysis, and y is the harmonic mean of
the records used in the regression.

Laize (2004) presented an alternative for evaluating pre-
cipitation networks based on the use of the Representative
Catchment Index (RCI), a measure to estimate how repre-
sentative a given station in a catchment is for a given area, on
the stations in the surrounding catchments. The author argues
that the method, which uses datasets of land use and eleva-
tion as physiographical components, can help in identifying
areas with an insufficient number of representative stations
in a catchment.

3.3.2 Practical case-specific considerations

Most of the first sensor networks were designed based on ex-
pert judgement and practical considerations. Aspects such as
the objective of the measurement, security, and accessibility
are decisive to selecting the location of a sensor. Nemec and
Askew (1986) presented a short review of the history and
development of the early sensor networks, where it is high-
lighted that the use of “basic pragmatic approaches” still had
most of the attention, due to its practicality in the field and
its closeness with decision-makers.

Bleasdale (1965) presented a historical review of the early
development process of the rainfall sensor networks in the
United Kingdom. In the early stages of the development of
precipitation sensor networks, two main characteristics influ-
encing the location of the sensors were identified: at sites that
were conventionally satisfactory and where good observers
were located. However, the necessity of a more structured
approach to select the location of sensors was underlined. As
a guide, Bleasdale (1965) presented a series of recommenda-
tions on the minimal density of sensors for operational pur-
poses, summarised in Fig. 5, relating the characteristics of
the area to be monitored and the minimum required a num-
ber of rain sensors, as well as its temporal resolution.

In a more structured approach, Karasseff (1986) intro-
duced some guidelines for the definition of the optimal sen-
sor network to measure hydrological variables for opera-
tional hydrological forecasting systems. The study specified
the minimum requirements for the density of measurement
stations based on the fluctuation scale and the variability of
the measured variable by defining zonal representative areas.
This author suggested the following considerations for se-
lecting the optimal placement of hydrometric stations:

– in the lower part of inflow and wastewater canals;
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Table 1. Recommended minimum densities of stations (area in km2 per station) – adapted from WMO (2008c).

Precipitation

Physiographic unit Non-recording Recording Evaporation Streamflow Sediments Water quality

Coastal 900 9000 50 000 2750 18 300 55 000
Mountains 250 2500 50 000 1000 6700 20 000
Interior plains 575 5750 5000 1875 12 500 37 500
Hilly/undulating 575 5750 50 000 1875 12 500 47 500
Small islands 25 250 50 000 300 2000 6000
Urban areas – 10–20 – – – –
Polar/arid 10 000 10 000 100 000 20 000 200 000 200 000

Figure 5. Minimum number of rain gauges required in reservoired
moorland areas – adapted from Bleasdale (1965).

– at the heads of irrigation and watering canals taking wa-
ter from the sources;

– at the beginning of a debris cone before the zone of in-
filtration, and at its end, where groundwater decrement
takes place;

– at the boundaries of irrigated areas and zones of consid-
erable industrial water diversions (towns); and

– at the sites of hydroelectric power plants and hydro-
projects.

From a different perspective, Wahl and Crippen (1984), as
well as Mades and Oberg (1986), proposed a qualitative score
assessment of different factors related to the use of data and
the historical availability of records for the evaluation of sen-
sor values. Their analyses aimed at identifying candidate sen-
sors to be discontinued, due to their limited accuracy.

3.3.3 User survey

These approaches aim to identify the information needs of
particular groups of users (Sieber, 1970), following the idea
that the location of a certain sensor (or group of sensors)
should satisfy at least one specific purpose. To this end, sur-
veys to identify the interests for the measurement of cer-
tain variables, considering the location of the sensor, record

length, frequency of the records, methods of transmission,
among others, are executed.

