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Abstract. Cross-modal retrieval, as an important emerging founda-
tional information retrieval task, benefits from recent advances in mul-
timodal technologies. However, current cross-modal retrieval methods
mainly focus on the interaction between textual information and 2D
images, lacking research on 3D data, especially point clouds at scene
level, despite the increasing role point clouds play in daily life. Therefore,
in this paper, we proposed a cross-modal point cloud retrieval benchmark
that focuses on using text or images to retrieve point clouds of indoor
scenes. Given the high cost of obtaining point cloud compared to text
and images, we first designed a pipeline to automatically generate a large
number of indoor scenes and their corresponding scene graphs. Based on
this pipeline, we collected a balanced dataset called CRISP, which con-
tains 10K point cloud scenes along with their corresponding scene images
and descriptions. We then used state-of-the-art models to design base-
line methods on CRISP. Our experiments demonstrated that point cloud
retrieval accuracy is much lower than cross-modal retrieval of 2D images,
especially for textual queries. Furthermore, we proposed ModalBlender,
a tri-modal framework which can greatly improve the Text-PointCloud
retrieval performance. Through extensive experiments, CRISP proved to
be a valuable dataset and worth researching. (Dataset can be downloaded
at https://github.com/CRISPdataset/CRISP.)

Keywords: Point Cloud · Cross-modal Retrieval · Indoor Scene

1 Introduction

With the advancement of multimodal technologies, various tasks are now benefit-
ing from multimodality. Unlike traditional information retrieval methods, cross-
modal retrieval [26] involves not only text, but also other modalities, such as
images and videos, in both queries and retrieved results. Currently, the most
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Fig. 1. Two samples in CRISP.

studied cross-modal retrieval is the retrieval between text and images [13,16].
With the development of cross-modal methods, BLIP [9] has even achieved close
to 100% @1 accuracy on the Flickr30k [16] dataset. Compared to 2D data, 3D
data at scene level can provide more spatial information and is less susceptible
to occlusion. Despite the development of 3D technology driven by deep learn-
ing, there is still a lack of exploration of 3D data in cross modal tasks. 3D data
retrieval can establish a bridge between 3D data and other modal data, will be
a critical tool of the effective management and utilization of massive 3D data in
the future. However, this fundamental task is constrained by the lack of datasets
and has developed slowly. Although some previous work [4,20,22] has explored
real indoor scenes with RGB-D or point cloud, the existing indoor scene point
cloud datasets still have the following issues. a) Small size, the most widely used
Scannet [4] dataset only contains around 1,500 scans of different rooms, whereas
the text-image cross-modal retrieval dataset Flickr30k has a test set with 1k
samples. b) Suffering from long tail distribution, the unbalanced distribution of
object categories in dataset makes the models easy to learn the bias.

To address these issues, inspired by some 2D image synthetic datasets such as
CLEVR [8] and CLEVRER [29], we designed a novel pipeline to automatically
compose a balanced large number of realistic 3D indoor scenes with scanned
objects and collect point clouds based on them. We use synthetic technology to
build our dataset because it is low cost and can be easily scaled to larger numbers
while being more balanced without bias [8]. To collect textual description and
2D photographs for the query, we recorded the generated scene information and
created a scene graph for each point cloud, with which we constructed the textual
description of the scene. We also took a photograph from a random corner of
a room to obtain a RGB image along with its depth map. With these three
modalities, we finally constructed the CRISP (Cross-modal Retrieval on Indoor
Scenes Point-cloud ) dataset. Two examples of CRISP are shown in Fig. 1.

To our knowledge, CRISP stands as the first and largest balanced indoor
dataset that facilitates point cloud data retrieval, either through scene descrip-
tions or rendered images. This dataset serves as a robust benchmark, offering
researchers a valuable tool to assess the efficacy of their models. To demonstrate
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the usefulness and reasonability of our dataset, we leveraged some state-of-the-
art methods to establish strong baselines for CRISP, including Text-PointCloud
retrieval and Image-PointCloud retrieval. Specifically, we proposed a new frame-
work called ModalBlender, which brings cross-modal attention and intermediate-
modal alignment into Text-PointCloud retrieval and greatly improves the overall
performance while maintaining retrieval efficiency, providing a novel and useful
approach to enhance text retrieval of point clouds. Our experiments showed that
CRISP is challenging and, together with our baselines, provides a strong starting
point for future research in indoor scene understanding.

