
 
 

Delft University of Technology

Non-Causal State Estimation for Improved State Tracking in Iterative Learning Control

Tsurumoto, Kentaro; Ohnishi, Wataru; Koseki, Takafumi; Strijbosch, Nard; Oomen, Tom

DOI
10.1016/j.ifacol.2022.11.153
Publication date
2022
Document Version
Final published version
Published in
IFAC-PapersOnline

Citation (APA)
Tsurumoto, K., Ohnishi, W., Koseki, T., Strijbosch, N., & Oomen, T. (2022). Non-Causal State Estimation for
Improved State Tracking in Iterative Learning Control. IFAC-PapersOnline, 55(37), 7-12.
https://doi.org/10.1016/j.ifacol.2022.11.153

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ifacol.2022.11.153
https://doi.org/10.1016/j.ifacol.2022.11.153


IFAC PapersOnLine 55-37 (2022) 7–12

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2022.11.153

10.1016/j.ifacol.2022.11.153 2405-8963

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Non-Causal State Estimation for Improved State
Tracking in Iterative Learning Control

Kentaro Tsurumoto ∗ Wataru Ohnishi ∗ Takafumi Koseki ∗
Nard Strijbosch ∗∗ Tom Oomen ∗∗,∗∗∗

∗ Department of Electrical Engineering and Information Systems, The
University of Tokyo, Tokyo, Japan

(e-mail: tsuruken@koseki.t.u-tokyo.ac.jp).
∗∗ Department of Mechanical Engineering, Eindhoven University of

Technology, 5600 MB Eindhoven, The Netherlands
∗∗∗ Faculty of Mechanical, Maritime, and Materials Engineering, Delft

University of Technology, 2628 CD Delft, The Netherlands

Abstract:
State-tracking Iterative Learning Control (ILC) yields perfect state-tracking performance at each n
sample instances for systems that perform repetitive tasks, where n stands for the order of the system. By
achieving perfect state-tracking, oscillatory intersample behavior often encountered in output-tracking
ILC has been mitigated. However, state-tracking ILC only assures the estimated state error to converge
to a significantly small value, meaning the accuracy of the state estimation takes a critical role. State
estimation using a causal state observer has had an inevitable trade-off between the estimation delay and
the noise sensitivity. By utilizing the non-causal operation of ILC, a non-causal state estimation can be
designed. This non-causal state estimation performs beyond the trade-off of causal estimation, improving
the estimation delay without compromising the noise sensitivity. The aim of this paper is to implement
the non-causal state observer to state-tracking ILC, and present the improved state tracking by applying
it to a second order system.
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1. INTRODUCTION

Iterative Learning Control (ILC) is a method which can signif-
icantly improve the control performance in repetitive tasks. By
learning from the positioning error of the previous iteration, the
control input of the next iteration is updated. This results to ex-
ponentially less positioning error per iteration, leading to theo-
retical perfect tracking when repeated enough times under neg-
ligible iteration varying disturbance. Therefore, ILC has been
widely applied to precision machinery such as semiconductor
lithography systems (Van Der Meulen et al., 2008; Mishra et al.,
2007), machine tools (Hayashi et al., 2020), industrial printers
(Oomen, 2018), mechatronic imaging systems (Csencsics et al.,
2019), and industrial robots (Wallén et al., 2011).

Due to the learning process, ILC has enabled a more accurate
and faster on-sample output-tracking than feedback (FB) and
feedforward (FF) in the discrete-time domain. One design pro-
cedure for ILC is a frequency domain design (frequency domain
ILC (Bristow et al., 2006)). To achieve fast convergence and
high asymptotic performance, the learning filter is designed as
an accurate inverse model of the system. For system inversion,
a stable inversion technique with preactuation is widely em-
ployed (Van Zundert and Oomen, 2018).