Singh et al. (1986) applied two questionnaires to evalu-
ate the streamflow network in Illinois: one to identify the
main uses of streamflow data collected at gauging stations,
where participants described how data was used and how
they would categorise it in either site-specific management
activities, local or regional planning and design, or deter-
mination of long-term trends. The second questionnaire was
used to determine present and future needs for streamflow
information. The results showed that the network was re-
duced due to the limited interest about certain sensors, which
allowed for enhancing the existing network using more so-
phisticated sensors or recording methods. Additionally, this
redirection of resources increased the coverage at specific lo-
cations.

3.4 Other methods

There are also other methods that cannot be easily attributed
to the previously mentioned categories. Among them, value
of information, fractal, and network theory-based methods
can be mentioned.

3.4.1 Value of information

The value of information (VOI, Howard, 1966; Hirshleifer
and Riley, 1979) is defined as the value a decision-maker is
willing to pay for extra information before making a deci-
sion. This willingness to pay is related to the reduction of
uncertainty about the consequences of making a wrong deci-
sion (Alfonso and Price, 2012).

The main feature of this approach is the direct descrip-
tion of the benefits of additional pieces of information, com-
pared with the costs of acquiring that extra piece of infor-
mation (Black et al., 1999; Walker, 2000; Nguyen and Baga-
jewicz, 2011; Alfonso and Price, 2012; Ballari et al., 2012).
The main advantage of this method is that it provides a prag-
matic framework in which information has a utilitarian value,
usually economic, which is especially suited for budget con-
straint conditions.
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One of the assumptions of this type of model is that a prior
estimation of consequences is needed. If a is the action that
has been decided to perform, m is the additional information
that comes to make such a decision, and s is the state that is
actually observed, then the expected utility of any action a
can be expressed as

u(a,Ps)=
∑
S

Psu(Cas) , (21)

where Ps is the perception, in probabilistic terms, of the oc-
currence of a particular state (s) among a total number of pos-
sible states (S), and u is the utility of the outcome Cas of the
actions given the different states. When new information (i.e.
a messagem) becomes available, and the decision-maker ac-
cepts it, his prior belief Ps will be subject to a Bayesian up-
date. If P(m|s) is the likelihood of receiving the message m
given the state s and Pm is the probability of getting a mes-
sage m, then

Pm =
∑
S

PsP (m|s) . (22)

The value of a single message m can be estimated as the
difference between the utility, u, of the action, am that is cho-
sen given a particular messagem and the utility of the action,
a0, that would have been chosen without additional informa-
tion as

1m = u(am, P (s|m))− u(a0, P (s|m)). (23)

The value of information, VOI, is the expected utility of
the values 1m:

VOI= E(1m)=
∑
M

Pm1m. (24)

Following the same line of ideas, Khader et al. (2013)
proposed the use of decision trees to account for the de-
velopment of a sensor network for water quality in drinking
groundwater applications. VOI is a straightforward method-
ology to establish present causes and consequences of sce-
narios with different types of actions, including the expected
effect of additional information. A recent effort by Alfonso et
al. (2016) towards identifying valuable areas to get informa-
tion for floodplain planning consists of the generation of VOI
maps, where probabilistic flood maps and the consequences
of urbanisation actions are taken into account to identify ar-
eas where extra information may be more critical.

3.4.2 Fractal-based

Fractal-based methods employ the concept of Gaussian self-
affinity, where sensor networks show the same spatial pat-
terns at different scales. This affinity can be measured by its
fractal dimension (Mandelbrot, 2001). Lovejoy et al. (1986)

proposed the use of fractal-based methods to measure the di-
mensional deficit between the observations of a process and
its real domain. Consider a set of evenly distributed cells rep-
resenting the physical space, and the fractal dimension of the
network representing the number of observed cells in the cor-
relation space. The lack of non-measured cells in the corre-
lation space is known as the fractal deficit of the network.
Considering that a large number of stations have to be avail-
able at different scales, the method is suitable for large net-
works, but less useful in the deployment of few sensors in a
catchment scale.