Our main contributions in this study can be summarized as follows: (1) We
proposed a general and flexible pipeline that utilizes existing 3D object models to
generate a large quantity of photorealistic indoor scenes together with the scene
graph; (2) Based on this pipeline, we constructed a dataset called CRISP, which
contains massive of text, images, and point cloud that makes it now possible
to research cross-modal point cloud retrieval; (3) We evaluated existing SOTA
methods and proposed a new framework ModalBlender to further improve the
retrieval performance and proved its validity through detailed experiments.

2 Related Work

2.1 Indoor Scene Datasets

➢ Real Scanned Datasets: One of the earliest indoor scene datasets is NYU
Depth Dataset V2 [20], which contains RGB-D data of indoor scenes with labeled
objects and semantic segmentation masks. The SUN RGB-D [22] dataset is
another popular dataset, which includes RGB-D data of indoor scenes with
semantic annotations, object instances, and scene categories. The Scannet [4]
dataset is a large-scale indoor scene dataset that includes both RGB-D and
point cloud data of indoor scenes. The Matterport3D [1] dataset provides high-
quality RGB-D data and 3D panoramic of large-scale indoor scenes with object
instances and semantic annotations.
➢ Synthetic Scene Datasets: Compared to scanning scenes, synthetic
datasets offer the advantage of easy scalability to larger amounts of data.
SceneNet [6] comprises a variety of annotated indoor scenes that have been
widely utilized for object detection, semantic segmentation, and depth estima-
tion. SUNCG [23] contains numerous diverse indoor scenes with highly detailed
object annotations, making it useful for 3D reconstruction and semantic pars-
ing. InteriorNet [11] is a dataset featuring photo-realistic indoor scenes, which
is useful for evaluating methods on real-world data.

2.2 3D Retrieval Datasets

Previous 3D retrieval related dataset and research is mostly about retrieving
single 3D objects using 2D images. Some of the popular datasets include the
Princeton Shape Benchmark (PSB) [19], the ShapeNet [2], ModelNet40 [27], and
MI3DOR [21]. The PSB contains a large collection of 3D models with varying
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Table 1. Comparison of CRISP with other indoor scene datasets. Our dataset is
currently the only one that suitable for benchmark cross modal point cloud retrieval.

Dataset Sample Room Obj
Cate.

Type RGBD Desc. Scene
Graph

Point
Cloud

Scannet [4] 1,513 707 21 Real ✓ ✗ ✗ ✓

NYU-Depth [20] 1,449 464 13 Real ✓ ✗ ✗ ✗

SUN-RGBD [22] 10,335 10,335 800 Real ✓ ✗ ✗ ✗

3DSSG [25] 1,482 478 160 Real ✓ ✗ ✓ ✓

SUNCG [23] 45,622 45,622 84 Syn ✓ ✗ ✗ ✗

InteriorNet [11] 5M 1.7M 158 Syn ✓ ✗ ✗ ✗

SceneNet [6] 10,030 57 13 Syn ✓ ✗ ✗ ✗

CRISP (Ours) 10,000 10,000 62 Syn ✓ ✓ ✓ ✓

levels of complexity, while ShapeNet and ModelNet40 aim to provide large-scale
objects with different annotated categories. The MI3DOR dataset offers monoc-
ular image-based 3D object retrieval. These datasets have been used extensively
in the literature to test and compare different 3D object retrieval algorithms
and have led to significant advancements in the field. The only related 3D scene
retrieval dataset is SHREC’19 [30], which uses one 2D sketch-based image to
retrieve 3D scenes with 30 categories such as library and supermarket.

