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Ptychography with multiple wavelength
illumination
XUKANG WEI* AND PAUL URBACH

Optics Research Group, Imaging Physics Department, Delft University of Technology, The Netherlands
*x.wei-2@tudelft.nl

Abstract: For performing phase retrieval in the extreme ultraviolet (EUV) regime more
efficiently, developing polychromatic ptychography is desirable. As an alternative to the existing
ptychographic information multiplexing (PIM) method, we present an another scheme where all
monochromatic exit waves are expressed in terms of the amplitude of the transmission function
and the thickness function of the object. Our proposed algorithm is a gradient based method
and its validity is studied numerically. In addition, the sampling issue which appears in the
polychromatic ptychography scheme and its influence to the reconstruction quality are discussed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Ptychography [1–7] is a scanning coherent diffraction imaging (CDI) technique that is suitable
for EUV and X-ray imaging applications due to its high fidelity and its minimum requirement
on optical imaging elements. Its goal is to reconstruct a complex-valued object from a set of
data which are recorded in the Fraunhofer or Fresnel diffraction region. In accordance with the
meaning of ’ptychography’ (from the Greek ’πτν χη’ for ’fold’), for each measurement a part
of the object is illuminated and adjacent illuminations should be partially overlap. This data
redundancy and a priori information about the relative position between the illumination light
beam and the object are the cause for the robustness of ptychography. During the last few years,
many ptychography experiments have been successfully demonstrated with visible light sources
[5–9], synchrotron radiation [3,4,10–14], electron beam [15,16], and tabletop high-harmonic
generation laser [17–20]. It has been widely agreed that ptychography is able to provide not
only a wide field-of-view (FoV), but also simultaneous reconstructions of the complex-valued
function of the sample and the illumination probe function.

Regarding reconstruction algorithms in ptychography, the most commonly used approaches are
the difference-map method [4] and the ptychographic iterative engine (PIE) [2,6]. The difference-
map method is designed to solve problems which can be formulated in terms of finding the
intersection of two constraint sets [7]. In contrast, the PIE method derived from a gradient descent
scheme by sequentially minimizing the distance between the estimated diffraction intensities
and the measurements [5]. In principle, a highly coherent illumination is always demanded
while performing ptychography [21,22]. However, in the X-ray regime, where ptychography
has been widely used, light sources are either spatially partially coherent (e.g. synchrotron
radiation [23,24]) or temporally partially coherent (e.g. tabletop high-harmonic generation laser
[25,26]). To mitigate the unwanted effect due to the partial coherence, and also to improve the
throughput of the imaging system, more novel algorithms have been introduced into ptychography
during the last decade, among which the most popular approaches are the blind deconvolution
method [27] and the modes decomposition method [10]. Both of these approaches were initially
utilized for performing ptychography with spatially partially coherent illumination. The mode
decomposition method was later used to perform ptychography with spatially coherent but
temporally broadband illumination. The polychromatic ptychography was named ptychographic
information multiplexing (PIM) method [8], in which the object is illuminated by a spatially
fully coherent light beam, which spectrum however consists of several wavelengths. The exit
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wave immediately behind the object is decomposed into mutually incoherent modes, each
mode corresponding to one wavelength. Then these modes are reconstructed simultaneously by
minimizing the distance between the estimated diffraction intensity and the measurement, which
is the incoherent sum of the intensities of the separate wavelengths.

In this paper, we propose an alternative polychromatic ptychography scheme where the modes
in the PIM method are all expressed in the transmission and the thickness function of the sample.
We consider both the case that the probe for the different wavelengths is assumed known, and the
case of simultaneous reconstruction of unknown probe and the object. Our method is described
and derived in Section 2.1. After introducing the error functions in Section 2.3, our simulation
settings and results are presented in Subsection 3.1.1, followed by a quantitative study on the
error functions in Subsection 3.1.2 and a comparison with the PIM method in Subsection 3.1.3.
The simulation includes probe reconstruction is demonstrated in Subsection 3.2. We conclude
the paper with a summary and outlook in the last section.

2. Method

2.1. Plane-wave illumination

We start by considering a polychromatic ptychography configuration as depicted in Fig. 1. A
part of the object is illuminated by a spatially coherent plane-wave, which has distinct peaks
in its temporal spectrum S(λ). The object is moved to a number of positions while a set of
ptychographic data is collected in the far field. For one position of the object and for one
wavelength λ, we denote the exit wave immediately behind the object byΨ (r, λ) and the measured
intensity of the diffracted field by IM(r′). Here r and r′ are 2-D coordinates in the object-plane
and the detector-plane, respectively.

Fig. 1. Polychromatic ptychography configuration with plane-wave illumination.

In our proposed scheme, instead of decomposing the exit wave into mutually incoherent modes
and calculating their diffraction intensities, we consider the relation between these modes. In the
plane-wave illumination configuration, the exit waveΨ (r, λ) is given by the object’s complex
transmission function multiplied by a planar wave with wavelength λ. For the case where the
illumination contains several separate wavelengths λ1<λ2< · · · <λk< · · · <λN in its temporal
spectrum S(λ). The exit waveΨ (r, λ) for wavelength λk and probe position Rj is (apart from a
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phase constant, see in Appendix D.1):

Ψj(r, λk) = P(r − Rj) · A(r) · exp
[
i
λ1
λk
φ(r)

]
, (1)

where Rj represents the jth relative position between the probe and the object. A(r) is the object’s
transmission function and φ(r) stands for 2π times the ratio of the object thickness function and
wavelength λ1. Note that both A(r) and φ(r) are real valued and that A(r) is positive. P(r) stands
for the illumination (or probe) function, which in this subsection is treated as a planar wavefield
multiplied by an circular aperture with radius r0:

P(r) =



P(r), |r| ≤ r0,

0, |r| >r0.
(2)

Note that in Eq. (1) we assume that the object has no dispersion. For dispersive materials, the
exponential term in Eq. (1) should be modified by introducing the ratio of the refractive indices
at wavelengths λ1 and λk, and the absorption should be represented by the imaginary part of the
refractive indices.
The goal in our polychromatic ptychography scheme, for the case that the probe P is known ,

is to retrieve A(r) and φ(r) simultaneously. To do that, we minimize the following cost function:

Ej(A, φ) =
∬ [√

IM,j(r′) −
√
IE,j(r′)

]2
dr′, (3)

where IM(r′) is the measured intensity when the probe is at position Rj and IE(r′) is the estimated
polychromatic far field diffraction intensity which is an incoherent sum over all calculated
monochromatic diffraction patterns [28]:

IE,j(r′) = 1D(r′) ·
∑
k

����F {
Ψj(r, λk)

} (
r′
λkz

)����
2
, (4)

where 1D(r′) is a binary window function representing the region of the detector:

1D(r′) =



1, |x′ | ≤ x′D, |y′ | ≤ y′D,

0, |x′ | >x′D, |y′ | >y′D,
(5)

with
r′ = x′êx′ + y′êy′ , (6)

and F denoting the Fourier transform, which is used to propagate the exit wave to the far field
over the large distance z.
The reconstruction of A(r) and φ(r) is done by applying the steepest decent procedure to the

cost function Ej(A, φ). In Appendix A and B detailed derivations are given of the following
formulas for updating A(r) and φ(r):




An+1(r) = An(r) + δA
∑
k
<

{[
Pj(r)

]∗ · exp
[
−iλ1λk φn(r)

]
· ∆Ψj,n(r, λk)

}
,

φn+1(r) = φn(r) + δφ
∑
k
<

{[
Pj(r)

]∗ · −iλ1λk · An(r) · exp
[
−iλ1λk φn(r)

]
· ∆Ψj,n(r, λk)

}
,
(7)

where< denotes the real part of a complex number, ∗ is complex conjugation, δA and δφ are
constant step sizes taken along the direction of gradient descent of the cost function, the index n
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stands for the iteration number, and ∆Ψ (r, λk) is defined by:

∆Ψj,n(r, λk) = F −1
{

1D(r′) ·
( √

IM,j(r′)√
IE,j,n(r′) + α

− 1
)
· F [

Ψj,n(r, λk)
] (

r′
λkz

)}
(r, λk), (8)

where α>0 is a regularization parameter which prevents division by zero. Its value should be
chosen comparable to the noise level so that an accurate reconstruction can be guaranteed. The
Eq. (7) are implemented sequentially for all lateral positions as one complete iteration. Note that
A(r) and φ(r) are only updated where Pj(r) is nonzero. Here we stress that the expression for
∆Ψ (r, λk) can also be identified as the gradient descent direction of the cost function with respect
to each mode in the PIM method.

