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Abstract

Background Electroencephalography (EEG) using a dry electrode cap is currently being investigated as a
pre-hospital stroke triage instrument. Developing an algorithm for automatic interpretation of the EEG signals
is challenging, considering the amount of artefacts often in the signal. Ideally, an algorithm should be capable
of distinguishing between different artefact types to determine the appropriate action: whether to correct them,
reject them, or consider their potential predictive value. Neural networks have demonstrated their value for
these types of classifications in wet EEG data. However, this approach requires enormous amount of data and
dry EEG data is sparse.

Objective This study aims to develop a multi-class artefact classification model for dry EEG data using
transfer learning.

Methods First, a convolutional neural network (CNN) for multi-class (clean, eye movement, muscle activity
and electrode artefact) classification was developed. Wet electrode EEG recordings from a publicly available
dataset were used, containing data of 213 patients (Part I). Second, this model was implemented and transfer
learned for multi-class (clean, pulse artefact, muscle activity and artefact) classification of dry EEG recordings
using data of 13 subjects (Part II). The models were trained using annotated multi-channel input. Model
performances were evaluated on unseen test data using accuracy, area under the receiver operating characteristic
curve, F1-score, precision, and recall.

Results The pre-trained multi-class model achieved an overall accuracy of 74.8%. The fine-tuned model
was able to correctly differentiate between the classes with an accuracy of 71.2%, with the best performance for
the classes muscle activity (AUC 0.92, F1-score 0.80) and artefact (AUC 0.94, F1-score 0.80).

Conclusion Transfer learning enabled the development of a good performing multi-class artefact classifi-
cation model specifically tailored for dry EEG data, even though available data was limited. The developed
model could assist in assessing appropriate action for different artefact types in dry EEG data interpretation
algorithms.
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1 Introduction
Acute ischemic stroke is a leading cause of death and disability, with in 2020 an incidence of approximately 7.6
million worldwide [1]. A contribution of 10-20% is assigned to large vessel occlusion (LVO) stroke, an proximal
obstruction of large, cerebral arteries [2]. Acute LVO strokes are associated with a more than twofold increased
risk of death and permanent disability compared to non-LVO ischemic strokes. This stroke type contributes to
95% of post-ischemic stroke mortality [2]. Standard treatment for LVO stroke is intravenous thrombolysis (IVT)
and endovascular thrombectomy (EVT) [3]. Immediate treatment is of the utmost importance to improve patient
outcome since the efficacy of EVT is highly time-dependent [4]. The largest postponement of treatment in acute
stroke care is attributed to pre-hospital delays [2].

In the Netherlands, triage is done according to a drip and ship model. Patients with a suspected stroke are
brought to the nearest hospital by the ambulance for diagnostics. Following confirmation of LVO stroke, patients
may require transfer to a comprehensive stroke centre capable of performing EVT. A study showed transfer is
needed in 54% of the patients [5]. As a consequence, time from onset to treatment was delayed by 40 minutes
which was associated with a worse functional outcome [5].

Electroencephalography (EEG) has shown its capabilities of detecting LVO stroke through various in-hospital
studies [6, 7, 8]. These studies overcome the limitation of traditionally wet electrode EEG, which require extensive
preparation and individual placement on the skin, making them impractical for a pre-hospital setting. Sergot et al.
implemented a portable wet electrode EEG combined with somatosensory-evoked potentials device which made use
of a 13-electrode cap [6]. Electro conductive gel only needed to be applied in the openings during application. Their
device achieved a sensitivity and specificity of 80% for predicting LVO strokes, outperforming traditional clinical
scales. Although the wet electrode cap had a short application time of 4.6 minutes, implementation of dry electrodes
can decrease application time even more. Utilising dry electrodes, a study has identified the theta/alpha ratio,
representing distinct frequency characteristics of the EEG, as the most effective EEG feature for LVO prediction,
achieving an area under the receiver operating characteristic curve (AUC) of 0.80 [7]. Furthermore, Erani et al.
demonstrated moderate accuracy (ACC) in LVO detection using ipsilesional relative theta and alpha power, with
an AUC of 0.69 [8]. These results highlight the diagnostic potential of dry EEG electrodes, which are not only
quick to apply but also user-friendly and cost-effective, making them well-suited for a pre-hospital setting [9].

In an ideal scenario, automatic interpretation of an EEG recording would indicate the probability of LVO
stroke. A current challenge of automatic interpretation algorithms is the presence of artefacts in the signal.
Artefacts could have a masking negative or positive effect on the performance of algorithms, not representing the
EEG data underneath it [10]. Especially, a pre-hospital setting in combination with the dry EEG electrodes has
shown difficulties in obtaining adequate data quality, necessitating exclusion of 32% of the data from analysis in a
previous study [7]. A binary (clean vs artefact) convolutional neural network (CNN) algorithm was used to detected
and rejected artefacts. However, ideally, an algorithm should be capable of distinguishing between different types
of artefacts to determine the appropriate action: whether to correct them, reject them, or consider their potential
predictive value.

Many techniques have been developed to detect artefacts in EEG data [11, 12]. Recent years, neural networks
(NNs) have shown promising results in capturing different artefacts types [13, 14]. These networks are able to
learn from raw data, without the need for pre-processed features. The raw data is used to find non-linear relations,
explaining the differences between specific artefacts. However, in order to exhibit the profit of a NN, it needs an
enormous amount of data to learn from. Dry EEG recordings are sparse and training such a network solely on the
available data will likely not result in an optimal classification model.

Therefore, this study aims to develop a multi-class artefact classification model for dry EEG data. Initially,
by building a NN based on wet EEG recordings. Followed by implementing the model and translating this to dry
EEG recordings.

2 Background

2.1 Artefacts
An artefact can be defined as a signal distortion in the data, not representing the measured brain activity. Artefacts
can be divided into two types, technological and physiological artefacts. Technical artefacts arise primarily due
to electrical and electro-magnetic noise coming from the power lines or electric lights [16]. Physiological artefacts
arise from a subject’s own activities, including muscle movements, heart activity, eye blinks, or eye movements
[16, 17, 18]. Technological artefacts can be minimised during the processing of the data. Their distinctive frequency
characteristics allow for effective suppression using simple filters [10]. Physiological artefacts can be minimised by
giving instructions to the patient. However, total elimination is never possible.
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(a) Clean segment (b) Eye movement artefact (c) Muscle activity

(d) Electrode artefact (e) Pulse artefact in FC4-FC8

Figure 1: Artefact types. Examples from the Temple University Hospital database [15] (a, b, c, d) and Amsterdam
University Medical Centre (e) database. On the x-axis; 2 epochs of 2 seconds, so a total time of 4 seconds is visualised. On
the y-axis the according channels are depicted.