3 CRISP Dataset

As shown in Table 1, existing indoor scene datasets are divided into real and
synthetic types. Some commonly used real-scene datasets like Scannet [4] have
a small number of room scans, limited by the difficulty of data collection, while
synthetic datasets can have larger numbers of scenes. Additionally, most of these
datasets do not consider data distribution and often exhibit long-tail effects.
The scarcity of examples for rare categories hinders models from learning robust
3D features. To our knowledge, CRISP is the earliest and largest balanced
indoor retrieval dataset that facilitates exploration of the interaction between
3D data with text or image data. Figure 1 presents examples from the dataset.
The creation of CRISP began with the collection of objects and hierarchical
scene generation. Throughout the generation phase, our utmost priority was
to maintain dataset equilibrium, thereby minimizing potential learning biases
within models trained on the dataset. Using the generated scenes, we collected
distinct sets of point cloud data, image data, and textual description data, all
amalgamated to form the comprehensive CRISP dataset as shown in Fig. 4.

3.1 Object Collection

We first selected 62 common seen indoor object categories into our dataset which
can encompass the majority of indoor objects encountered in daily life and mean-
while guarantee the scene diversity. Each object category contains 1∼5 different



Towards Cross-Modal Point Cloud Retrieval for Indoor Scenes 93

Fig. 2. This is the Venn diagram we used to classify object properties. The light-colored
ovals represent the positional attributes of the objects, namely board, floor, and wall.
Board refers to any flat surface other than the floor. The gray ovals indicate whether
an object can have something placed on top of it. (Color figure online)

instances. Totally we collected 171 different instances. We aimed to create a well-
balanced dataset while also ensuring that the scenes composed of these objects
are more realistic. To achieve the second goal, we analyzed the layout of indoor
scenes and categorized the objects accordingly. Inspired by some automated facil-
ities layout technologies [12], we determined the common locations of each type
of object in the scene and sorted them into the following categories: “Object On
Board”, “Objects On Floor”, “Objects on Wall”, as illustrated in Fig. 2. Those cat-
egories were established based on the spatial positional relationships of objects.
Following the classification of an object’s spatial position, we further categorized
it according to the presence of a support surface that can hold other objects, as
attribute “Can Be Put On”. By combining these attributes, we can ensure that
the generated scenes are reasonably plausible.

3.2 Hierarchical Generation

We used Kubric [5] library to load and organize objects. During the generation
process, we employed a hierarchical generation method that incorporates the
object category information obtained in Sect. 3.1 to achieve a higher degree of
realism, i.e., one indoor scene should contain various categories of objects, as well
as rational horizontal and vertical spatial object relationships. Detailed steps are
shown in Fig. 3(a) and an example is shown in Fig. 3(b).

Hierarchical generation can combine single simple objects into a complex
indoor scene and ensure rich spatial relationship between objects, clearly dis-
play the dependency relationships between objects, which facilitates the gener-
ation of scene graph. We maintained a global 3D occupancy map that records
the space occupied by objects to prevent collisions during generation. Mean-
while, we maintained the randomness of object categories and positions, making
the dataset more balanced and free from long-tailed distributions, providing a
more fair and robust benchmark for further research. The generated scene was
collected in the format of 3D mesh for subsequent generation.
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Fig. 3. Our hierarchical generation procedure begined with layer 0, which represents
an empty room. We then proceed to layer 1, where we added objects to the floor and
walls. Next, we identified all available boards, and randomly place some objects on
them, which became the next layer. This step was repeated until a random exit was
triggered or there are no more boards available.

3.3 Point Cloud Collection

We converted the 3D scene mesh generated in Sect. 3.2 to “.obj” format and used
CloudCompare1, a 3D point cloud processing software, to sample point cloud.
We sampled 200,000 points on surface which ensuring the collected point cloud
much closer to the actual collected, and adjusted the rendering effect to make
the collected point cloud as similar as possible to the object model.

3.4 Scene Image Collection

We used the bpy library provided by Blender2 to generate photorealistic images
from pre-built indoor scenes. For each room, we randomly selected a corner and
simulated the breadth and height of human vision using a camera to capture the
corresponding RGB image. We took one photograph for each room. To achieve
more realism, we adjusted the rendering effect of Blender and added point light
sources of different energy to simulate changes in lighting that occur in real
scenes. We also extracted the depth image corresponding to the RGB image
collected above to provide more information and support further research.

3.5 Scene Graph Generation

With the help of controllable generation procedure, we were able to record lots
of useful information during scene generation such as the precise coordinate
position of each object and where they were put on. We use this information to
generate the scene graph.

In our designed scene graph, the nodes represent different objects, while the
edges represent the spatial relationships between the nodes. Several types of rela-
tionships are defined, including “Next To”, “Support” and “Positional Realation”.