For successfully retrieving A(r) and φ(r), the complete ptychographic dataset must be used. To
do that, we sequentially implement Eq. (7) on every lateral position of the object as a complete
reconstruction procedure within one iteration. In the meantime, we also introduce a positive-value
correction to the amplitude reconstruction A(r) at the end of each iteration, so that a positive
amplitude is obtained and hence the phase is well defined. A framework of our proposed model
is summarized in Algorithm 1.
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stands for the iteration number, and ∆Ψ (r, λk) is defined by:

∆Ψj,n(r, λk) = F −1
{

1D(r′) ·
( √

IM,j(r′)√
IE,j,n(r′) + α

− 1
)
· F [

Ψj,n(r, λk)
] (

r′
λkz

)}
(r, λk), (8)

where α>0 is a regularization parameter which prevents division by zero. Its value should be
chosen comparable to the noise level so that an accurate reconstruction can be guaranteed. The
Eq. (7) are implemented sequentially for all lateral positions as one complete iteration. Note that
A(r) and φ(r) are only updated where Pj(r) is nonzero. Here we stress that the expression for
∆Ψ (r, λk) can also be identified as the gradient descent direction of the cost function with respect
to each mode in the PIM method.

For successfully retrieving A(r) and φ(r), the complete ptychographic dataset must be used. To
do that, we sequentially implement Eq. (7) on every lateral position of the object as a complete
reconstruction procedure within one iteration. In the meantime, we also introduce a positive-value
correction to the amplitude reconstruction A(r) at the end of each iteration, so that a positive
amplitude is obtained and hence the phase is well defined. A framework of our proposed model
is summarized in Algorithm 1.

Algorithm 1 polychromatic ptychography algorithm with plane-wave illumination
iteration number n = 1
γ = a small positive number (e.g. 10−3)
repeat

for each probe position Rj do
for each λk do
forward propagate the wavefield;

end for
use Eq. (4) to calculate IE(r′);
for each λk do
use Eq .(8) to apply intensity constraint on the total diffraction field;
backward propagate the wavefields for every λk;

end for
use Eq. (7) to update A(r) and φ(r);
if A(r)n < 0 then
A(r)n = γ;

end if
end for
n = n + 1;

until algorithm converges

2.2. With probe reconstruction

In the previous subsection we restricted ourselves to the case where the illumination (or probe) is
a localized plane-wave. One can imagine that if in practice this condition is violated, directly
applying the algorithm will end up with stagnation or an inaccurate reconstruction. Therefore
to achieve a better of the reconstruction’s quality, simultaneously retrieving the probe function
and the object’s transmission and thickness functions is necessary in such cases. As shown in
Fig. 1, in our model the object is illuminated by a wavefield which contains multiple wavelength
components. If these components have different intensity and wavefront profiles, then we have to
model this polychromatic probe function as an incoherent superposition of different modes and
using the PIM formula to reconstruct these modes would be the most reasonable choice. Here

2.2. With probe reconstruction

In the previous subsection we restricted ourselves to the case where the illumination (or probe) is
a localized plane-wave. One can imagine that if in practice this condition is violated, directly
applying the algorithm will end up with stagnation or an inaccurate reconstruction. Therefore
to achieve a better of the reconstruction’s quality, simultaneously retrieving the probe function
and the object’s transmission and thickness functions is necessary in such cases. As shown in
Fig. 1, in our model the object is illuminated by a wavefield which contains multiple wavelength
components. If these components have different intensity and wavefront profiles, then we have to
model this polychromatic probe function as an incoherent superposition of different modes and
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using the PIM formula to reconstruct these modes would be the most reasonable choice. Here
we only consider a simple situation where every mode shares the same intensity and wavefront
profile. In that case the exit wave fieldΨ (r, λ) can be written as in Eq. (1). However, now P(r) is
a complex-valued probe function which represents the illumination wave field of all wavelengths.
To incorporate the reconstruction of this probe function, Eq. (7) is modified as :




An+1(r) = An(r) + δA
∑
k
<

{[
Pj,n(r)

]∗ · exp
[
−iλ1λk φn(r)

]
· ∆Ψj,n(r, λk)

}
,

φn+1(r) = φn(r) + δφ
∑
k
<

{[
Pj,n(r)

]∗ · −iλ1λk · An(r) · exp
[
−iλ1λk φn(r)

]
· ∆Ψj,n(r, λk)

}
,

Pn+1(r) = Pn(r) + δP
∑
k
An(r + Rj) · exp

[
−iλ1λk φn(r + Rj)

]
· ∆Ψj,n(r + Rj, λk),

(9)

where ∆Ψ (r, λk) is again given by Eq. (8). Note that Eq. (9) are designed for the simple situation
mentioned above, and should be implemented sequentially for all the lateral positions as one
complete iteration. In Section 3, numerical experiments are performed to test our algorithm.

2.3. Definition of error functions

To monitor our numerical experiment, we define an error function given by:

EF(n) =

∑
j

∑
r′

����
√
IM,j(r′) −

√
IE,j,n(r′)

����
2

∑
j

∑
r′

��IM,j(r′)
�� , (10)

as before, the subscript j is an index that labels the object’s lateral position and the subscript n is
the current iteration number. We refer to EF as the normalized error in Fourier space (NEF),
which is commonly used in practical experiments due to the availability of IM and IE. Due to the
close relation between the NEF and the cost function as defined in Eq. (3), it is more suitable to
assess the convergence of our algorithm by monitoring the evolution of the NEF than the NER.
To estimate the quality of the results, we also define a normalized error ER in real space (NER),
defined by:

ER(n) =

∑
r
|O(r) − γOn(r)|2
∑

r
|O(r)|2

, (11)

where O(r) = A(r) · exp [iφ(r)] is the actual object function which is defined as the exit wave at
wavelength λ1. On(r) and γ are given by:




On(r) = An(r) · exp [iφn(r)] ,

γ =

∑
r
O(r)O∗n(r)∑

r
|On(r)|2

.
(12)

Hence On(r) is the reconstructed object, i.e. the reconstructed exit wave for wavelength λ1, after
n iterations. The parameter γ is a multiplication constant that makes the NER invariant with
respect to phase offset [29]. The NER can be regarded as a direct measure of the quality of
the reconstructions. This suggests that in numerical experiments, the NER is more suitable to
monitor the error, however in real experiments only NEF can be used.
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3. Simulation and discussion

3.1. Plane-wave illumination

To examine our Algorithm 1, the results of numerical experiments are reported in this section.
A detailed introduction and demonstration of our simulation is presented in the first part of this
section, then in the following subsection we analysis the performance of the algorithm by studying
the error functions. In the final part of the section a comparison study between Algorithm 1 and
the PIM method is reported.