Lovejoy and Mandelbrot (1985) and Lovejoy and
Schertzer (1985) introduced the use of fractals to model pre-
cipitation. They argued that the intermittent nature of the at-
mosphere can be characterised by fractal measures with fat-
tailed probability distributions of the fluctuations, and stated
that standard statistical methods are inappropriate to describe
this kind of variability. Mazzarella and Tranfaglia (2000) and
Capecchi et al. (2012) presented two different case studies
using this method for the evaluation of a rainfall sensor net-
works. The former study concludes that for network augmen-
tation, it is important to select the optimal locations that im-
prove the coverage, measured by the reduction of the fractal
deficit. However, there are no practical recommendations on
how to select such locations. The latter proposes the inspec-
tion of seasonal trends as the meteorological processes of
precipitation may have significant effects on the detectabil-
ity capabilities of the network.

A common approach for the quantification of the dimen-
sional deficit is the box-counting method (Song et al., 2007;
Kanevski, 2008), mainly used in the fractal characterisation
of precipitation sensor networks. The fractal dimension of
the network (D) is quantified as the ratio of the logarithm of
the number of blocks (NB) that have measurements and the
logarithm of the scaling radius (R).

D =
log(NB(R))

log(R)
(25)

Due to the scarcity of measurements of precipitation types
of networks, the quantification of the fractal dimension may
be unstable. An alternative fractal dimension may be calcu-
lated using a correlation integral (Mazzarella and Tranfaglia,
2000) instead of the number of blocks, such that

CI(R)=
2

B(B − 1)

B∑
i=1

B∑
j=1

2
(
R−

∣∣uαi − uαj ∣∣) :
for i 6= j, (26)

in which CI is the correlation integral, R is the scaling ra-
dius, B is the total number of blocks at each scaling radius,
and Uα is the location of station α. 2 is the Heaviside func-
tion. A normalisation coefficient is used, as the number of
estimations of the counting of blocks considers each station
as a centre.
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The consequent definition of the fractal dimension of the
network is the rate between the logarithm of the correlation
integral and the logarithm of the scaling radius. This ratio is
calculated from a regression between different values of R,
for which the network exhibits fractal behaviour (meaning a
high correlation between log(CI) and log(R)).

D =
log(CI)
log(R)

(27)

The maximum potential value for the fractal dimension of a
2-D network (such as for spatially distributed variables) is 2.
However, this limit considers that the stations are located on a
flat surface, as elevation is a consequence of the topography,
and is not a variable that can be controlled in the network
deployment.

3.4.3 Network theory-based

Recently, research efforts have been devoted to the use of the
so-called network theory to assess the performance of dis-
charge sensor networks (Sivakumar and Woldemeskel, 2014;
Halverson and Fleming, 2015). These studies analyse three
main features, namely average clustering coefficient, average
path length, and degree distribution. Average clustering is a
degree of the tendency of stations to form clusters. Average
path length is the average of the shortest paths between every
combination of station pairs. Degree distribution is the prob-
ability distribution of network degrees across all the stations,
being network degree defined as the number of stations to
which a station is connected. Halverson and Fleming (2015)
observed that regular streamflow networks are highly clus-
tered (so the removal of any randomly chosen node has little
impact on the network performance) and have long average
path lengths (so information may not easily be propagated
across the network).

In hydrometric networks, three metrics are identified
(Halverson and Fleming, 2015): degree distribution, cluster-
ing coefficient, and average path length. The first of these
measures is the average node degree, which corresponds to
the probability of a node being connected to other nodes. The
metric is calculated in the adjacency matrix (a binary matrix
in which connected nodes are represented by 1 and the miss-
ing links by 0). Therefore, the degree of the node is defined
as

k(α)=

n∑
j=1

aα,j , (28)

where k(α) is the degree of station α, n is the total number
of stations, and a is the adjacency matrix.

The clustering coefficient is a measure of how much the
nodes cluster together. High clustering indicates that nodes
are highly interconnected. The clustering coefficient (CC) for

a given station is defined as

CC(α)=
2

k (α)(k (α)− 1)

n∑
j=1

aα,j . (29)

Additionally, the average path length refers to the mean dis-
tance of the interconnected nodes. The length of the connec-
tions in the network provides some insights into the length of
the relationships between the nodes in the network.