Artefacts caused by eye movement do not completely disrupt the brain signals, rather, they add linearly to the
data (e.g. Fig. 1b) [19]. Muscle activity can be seen as bursts with high amplitudes (e.g. Fig. 1c). These artefacts
can arise due to chewing, talking, clenching etc. They are usually present in the 20-40 Hz range [19]. Depending
on electrode position, a pulsation artefact can be found in the signal. The latter artefact distinguishes itself by
its repetitive occurring waveform, representing heart pulses (Fig. 1e). Lastly, instrumental artefacts can be found
in EEG data. They differ in their appearance depending on the specific source. An example can be seen in Fig.
1d. Movement of an electrode can cause a change in contact leading to the EEG baseline of the signal to start
wandering.

Because each artefact type exerts its influence in a different frequency range, complete removal of the artefacts
without removing signal as well remains challenging. In normal practice, artefacts are visually ignored during
interpretation. However, this is not feasible for its use in automated classification models.

2.2 Related work
To minimise the influence of artefacts on EEG signal processing and automated classification models, algorithms
have been developed to removed or correct artefacts. Approaches vary from regression to decomposition methods
to deep learning (DL) methods, with the most common method being independent component analysis (ICA). ICA
is a form of blind source separation, which tries to break the EEG signal down into different components. These
components can subsequently be identified as artefact by an expert or another model [20]. The emphasis is on a
specific artefact, particularly eye blinks and muscle movement.

Most recent developments have been in the field of DL. In contrast to other methods, DL can automatically
learn pre-processing, feature extraction and classification details without expert knowledge [21]. DL is based on
the principle of NNs [22]. The basic structure of a NN consists of an input layer, multiple hidden layers and an
output layer. Each layer consists of its own set of neurons to which nonlinear transformations are applied to [22].
For EEG signal analysis, models often utilise extracted features as input [23]. Alternatively, the raw signal or its
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frequency-based image transformation can be used as input options [23].
Common DL methods used for multi-class artefact classification for wet EEG recordings include CNNs and

recurrent neural networks (RNNs). Kim et al. [14] explored different architectures (shallow CNN, deep CNN,
RNN, and an ensemble method) to obtain the highest classification ACC for a 5-class (clean, eye movement, muscle,
electrode and chewing artefact) classification model. The ensemble method (ACC 67.59%) was demonstrated as
the optimal choice, closely followed by the shallow CNN (ACC 65.15%). Webb et al. [13] used a deep residual
CNN for 6-class (clean, device interference, EMG, movement, electrode artefacts and biological rhythms) artefact
classification in neonatal EEG data. The performance resulted in a high ACC of 84.8%. A common limitation was
found in accurately classifying all classes. Kim et al. [14] only classified 28% of the muscle artefacts correctly with
their ensemble method and Webb et al. [13] only classified the biological rhythms correctly in 4.3% of the cases on
the validation set.

DL has also been applied to artefact classification of dry EEG recordings. A binary classifier (clean vs artefact)
was developed by van Stigt et al. [24]. Their model yielded a performance of 90.7% ACC, F1-score of 90.2% and a
recall and precision of 91.2% and 89.1%, respectively. This model was not trained to differentiate between different
artefact types. The development of a multi-class artefact classification algorithm specifically for dry EEG data
would represent a novel contribution to the field of EEG research.

3 Methods
This study consists of two distinct parts. First, a multi-class artefact classification model based on a publicly
available dataset was developed. Second, the pre-trained model was implemented and transfer learned to dry EEG
data.

3.1 Part I: Multi-class classification model
3.1.1 Dataset description

Figure 2: Model architecture based
on Hermans et al.[25]

The model was trained on a publicly available EEG Artifact Corpus (version
3.0.1) provided by the Temple University Hospital (TUH) of Philadelphia [15].
Recordings were performed with electrodes positioned according to the 10-20
system. Data was re-referenced to 20 or 22 channels, depended on the presence
of the two earlobe electrodes, with a temporal central parasagittal montage
[26]. Three different configurations were available; averaged reference, linked
ear reference and a modified version of the averaged reference without using
the auricular channels (electrodes A1 and A2). Recordings were available with
varying sampling frequencies between 250 - 500 Hz. A total of 310 files of 213
subjects were available, with an average file duration of 19 minutes.

The dataset contained EEG data with artefacts annotated per channel and
sample; eye movement (eyem), chewing, shivers, muscle artefact (musc) and
combination of electrode pop, electrostatic and lead artefacts (elec). The re-
maining signal was considered as clean background. Annotations were carried
out by a trained team of undergraduate students. At least two individual
annotators reviewed a file [27]. In case of uncertainty, a third annotator was
added to serve as a tiebreaker.

3.1.2 Pre-processing

Data were band-pass filtered (0.5 - 35 Hz) and resampled to 100 Hz. The
recordings were further divided into 2-second segments with 50% (1 second)
overlap. Inclusion of artefact segments was limited to eyem, musc, elec and
clean EEG segments based on the availability of annotations, relevance for the
model to be fine-tuned and complexity of the pre-trained model. To match
the channels as much as possible with the available Amsterdam UMC data
(Part II), 12 channels from the 20-22 available channels were selected from the
frontal, temporal and parietal regions (Table. 2, Fig. 3).

Labels were given to individual channels as one-hot encodings (clean: [1,
0, 0, 0], eyem: [0, 1, 0, 0], musc: [0, 0, 1, 0], elec: [0, 0, 0, 1]). If the annotation of the artefact started/stopped
within the epoch, a soft label was generated to provide the model with a more accurate label representation. The
soft label was calculated as a percentage based on the presence of the clean data and the corresponding artefact.
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E.g. if 80% was annotated as eyem, the label of the corresponding segments was [0.2, 0.8. 0, 0]. The labels were
saved per segments in a 12-channel epoch instead of single channel segments, to include dependencies between
channels as well. Clean epochs were downsampled to obtain a more balanced dataset.

Lastly, data were split into a train-test set (80% - 20%). Stratification was done on subject, ensuring no overlap
of subjects between different groups. The train set was further divided into 5-folds for cross validation. It was
aimed to maintain the class balance within the splits as much as possible (Appendix Table. A).

3.1.3 Model structure, training and evaluation

The input of the model were 12-channel filtered EEG epochs, with as output a class prediction (clean, eyem,
musc, elec) per channel. The final implemented model was based on the CNN developed by Hermans et al. for
artefact detection in neonatal multi-channel EEG data [25]. Their model is a combination of an auto-encoder for
unsupervised learning plus a classifier used for supervised learning. A model, based on the encoder part of the
autoencoder and classifier, was implemented in this study.

Table 1: Hyperparameter search space and optimal value
implemented in the model.