3.1.1. Validation of the proposed algorithm.

Parameter settings of the simulation We first construct a complex-valued object with as
amplitude map the ’Mona Lisa’ painting and as phase map the ’camera man’ picture. The
amplitude map contains non-zero values ranging in [0.1, 1] to avoid phase uncertainty, and the
phase map varies between [0, π] to prevent phase wrapping effect. A planar wavefield which
contains a certain number of wavelength components, and which was transmitted by a circular
aperture, is used as the probe function. For each wavelength component, the exit wavefield is
modeled as in Eq. (1) and then is propagated to the far field where their intensities are added
up. The measured total intensity is the polychromatic ptychographic data set in accordance
with Eq. (4). Note that for every wavelength λk other than the shortest one λ1, the propagated
wavefield is zoomed in with a rate = λk/λ1. The far field diffraction patterns scale with the
reciprocal wavelength. Since the discrete mesh in the far field region should correspond to the
pixels of the detector, we use the chip z-transform [30,31] instead of the FFT to enable the desired
flexibility of the mesh. The discretised regions of the diffraction patterns are limited to spatial
frequencies that are below the maximum spatial limit defined by the Nyquist sampling for the
shortest wavelength λ1. To give an example, we assume in the configuration of Fig. 1 that there
is a detector with a 320 × 320 array of 15µm pixels, at a propagation distance of z = 1cm behind
the object. Accordingly, the maximum spatial frequency that can be measured by this detector
for the wavelengths 30nm, 40nm and 50nm are listed in Table 1.

Table 1. The maximum measurable spatial frequency for 30nm, 40nm and 50nm wavelength, with a
detector which contains a 320 × 320 array of 15µm pixels. The propagation distance is assumed to
be 1cm. The diameter of the circular aperture which lies inside the probe function is 10µm. Hence

the Fresnel number is 1/3 for 30nm wavelength.

Wavelength (nm) 30 40 50

Detector size (mm) 4.8 4.8 4.8

Maximum spatial frequency (cy/µm) 8.0 6.0 4.8

The probe function that we use is a matrix with 320 × 320 pixels, which is in line with the
number of pixels of the detector. The probe has circular support with diameter of 160 pixels,
which is equivalent to a diameter size of 10µm. The Fresnel number is 1/3 for 30nm wavelength,
and is smaller than 1/3 for larger wavelengths. Therefore the detector is in the Fraunhofer region.
The circular support is used as a priori knowledge in the reconstruction. In addition, the a priori
knowledge is used that the object is moved over an equidistant 4x4 grid with 80% overlap between
adjacent illuminated areas. Suppose the diameter of the circular support is L, and the distance
between adjacent illumination positions is denoted by d ∈ [0, L]. The overlap ratio is defined by:

overlap ratio = 1 − d
L
, (13)

which is usually be assigned from60% to 85% to achieve optimal performance of the reconstruction
algorithm [32]. A detailed demonstration regarding how the overlap ratio influences the
reconstruction quality can be found in Appendix G. This scanning procedure of the probe gives
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us an object array with 480 × 480 pixels in total. For the pixels of the discretized object region
which are not illuminated, the value of A(r) are set to be zero during the iteration. The width of
this region of zeros is roughly 80 pixels. In practice, the object’s moving grid could be obtained
from a translation stage’s reading, which can be refined using some proposed algorithms [5,33].
On the other hand, the a priori knowledge about the probe’s support size can be estimated by
Fourier transforming the diffraction intensity, and then can be registered with real-world spatial
scale according to the propagation distance and camera’s parameters.
It is worth to note that, by taking more wavelengths into account, the computational cost of

the algorithm is generally more expensive than the case of monochromatic illumination. This
can be understood by inspecting the framework of Algorithm 1 and Eq. (8). To complete a
single iteration in Algorithm 1, one need to perform forward and backward propagation of the
wavefield for every wavelengths and for every probe positions, which involve multiple FFTs.
If the propagation is calculated for each λk sequentially, the required computation time will
increase almost linearly with respect to the number of wavelengths. To shorten the calculation
duration, one can modify the code based on accelerated gradient-based algorithms (e.g. nonlinear
optimization methods [34,35] and momentum-based methods [36]) or take an advantage of
modern computational devices (e.g. GPU-based parallel computing [37–39]). In our numerical
experiments, 1000 iterations were applied for each single simulation to ensure the convergence. To
make the algorithm converges faster, Nesterov momentum-based algorithm [36] was implemented
between 50th and 500th iteration. The momentum is added to the reconstruction formula in the
manner as suggested in [40]. Our simulation is running on a NVIDIA GeForce GTX 1060 GPU.
For easy integration with the device, our code is written in Python using the scikit-cuda package
for calculating 2D-FFT and pycuda package for performing other operations.

Because in this part of our simulation the probe includes polychromatic plane-waves, we first
investigate how the number of wavelengths in the probe’s temporal spectrum influence the quality
of the reconstruction. The probe’s spectrum was generated as follows: (i) when the illumination
is a monochromatic plane-wave, the wavelength is 30nm. (ii) for the polychromatic situation,
we start with generating two spectral components at 30nm and 50nm. To include more spectral
component (when N>2), we add the additional frequencies between 30nm and 50nm, while the
distances in frequency between adjacent frequencies are identical. A schematic demonstration
regarding how we generate the temporal spectrum can be found at the left of Fig. 2. When the
measurements are noise free, we let all the wavelengths have the same intensity in the probe
spectrum as shown in Fig. 2. Whereas for the noisy situation, we built the probe spectrum such
that all the wavelengths share the same number of photons. A more detailed description about
the noisy case can be found in the next subsection.

Adding noise to the measurements To investigate the influence of noise, we added Poisson
noise to every diffraction intensity measurements. Considering that one of the tasks in the
numerical experiment is to investigate how the algorithm performs with different number of
wavelengths when the noise is kept at a certain amount, it is important to build a criterion of
the noise level which is insensitive to the number of wavelength in the probe’s spectrum. In
the simulation we pay attention to the total photon number of the diffraction intensity, we call
this number TPN (short for ’total photon number’) and we use it as a reference to define the
Poisson noise level. In accordance with the Poisson noise model, the signal-to-noise ratio (SNR)
equals to

√
TPN. Hence when the TPN remains at the same value, each measurement will also

stays at the same noise level for different number of wavelengths. Here it is notable that a single
photon includes hc/λk of energy for each wavelength λk, therefore each wavelength has different
intensities with the same photon number. However, though a simple calculation we can find
that the total energy of the diffraction intensity is the same for a fixed TPN. The calculation is
presented in Appendix C.



Research Article Vol. 27, No. 25 / 9 December 2019 / Optics Express 36774

Fig. 2. Simulation results for validating Algorithm 1. The illumination includes poly-
chromatic plane-waves. (a1)-(a8) are the simulation results when the illumination is
monochromatic, reconstructed by employing the PIE algorithm. (b1)-(b8), (c1)-(c8) and
(d1)-(d8) show the reconstructions with implementing Algorithm 1, for the case where
2, 5 and 20 spectral components are included in the probe’s spectrum, respectively. A
schematic demonstration regarding how we generate the temporal spectrum can be found on
the left hand column. Note that the distances in frequency between adjacent frequencies are
identical, and all the wavelengths share the same number of photons.
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Reconstruction results In Fig. 2, we present our simulation results for the cases where 1, 2,
5 and 20 spectral components are included in the probe’s spectrum, respectively. The results
in Figs. 2(a1)–2(a8) are obtained with the PIE algorithm, while Figs. 2(b1)–2(b8), 2(c1)–2(c8)
and 2(d1)–2(d8) are the reconstructions by implementing our proposed Algorithm 1. We use a
constant amplitude map A0(r) = 0.5 and a constant phase map φ0(r) = 1 as an initial guess for
the object function, which is proven to be sufficient for our proposed algorithm to successfully
alleviate the ambiguities described in Appendix D.2. Reconstruction results with different TPN
value are also depicted in Fig. 2. By roughly examining these pictures, one can conclude that
the reconstructions are visually acceptable when the TPN equals 107 and 106, whereas the
reconstructions are corrupted by noise when the TPN is decreased to 105. By carefully comparing
the phase reconstructions (the ’camera man’ pictures), it is also noticeable that stronger defects
occur when the probe contains 20 spectral components. For a better understanding on this defect,
in the following subsection a more quantitative analysis is given by inspecting the evolution of
the error functions.