Such output-tracking ILC can achieve high-tracking perfor-
mance on-sample, poor inter-sample behaviors are often ob-
served. Inter-sample positioning performance can not be dis-
missed because manufacturing processes, for example, expo-
sure or milling, are performed in continuous-time domain.

To address this problem, an ILC framework focusing on track-
ing the state variable of the controlled system (state-tracking
ILC) has been proposed (Ohnishi et al., 2021). This method
is motivated by the concept of multirate feedforward control
(Fujimoto et al., 2001; Ohnishi et al., 2019), which achieves
not only output tracking but also state tracking.

Although state-tracking ILC has improved the inter-sample
behavior, the benefit of utilizing non-causal estimators has not
yet been explored. Causal state observers have fundamental
trade-offs between estimation delay and the noise sensitivity,
leading to inevitable state estimation error. The aim of this
paper is to present an approach which takes full advantage of
the non-causal state observer, achieving better state tracking
results than the state-tracking ILC with causal observer.

Contributions of this paper are as follows:

C1 In Section 3, the basic idea of applying a non-causal state
observer leading to a better state tracking performance is
presented.

C2 In Section 4, the design procedure of a non-causal state
observer is presented. The design is extended from a causal
state observer without requiring any additional information
of the system.

C3 In Section 5, simulation verification is demonstrated through
a second order system, showing improved on-sample state
tracking performance.
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ILC) has been proposed (Ohnishi et al., 2021). This method
is motivated by the concept of multirate feedforward control
(Fujimoto et al., 2001; Ohnishi et al., 2019), which achieves
not only output tracking but also state tracking.

Although state-tracking ILC has improved the inter-sample
behavior, the benefit of utilizing non-causal estimators has not
yet been explored. Causal state observers have fundamental
trade-offs between estimation delay and the noise sensitivity,
leading to inevitable state estimation error. The aim of this
paper is to present an approach which takes full advantage of
the non-causal state observer, achieving better state tracking
results than the state-tracking ILC with causal observer.

Contributions of this paper are as follows:

C1 In Section 3, the basic idea of applying a non-causal state
observer leading to a better state tracking performance is
presented.

C2 In Section 4, the design procedure of a non-causal state
observer is presented. The design is extended from a causal
state observer without requiring any additional information
of the system.

C3 In Section 5, simulation verification is demonstrated through
a second order system, showing improved on-sample state
tracking performance.
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1. INTRODUCTION

Iterative Learning Control (ILC) is a method which can signif-
icantly improve the control performance in repetitive tasks. By
learning from the positioning error of the previous iteration, the
control input of the next iteration is updated. This results to ex-
ponentially less positioning error per iteration, leading to theo-
retical perfect tracking when repeated enough times under neg-
ligible iteration varying disturbance. Therefore, ILC has been
widely applied to precision machinery such as semiconductor
lithography systems (Van Der Meulen et al., 2008; Mishra et al.,
2007), machine tools (Hayashi et al., 2020), industrial printers
(Oomen, 2018), mechatronic imaging systems (Csencsics et al.,
2019), and industrial robots (Wallén et al., 2011).

Due to the learning process, ILC has enabled a more accurate
and faster on-sample output-tracking than feedback (FB) and
feedforward (FF) in the discrete-time domain. One design pro-
cedure for ILC is a frequency domain design (frequency domain
ILC (Bristow et al., 2006)). To achieve fast convergence and
high asymptotic performance, the learning filter is designed as
an accurate inverse model of the system. For system inversion,
a stable inversion technique with preactuation is widely em-
ployed (Van Zundert and Oomen, 2018).

Such output-tracking ILC can achieve high-tracking perfor-
mance on-sample, poor inter-sample behaviors are often ob-
served. Inter-sample positioning performance can not be dis-
missed because manufacturing processes, for example, expo-
sure or milling, are performed in continuous-time domain.

To address this problem, an ILC framework focusing on track-
ing the state variable of the controlled system (state-tracking
ILC) has been proposed (Ohnishi et al., 2021). This method
is motivated by the concept of multirate feedforward control
(Fujimoto et al., 2001; Ohnishi et al., 2019), which achieves
not only output tracking but also state tracking.