Hyperparameter Value(s) Optimal

Batch size 128, 256, 512, 1024 512
Convolutional layers 9, 10, 11 9
Kernel size width 3, 5, 7 3
Kernel size height 12 12
Dropout probability 0.0 - 0.5 0.22
Learning rate 0.00001, 0.0001 0.0001

The optimal width of the kernels, batch size, learn-
ing rate and dropout probability were determined dur-
ing hyperparameter tuning (Table. E.3). Hyperparam-
eters were chosen using hyperopt with a tree-structured
parzen estimator (TPE), with a maximum of 20 itera-
tions [28, 29]. Per iteration a selection was made of the
available parameters (Table. E.3). Values per param-
eter were carefully chosen, based on previous research.
TPE iteratively tries to optimise the relationship be-
tween the hyperparameter choice and the average loss
of the 5 folds, rather than evaluating all possible com-
binations.

The final model consisted of 10 (9 temporal, 1 spa-
tial) convolutional layers (Fig. 2). The first five convolutional layers, were followed by a max pooling layer. A
dropout layer was added before the spatial convolutional layer and after all convolutions. Lastly, in contrast to
the 1 x 1 convolutional layers of Hermans et al.[25], two fully-connected layers were connected to the network
to combine all information from previous layers. The output of the model is a tensor with the probabilities for
each class with the shape (512, 12, 4), representing the batch size, the number of channels, and the four classes,
respectively. After each convolution, batch normalisation was applied for regularisation and AdamW was used as
an optimizer. Two other explored architectures are described in Appendix E.

Figure 3: Bipolar montages used. Visualises channels chosen from
the Temple University Hospital (left) and Amsterdam University
Medical Centre (right).

Table 2: Bipolar montages used. Selected chan-
nels from TUH dataset and all available channels
from the Amsterdam UMC dataset.

TUH dataset Amsterdam
UMC dataset

F7 - T3 FT7 - TP7
T3 - T5 FC3 - CP3
F8 - F4 FT8 - TP8
T4 - T6 FC4 - CP4
T3 - C3 FC3 - FT7
C3 - CZ CP3 - TP7
CZ - C4 FC4 - FT8
C4 - T4 CP4 - TP8
F3 - C3 FT7 - CP3*
C3 - P3 FC3 - TP7*
F4 - C4 FT8 - CP4*
C4 - P4 FC4 - TP8*

Part I: Temple University Hospital (TUH), Part II:
Amsterdam University Medical Centre (UMC). *Input
replaced by available annotated channels.

The model was trained by minimising the cross entropy loss and the learning rate was scheduled with a cosine
annealing scheduler. Training was done for a maximum of 100 epochs. Early stopping was implemented when no
further minimisation of the validation loss could be achieved for 10 consecutive epochs. During training the class
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imbalance was corrected for by adjusting the class weights. Weights calculation was based on inverse frequency
weighting. Performance was computed for each fold. Finally, the five models were combined using a majority vote
to determine the final classification per channel: (clean, eyem, musc or elec).

3.2 Part II: Fine-tuning model
3.2.1 Dataset description

The dataset was provided by the Amsterdam UMC. The dataset contained a total of 13 participants, 10 healthy
subjects and 3 outpatient clinic patients. Recordings were acquired using a dry EEG cap with 8 Ag/AgCl coated
electrodes. Electrodes were positioned at FC3, FC4, CP3, CP4, FT7, FT8, TP7 and TP8 (Fig. 3). During
recordings, physiological and technological artefacts were induced according to specific protocols. These included
eye movement, muscle activities (jaw clenching, talking, frowning) and electrode artefact (cable movement and
high electrode-skin impedances for the reference, ground and cap electrodes).

The dataset contained annotations of the labels clean, pulsation artefact (pulse), (musc) and artefact (art).
The latter label was given to segments not belonging to any of the other groups or when a combination of pulse
and musc was present. Labelling was done sample and channel-wise at a sampling frequency of 100 Hz by 3 to 4
trained reviewers.

3.2.2 Pre-processing

Figure 4: Example of soft label generation for one seg-
ment. Per 2-second segment annotated data points of
different reviewers are averaged.

Similar to the TUH dataset, data was band-pass (0.5 - 30 Hz)
filtered and resampled to 100 Hz. Data was re-referenced
to a 12-channel bipolar montage. The order of the chan-
nels was maintained to be as similar as possible to the TUH
dataset. Annotations were only available for 8 out of the
12 bipolar channels. Since the model is dependent on 12-
channel input, it was chosen to fill the remaining four chan-
nels with annotated data. Therefore, for the development
of the model, FT7-TP7, FC3-CP3, FT8-TP8 and FC4-CP4
were duplicated to replace FT7-CP3, FC3-TP7, FT8-CP4,
and FC4-TP8 at this stage (indicate with * in Tab. 2).
Lastly, recordings were split in 2-second segments with 1.9
second overlap.

The musc label was further specified as ’clean with small
high frequency component’, and thus labelled clean, or musc to isolate strong muscle activity in the musc label.
This categorization was achieved by calculating the power ratio per segment between the 5-15 Hz and 25-40 Hz
frequency bands. A power ratio lower than 0.5 was classified as musc.

Labels were translated to one-hot encodings ([clean, pulse, musc, art ]) for each 2-second segment. Soft labels
were created based on the annotations of the different reviewers. The class labels of all data points within a
2-second segment were averaged and given to the specific class accordingly (Fig. 4).

Moreover, in order to obtain a more balanced dataset, segments with ≥ 10 out of 12 channels (one epoch)
labelled clean or art were downsampled by a factor 2. Lastly, the data was split into train (80%) and test (20%)
set. The train set was further divided into three folds for cross validation. During all splits effort was made to keep
the class balance as equal as possible. (Appendix. A). Data of the same subject was maintained within one group
during splitting.

3.2.3 Model fine-tuning 4-Class Accuracy =

(∑
i

True

)
/Total, (1)

where i=[four classes]

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1 =
2× Precision × Recall

Precision + Recall
(4)

The model of Part I was implemented as pre-trained CNN and fine-
tuned for the classes clean, pulse, musc and art. Similar as in Part
I, four classes were of interest. Therefore, output structure could
remain the same. The optimal balance between layers to freeze
and layers to update was optimised on the train data, as well as
batch size, learning rate and dropout probability. This resulted in
updating all layers, including training the last layer from scratch, a
learning rate of 0.001, a batch size of 128 and a dropout probability
of 0.25. Similarly to Part I, the CNNs were trained with an AdamW
optimizer by minimizing the cross entropy loss.
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3.3 Performance assessment
A similar performance assessment was executed for the pre-trained model (Part I) as well as for the fine-tuned model
(Part II). Performance metrics were calculated based on the unseen test set (20% of the original TUH/Amsterdam
UMC data). The predictions generated by the models during cross-validation were combined through averaging.
Subsequently, the argmax operation was applied to the averaged predictions to determine the majority vote.
Similarly, the true soft labels were converted to hard labels based on the largest portion present.

The performance of the classification model was assessed by a confusion matrix (four by four). Moreover, ACC
was computed as percentage of accurately classified segments (Eq. 1) and AUC was computed to provide more
inside in the possibility to discriminate between classes. Per class, a one-versus-rest ROC was calculated resulting
in one overall AUC. Lastly, recall and precision were calculated and combined in a F1-score (Eq. 4). Class weights
were incorporated in the performance assessment.