3.1.2. Evolution of the error function.

To better understand the simulation results, it is necessary to examine the evolution of the error
functions that are described in Subsection 2.3. A series of NERs and NEFs, which were computed
from the simulation results described in Subsection 3.1.1 and Fig. 2, are drawn in Figs. 3(a) and
3(b) respectively. All the NERs and the NEFs were computed for the case that the probe contains
1-20 components in its spectrum, and the TPN varies from 105 to 107. If we only pay attention to
a single TPN value, it is seen that although the NEFs stay at almost the same value, the NER
increases with the number of wavelengths almost linearly, which agrees with what we already
observed in Figs. 2(c1)–2(c8).

Fig. 3. The final values of the NER and the NEF after our simulation converged. In (a) we
show the calculated NERs with 1-20 spectral components in the probe’s spectrum, and with
the TPN varies from 105 to 107. The NEFs for the same settings are depicted in (b). Note
that the signal-to-noise ratio is so large that the noise has negligible influence when the TPN
equals 107, therefore in this plot the blue dots and red ones are almost overlap.

For seeking the reason behind this phenomenon, additional simulation have been performed.
The difference between the new and previously discussed simulations is that we ignore the
wavelength dependence in propagating the wavefields (see Eq. (4)). Figure 4 gives a schematic
description of the two different ways of computing the polychromatic diffraction intensity
pattern. In line with what has been discussed in Subsection 3.1.1, it is assumed that the
shortest wavelength’s (λ1) contribution to the diffraction intensity always fulfills the Nyquist
sampling criterion. Hence in Fig. 4 we use a red frame to represent the Nyquist frequency with
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respect to λ1, which is equivalent to the boundary of an imaginary detector 1D(r′). Figure 4(a)
illustrates the calculation process in Eq. (4), which includes the wavelength-dependency of the
wavefield propagation. In the new numerical experiment the wavefield propagation is without the
wavelength-dependency, as shown in Fig. 4(b).

Fig. 4. Graphical description of the two different ways of computing the polychromatic
diffraction intensity pattern in our simulation. (a) illustrates the calculation process in Eq.
(4), which includes the wavelength-dependency of the wavefield propagation. (b) describes
the wavefield propagation model which is without the wavelength-dependency. The red
frame represents the boundary of an imaginary detector 1D(r′).

In correspondence with the wavefield propagation model shown in Fig. 4(b), the simulated
NERs and NEFs, gathered after our algorithm converged, are illustrated in Figs. 5(a) and 5(b)
respectively. By comparing Fig. 3 and Fig. 5, it is obvious that the wavelength-dependent error
in the reconstruction disappears once the wavelength-dependency in the propagation model is
removed. Hence, one can conclude that the way we measure and compute the polychomatic
diffraction wavefield is the cause for the increase in NER in Fig. 5(a). This is because when
the binary function 1D(r′) in Eq. (4) corresponds to a window size which fits the Nyquist
sampling criterion for the short wavelength λ1, the same maximum spatial frequency from larger
wavelengths are not completely measurable (see in Table 1). As illustrated in Fig. 5(a), for
wavelengths larger than λ1, part of the diffraction wavefield (outside the red frame) is cut off by
the boundary of the detector. Hence the recorded data is incomplete which leads to the increase of
the NER. It follows that the theoretical resolution of the reconstruction cannot be estimated only
by the size of the detector and the sampling rule of the shortest wavelength. This is important if
one performs polychromatic ptychography without using wavelength-scanning or spectroscopic
detection to separately detect the diffracted intensities of the individual wavelengths. In other
words, although in principle performing ptychography with a polychromatic light source can
gives higher SNR and shorter acquisition time, the reconstruction quality is not necessarily better
than the monochromatic ptychography result. A similar effect was also reported in [8].
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Fig. 5. The numerical experiment results corresponding to the situation where the wavefield
propagation is wavelength-independent, as in Fig. 4(b). In these plots same choices have
been made for the number of wavelengths and noise as in Fig. 3.

3.1.3. Comparison with PIM method.

In order to study the different performance between our proposed algorithm and the PIM method,
we present some numerical simulations in this subsection. All parameter values are chosen the
same as in Subsection 3.1.1. In Fig. 6 we illustrate the final reconstructed NERs and NEFs for
simulated noise-free measurements. The NERs of our proposed algorithm were calculated as
described in Section 2.3. While the NERs of the PIM method were calculated also from Eq. (11),
in which the reconstructed object O(r)n is given by the exit wave in PIM corresponding to λ1.

Fig. 6. A comparison simulation result between Algorithm 1 and the PIM method, with
noise-free measurements. The NEF values in the right figure are identical for the two
methods.

From Fig. 6 it can be concluded that although bothAlgorithm 1 and the PIMmethod converged
to a very low value of NEF, the reconstructed object functions have different qualities. When the
probe function contains polychromatic plane waves with more than roughly 10 wavelengths, the
PIM method suffers more from the limited detector size issue described in Subsection 3.1.2. As
shown in Fig. 7, when the probe has 20 spectral components, all the reconstructed modes in the
PIM method are disrupted. Hence in this case it is more suitable to employ Algorithm 1.
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Fig. 7. The reconstructed object functions for the situation where the probe has 20 spectral
components. Noise-free measurements are used in this simulation and the propagation
model follows the scheme in Eq. (4).

3.2. With probe reconstruction

We also compare the simulation outcomes for different situations when the probe function is
unknown. As has been mentioned in Subsection 2.2, we consider a relatively simple case where
for every wavelength the complex probe function is the same. To inspect the performance of
our proposed iterative scheme of Eq. (9), we use a complex initial probe function and show the
noise-free reconstruction result in Figs. 8(a1)–8(a6). The probe’s temporal spectrum is assumed
to contain 3 components with identically long wavelength intervals between them, as illustrated

Fig. 8. Simulation results with probe reconstruction following the scheme in Eq. (9). On
the left the probe’s temporal spectrum is shown. In (a1)-(a4) are the reconstructed probe
function when the initial probe has a complex profile. The difference between the original
complex profile probe and the reconstructed probe are illustrated in (a5)-(a6). (b1)-(b4) are
the results with a polychromatic plane-wave initial probe function.
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at the left of Fig. 8. It can be confirmed that the update formula given in Eq. (9) is able to retrieve
the object and the probe function, even when the probe has a very complicated profile. However,
due to the fact that in this simulation we set the relative position between the probe and the object
Rj to be a regular position grid in two orthogonal directions, raster grid pathology appears in both
the reconstruction of the object and the probe. This kind of defect is more visually obvious when
the initial probe function is a polychromatic plane-wave (the reconstruction result for this case
is in Figs. 8(b1)–8(b4)). To eliminate the raster grid defect, ideas for optimizing the scanning
trajectory were proposed in [41–43], which however are beyond the scope of this paper.

4. Conclusion and outlook

In this paper we have introduced a polychromatic ptychographic algorithm, which can be regarded
as an alternative to the PIM approach. It is based on the idea that the mutually incoherent modes in
the multiple wavelength scheme can be related by representing the object by real transmission and
thickness functions. The algorithm is derived from the steepest descent method and is numerically
validated. We first discussed polychromatic plane wave illumination which is assumed to be
known and afterwards included the case of the reconstruction of an unknown probe. The results
show that Algorithm 1 performs nicely for a known probe, and that a reasonable level of noise can
be handled by the algorithm. For a sufficiently thin object, the ptychography reconstruction given
by the polychromatic approach has a higher NER than the case of monochromatic illumination.
This is due to the fact that for longer wavelengths higher spatial frequencies are not capture
by the detector because stronger diffraction effects. Hence, although in principle performing
ptychography with a polychromatic light source can give higher SNR and shorter acquisition time,
the reconstruction quality is not necessarily better than the monochromatic ptychography results.
Compared to the PIM method, Algorithm 1 is less sensitive to the missing data issue. However,
defects are observed when a very complex unknown probe function is introduced and must be
reconstructed as well. With varying parameter settings (i.e. noise and the number of spectral
components in the probe), different behaviors are observed and discussed in this paper. As next
steps for improvement, pathologies cause by the raster scanning grid of the probe function should
be eliminated and the performance of the algorithm should be validated using experimental data.