Although state-tracking ILC has improved the inter-sample
behavior, the benefit of utilizing non-causal estimators has not
yet been explored. Causal state observers have fundamental
trade-offs between estimation delay and the noise sensitivity,
leading to inevitable state estimation error. The aim of this
paper is to present an approach which takes full advantage of
the non-causal state observer, achieving better state tracking
results than the state-tracking ILC with causal observer.

Contributions of this paper are as follows:

C1 In Section 3, the basic idea of applying a non-causal state
observer leading to a better state tracking performance is
presented.

C2 In Section 4, the design procedure of a non-causal state
observer is presented. The design is extended from a causal
state observer without requiring any additional information
of the system.

C3 In Section 5, simulation verification is demonstrated through
a second order system, showing improved on-sample state
tracking performance.



8 Kentaro Tsurumoto  et al. / IFAC PapersOnLine 55-37 (2022) 7–12

rx r
Gd

yjej+

− Kd

OL−1

Memory

Qs

LsSd

x̂j

ex̂,j

f
j

fj

f
j+1

+

−

+

+

State-tracking ILC

+ +

Cd uj

Fig. 1. Block diagram of state tracking ILC. The high-frequency
dots and low-frequency dots denote high-rate signal sam-
pled by Ts and slow-rate signal sampled by nTs, respec-
tively.

1.1 Notations

Let Gd(z) denote a discrete-time, linear time-invariant single-
input single-output (SISO) system with n state variables, ex-
pressed as

Gd = Cd(zI −Ad)−1Bd + Dd
z
�

[
Ad Bd
Cd Dd

]
, (1)

where Ad ∈ Rn×n, Bd ∈ Rn×1, Cd ∈ R1×n, Dd ∈ R.
Definition 1 (Discrete-time lifting). Let u[k] ∈ R and lifted
signal over n samples is denoted as u[l] = Lu[k] with

u[l] =
[
u[ln] u[ln + 1] · · · u[ln + n − 1]

]⊤ ∈ Rn, (2)
where l ∈ Z and L denotes lifting operator, which maps u → u.
An inverse lifting operator is given by u = L−1u.
Definition 2 (Lifted system in state space). The input/output
of lifted system of Gd over n samples would be y = Ly =
(LGdL−1)(Lu) = Gdu.
Definition 3 (Downsampling operator). The downsampling
operation over n samples is defined by y[kn] = Sd(y[k]).
Assumption 1 (Controlled continuous-time system G). A con-
trolled system G = C(sI −A)−1B is a continuous-time SISO,
strictly proper, linear-time invariant system given by minimal
realization.

The discrete-time system Gd of G by using zero-order hold with
sampling period Ts is denoted as

x[k + 1] = Adx[k] +Bdu[k],
y[k] = Cdx[k],

(3)

where k ∈ Z, x[k] ∈ Rn, u[k], y[k] ∈ R, x[k], y[k], and u[k]
correspond to x(kTs), y(kTs), and u(kTs) respectively.

2. STATE-TRACKING ILC

In this section, the state-tracking error of state-tracking ILC is
formulated. First, in Section 2.1, the frequency domain design
of state-tracking ILC is introduced (Ohnishi et al., 2021). Then,
Section 2.2 presents the problem formulation of the state-
tracking error caused by the state-tracking ILC framework.

2.1 Frequency domain ILC for state tracking

The aim of state-tracking ILC is to achieve perfect state track-
ing at every n sampling instances for systems that perform

repetitive tasks, where n stands for the number of the system’s
state variables. It updates feedforward input over iterations
through learning from the estimated state tracking error in the
past iteration. An advantage in the design aspect is by making
use of non-parametric frequency-domain measurements, the ro-
bustness of learning can be guaranteed with limited user effort.
See Ohnishi et al. (2021) for further details.