4 Results

4.1 Data availability
4.1.1 TUH dataset

Table 3: Description of labelled segments. Total number of 2-second
segments per class (clean, eye movement (eyem), muscle activity
(musc), electrode artefact (elec), pulsation artefact (pulse), artefact
(art)) before and after downsampling. One epoch consists of 12 seg-
ments. Temple University Hospital (TUH), Amsterdam University
Medical Centre (UMC)

Number of 2s segments (%)

Unbalanced Corrected
data distribution data distribution

TUH dataset

Clean 3,417,993 (87.9) 466,365 (48.1)
Eyem 53,313 (1.4) 53,313 (5.5)
Musc 325,330 (8.3) 325.330 (33.6)
Elec 124,736 (3.1) 124,736 (12.8)

Total 3,921,372 969,744

Amsterdam
UMC dataset

Clean 524,810 (50.3) 257,135 (49.6)
Pulse 28,257 (2.8) 28,257 (5.4)
Musc 25,814 (2.5) 25,814 (5.0)
Art 455,091 (44.4) 207,662 (40.0)

Total 1,023,972 518,868

After resampling and segmentation, almost 4-
million 2-second single channel segments were ob-
tained, which can be translated to 326.781 12-
channel epochs. Downsampling of clean seg-
ments resulted in a final number of 969,744 single
channel segments (Table. 3), 80,812 12-channel
epochs. Of these, 1,030 are completely clean
epochs (12 clean 2-second segments).

4.1.2 Amsterdam UMC dataset

Pre-processing of the data results in over 1 mil-
lion 2-second single channel segments. Downsam-
pling of clean and art segments led to a final
518,868 single channel segments, which are 43,239
2-second epochs (Table. 3).

Figure 5: Confusion matrix using the classification
model on the test set. The majority vote is used of the
models created during 5-fold cross validation. The di-
agonal line represented correct classification. The num-
bers were calculated as row percentages, indicating the
proportion of true labels for each predicted class (clean,
eye movement (eyem), muscle activity (musc), electrode
artefact (elec)).

Table 4: Performance metrics of classification model using
the majority vote on the test set. Showing the overall ac-
curacy (ACC) and per artefact class (clean, eye movement
(eyem), muscle activity (musc), electrode artefact (elec)) the
recall, precision, area under the curve (AUC) and F1-score.

ACC Recall Precision AUC F1-score
(%) (%) (%)

Overall 74.8 68.4 71.7 0.87 0.68
Clean - 76.2 49.8 0.84 0.60
Eyem - 62.3 80.3 0.85 0.70
Musc - 76.2 81.0 0.91 0.79
Elec - 56.0 76.1 0.89 0.64
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4.2 Part I: Multi-class classification performance
The 4-class classification model achieved an ACC of 74.8%, with a recall, precision, AUC and F1-score of 68.4%,
71.7%, 0.87 and 0.68 respectively using the majority vote of the five models on the test set (Tab. 4). Performance
per individual model of the train, validation and test set can be found in Appendix B. Highest performance was
found for the musc label (recall 76%, precision 81%, AUC 0.91, F1-score 0.79). When the accurate artefact class
(eyem, musc, elec) was not predicted, the model often classified the data as clean (Fig. 5). This resulted in a high
precision for the artefact classes (eyem 80%, musc 81%, elec 76%) at the expense of the precision of the clean label
(precision 50%).

In Fig. 6 segments are visualised along with their corresponding predictions. In general, it can be seen that
clean segments are classified correctly. Most of the epochs contain clean segments plus one artefact class (eyem,
musc, elec). A combination of artefacts classes is not often seen in one epoch.

(a) Eye movement classification (b) Muscle classification

(c) Electrode artefact classification

Figure 6: Examples of correctly classified and misclassified segments, predictions are visualised. Black boxes indicate a
disagreement between the annotation and prediction. (a) Classification of eye movement (eyem). Three segments were
wrongly classified as eyem, whereas they were annotated clean. (b) Muscle (musc) classification. Four clean segments were
predicted musc but annnotated clean, and two musc segments were predicted clean. (c) Electrode artefact classification
(elec). Two clean segments are wrongly classified as elec, and three are wrongly classified clean while they were annotated
elec.
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4.3 Part II: Fine-tuning performance
Fine tuning the model resulted in an ACC of 71.2% with a recall and precision of 62.3% and 65.4% respectively,
using the majority vote. High classification performances were found for the musc artefact and the art class. Most
instances from the musc class were accurately classified (recall 86%), whereas the art class obtained the highest
precision (85%). An overall low performance was seen for the pulse artefacts (recall 17%, precision 59%). The
performance of the pulse artefacts on the test set was considerably lower compared to the validation groups during
cross validation (Appendix Fig. C.3). Most of the pulse artefacts were classified as clean. This negatively impacted
the model’s overall performance as well as the precision of the clean segments.

Figure 7: Confusion matrix using the fine-tuned model
on the test set. The majority vote is used of the mod-
els created during 3-fold cross validation. The diago-
nal line represented correct classification. The numbers
were calculated as row percentages, indicating the pro-
portion of true labels for each predicted class (clean,
pulsation artefact (pulse), muscle activity (musc), arte-
fact (art)).

Table 5: Performance metrics of the fine-tuned model us-
ing the majority vote on the test set. Showing the overall
accuracy (ACC) and per artefact class (clean, pulsation arte-
fact (pulse), muscle activity (musc), artefact (art)) the recall,
precision, area under the curve (AUC) and F1-score.

ACC Recall Precision AUC F1-score
(%) (%) (%)

Overall 71.2 62.3 65.4 0.82 0.60
Clean - 71.4 42.8 0.88 0.54
Pulse - 16.9 59.0 0.65 0.26
Musc - 86.4 74.8 0.92 0.80
Art - 75.7 85.0 0.94 0.80

(a) Muscle and artefact classification (b) Pulsation artefact classification

Figure 8: Examples of correctly classified and misclassified segments, predictions are visualised. Black boxes indicate a
disagreement between the annotation and prediction. The first four channels are duplicated for the purpose of training of
the model. (a) Epoch 0 contains three predicted muscle artefacts (musc), which are annotated clean. The clean predicted
segment is annotated musc. Epoch 1, contains two artefact (art) segments, which are predicted clean. (b) Channel ’FC4-
CP4’ is predicted clean, but annotated as art. ’CP4-TP8’ is annotated clean, while predicted pulsation artefact (pulse).
’FC4-TP8’ is predicted clean, while annotated pulse.
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In Fig. 8 examples of segments with their predicted labels are visualised. On the left plot, the first epoch shows
difficulties in differentiating between musc artefacts and clean segments. In the second epoch, the model predicted
all segments to be clean, however ’FC3-CP3’ was actually labelled as containing art. The last epoch is consistent
with the true labels, containing all clean segments. On the right plot, difficulties in capturing pulse artefacts are
found. Segments from ’CP4-TP8’ are predicted to be pulse, but are annotated clean. The other way around is seen
in ’FC4-TP8’, where all pulse segments are predicted clean.