Appendix

The steepest descent method and monochromatic ptychography algorithm

In this section of the Appendix we derive the ptychograpy algorithms for a single wavelength.
The goal of ptychography is to reconstruct a complex-valued object from a set of diffraction
intensity patterns which are recorded in the Fraunhofer or Fresnel region. Let r and r′ be 2-D
coordinates in the object-plane and the detector-plane, respectively. The exit wave immediately
behind the object is denoted byΨ (r) and the measured diffraction intensity measurement IM(r′).
According to the thin object model, the exit waveΨ (r) is given by the multiplication of the probe
function P(r − Rj) and the object function O(r):

Ψj(r) = P(r − Rj) · O(r)
= Pj(r) · O(r)

(14)

where Rj is the jth relative position of the probe and the object. The probe function is assumed
to have a circular shape support which has a finite size with radius r0:

P(r) =



P(r), |r| ≤ r0,

0, |r| >r0,
(15)
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For a detector locates in the far field, we can estimate the diffraction intensity pattern IE(r′) as:

IE,j(r′) =
����F (

Ψj
) (

r′
λz

)����
2

=

����
∬

Ψj(r) · exp
(
−i 2π
λz

rr′
)
· dr

����
2
,

(16)

where F stands for the Fourier transform operator. A cost function E can be defined as the
distance between the estimated diffraction intensities IE(r′) and the measurements IM(r′):

E =
∑
j

∬ [√
IM,j(r′) −

√
IE,j(r′)

]2
dr′, (17)

The task of ptychography is to find an object function and a probe function by minimizing the
cost functional E which fit the given a priori knowledge (i.e. the support constraint on the
probe function, and the jth relative position Rj between the probe and the object), while the cost
function E is minimized.
To recover the object function, a straightforward way is sequentially performing projections

in the Fourier plane and the object plane. In recent research works on phase retrieval, it has
became more common to implement these projections in the Fourier and object domain with
more advanced schemes (e.g. difference map [7,10,44], RAAR [37,45], etc.) for achieving better
convergence.
Alternatively, one can obtain ptychography reconstruction by sequentially minimizing a cost

function Ej with the steepest descent method. Let Ej be the difference between IE,j(r′) and
IM,j(r′) for position j:

Ej(P,O) =
∬ [√

IM,j(r′) −
√
IE,j(r′)

]2
dr′. (18)

First, we compute the retrieval formula for the object function O(r). To do that, we calculate the
functional derivative of Ej with respect to O at every point r:

δEj(P,O)(δO) = 2
∬ (√

IM,j(r′)√
IE,j(r′)

− 1
)
< [F (

PjO
) (r′) · F (

PjδO
)∗ (r′)] dr′

= 2<
[∬ (√

IM,j(r′)√
IE,j(r′)

− 1
)
· F (

PjO
) (r′) · F (

PjδO
)∗ (r′)dr′

]

= 2<
{∬

F −1
[(√

IM,j(r′)√
IE,j(r′)

− 1
)
F (

PjO
) (r′)

]
P∗j (r) · δO∗(r)dr

}

= 2<
[∬

∆Ψj(r) · P∗j (r) · δO∗(r)dr
]
,

(19)

where ∆Ψj(r) is an auxiliary function given by:

∆Ψj(r) = F −1
[(√

IM,j(r′)√
IE,j(r′)

− 1
)
· F (

Ψj
) (r′)

]
(r), (20)

and < is the real part of a complex number. To determine the steepest descent direction, we
formulate the problem as following:

minimize
δO

δEj(δO)
subject to ‖δO‖2 = const,

(21)
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where ‖δO‖2 is given by:
‖δO‖2 =

∬
δO(r) · δO∗(r)dr. (22)

To solve this problem, we construct a Lagrange function:

Lj(δO) = δEj(δO) − λO ‖δO‖2 , (23)

where λO is a real Lagrange multiplier. Now, we differentiate L by perturbing the function
δO with an arbitrary auxiliary function δÕ. According to the Lagrange multiplier rule, for the
optimal solution of the problem in (21), we have:

<
[∬

∆Ψj(r) · P∗j (r) · δÕ∗(r)dr
]
= −<

[
λO

∬
δO(r) · δÕ∗(r)dr

]
. (24)

Note that (24) is for all δÕ(r). If we assign δÕ(r) to be pure real-valued, then we have:∬
<

[
∆Ψj(r) · P∗j (r)

]
· δÕ(r)dr = −λO

∬
<[δO(r)] · δÕ(r)dr.

One solution for this equation is:

<
[
∆Ψj(r) · P∗j (r)

]
= −λO<[δO(r)] . (25)

On the other hand, if we assign δÕ(r) to be pure imaginary-valued, then we have:∬
=

[
∆Ψj(r) · P∗j (r)

]
· [i · δÕ(r)] dr = −λO

∬
= [δO(r)] · [i · δÕ(r)] dr,

which leads to a solution:

=
[
∆Ψj(r) · P∗j (r)

]
= −λO= [δO(r)] , (26)

where = is an operator which takes the imaginary part of a complex number. Combining (25)
and (26) gives us:

∆Ψj(r) · P∗j (r) = −λOδO(r). (27)
Hence, the steepest descent direction of Ej at O(r) is proportional to the function ∆Ψj(r) · P∗j (r)
at every point r. The iteration formula for the object function is then given by:

On+1(r) = On(r) − βO · P∗n(r − Rj) · ∆Ψj,n(r), (28)

where βO is the step-size which is normally chosen to be a constant.
In a similar fashion, we can derive the iteration formula for updating the probe function using

the steepest decent direction. We find:

Pn+1(r) = Pn(r) − βP · O∗n(r + Rj) · ∆Ψj,n(r + Rj), (29)

where βP is a constant step-size which takes the same value as βO. We note that (28), (29) are
equivalent to the ePIE algorithm [2,6].
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Polychromatic ptychography algorithm

In this section we propose a ptychography algorithm for multiple-wavelength illumination
with mutually incoherent wavelengths and using measured total diffracted intensities (i.e. the
intensities are not spectrally separated). As mentioned in the main text, for an non-dispersive
thin object we can express the exit wave for wavelength λk as:

Ψj(r, λk) = P(r − Rj) · A(r) · exp
[
i
λ1
λk
φ(r)

]
(30)

where Rj represents the jth relative position between the probe and the object. A(r) is the object’s
local transmission function and φ(r) stands for 2π times the ratio of the object thickness function
and wavelength λ1. Note that both A(r) and φ(r) are real valued and that A(r) is positive. As
in Appendix A, the steepest descent method can provide to us with updating formulas for A(r),
φ(r) and P(r). Due to the fact that the exit wave in not monochromatic, we need to re-define the
estimated diffraction intensity IE(r′) as an incoherent sum of every monochromatic component:

IE,j(r′) = 1D(r′) ·
∑
λk

����F [
Ψj(r, λk)

] (
r′
λkz

)����
2

= 1D(r′) ·
∑
λk

����
∬

Ψj(r, λk) exp
(
−i 2π
λkz

r · r′
)
dr

����
2
,

where 1D(r′) is a binary window function which represents the area of the detector

1D(r′) =



1, |x′ | ≤ x′D, |y′ | ≤ y′D,

0, |x′ | >x′D, |y′ | >y′D,
(31)

with
r′ = x′êx′ + y′êy′ . (32)