The block diagram of state-tracking ILC is shown in Fig. 1.
It has two sampling rates in the signal: 1) Ts drawn as high-
frequency dots is the high-rate, which is the same as the rate
of control input and measurement, and 2) nTs drawn as low-
frequency dots is the low-rate in the lifted domain.

rx in Fig. 1 denotes the state trajectory to be tracked by the
state-tracking ILC with the following assumption.
Assumption 2 (State trajectory rx). State trajectory rx ∈ Rn

that satisfies

r[k] = Cdrx[k], ∀k, (4)

is pre-determined.

To achieve state-tracking, a state observer O is employed to
obtain the state estimation x̂ j of the system. State tracking error
estimate ex̂, j is defined as next.
Definition 4 (State tracking error estimate). State tracking
error estimate ex̂, j ∈ Rn at j-th iteration is obtained by

ex̂, j = rx − x̂ j, (5)

where x̂ j ∈ Rn denotes the state estimate made by the state
observer O ∈ RLn×2

∞ at the j-th iteration

x̂ j = O

[
u j
y j

]
, (6)

where u j denotes control input of Gd which consists of feed-
forward input from the learning filter and feedback input from
feedback controller Kd.

A learning filter and a robustness filter in the lifted domain
is applied to ex̂, j to achieve better state-tracking in the next
iteration. Lifted ILC force for the j+ 1-th iteration f

j+1
∈ Rn is

updated from the j-th iteration as defined in next.
Definition 5 (State-tracking ILC force update).

f
j+1
= Qs( f

j
+Lsex̂, j), (7)

where Qs ∈ RLn×n
∞ and Ls ∈ RLn×n

∞ denotes the robustness
filter and the learning filter, respectively. Note that non-causal
operation is allowed for Qs and Ls since f

j+1
is only needed

before the j + 1-th iteration starts.

To derive the relationship between the state tracking error
estimate ex̂, j, lifted state reference rx, and lifted ILC force f

j
,

Definition 6 and Definition 7 are formulated.
Definition 6 (Lifted state reference rx and lifted reference r).
The lifted state reference rx and lifted reference r satisfy

r = (In ⊗Cd)rx � Cd rx, (8)

where In and ⊗ denote n-by-n identity matrix and the Kronecker
tensor product, respectively.
Definition 7 (State selection matrix S). The state selection
matrix S selects the first sample elements from the lifted signal.

S =
[
In 0n×n(n−1)

]
∈ Rn×n2

, (9)

where 0n×n(n−1) denotes n-by-n(n − 1) matrix of zeros.

From the aforementioned definitions, a fundamental equation
stating the relationship between the state tracking error estimate
ex̂, j, lifted state reference rx, and lifted ILC force f

j
is derived.

Lemma 1 (State tracking error estimate ex̂, j in lifted domain
(Ohnishi et al., 2021)).

Sdex̂, j = Sxrx − Jx f
j
, (10)

where

Sx � S(I −GoKdS Cd) ∈ RLn×n2

∞ , (11)

Jx � SGoS ∈ RLn×n
∞ , (12)

and S = (I + GdKd)−1 denotes the sensitivity function of the
closed-loop system, Go ∈ RLn×1

∞ denotes a transfer function
from the control input u j to state estimate x̂ j as following.

x̂ j = O

[
u j
y j

]
= O

[
u j

Gdu j

]
= O

[
I

Gd

]
u j � Gou j. (13)

Proof. See Ohnishi et al. (2021). □

Using Definition 5 and Lemma 1, the propagation of state track-
ing error and lifted ILC force per iteration can be formulated as
following.
Lemma 2 (State tracking error and force propagation (Ohnishi
et al., 2021)). State tracking error and lifted ILC force propa-
gation are formulated as

Sdex̂, j+1 = JxQs(I −LsJx)J−1
x Sdex̂, j + (I − JxQsJ

−1
x )Sxrx,

(14)
f

j+1
= Qs(I −LsJx) f

j
+QsLsSxrx. (15)