1 http://www.cloudcompare.org/.
2 https://www.blender.org/.

http://www.cloudcompare.org/
https://www.blender.org/


Towards Cross-Modal Point Cloud Retrieval for Indoor Scenes 95

Fig. 4. Pipeline of the generation of CRISP, including scene generation (Sect. 3.2),
scene graph generation (Sect. 3.5) and discription generation (Sect. 3.6). (Color figure
online)

When two object are placed on the same surface and close enough, they form a
“Next To” relationship. When one object is placed on the other object, these two
object form a “Support” relationship. When for two objects, there are at least one
object is on a wall, then they compose a “Positional Relation”. The generation of
scene graph transformed the layout of the scene into a form that the computer
can directly process. An example can be found in Fig. 4. Compared to human
annotation, our scene graph generation is fast while ensuring the correctness.

3.6 Textural Description Collection

After scene graph generation, as shown in Fig. 4, a random subset of nodes and
edges was selected to form a description. The template to generate the descrip-
tions is shown in the following prompt “<Object_A> is <R> <Object_B>”,
where “<Object_A>” and “<Object_B>” represent the categories of different
nodes, and “<R>” denotes a spatial relationship between the two nodes. After
generating the templated descriptions, we utilized the OpenAI ChatGPT API3
to optimize them and make them more consistent with human language con-
ventions. Once the rewriting was finished, we employed manual check by human
to proofread the description meticulously, ensuring that it will adhere to the
original meanings without mistakes and obtained the final textual descriptions.

3.7 Dataset Statistics

CRISP comprises 10,000 scenes, each including one or three descriptions, a set
of paired RGB and depth images, and a point cloud of the scene. The detailed
statistic is shown in Table 2. On average, a scene in CRISP contains 27.36 objects.
We then analyzed the frequency of object category occurrences and Fig. 5 illus-
trates the top 20 most commonly found categories in point cloud or description.

3 https://platform.openai.com/docs/models/gpt-3-5.

https://platform.openai.com/docs/models/gpt-3-5
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Table 2. Numerical Statistics of CRISP.

Modal # Train # Val # Test # Total

Text 24,000 1,000 1,000 26,000
Image 8,000 1,000 1,000 10,000
Point Cloud 8,000 1,000 1,000 10,000

Fig. 5. Distribution of top-20 object categories in CRISP.

It can be seen that both the occurrence frequency of objects in the generated
scenes and in the descriptions is almost the same, indicating a well-balanced
dataset compared to other indoor datasets like Scannet [4]. The characteristic of
CRISP enables models trained on it to focus more on extracting different modal
features rather than learning biases.

3.8 Unique Features of CRISP

We summarize the highlights of CRISP as follows: (1) Easy to expand. We
developed an automatic and highly efficient pipeline for generating synthetic
indoor scenes and collecting data in various modals, which allows us to easily
expand the size of CRISP, and can be extended to construct datasets for other
tasks. (2) Large-Scale. CRISP is currently the largest point cloud dataset for
cross-modal exploration with 10,000 scenes. The extensive data in CRISP ensure
a more diverse and representative set of multi-modal data, enabling more accu-
rate and robust models. (3) Without small data bias. As shown in Sect. 3.7,
our dataset exhibits a strong balance in terms of object category distribution,
scene variability, and textual description diversity , ensuring that there is no
small data bias. (4) Novelty and broader applicability. CRISP is a novel
and versatile cross-modal retrieval dataset, making it a cutting-edge and highly
promising development in cross-modal retrieval. Its multimodal nature enables
various applications such as scene understanding, and more, allowing for future
research not only in retrieval, but also other multimodal point cloud tasks.
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Fig. 6. The Pipeline of we used two-stream cross-modal retrieval baseline model.

4 Baseline Methods

4.1 Model Architecture

Considering the exceptional performance of models based on the CLIP architec-
ture [9,10,18] on the MSCOCO [13] and Flickr [16] datasets, to create a strong
baseline, in this paper, we adopted a similar dual-stream model with CLIP loss,
see Formula (1). The pipeline is shown in Fig. 6. One stream of the model con-
sists of queries, which in this case are either images or textual descriptions of
rooms, while the other stream comprises queried values, specifically point cloud
of the rooms. State-of-the-art methods were utilized to extract features from the
inputs of both streams, and the CLIP loss, was then applied to align the features
of the two different modalities by calculating the loss.