To start with, we compute the functional derivative of Ej, which was defined in Eq. (18), with
respect to A(r), φ(r) and P(r) at every point r:



δEj(P,A, φ)(δA) = 2
∑
λk

∬
<

{
∆Ψj(r, λk) · P∗j (r) · exp

[
−iλ1λk φ(r)

]}
· δA(r)dr,

δEj(P,A, φ)(δφ) = 2
∑
λk

∬
<

{
−iλ1λk · ∆Ψj(r, λk) · P∗j (r) · A(r) · exp

[
−iλ1λk φ(r)

]}
· δφ(r)dr,

δEj(P,A, φ)(δP) =
∑
λk

<
{∬
∆Ψj(r, λk) · P∗j (r) · A(r) · exp

[
−iλ1λk φ(r)

]
· δP∗(r)dr

}
,

(33)
where we use the fact that both A(r), φ(r) are real-valued by definition. Once again the auxiliary
function is given by:

∆Ψj,n(r, λk) = F −1
{

1D(r′) ·
( √

IM,j(r′)√
IE,j,n(r′)

− 1
)
· F [

Ψj,n(r, λk)
] (

r′
λkz

)}
(r, λk). (34)

Similar to the derivation in Eq. (18)–(29), we arrive at the following formulas to update the
estimates for A(r), φ(r) and P(r) for each position j:



An+1(r) = An(r) + δA
∑
k
<

{[
Pj,n(r)

]∗ · exp
[
−iλ1λk φn(r)

]
· ∆Ψn(r, λk)

}
,

φn+1(r) = φn(r) + δφ
∑
k
<

{
−iλ1λk ·

[
Pj,n(r)

]∗ · An(r) · exp
[
−iλ1λk φn(r)

]
· ∆Ψj,n(r, λk)

}
,

Pn+1(r) = Pn(r) + δP
∑
k
An(r + Rj) · exp

[
−iλ1λk φn(r + Rj)

]
· ∆Ψj,n(r + Rj, λk),

(35)
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where δA, δφ and δP are constant step-sizes and n is the iteration number.

The relationship between the photon number and the total energy

In this appendix we aim to prove that the total energy of the measurements is a constant for a
fixed total photon number. In line with Section 3.1.1, we denote N as the number of wavelength
and TPN as the total photon number in the diffracted wavefield. Because every wavelengths are
presumed to have the same number of photons, the total energy eN of the measurement is given
by:

eN =
TPN
N

N∑
k=1

hνk, (36)

where h is the Planck constant and νk is the kth frequency. Considering that all the frequencies
lie in the range [ν1,νN], and have equal distance in frequency between adjacent ones, Eq. (36)
can be rewritten as:

eN =
TPN
N

h

[
ν1 + νN +

N−2∑
m=1

mν1 + (N − m − 1) νN
N − 1

]
, (37)

where m is an auxiliary integer. The third term on the right side of Eq. (37) stands for the total
energy from ν2 to νN−1. By computing the sum in Eq. (37), the total energy eN can be expressed
as:

eN =
TPN
2

h (ν1 + νN) . (38)
Hence for a fixed TPN, ν1 and νN , the total energy eN of the polychromatic diffracted wavefield is
a constant.

Ambiguities in ptychography

Compared to traditional single-measurement phase retrieval methods, ptychography alleviates
amount of issues which might disrupt the reconstruction. However, there are still ambiguities
that could lead us to an unwanted solution in ptychogrpahy.

Global phase shift

Due to the fact that in ptychography only diffracted intensities are detected, we can have:

IE,j(r′) =
��F (

Ψj
) (r′)��2

=
��exp(iα) F (

Ψj
) (r′)��2 = ��F [

Ψj exp(iα)] (r′)��2
=

���F (
Ψ ′j

)
(r′)

���2 ,
(39)

where α is an arbitrary constant, andΨ ′j (r) =Ψj(r) exp(iα) is an alternative solution for the same
ptychographical measurement.

Conjugate reconstruction

This ambiguity comes from the nature of the Fourier transform. For a given exit wave function
Ψj(r), we have the following relationship:

F
(
Ψ ∗j

)
(r′) = F (

Ψj
)∗ (−r′). (40)

Considering that the far-field diffraction intensity pattern is in principle centrosymmetric
and insensitive to complex conjugation, Ψ ∗j (r) can be an alternative solution for the same
ptychographical measurement. An experienced initial point for the algorithm could avoid this
issue.
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Raster grid pathology

The raster grid pathology is a periodical defect which can occur in ptychography reconstruction,
if the relative positions Rj between the probe and the object are on a regular position grid. To be
explicit, we start with the expression of exit wave in Eq. (14):

Ψj(r) = P(r − Rj) · O(r)

= P(r − Rj) · C(r) · O(r) · 1
C(r)

= P′(r − Rj) · O′(r),

(41)

with 


P′(r − Rj) = P(r − Rj) · C(r),
O′(r) = O(r) · 1

C(r) .
(42)

If C(r) = C(r − Rj
m ), where m is an arbitrary integer, than Eq. (41) is true for all jth positions.

Therefore P′(r) and O′(r) can be an alternative probe and object reconstruction for the same
ptychographical measurement.

Additional simulations about the effect of incomplete measurements

In Subsection 3.1.2, we demonstrated that the quality of the reconstruction could degrades in the
polychromatic ptychography scheme because a detector of limited size cannot capture strongly
diffracted far field intensities at longer wavelengths. To demonstrate this, we described two
simulations Subsection 3.1.2, namely: (1) with an incomplete ptychographic data-set; (2) with a
complete measured data-set, which was obtained by ignoring the wavelength-dependency in the
wavefield propagation model, as illustrated in Fig. 4. The simulation results are shown in Fig. 5.

In this Appendix, an alternative simulation is provided to further argue the cause of the
inaccuracies of the reconstructions. As illustrated in Fig. 9(b), instead of ignoring the wavelength-
dependency in the wavefield propagation model, we expand the boundary of the detector such that
the maximum spatial frequency for the largest wavelength λN can be collected. We emphasize
that in this simulation all monochromatic diffracted wavefields have the same maximum spatial
frequency, which equals to the largest wavelength λN . This is because the discretized object has
the same pixel size and illuminated area for every wavelength. For the wavelengths shorter than
λN , the relevant parts of the diffraction patterns of all wavelengths fall inside the area of the
detector, and the pixel size is assumed to be sufficiently small that for the smallest wavelength (and
hence for all wavelengths), the intensity patterns are sufficiently well sampled. As a comparison,
we again inspect the reconstruction with the incomplete measurement. The reconstructed error
functions for these two numerical experiments are plotted in Fig. 10.
Because limited size of the detector only influences the quality of reconstruction for the

propagation model as shown in Fig. 9(a), we call the model of Fig. 9(a) model as the case ’with
window function’ and similarly we call the model in Fig. 9(b) as the case ’without window
function’, which explains the legend in Fig. 10. From Fig. 10(b) we see that all the NEFs have
reached zero-value, which indicates that the algorithm has converged to the solutions with the
same NEF for all the situations. However in Fig. 10(a) the NERs of the solutions obtained with
window function are higher than without the window function. Therefore one can conclude that
the limited size of the detector is the cause of the degradation of the results.

Evolution of error functions

In this section we give an example of the evolution of the error functions, which aims to show the
convergence of the algorithm. Each curve in Figs. 11(a) and 11(b) is related to one situation in
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Fig. 9. Graphical description of the two different ways of computing the polychromatic
diffraction intensity pattern. The red frame represents the boundary of an imaginary detector
1D(r′). (a) illustrates the situation where the detector can records incomplete data. (b)
describes the situation where the detector is able to measure the maximum spatial frequency
component for the largest wavelength λN , hence also for the wavelengths shorter than λN
each monochromatic diffraction intensities are zero-padded in accordance with Eq. (4).