Proof. Follow from substitution of Lemma 1 to Definition
5. □

By defining the convergence of lifted ILC force f as Definition
8, the convergence condition of (14) and (15) can be given as
Lemma 3.
Definition 8 (lifted ILC force convergence). The system of (15)
is convergent if and only if for all rx, f

j
∈ ℓ2, there exists an

asymptotic signal f
∞
∈ ℓ2 such that

lim
j→∞

sup
∥∥∥∥ f
∞
− f

j

∥∥∥∥
ℓ2
= 0. (16)

Lemma 3 (Convergence condition (Ohnishi et al., 2021)). The
iteration (14) and (15) converge if and only if

ρ
(
Qs(eiω)

(
I −Ls(eiω)Jx(eiω)

))
< 1, ∀ω ∈ [0, π], (17)

where ρ(·) denotes the spectral radius, i.e ρ(·) = maxi|λi(·)|.

Proof. Can be proved by the use of Parseval’s identity. See
Norrlöf and Gunnarsson (2002) for further details. □

The important aspect of the state-tracking ILC in frequency
domain design is that the condition in (17) can be verified by
a measured frequency response data of Gd and S , which is fast,
accurate, and inexpensive. This leads to a limited design effort
for the user.

t

0 Nk

Forward estimation (Kalman filter) x̂f [k]

Backward estimation x̂b[k]

Smoothed estimation x̂m[k]

Covariance matrix Pf [k]

Covariance matrix Pm[k]

Covariance matrix Pb[k]

Fig. 2. Basic concept of fixed-interval smoothing. By combin-
ing x̂ f and x̂b, a smoothed estimate x̂m is achieved.

From (14) and (15), the asymptotic signals ex̂,∞ and f
∞

are
obtained as
Sdex̂,∞ =

(
I − Jx

(
I −Qs(I −LsJx)

)−1QsLs

)
Sxrx, (18)

f
∞
=
(
I −Qs(I −LsJx)

)−1QsLsSxrx. (19)

The requirement for Qs to achieve zero asymptotic estimated
state tracking error is given in Lemma 4. In addition, (14) and
(18) motivate to design the learning filter as Ls = J−1

x to
achieve fast convergence.
Lemma 4 (Requirement for Qs for Sdex̂,∞ = 0 (Ohnishi
et al., 2021)). Assume Ls(eiω),Jx(eiω) � 0,∀ω. Given that (17)
holds, for all rx ∈ ℓ2,Sdex̂,∞ = 0, if and only if Qs = In.

Proof. See Ohnishi et al. (2021). □

To summarize, the state-tracking ILC has three main favorable
properties: 1) a trial domain stability condition (17) available,
2) limited design effort using non-parametric model, and 3)
perfect state tracking per n samples (Lemma 4). However,
there is one major downside in this method and this would be
formulated in the following subsection.

2.2 Problem Formulation

The problem addressed in this paper is to improve the state
tracking error performance of the state-tracking ILC.

Note that as defined in Definition 4, even when requirements
in Lemma 4 are satisfied, state-tracking ILC only assures the
estimated state x̂ to perfectly track the state trajectory rx.
Therefore, the accuracy of x̂ heavily effects the performance.
This means that improving the state estimation can directly
improve the performance of state-tracking ILC. In causal op-
eration, without a perfect modelling of the plant Gd, there is
always an estimation delay. Faster estimation can be performed
by using a higher bandwidth state observer, but this comes with
the cost of an estimation more susceptible to noise.

The aim of this paper is to investigate an effective non-causal
approach for state estimation and implement it to state-tracking
ILC. By utilizing the non-causality, more measurement data are
used for the estimation, resulting to a better state estimation and
state tracking performance.

3. CONCEPTUAL IDEA

In this section, the idea of an effective non-causal state observer
is presented.
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From the aforementioned definitions, a fundamental equation
stating the relationship between the state tracking error estimate
ex̂, j, lifted state reference rx, and lifted ILC force f

j
is derived.