LC =
1

2

[
1

B

B∑
k=1

exp (Svk,tk/τ)∑B
l exp (Svk,tl/τ)

+
1

B

B∑
k=1

exp (Svk,tk/τ)∑B
l exp (Svl,tk/τ)

]
, (1)

Where B is the batch size and τ is the temperature hyper-parameter. Sv,t is the
total similarity score, defined as Formula (2):

Sv,t =
1

2

(
Nv∑
i=1

wi
v max

j
aij +

Nt∑
j=1

wi
t max

i
aij

)
. (2)

The variables u and v represents two different modalities, such as text and point
clouds, while aij is a feature similarity matrix obtained by multiplying features
from different modalities. The weights of the modal features are represented
by wi

v and wj
t , obtained by

[
w0

v, w
1
v, ..., w

Nv
v

]
= Softmax (MLPv (Vf )), MLPv

represents the fully connected layers used to encode modal v.
After training and before testing, for each kind of data in test set, we used its

corresponding feature extractor to precalculate the feature of each sample, and
then when testing, we would directly use these features to calculate the cosine
similarity for retrieving to ensure the retrieval efficiency.
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Table 3. Experimental Result on CRISP. The parentheses under the “InferTime” indi-
cate the time taken for preprocessing MVCNN, which involves generating multi-view
images for 1000 point cloud scenes. “w/o” means “without”. Recall is used as an evalua-
tion matrix. One out of a thousand candidates is chosen as the result, and its correctness
is noted as R@1, and R@5, R@10 and R@100 are defined in the same way.

Query PC
Model

R
@1

R
@5

R
@10

R
@100

# Param InferTime

Train Test

Rand - 0.1 0.5 1.0 10.0 – – –
Cross-Modal Retrieval
Image VoteNet 43.8 90.5 97.4 99.8 89M 89M 77 s
Image 3DCNN 17.4 46.8 62.5 99.1 136M 136M 179 s
Image MVCNN 92.5 99.4 99.7 100 188M 188M 144 s (+86m)
Text VoteNet 0.1 0.5 1.0 10.0 134M 134M 73 s
Text 3DCNN 1.5 4.7 7.9 37.7 172M 172M 159 s
Text MVCNN 0.5 2.9 5.6 42.7 213M 213M 144 s (+86m)
ModalBlender
Text VoteNet 1.1 3.0 6.2 37.8 222M 134M 73 s
Text 3DCNN 5.6 13.3 20.7 55.1 261M 172M 159 s
Text MVCNN 8.7 28.5 40.9 89.5 302M 213M 144 s (+86m)
w/o CMM MVCNN 6.9 20.3 31.4 72.3 – – –
w/o IMA MVCNN 2.1 5.7 10.2 58.7 – – –

4.2 Implementation Details

We utilized pretrained Swin Transformer [15] and RoBERTa [14] to extract fea-
tures from images and scene descriptions separately. To extract features from
point clouds and compare pros and cons of different 3D approaches, we employed
three different methods. The first method, VoteNet [17], which extracted features
directly from the point cloud data. The second method, 3DCNN [28], first vox-
elized the point cloud and then used sparse convolution to extract features, here
we used our own designed sparse convolution network with Spconv [3] which
had a model architecture similar to ResNet-50 [7]. The third method, MVCNN
[24], captured point cloud information from different angles by taking snapshots,
which were then used to extract features. For MVCNN, we also used pretrained
Swin Transformer as the backbone.

4.3 Experimental Result

The experimental results of the cross-modal retrieval are shown in Table 3.
For Image-PointCloud retrieval, MVCNN performed the best, far sur-

passing VoteNet and 3DCNN. This was because MVCNN converts 3D point
cloud features to 2D pixel features by rendering the point cloud. Retrieving 2D
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Fig. 7. Pipeline of our proposed ModalBlender.

images using 2D image search benefits from high-performance pretrained models.
However, compared to VoteNet and 3DCNN, which can process point cloud data
directly, MVCNN must first render and photograph point cloud data, making
it much slower. It took around 86min to preprocess all the CRISP test set for
MVCNN before testing. Additionally, because MVCNN typically used a fixed
camera angle to photograph the rendered result, its performance was greatly
affected when there were obstructions, such as a ceiling in a room. On the con-
trary, VoteNet and 3DCNN were more robust. How to improve model accuracy
and maintaining efficiency remains a worthy research question.