Fig. 10. A comparison between simulation results of the two sampling situations shown
in Figs. 9(a) and 9(b), with noise-free measurements. The orange dots are related to the
propagation model which is illustrated in Fig. 9(a), while the blue dots corresponds to the
sampling scheme which is shown in Fig. 9(b).

Fig. 2. Although we have not decided a terminate criterion in our numerical experiment, it is
clear that employing the algorithm for 1000 iterations is sufficient for reaching the minima in our
simulation.
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Influence of the overlap ratio

Considering ptychography is a scanning diffraction imaging technique, it is reasonable that the
overlap ratio defined in Eq. (13) plays an important role in the quality of the reconstructed image.
In [32] the authors studied how the overlap ratio influences the performance of PIE through
simulation and experiment for the first time. The result indicates that, with monochromatic and
fully spatial coherent illumination, one can get hold of satisfactory reconstructions by employing
60%-85% of overlap ratio. It was also mentioned in the literature that 30% of overlap could
be sufficient if fast overview scans are demanded. On the other hand, a theoretical explanation
regarding how overlapped ptychographic scans facilitate the convergence of the algorithm was

Fig. 11. The evolution of NEF and NER in our simulation described in Subsection 3.1.1.
Each curve in (a) and (b) is related to one situation in Fig. 3.
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proposed in [46]. However, to the best of our knowledge, no optimal overlap ratio from theoretical
point of view has been proposed yet.

Fig. 12. Simulation results about how the overlap ratio affects the performance of
polychromatic ptychography. In this plot the diffraction intensity measurements are noise
free. (a) shows the reconstructed object when the probe only contains 5 wavelengths, and
when the overlap ratio equals 0%, 80% and 99%, respectively. In (b) we demonstrate the
NERs for a series of wavelengths and for overlap ratios ranging from 0% to 99%.

In this appendix we conduct a simulation to demonstrate how the overlap ratio influences the
performance of our proposed polychromatic ptychography method. In this numerical experiment,
we presume the diffraction intensity measurements are noise free. The rest of the parameter
settings for the simulation are duplicated from the Subsection 3.1.1. To observe how the overlap
ratio affects the quality of the reconstruction, we adjust the overlap ratio from 0% to 100%
with an interval of 10%. Once again in each simulation 1000 iterations were applied to ensure
convergence. As an example of the reconstruction results, in Fig. 12(a) we show the reconstructed
object when the probe only contains 5 wavelengths, and when the overlap ratio equals 0%, 80%
and 99%, respectively. The NERs for a series of wavelengths overlap ratios can be found in
Fig. 12(b). From Fig. 12(b), it can be concluded that the overlap ratio should be selected from
60% to 90% for achieving optimal performance of the algorithm, which is in good agreement
with the monochromatic situation given in [32]. In line with this conclusion, we choose to employ
80% overlap ratio for the numerical studies in the main context.

Funding

H2020 Marie Skłodowska-Curie Actions (675745).

Acknowledgments

X. Wei thanks A. P. Konijnenberg for fruitful discussions. X. Wei also thanks W. M. J. Coene,
S. Witte and his group members including G. S. M. Jansen, A. de Beurs, X. Liu, etc., for the
inspiring meetings.



Research Article Vol. 27, No. 25 / 9 December 2019 / Optics Express 36788

References
1. H. M. L. Faulkner and J. M. Rodenburg, “Movable aperture lensless transmission microscopy: A novel phase retrieval

algorithm,” Phys. Rev. Lett. 93(2), 023903 (2004).
2. J. M. Rodenburg and H. M. L. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. Phys. Lett.

85(20), 4795–4797 (2004).
3. J. M. Rodenburg, A. C. Hurst, A. G. Cullis, B. R. Dobson, F. Pfeiffer, O. Bunk, C. David, K. Jefimovs, and I. Johnson,

“Hard-x-ray lensless imaging of extended objects,” Phys. Rev. Lett. 98(3), 034801 (2007).
4. P. Thibault, M. Dierolf, A. Menzel, O. Bunk, C. David, and F. Pfeiffer, “High-resolution scanning x-ray diffraction

microscopy,” Science 321(5887), 379–382 (2008).
5. M. Guizar-Sicairos and J. R. Fienup, “Phase retrieval with transverse translation diversity: a nonlinear optimization

approach,” Opt. Express 16(10), 7264–7278 (2008).
6. A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,”

Ultramicroscopy 109(10), 1256–1262 (2009).
7. P. Thibault, M. Dierolf, O. Bunk, A. Menzel, and F. Pfeiffer, “Probe retrieval in ptychographic coherent diffractive

imaging,” Ultramicroscopy 109(4), 338–343 (2009).
8. D. J. Batey, D. Claus, and J. M. Rodenburg, “Information multiplexing in ptychography,” Ultramicroscopy 138,

13–21 (2014).
9. A. M. Maiden, M. J. Humphry, and J. M. Rodenburg, “Ptychographic transmission microscopy in three dimensions

using a multi-slice approach,” J. Opt. Soc. Am. A 29(8), 1606–1614 (2012).
10. P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494(7435), 68–71

(2013).
11. M. Dierolf, A. Menzel, P. Thibault, P. Schneider, C. M. Kewish, R. Wepf, O. Bunk, and F. Pfeiffer, “Ptychographic

x-ray computed tomography at the nanoscale,” Nature 467(7314), 436–439 (2010).
12. B. Enders, M. Dierolf, P. Cloetens, M. Stockmar, F. Pfeiffer, and P. Thibault, “Ptychography with broad-bandwidth

radiation,” Appl. Phys. Lett. 104(17), 171104 (2014).
13. S. O. Hruszkewycz, M. Allain, M. V. Holt, C. E. Murray, J. R. Holt, P. H. Fuoss, and V. Chamard, “High-resolution

three-dimensional structural microscopy by single-angle bragg ptychography,” Nat. Mater. 16(2), 244–251 (2017).
14. M.Holler, M.Guizar-Sicairos, E. H. R. Tsai, R.Dinapoli, E.Müller, O. Bunk, J. Raabe, andG.Aeppli, “High-resolution

non-destructive three-dimensional imaging of integrated circuits,” Nature 543(7645), 402–406 (2017).
15. M. Humphry, B. Kraus, A. Hurst, A. Maiden, and J. Rodenburg, “Ptychographic electron microscopy using high-angle

dark-field scattering for sub-nanometre resolution imaging,” Nat. Commun. 3(1), 730 (2012).
16. Y. Jiang, Z. Chen, Y. Han, P. Deb, H. Gao, S. Xie, P. Purohit, M. W. Tate, J. Park, S. M. Gruner, V. Elser, and D.

A. Muller, “Electron ptychography of 2d materials to deep sub-ångström resolution,” Nature 559(7714), 343–349
(2018).

17. M. D. Seaberg, B. Zhang, D. F. Gardner, E. R. Shanblatt, M. M. Murnane, H. C. Kapteyn, and D. E. Adams, “Tabletop
nanometer extreme ultraviolet imaging in an extended reflection mode using coherent fresnel ptychography,” Optica
1(1), 39–44 (2014).

18. B. Zhang, D. F. Gardner, M. H. Seaberg, E. R. Shanblatt, C. L. Porter, R. Karl, C. A. Mancuso, H. C. Kapteyn, M.
M. Murnane, and D. E. Adams, “Ptychographic hyperspectral spectromicroscopy with an extreme ultraviolet high
harmonic comb,” Opt. Express 24(16), 18745–18754 (2016).

19. P. D. Baksh, M. Odstrčil, H.-S. Kim, S. A. Boden, J. G. Frey, and W. S. Brocklesby, “Wide-field broadband extreme
ultraviolet transmission ptychography using a high-harmonic source,” Opt. Lett. 41(7), 1317–1320 (2016).