L=
1

n(n− 1)

k(α)∑
α=1

n∑
j=1

dα,j (30)

As can be seen from the formulation, the metrics of the net-
work largely depend on the definition of the network topol-
ogy (adjacency matrix). The links are defined from a metric
of statistical similitude such as the Pearson r or the Spear-
man rank coefficient. The links are such a pair of stations
over which statistical similitude is over a certain threshold.

According to Halverson and Fleming (2015), an opti-
mal configuration of streamflow networks should consist of
measurements with small membership communities, high-
betweenness, and index stations with large numbers of in-
tracommunity links. Small communities represent clusters of
observations, thus indicating efficient measurements. Large
numbers of intra-community links ensure that the network
has some degree of redundancy, and, thus, is resistant to
sensor failure. High-betweenness indicates that such stations
which have the most inter-communal links are adequately
connected and thus able to capture the heterogeneity of the
hydrological processes at a larger scale.

3.5 Aggregation of approaches and classes

Table 2 summarises the sensor network design classes and
approaches, with the selected references to the relevant pa-
pers in each of the categories for further reference.

It is of special interest in the review to highlight the lack
of model-based information theory methods, as well as the
low number of publications in network theory-based meth-
ods. Also, quantitative studies in the comparison of different
methodologies for the design of sensor networks are limited.
It is suggested, therefore, that a pilot catchment is used for
the scientific community to test all the available methods for
network evaluation, and to establish similarities and differ-
ences among them.

Table 3 summarises the main advantages and disadvan-
tages for each of the design and evaluation methods. These
recommendations are general, but take into account the most
general points in the design considerations of sensor net-
works. Some of the advantages of these methods have been
exploited in combined methodologies, such as those pre-
sented by Yeh et al. (2011), Samuel et al. (2013), Barca
et al. (2015), Coulibaly and Samuel (2014), and Kang et
al. (2014).
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Table 2. Classification of sensor network design criteria including recommended reading.

Approaches

Measurement-based Measurement-free

Model-free Model-based

C
la

ss
es

Statistics-based

Interpolation variance Pardo-Igúzquiza (1998)
Bardossy and Li (2008)
Nowak et al. (2010)

Cross-correlation Maddock (1974) Vivekanandan and Jagatp (2012)
Moss and Karlinger (1974)

Model error Tarboton et al. (1987)
Dong et al. (2005)

Information theory

Entropy Krstanovic and Singh (1992) Pham and Tsai (2016)
Alfonso et al. (2014)

Mutual information Husain (1987) Coulibaly and Samuel (2014)
Alfonso (2010)

Expert recommendations

Physiographic components Samuel et al. (2013) Moss and Karlinger (1974) Lazie (2004)
Moss et al. (1982)

Practical case-specific Wahl and Crippen (1984)
considerations Nemec and Askew (1986)

Karaseff (1986)

User survey Sieber (1970)
Singh et al. (1986)

Other methods

Value of information Alfonso and Price (2012) Black et al. (1999)
Alfonso et al. (2016)

Fractal characterisation Lovejoy and Mandelbrot (1985)
Capecchi et al. (2012)

Network theory Sivakumar and Woldemeskel (2014)
Halverson and Fleming (2015)

4 General procedure for sensor network design

Based on the presented literature review, in this section an
attempt is made to present a first version of a unified, gen-
eral procedure for sensor network design. Such procedure
logically link in a flowchart various methods, following the
measurement-based approaches (Fig. 6). The flowchart sug-
gests two main loops: one to measure the network perfor-
mance (optimisation loop), and a second one to represent
the selection in the number of sensors in either augmenta-
tion or reduction scenarios. Most of the measurement-based
methods, as well as most of the design scenarios can be typ-
ically seen as particular cases of this generalised algorithmic
flowchart.