5 Discussion
In this study, a multi-class artefact CNN-based algorithm for dry EEG data was developed using transfer learning.
To our knowledge, this is the first algorithm for multi-class artefact classification in dry EEG data. A pre-trained
CNN was developed leveraging the large public TUH dataset. Subsequently, this model was fine-tuned for its
application in dry EEG data. The pre-trained multi-class (clean, eyem, musc and elec) model achieved an overall
ACC of 74.8%. The fine-tuned model was able to correctly differentiate between the classes (clean, pulse, musc
and art) with an ACC of 71.2%, with the best performance for artefact classes’ musc (AUC 0.92, F1-score 0.80)
and art (AUC 0.94, F1-score 0.80).

Other multi-class artefact classification models exist, but are only applied for EEG recordings obtained with
wet electrodes [13, 14]. In general, wet and dry electrode EEG data have similar characteristics, but dry electrode
EEG has a slightly increased power in the lower frequency bands (< 8 Hz) and is more prone to artefacts [7, 30].
Therefore, transfer learning was implemented in this study. Findings have been reported per model; Part I -
development of pre-trained model and Part II - fine-tuning the model on dry EEG data.

For the pre-trained model (Part I) it was observed that for all artefact classes (eyem, musc and elec) the most
falsely predicted segments were predicted clean. The false prediction of clean segments can be attributed to: I) the
high prevalence of the clean class (48.1%) in the overall dataset used for development of the model, II) the presence
of periods of uncontaminated EEG data within false predicted clean segments, and III) the difficulty of capturing
artefact classes represented by distinct phenomena. Regarding the latter point, elec is a combination of various
electrode artefacts, such as electrode pop, electrostatic, and lead artefacts, which are characterised differently within
an EEG signal [15]. In contrast, musc artefacts have a more typical appearance, characterised by an increased
frequency and higher amplitudes, which may be learned more easily by the model. To decrease the amount of
falsely classified clean segments, annotations should be reviewed to improve time resolution. Moreover, alternative
methods to balance classes could be explored. Currently, these falsely predicted clean segments could influence
further analysis of this class and result in a lower precision (50%) for the clean class. Conversely, the developed
CNN achieved a high precision for the artefact classes (eyem 80%, musc 81% and elec 76%). The model rarely
falsely predicted artefact classes as the wrong type of artefact, indicating the ability of the model to accurately
distinguish between different artefact types.

Similar to the pre-trained model, Kim et al. used the TUH dataset to develop a multi-class (clean, eyem, musc,
elec and chewing) classification model [14]. A higher recall was obtained for musc (76% vs 28%, respectively)
and elec (56% vs 41%, respectively) artefacts by our model in comparison to the ensemble method of Kim et
al. Kim et al. employed a single-channel approach, whereas the present study utilised a multi-channel approach.
The observed improvement can be attributed to spatial learning across all channels within each 2-second epoch,
as opposed to learning from individual channels. Contrary to the increased recall for musc and elec artefacts,
our study demonstrated a decreased recall for eyem (63% vs 72%). In contrast to this study, Kim et al. utilised
all available channels, resulting in a different class distribution to train on. Specifically, their study incorporated
a greater proportion of the eyem class compared to the present study (26% vs. 6%, respectively), which was a
result of excluding the most frontal channels in our methodology. This factor potentially contributed to their
higher recall. Lastly, both Kim et al. and our study experienced similar difficulty in accurately classifying the elec
artefacts. In this study, as well as in Kim et al., 37% of the elec artefacts were classified as clean on the test set [14].
This suggests that clean segments were hard to differentiate from electrode artefacts, despite visual discernibility.
In addition to the challenge of capturing different phenomena within a single class, as discussed in the previous
paragraph, model characteristics, such as epoch length, might not have been optimal to effectively differentiate and
capture electrode artefact features. This study focused on 2 second segments and Kim et al. implemented 1 second
segments. Peh et al. researched classification performances using different segments lengths (1s, 3s, 5s) [31]. They
showed that in a multi-channel configuration, elec artefacts were captured best with a segment length of 5 seconds
(ACC 88%, AUC 0.82) compared to using segments of 1 second (ACC 80%, AUC 0.79) or 3 seconds (ACC 86%,
AUC 0.82). This suggests that increasing epoch length to 5 seconds, could improve elec classification.

The fine-tuned model (Part II) showed a good performance for each individual class, except for pulse artefact
(clean [AUC 0.88, F1-score 0.54], musc [AUC 0.92, F1-score 0.80], art [AUC 0.94, F1-score 0.80], pulse [AUC 0.65,
F1-score 0.26]). Performance for the detection of pulse artefacts differed per fold (Appendix C.3). Also, a difference
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in validation and test set was seen: 30-75% is accurately captured in the validation sets, whereas this is only 7-46%
in the test set (Appendix C). During all splits (train, validation and test), it was made sure that the class balance
was maintained as much as possible (Appendix A). However, it was seen that especially for pulse artefacts, the class
distribution per channel differed between the train and test set (Appendix D). In the train set, pulse artefacts were
mainly present in the right more temporal located channels (CP4-TP8 [37%] and FT8-TP8 [17%]). Similarly, pulse
artefact predictions, based on the test set, were also mainly found in these channels (CP4-TP8 [61%] and FT8-TP8
[11%]). However, the original distribution of the test set contains pulse artefacts predominately in the right more
frontal channels (FC4-FT8 [27%] and FC4-CP4 [25%]). This type of event is more clearly visualised in Fig.8b.
A pulse artefact is detected in the analysed epoch, but in a wrong channel (Fig. 8), contributing to the lower
performance of pulse artefacts. This suggests the problem of overfitting and more focus might be on the location
of the pulse artefact rather than the specific shape. In this study, it was not possible to balance each individual
class per channel due to limited data availability. To address this limitation in the future, data augmentation
can be used to maximise the generalisation capability of deep learning models [32]. Data augmentation can be
implemented through DL or feature transformation techniques [32].

It is suggested by Roy et al. that artefact removal might be redundant for DL EEG analyses, as 47% of
the studies included in the review did not use any artefact handling methods while accurate task performance
was preserved [21]. However, due to the high prevalence of artefacts in dry EEG recordings alternative handling
methods, as opposed to removal or ignorance, are needed to prevent exclusion due to insufficient data quality [7].
The algorithm developed in this study could facilitate the research on the impact of artefact correction, exclusion,
or assessment of predictive value per artefact type on LVO prediction models. Translating this to the Amsterdam
UMC dataset, the following considerations are made:

1. The art class contains data that is unusable due to the severity of the artefacts. For example, if electrode
contact is inadequate, underlying brain activity will not be captured. Hence, correction is not possible and
it is advisable to omit these segments from analysis.