While for Text-PointCloud retrieval, all three models performed poorly.
VoteNet performed the worst and resulted in an accuracy similar to random
selection. 3DCNN, which was based on 3D data and 3D convolution kernels,
performed the best in Text-PointCloud retrieval, because it had better spatial
perception than MVCNN and VoteNet. Overall, the accuracy of all three back-
bones was very low because of the huge feature gap between text and point cloud.
Meanwhile, currently there was no widely-used pretrained model to help Text-
PointCloud alignment, making the situation worse. CRISP as the first cross-
modal retrieval dataset for text and point cloud, provides a convenient and
useful benchmark for studying the alignment of text and point cloud modalities.

5 Text Point-Cloud Alignment

5.1 Architecture and Implementation

To address the challenge of aligning textual and point cloud features, we then
proposed a model called ModalBlender which comprises three submodules, as
shown in Fig. 7. The first submodule, CMR (Cross-modal Retrieval), was the
same as the one described in Sect. 4.1, and its output loss is Text-PointCloud
CLIP loss (TPC). The second submodule, CMM (Cross-modal MaskLM), was
a model similar to RoBERTa, but with cross-attention layers that take text
feature (Q) and point cloud feature (K and V) as inputs. The self-attention
layers in CMR and CMM share the same weights. We randomly masked 15%
of the original text query and use it as input to CMM, and the output loss
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of CMM is cross-entropy loss (CEL). We adopt cross attention mechanism on
text and point cloud features to guide the understanding of each other. The
third submodule, IMA (Intermediate-modal Alignment), used two additional
CLIP losses that involve image features as the intermediate modal to align text
and point cloud. We paired text and image features to calculate Text-Image
CLIP loss (TIC) and paired image and point cloud features to calculate Image-
PointCloud CLIP loss (IPC). We leveraged image feature as the intermediate
modal because there are well-developed text and image pretrained models and
also image has RGB information that can be directly mapped into point cloud
data, which made image a perfect bridge modal to align text and point cloud
features. Finally, we used the weighted sum of these four losses as the final loss
of ModalBlender. In particular, when testing, only the CMR module was used.

5.2 Quantitative Analysis

➢ Performance Comparison: In Table 3, we present the experimental results
of ModalBlender. The performance of all three different backbone models had
been significantly improved, indicating the effectiveness of the CMM and IMA
modules. MVCNN achieved the highest accuracy and the greatest improvement,
followed by 3DCNN. Although VoteNet still had the lowest accuracy among the
three models, it was able to show some effective accuracy. The experimental
results strongly demonstrated that cross-modal attention and the use of image
features as an intermediate modal could greatly facilitate alignment between
text and point cloud modalities.
➢ Ablation Study: We then conducted ablation experiments on ModalBlender
with MVCNN. The results in the last two rows of Table 3 show that the removal
of the CMM or IMA module degraded the performance. This demonstrated that
both CMM and IMA are important in improving the model’s accuracy. And
compared to CMM, IMA has a greater influence on overall performance.

6 Conclusion

In this paper, we introduced CRISP, the first 3D indoor balanced scene cross-
modal retrieval dataset that focuses on retrieving point cloud using text or
images. Given the difficulty of obtaining 3D point cloud data, we proposed an
automated pipeline that can generate a vast number of realistic indoor 3D point
cloud scenes and then formed a dataset called CRISP cantains point clouds,
RGBD-images and textual descriptions of the scenes. We conducted comprehen-
sive experiments based on CRISP using now SOTA methods, and observed a
huge performance gap between CRISP tasks and previous Text-Image retrieval
tasks especially when using text. As one step towards better Text-PointCloud
retrieval, we proposed a novel architecture named ModalBlender, and experi-
mental evidence demonstrated that ModalBlender could significantly improve
the accuracy of retrieval and provide a useful approach for aligning text and
point cloud features in the absence of pretraining.
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