The general procedure consists of 11 steps (boxes in
Fig. 6). In the first place, physical measurements (1) are ac-
quired by the sensor network. These data are used to param-
eterise an estimator (2), which will be used to estimate the

variable at the candidate measurement locations (CML) us-
ing, for instance, Kriging (Pardo-Igúzquiza, 1998; Nowak et
al., 2009) or 1-D hydrodynamic models (Neal et al., 2012;
Rafiee, 2012; Mazzoleni et al., 2015). The sensor network
reduction does not require such estimators as measurements
are already in place.

The selection of the CML should consider factors such as
physical and technical availability, as well as costs related
to maintenance and accessibility of stations, as illustrated by
the WMO (2008c) recommendations. The selection of CML
can also be based, for example, on expert judgement. These
limitations may be presented in the form of constraints in the
optimisation problem.

Then an optimisation loop starts (Fig. 6), by the estimation
of the measured variable at the CML (3), using the estimator
built in (2). Next, the performance of the sensor network at
the CML is evaluated (4), using any of the previously dis-
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Table 3. Advantages and disadvantages of sensor network design methods.

Advantages Disadvantages

Statistics-based

Interpolation variance Useful for assessing data-scarce areas
No event-driven

Heavily rely on the characterisation of the covariance
structure

Minimise uncertainty in spatial distribution of mea-
sured variable

No relationship with final measurement objective

Cross-correlation Useful for detecting redundant stations
Computationally inexpensive

Augmentation not possible without additional as-
sumptions
Limited to linear dependency between stations

Model error Has direct relationship with the measurement Biased towards current measurement objectives
objectives Biased towards model and error metrics

Information theory

Entropy Assess non-linear relationship between variables Formal form is computationally intensive
Unbiased estimation of network performance Quantising (binning) of continuous variables lead to

different results
Optimal networks are usually sparse
Difficult to benchmark
Data intensive

Mutual information Idem Idem

Expert recommendations

Physiographic Well understood Not useful for homogeneous catchments
components Functional for heterogeneous catchments with few

available measurements
No quantitative measure of network accuracy

Useful at country/continental level

Practical case-specific No previous measurements are required Biased towards expert
considerations Useful for observing specific variables Collected data do not influence selection

Biased towards current data requirements

User survey Pragmatic Extensive user identification
Cost-efficient Biased towards current data requirements

Other methods

Value of information Provides a full economical assessment Hard to quantify
Usually decisions are made with available informa-
tion
Biased towards a rational decision model

Fractal characterisation Efficient for large networks Not suitable for small networks or catchments
Does not require data collection Does not consider topographic or orographic influ-

ence

Network theory Provides insight in interconnected networks Not useful for augmentation purposes
Data intensive

cussed methods. The selection of the method depends on the
designer and its information requirements, which also deter-
mine whether an optimal solution is found (5). The stopping
criteria in the optimisation problem can be set by a desired
accuracy of the network, some non-improved number of so-
lutions, or a maximum number of iterations. As pointed out
in the review, these performance metrics can be either model-

based or model-free and should not be confused with the use
of a (geostatistical) model of the measured variable.

In case the optimisation loop is not complete, a new set of
CML is selected (6). The use of optimisation algorithms may
drive the search for the new potential CML (Pardo-Igúzquiza,
1998; Kollat et al., 2008, 2011; Alfonso, 2010). The decision
about adequate performance should not only consider the ex-
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Figure 6. Sensor network (re)design flowchart (CML: candidate
measurement locations).

pected performance of the network, but also recognise the
effect of a limited number of sensors.

Once the performance is optimal, an iteration over the
number of sensors is required. If the scenario is for network
augmentation (7), then a possibility of including additional
sensors has to be considered (8). The decision to go for an
additional sensor will depend on the constraints of the prob-
lem, such as a limitation on the number of sensors to install,
or on the marginal improvement of performance metrics.

The network reduction scenario (9) is inverse: for diverse
reasons, mainly of a financial nature, networks require fewer
sensors. Therefore, the analysis concerns which sensors to re-
move from the network, within the problem constraints (10).