2. Pulse artefacts are identified. A study by Paxton et al. demonstrated that cranial accelerometry, combined
with clinical data, can identify LVO strokes with a good performance (AUC 0.91, sensitivity 84.6%, specificity
82.6%) [33]. This technology utilises subtle head oscillations in combination with cardiac contractions to assess
pathological changes in cranial blood flow. Therefore, it would be of interest to explore the predictive promise
pulse artefacts may hold for LVO classification algorithms.

3. Musc artefacts are identified, and their predictive value could be researched. In case they do not add value,
multiple studies have shown that musc artefacts can be corrected rather than eliminated [34, 35, 36]. Artefact
containing segments are down-sampled and clean EEG data were generated by implementing an autoencoder
[36] or an UNet [34].

This approach could ensure that data quality is optimised and the potential predictive value of different artefact
types is thoroughly evaluated, while simultaneously maintaining more data for the LVO classification algorithms.

Improvement of the performances of the models may be achieved by expanding the dataset and reviewing
current labels rather than by researching different model architectures as different architectures have proven to
result in similar performances (Appendix E). Differences were seen between performances of the validation folds
and the losses of the validation sets only decreased for the first few epochs (Fig. C.3). This may indicate the model
learns limited information and might benefit from an increase in data. Moreover, it could be debated whether
the model was wrong in its prediction or that the annotated label was not optimal. Visual inspection of the
predictions highlighted difficulties in classifying musc and clean segments (Fig. 8). The segments predicted as
musc in channel ’FT8-TP8’ in epoch 1, could also have been classified as musc visually instead of clean. This
distinction is challenging because there are no objective criteria, such as a detection threshold, for determining
when to classify something as clean or an artefact. Semi-supervised learning could be incorporated to let the
model learn features in an unsupervised manner before it is applied to a supervised dataset [25]. In this way, more
data could be incorporated and the feature learning is not solely dependent on the annotated data. However, the
performance should still be evaluated on a supervised dataset, for which accurate labelling is required.

In contrast to other multi-class models, a multi-channel input was used in this study [13, 14]. This has been
shown to outperform single-channel input, but has one main limitation [25, 31]. Whereas single channel models can
process all channels individually, a multi-channel model becomes dependent on the number of channels it is trained
on. A 12-channel configuration was chosen to match the number of bipolar channels available in the Amsterdam
UMC data. This allowed us to optimally make use of spatial characteristics between the channels. However,
when 12 channels are not available, the model cannot be applied. Since the model is specifically developed to be
applied for the current dry EEG set-up of the Amsterdam UMC, this is not seen as a problem. Instead, now it can
incorporate spatial features as well.

For further research, a first step would be to implement the annotations of the four remaining bipolar channels
(FC3-TP7, FT7-CP3, FC4-TP8, FC8-CP4) to investigate the performance with all 12-channels incorporated. At
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this stage, four channels were duplicated, since the model was dependent on 12-channel input. Implementing the
additional channels could allow the model to learn the most optimal spatial features and hence potentially improve
performance. Furthermore, it would be of interest to implement a post-processing step to increase performance
per artefact class. This was implemented by Webb et al. in the form of temporal smoothing [13]. They averaged
the predictions over a time period that was specific for each artefact type. Based on a balanced dataset, this
increased their ACC from 82.0% to 84.8% [13]. It is thought that especially for pulse artefact temporal smoothing
could improve performance, since this type of artefact is often seen during the entire length of the recording in one
channel. If surrounding segments contain pulse artefacts, it is more likely that the corresponding segment contains
a pulse artefact as well.

6 Conclusion
In this study, a pre-trained model was developed using a publicly available dataset and subsequently fine-tuned on
a smaller dataset with dry EEG recordings. This approach demonstrated a good capability to differentiate between
artefact classes in the pre-trained model (eyem, musc and elec) as well as in the fine-tuned model (pulse, musc and
art), although dry EEG data were sparse for training the latter model. The fine-tuned model holds potential to
facilitate further research aimed at determining the predictive value of each artefact class on LVO stroke prediction
models using dry EEG data. Additionally, the impact of excluding and correcting various artefact types could be
investigated.
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A Cross validation splits
Both models were trained or fine-tuned using cross validation. Class balance was strived for in each fold. Each
individual fold was used as validation group, while data from the other folds was used to train on. Tab.A.1 shows
the data distribution of the dataset used in Part I. Tab. A.2 shows the data distribution of the dataset used in
Part II.

Table A.1: Artefact class (clean, eye movement (eyem), muscle activity (musc), electrode artefact (elec)) segments
per cross-folds: Part I - TUH dataset. Train dataset is divided into 5 cross folds

Train dataset Test dataset
Fold - Validation 1 2 3 4 5

Clean (%) 49301 (53.3) 103891 (52.8) 74659 (48.3) 55447 (49.3) 67694 (49.0) 115373 (47.7)
Eyem (%) 26441 (24.1) 7875 (3.8) 6981 (4.4) 4165 (3.5) 4143 (2.9) 3708 (1.5)
Musc (%) 18890 (17.2) 58316 (28.8) 51433 (32.3) 46340 (40.2) 48.387 (34.4) 101964 (42.1)
Elec (%) 15216 (13.6) 32202 (15.9) 26515 (16.7) 9380 (8.1) 20500 (14.5) 20923 (8.6)

2 sec segments 109.948 202.284 159.588 115.332 140.724 242.068
12-channel epochs 9.154 16.857 13.299 9.611 11.727 20.164

Table A.2: Artefact class (clean, pulsation artefact (pulse), muscle activity (musc), artefact (art)) segments per
folds: Part II - Amsterdam UMC dataset. Train dataset is divided into 3 cross folds.

Train dataset Test dataset
Fold - Validation 1 2 3

Clean (%) 116,492 (65.3) 32,557 (34.5) 58,465 (47.3) 49,621 (40.5)
Pulse (%) 4,592 (2.6) 9,361 (9.9) 7,437 (6.0) 6,867 (5.6)
Musc (%) 6,326 (3.5) 8,792 (9.3) 4,873 (3.9) 5,823 (4.8)
Art (%) 50,970 (28.6) 43,694 (46.2) 52,741 (42.7) 60,257 (49.2)

2 sec segments 178,380 94,404 123,516 122,568
12-channel epochs 14,865 7,867 10,293 10,214
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B Cross validation performance - Part I: TUH dataset

Table B.1: Accuracy (ACC) and area
under the curve (AUC) metrics for the
models created using 5-fold cross val-
idation

Model Dataset ACC AUC
(%)

1 Train 82 0.97
Validation 65 0.83

Test 72 0.87
2 Train 77 0.96

Validation 70 0.93
Test 73 0.88

3 Train 80 0.97
Validation 70 0.91

Test 71 0.86
4 Train 83 0.98

Validation 69 0.84
Test 74 0.86

5 Train 83 0.98
Validation 73 0.91

Test 72 0.86

The model of Part I was trained using five fold cross-validation. The results
per fold can be seen in Fig.B.3 for the train and validation sets and Fig.
B.2 for the test set. An overall stable performance was seen for clean, musc
and elec classification in all five model created (Fig. B.1) . More variation
was seen for eyem classification. The performances of the validations set
were in a similar range as the test set (Table B.1).