20. D. F. Gardner, M. Tanksalvala, E. R. Shanblatt, X. Zhang, B. R. Galloway, C. L. Porter, R. K. Jr, C. Bevis, D. E.
Adams, H. C. Kapteyn, M. M. Murnane, and G. F. Mancini, “Subwavelength coherent imaging of periodic samples
using a 13.5 nm tabletop high-harmonic light source,” Nat. Photonics 11(4), 259–263 (2017).

21. J. Spence, U. Weierstall, and M. Howells, “Coherence and sampling requirements for diffractive imaging,”
Ultramicroscopy 101(2-4), 149–152 (2004).

22. K. A. Nugent, “Coherent methods in the x-ray sciences,” Adv. Phys. 59(1), 1–99 (2010).
23. L. W. Whitehead, G. J. Williams, H. M. Quiney, D. J. Vine, R. A. Dilanian, S. Flewett, K. A. Nugent, A. G. Peele,

E. Balaur, and I. McNulty, “Diffractive imaging using partially coherent x rays,” Phys. Rev. Lett. 103(24), 243902
(2009).

24. J. Clark, X. Huang, R. Harder, and I. Robinson, “High-resolution three-dimensional partially coherent diffraction
imaging,” Nat. Commun. 3(1), 993 (2012).

25. B. Chen, R. A. Dilanian, S. Teichmann, B. Abbey, A. G. Peele, G. J. Williams, P. Hannaford, L. Van Dao, H. M.
Quiney, and K. A. Nugent, “Multiple wavelength diffractive imaging,” Phys. Rev. A 79(2), 023809 (2009).

26. S. Witte, V. T. Tenner, D. W. Noom, and K. S. Eikema, “Lensless diffractive imaging with ultra-broadband table-top
sources: from infrared to extreme-ultraviolet wavelengths,” Light: Sci. Appl. 3(3), e163 (2014).

27. N. Burdet, X. Shi, D. Parks, J. N. Clark, X. Huang, S. D. Kevan, and I. K. Robinson, “Evaluation of partial coherence
correction in x-ray ptychography,” Opt. Express 23(5), 5452–5467 (2015).

28. J. Goodman, Introduction to Fourier Optics, McGraw-Hill physical and quantum electronics series (W. H. Freeman,
2005).

29. J. R. Fienup, “Invariant error metrics for image reconstruction,” Appl. Opt. 36(32), 8352–8357 (1997).

https://doi.org/10.1103/PhysRevLett.93.023903
https://doi.org/10.1063/1.1823034
https://doi.org/10.1103/PhysRevLett.98.034801
https://doi.org/10.1126/science.1158573
https://doi.org/10.1364/OE.16.007264
https://doi.org/10.1016/j.ultramic.2009.05.012
https://doi.org/10.1016/j.ultramic.2008.12.011
https://doi.org/10.1016/j.ultramic.2013.12.003
https://doi.org/10.1364/JOSAA.29.001606
https://doi.org/10.1038/nature11806
https://doi.org/10.1038/nature09419
https://doi.org/10.1063/1.4874304
https://doi.org/10.1038/nmat4798
https://doi.org/10.1038/nature21698
https://doi.org/10.1038/ncomms1733
https://doi.org/10.1038/s41586-018-0298-5
https://doi.org/10.1364/OPTICA.1.000039
https://doi.org/10.1364/OE.24.018745
https://doi.org/10.1364/OL.41.001317
https://doi.org/10.1038/nphoton.2017.33
https://doi.org/10.1016/j.ultramic.2004.05.005
https://doi.org/10.1080/00018730903270926
https://doi.org/10.1103/PhysRevLett.103.243902
https://doi.org/10.1038/ncomms1994
https://doi.org/10.1103/PhysRevA.79.023809
https://doi.org/10.1038/lsa.2014.44
https://doi.org/10.1364/OE.23.005452
https://doi.org/10.1364/AO.36.008352


Research Article Vol. 27, No. 25 / 9 December 2019 / Optics Express 36789

30. L. Rabiner, R. Schafer, and C. Rader, “The chirp z-transform algorithm,” IEEE Trans. Audio Electroacoust. 17(2),
86–92 (1969).

31. G. D. Martin, “Chirp z-transform spectral zoom optimization with MATLAB,” Tech. rep. (2005).
32. O. Bunk, M. Dierolf, S. Kynde, I. Johnson, O. Marti, and F. Pfeiffer, “Influence of the overlap parameter on the

convergence of the ptychographical iterative engine,” Ultramicroscopy 108(5), 481–487 (2008).
33. F. Zhang, I. Peterson, J. Vila-Comamala, A. Diaz, F. Berenguer, R. Bean, B. Chen, A. Menzel, I. K. Robinson, and J.

M. Rodenburg, “Translation position determination in ptychographic coherent diffraction imaging,” Opt. Express
21(11), 13592–13606 (2013).

34. W. Murray, M. H. Wright, and P. E. Gill, Practical Optimization (Emerald Publishing Limited, 1982).
35. J. Zhong, L. Tian, P. Varma, and L. Waller, “Nonlinear optimization algorithm for partially coherent phase retrieval

and source recovery,” IEEE Trans. Comput. Imaging 2(3), 310–322 (2016).
36. S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv:1609.04747 (2016).
37. S. Marchesini, H. Krishnan, B. J. Daurer, D. A. Shapiro, T. Perciano, J. A. Sethian, and F. R. N. C. Maia, “SHARP: a

distributed GPU-based ptychographic solver,” J. Appl. Crystallogr. 49(4), 1245–1252 (2016).
38. Z. Dong, Y.-L. L. Fang, X. Huang, H. Yan, S. Ha, W. Xu, Y. S. Chu, S. I. Campbell, and M. Lin, “High-performance

multi-mode ptychography reconstruction on distributed GPUs,” in 2018 New York Scientific Data Summit (NYSDS),
(IEEE, 2018).

39. Y. S. G. Nashed, D. J. Vine, T. Peterka, J. Deng, R. Ross, and C. Jacobsen, “Parallel ptychographic reconstruction,”
Opt. Express 22(26), 32082–32097 (2014).

40. A. Maiden, D. Johnson, and P. Li, “Further improvements to the ptychographical iterative engine,” Optica 4(7),
736–745 (2017).

41. X. Huang, H. Yan, R. Harder, Y. Hwu, I. K. Robinson, and Y. S. Chu, “Optimization of overlap uniformness for
ptychography,” Opt. Express 22(10), 12634–12644 (2014).

42. X. Huang, K. Lauer, J. N. Clark, W. Xu, E. Nazaretski, R. Harder, I. K. Robinson, and Y. S. Chu, “Fly-scan
ptychography,” Sci. Rep. 5(1), 9074 (2015).

43. A. Fannjiang, “Raster grid pathology and the cure,” arXiv:1810.00852v3 (2018).
44. V. Elser, “Phase retrieval by iterated projections,” J. Opt. Soc. Am. A 20(1), 40–55 (2003).
45. D. R. Luke, “Relaxed averaged alternating reflections for diffraction imaging,” Inverse Probl. 21(1), 37–50 (2005).
46. J. C. da Silva and A. Menzel, “Elementary signals in ptychography,” Opt. Express 23(26), 33812 (2015).

https://doi.org/10.1109/TAU.1969.1162034
https://doi.org/10.1016/j.ultramic.2007.08.003
https://doi.org/10.1364/OE.21.013592
https://doi.org/10.1109/TCI.2016.2571669
https://doi.org/10.1107/S1600576716008074
https://doi.org/10.1364/OE.22.032082
https://doi.org/10.1364/OPTICA.4.000736
https://doi.org/10.1364/OE.22.012634
https://doi.org/10.1038/srep09074
https://doi.org/10.1364/JOSAA.20.000040
https://doi.org/10.1088/0266-5611/21/1/004
https://doi.org/10.1364/OE.23.033812