Finally, the sensor network is selected (11) from the re-
sults of the optimisation loop, with the adequate number of

sensors. It is worth mentioning that an extra loop is required,
leading to re-evaluation, typically done on a periodical basis,
when objectives of the network may be redefined, new pro-
cesses need to be monitored, or when information from other
sources is available, and that can potentially modify the def-
inition of optimality.

5 Conclusions and recommendations

This paper summarised some of the methodological criteria
for the design of sensor networks in the context of hydro-
logical modelling, proposed a framework for classifying the
approaches in the existing literature, and also proposed a gen-
eral procedure for sensor network design. The following con-
clusions can be drawn.

Most of the sensor network methodologies aim to min-
imise the uncertainty of the variable of interest at ungauged
locations and the way this uncertainty is estimated varies be-
tween different methods. In statistics-based models, the ob-
jective is usually to minimise the overall uncertainty about
precipitation fields or discharge modelling error. Informa-
tion theory-based methods aim to find measurements at loca-
tions with maximum information content and minimum re-
dundancy. In network theory-based methods, estimations are
generally not accurate, resulting in less biassed estimations.
In methods based on practical case-specific considerations
and value of information, the critical consequences of deci-
sions dictate the network configuration.

However, in spite of the underlying resemblances between
methods, different formulations of the design problem can
lead to rather different solutions. This gap between methods
has not been deeply covered in the literature and therefore
general agreement on the sensor network design procedure
is relevant.

In particular, for catchment modelling, the driving criteria
should also consider model performance. This driving crite-
rion ensures that the model adequately represents the states
and processes of the catchment, reducing model uncertainty
and leading to more informed decisions. Currently, most of
the network design methods do not ensure minimum mod-
elling error, as often it is not the main performance criteria
for design.

Furthermore, in recent years, the rise of various sensing
technologies in operational environments has promoted the
inclusion of additional design considerations towards a uni-
fied heterogeneous sensor network. These new sensing tech-
nologies include e.g. passive and active remote sensing us-
ing radars and satellites (Thenkabali, 2015), microwave links
(Overeem et al., 2011), mobile sensors (Haberlandt and Ses-
ter, 2010; Dahm et al., 2014), crowdsourcing, and citizen
observatories (Huwald et al., 2013; Lanfranchi et al., 2014;
Alfonso et al., 2015). These non-conventional information
sources have the potential to complement conventional net-
works by exploiting the synergies between the virtues and re-
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ducing limitations of various sensing techniques, and at the
same time require the new network design methods allowing
for handling of the heterogeneous dynamic data with varying
uncertainty.

The proposed classification of the available network de-
sign methods was used to develop a general framework for
network design. Different design scenarios, namely reloca-
tion, augmentation, and reduction of networks, are included
for measurement-based methods. This framework is open
and offers “placeholders” for various methods to be used de-
pending on the problem type.

Concerning the further research, from the hydrological
modelling perspective, we propose directing efforts towards
the joint design of precipitation and discharge sensor net-
works. Hydrological models use precipitation data to provide
discharge estimates; however, as these simulations are error-
prone, the assimilation of discharge data, or error correction,
reduces the systematic errors in the model results. The joint
design of both precipitation and discharge sensor networks
may help to provide more reliable estimates of discharge at
specific locations.

Another direction of research may include methods for
designing dynamic sensor networks, given the increasing
availability of low-cost sensors, as well as the expansion
of citizen-based data collection initiatives (crowdsourcing).
These information sources have been on the rise in recent
years, and one may foresee the appearance of interconnected,
multi-sensor heterogeneous sensor networks shortly.

The presented review has also shown that limited effort has
been devoted to considering changes in long-term patterns of
the measured variable in the sensor network design. This as-
sumption of stationarity has become more relevant in recent
years due to new sensing technologies and increased sys-
temic uncertainties, e.g. due to climate and land use change
and rapidly changing weather patterns. Although this topic
has been recognised for quite some time already (see e.g.
Nemec and Askew, 1986), the number of publications pre-
senting effective methods to deal with them is still limited.
This problem, and the techniques to solve it, are being ad-
dressed in the ongoing research.
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