Figure B.1: Receiver operating characteristic (ROC) curve per class (clean, eye movement (eyem), muscle activity (musc),
electrode artefact (elec)) one-vs-rest. Model 1-5 are created during five-fold cross validation. Performances are shown on
the test set. Area under the ROC curve (AUC).
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(a) Model 1 (b) Model 2 (c) Model 3

(d) Model 4 (e) Model 5

Figure B.2: Performance of the test set. Confusion matrices of models created during training with 5-fold cross validation.
The diagonal line represented correct classification. The numbers were calculated as row percentages, indicating the propor-
tion of true labels for each predicted class (clean, eye movement (eyem), muscle activity (musc), electrode artefact (elec)).
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(a) 1: Train and validation loss (b) 1: Confusion matrix train set (c) 1: Confusion matrix validation set

(d) 2: Train and validation loss (e) 2: Confusion matrix train set (f) 2: Confusion matrix validation set

(g) 3: Train and validation loss (h) 3: Confusion matrix train set (i) 3: Confusion matrix validation set

(j) 4: Train and validation loss (k) 4: Confusion matrix train set (l) 4: Confusion matrix validation set

(m) 5: Train and validation loss (n) 5: Confusion matrix train set (o) 5: Confusion matrix validation set

Figure B.3: Performance of the train and validation sets per model created using 5-fold cross validation. From top to
bottom: model 1 - 5. The diagonal line represented correct classification. The numbers were calculated as row percentages,
indicating the proportion of true labels for each predicted class (clean, eye movement (eyem), muscle activity (musc),
electrode artefact (elec)).
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C Cross validation performance - Part II: Amsterdam UMC dataset
Table C.1: Accuracy (ACC) and area
under the curve (AUC) metrics for the
models created using 3-fold cross val-
idation

Model Dataset ACC AUC
(%)

1 Train 81 0.98
Validation 85 0.95

Test 70 0.86
2 Train 80 0.92

Validation 67 0.89
Test 67 0.81

3 Train 84 0.98
Validation 77 0.82

Test 71 0.80

Fine-tuning was performed using three fold cross validation. Performance
during training can be seen in Fig.C.3 and during testing in Fig.C.2. Com-
parison between the validation groups and the final test sets, shows the
largest performance difference in accurately identifying pulse artefacts.
During training it accurately classifies the pulse artefact in 30-75% of the
cases, which is dropped to 7-46% during testing.

The three remaining classes (clean, musc and art) have an overall good
stable performance, which is also seen in the ROC curves of the test set
(Fig. C.1). In this figure, it can also be seen that the classification of pulse
artefacts by the third model is almost as low as chance level (0.50).

Figure C.1: Receiver operating characteristic (ROC) curve per class (clean, pulsation artefact (pulse), muscle activity
(musc), artefact (art)) one-vs-rest. Model 1-3 are created during three-fold cross validation. Performances are shown on the
test set. Area under the ROC curve (AUC).

(a) Model 1 (b) Model 2 (c) Model 3

Figure C.2: Performance of the test set. Confusion matrices of models created during training with 3-fold cross
validation. The diagonal line represented correct classification. The numbers were calculated as row percentages,
indicating the proportion of true labels for each predicted class (clean, pulsation artefact pulse), muscle activity
(musc), artefact (art)).
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(a) 1: Train and validation loss (b) 1: Confusion matrix train set (c) 1: Confusion matrix validation set

(d) 2: Train and validation loss (e) 2: Confusion matrix train set (f) 2: Confusion matrix validation set

(g) 3: Train and validation loss (h) 3: Confusion matrix train set (i) 3: Confusion matrix validation set

Figure C.3: Performance of the train and validation sets per model created using 3-fold cross validation. From top to
bottom: model 1 - 3. The diagonal line represented correct classification. The numbers were calculated as row percentages,
indicating the proportion of true labels for each predicted class (clean, pulsation artefact pulse), muscle activity (musc),
artefact (art)).
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D Class distribution per channel
Table D.1: Artefact class distribution per channel of train and test set -
TUH dataset. Eye movement (eyem), muscle artefact (musc), electrode
artefact (elec).

Channel Clean Eyem Musc Elec
Data Pred Data Pred Data Pred Data Pred

F7-T3 0.08 0.05 0.17 0.15 0.11 0.11 0.08 0.09
T3-T5 0.08 0.07 0.04 0.04 0.10 0.10 0.08 0.08
F8-T4 0.08 0.05 0.18 0.19 0.10 0.10 0.08 0.09
T4-T6 0.08 0.09 0.04 0.05 0.09 0.09 0.09 0.08
T3-C3 0.08 0.07 0.04 0.05 0.11 0.11 0.09 0.08
C3-CZ 0.08 0.09 0.04 0.04 0.08 0.08 0.10 0.09
CZ-C4 0.08 0.10 0.04 0.05 0.08 0.08 0.10 0.09
C4-T4 0.08 0.08 0.05 0.05 0.09 0.09 0.08 0.09
F3-C3 0.08 0.07 0.18 0.17 0.08 0.08 0.09 0.09
C3-P3 0.09 0.10 0.04 0.04 0.07 0.08 0.08 0.08
F4-C4 0.08 0.08 0.15 0.16 0.07 0.07 0.10 0.10
C4-P4 0.09 0.17 0.00 0.02 0.02 0.01 0.02 0.04

Class distribution per bipolar chan-
nel are displayed. For the model of
part I - TUH dataset (Tab. D.1),
the included classes are: clean seg-
ments, eye movement (eyem), muscle
artefacts (musc) and electrode arte-
facts (elec). Data includes the com-
plete dataset, and pred is the predic-
tion based on the test set. It can be
seen that for all channels, the class
distribution for the data is similar to
that of the prediction.

In the Table D.2, the class distri-
bution per channel are displayed for
part II - Amsterdam UMC dataset.
The included classes are: clean seg-
ments, pulsation artefacts (pulse),
muscle artefacts (musc) and an arte-
fact class (art). The latter label is given to segments, not belonging to any of the other groups.

For the classes clean, musc and art it can be seen that the predictions are in a similar range to the class
distribution of the overall dataset. A similar phenomenon can be seen for the pulse artefacts, however differences
can be seen when data is further split into the train and test set (Fig. D.2 grey highlighted channels). The
prediction tends to align more closely with the training class distribution than with the distribution of the test set
on which the prediction is based. This is most evidently seen in channels ’FC4-FT8’ and ’CP4-TP8’.

Table D.2: Artefact class distribution per channel of train and test set - Amsterdam UMC dataset. Pulsation
artefact (pulse), muscle artefact (musc), artefact (art).

Channel Clean Pulse Musc Art
Data Pred Data Pred Data Pred Data Pred
train - test train - test train - test train - test

FT7-TP7 0.09 0.08 0.02 0.00 0.20 0.18 0.08 0.06
0.09 - 0.09 0.02 - 0.00 0.22 - 0.19 0.07 - 0.08

FC3-CP3 0.08 0.11 0.02 0.00 0.03 0.03 0.09 0.10
0.10 - 0.09 0.00 - 0.03 0.04 - 0.02 0.08 - 0.09

FT8-TP8 0.08 0.06 0.12 0.11 0.08 0.14 0.08 0.08
0.07 - 0.09 0.17 - 0.01 0.07 - 0.12 0.10 - 0.08

FC4-CP4 0.08 0.09 0.12 0.10 0.03 0.01 0.09 0.10
0.08 - 0.06 0.07 - 0.25 0.03 - 0.01 0.09 - 0.10

FC3-FT7 0.08 0.09 0.02 0.00 0.12 0.11 0.09 0.08
0.09 - 0.09 0.02 - 0.00 0.13 - 0.09 0.08 - 0.09

CP3-TP7 0.09 0.10 0.04 0.00 0.08 0.10 0.08 0.07
0.10 - 0.11 0.04 - 0.01 0.09 - 0.08 0.07 - 0.07

FC4-FT8 0.08 0.09 0.11 0.01 0.06 0.05 0.08 0.10
0.08 - 0.04 0.05 - 0.27 0.03 - 0.13 0.10 - 0.09

CP4-TP8 0.09 0.03 0.28 0.61 0.05 0.06 0.07 0.07
0.07 - 0.11 0.37 - 0.12 0.05 - 0.03 0.07 - 0.06

FT7-TP7* 0.09 0.08 0.02 0.00 0.20 0.17 0.08 0.06
0.09 - 0.09 0.02 - 0.00 0.22 - 0.19 0.07 - 0.08

FC3-CP3* 0.08 0.11 0.02 0.00 0.03 0.02 0.09 0.10
0.10 - 0.09 0.00 - 0.03 0.04 - 0.02 0.08 - 0.09

FT8-TP8* 0.08 0.07 0.12 0.07 0.08 0.12 0.08 0.09
0.07 - 0.09 0.17 - 0.01 0.07 - 0.12 0.10 - 0.08

FC4-CP4* 0.08 0.10 0.12 0.10 0.03 0.01 0.09 0.10
0.08 - 0.06 0.07 - 0.25 0.03 - 0.01 0.09 - 0.10

Channels are grey highlighted that have a significant difference between train and test set in class distribution
for pulsation artefacts.
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E Explored model architectures
During the development of the final model, multiple options were considered. Two models, which were not used in
the end, will be briefly discussed here. Both models were depended on the same input shape (batch size, 12 channels,
200 data points) as the implemented model. Similarly, output was produced like (batch size, 12 channels, 4 classes).

1: 1D CNN

Figure E.1: Confusion matrix of test set using a 1D-
CNN for the classes clean, eye movement (eyem), muscle
activity (musc), and electrode artefact (elec). The diag-
onal line represented correct classification. The numbers
were calculated as row percentages, indicating the pro-
portion of true labels for each predicted class.

Table E.1: Optimal parameters implemented
in model using 1D-convolutional layers

Hyperparameter Value(s)

Convolutional layers 6
Batch size 128
Kernel size 5
Dropout probability 0.20
Learning rate 0.001

A 1-dimensional CNN was developed consisting of 6 convolutional layers, followed by two fully connected layers.
Each convolutional layers was followed by a batch normalisation and pooling layer. Only incorporating 1D layers
allowed to capture temporal dimensions, as well as the place of the channel. However, no spatial dimensions were
learned from. Optimal parameters can be seen in Tab. E.1.

2: 2D CNN - with temporal and spatial blocks

Figure E.2: Confusion matrix of test set using a 2D-
CNN with blocks of spatial and temporal layers based
on Wang et al. [37] for classes clean, eye movement
(eyem), muscle activity (musc), and electrode artefact
(elec). The diagonal line represented correct classifica-
tion. The numbers were calculated as row percentages,
indicating the proportion of true labels for each pre-
dicted class.

Table E.2: Optimal parameters implemented
in model using blocks of temporal and spatial
convolutional layers.

Parameter Value(s)

Convolutional layers 8
Batch size 256
Kernel size width 20
Kernel size height 2
Dropout probability 0.49
Learning rate 0.0001
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A second 2D-CNN was developed based on the model created by Wang et al. [37]. Their model used multi-
channel input for emotion classification based on EEG recordings. Blocks of 2 convolutional layers, one temporal
plus one spatial layer, were added to the network. For the considered model a total of four blocks were used,
resulting in a total of 8 convolutional layers. Optimal parameters can be seen in Tab.E.2.

Comparing the performances of the models, similar scores were obtained. Main differences were found in the
precision of the clean class. The 1D-CNN had a false positives in 25-33% of the cases for the other classes (Fig. E.1.
The 2D-CNN with the temporal and spatial convolutional layers performed better, wrongly classifying clean in 16-
29% of the cases while actually an artefact was present. The implemented model exhibited moderate performance
(17-37%). The final choice for the implemented model was based on the incorporation of spatial kernels, the highest
recall for the majority classes and overall performance.

Table E.3: Performance comparison of the explored model architectures. Included measures are accuracy (ACC),
recall, precision, area under the receiver operating characteristic curve (AUC) and F1-score computed for the overall
dataset and per class (clean, eye movement (eyem), muscle artefact (musc), electrode artefact (elec).

Model ACC Recall Precision AUC F1-score
Class (%) (%) (%)

1D-CNN 75.0 68.1 74.4 0.86 0.69
Clean - 79.3 47.0 - 0.59
Eyem - 59.7 86.2 - 0.71
Musc - 71.2 84.3 - 0.77
Elec - 62.0 80.3 - 0.70

2D-CNN temporal + spatial blocks1 73.9 69.3 71.2 0.86 0.70
Clean - 72.5 52.3 - 0.61
Eyem - 63.0 77.5 - 0.70
Musc - 78.3 78.9 - 0.79
Elec - 63.1 79.0 - 0.70

2D-CNN 1 spatial layer2 74.8 68.4 71.7 0.87 0.68
Clean - 76.2 49.8 0.84 0.60
Eyem - 62.3 80.3 0.85 0.70
Musc - 76.2 81.0 0.91 0.79
Elec - 56.0 76.1 0.89 0.64

1 based on Wang et al. [37], 2 based on Hermans et al. [25]
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