Lemma 1 (State tracking error estimate ex̂, j in lifted domain
(Ohnishi et al., 2021)).

Sdex̂, j = Sxrx − Jx f
j
, (10)

where

Sx � S(I −GoKdS Cd) ∈ RLn×n2

∞ , (11)

Jx � SGoS ∈ RLn×n
∞ , (12)

and S = (I + GdKd)−1 denotes the sensitivity function of the
closed-loop system, Go ∈ RLn×1

∞ denotes a transfer function
from the control input u j to state estimate x̂ j as following.

x̂ j = O

[
u j
y j

]
= O

[
u j

Gdu j

]
= O

[
I

Gd

]
u j � Gou j. (13)

Proof. See Ohnishi et al. (2021). □

Using Definition 5 and Lemma 1, the propagation of state track-
ing error and lifted ILC force per iteration can be formulated as
following.
Lemma 2 (State tracking error and force propagation (Ohnishi
et al., 2021)). State tracking error and lifted ILC force propa-
gation are formulated as

Sdex̂, j+1 = JxQs(I −LsJx)J−1
x Sdex̂, j + (I − JxQsJ

−1
x )Sxrx,

(14)
f

j+1
= Qs(I −LsJx) f

j
+QsLsSxrx. (15)

Proof. Follow from substitution of Lemma 1 to Definition
5. □

By defining the convergence of lifted ILC force f as Definition
8, the convergence condition of (14) and (15) can be given as
Lemma 3.
Definition 8 (lifted ILC force convergence). The system of (15)
is convergent if and only if for all rx, f

j
∈ ℓ2, there exists an

asymptotic signal f
∞
∈ ℓ2 such that

lim
j→∞

sup
∥∥∥∥ f
∞
− f

j

∥∥∥∥
ℓ2
= 0. (16)

Lemma 3 (Convergence condition (Ohnishi et al., 2021)). The
iteration (14) and (15) converge if and only if

ρ
(
Qs(eiω)

(
I −Ls(eiω)Jx(eiω)

))
< 1, ∀ω ∈ [0, π], (17)

where ρ(·) denotes the spectral radius, i.e ρ(·) = maxi|λi(·)|.

Proof. Can be proved by the use of Parseval’s identity. See
Norrlöf and Gunnarsson (2002) for further details. □

The important aspect of the state-tracking ILC in frequency
domain design is that the condition in (17) can be verified by
a measured frequency response data of Gd and S , which is fast,
accurate, and inexpensive. This leads to a limited design effort
for the user.
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From (14) and (15), the asymptotic signals ex̂,∞ and f
∞

are
obtained as
Sdex̂,∞ =

(
I − Jx

(
I −Qs(I −LsJx)

)−1QsLs

)
Sxrx, (18)

f
∞
=
(
I −Qs(I −LsJx)

)−1QsLsSxrx. (19)

The requirement for Qs to achieve zero asymptotic estimated
state tracking error is given in Lemma 4. In addition, (14) and
(18) motivate to design the learning filter as Ls = J−1

x to
achieve fast convergence.
Lemma 4 (Requirement for Qs for Sdex̂,∞ = 0 (Ohnishi
et al., 2021)). Assume Ls(eiω),Jx(eiω) � 0,∀ω. Given that (17)
holds, for all rx ∈ ℓ2,Sdex̂,∞ = 0, if and only if Qs = In.

Proof. See Ohnishi et al. (2021). □

To summarize, the state-tracking ILC has three main favorable
properties: 1) a trial domain stability condition (17) available,
2) limited design effort using non-parametric model, and 3)
perfect state tracking per n samples (Lemma 4). However,
there is one major downside in this method and this would be
formulated in the following subsection.

2.2 Problem Formulation

The problem addressed in this paper is to improve the state
tracking error performance of the state-tracking ILC.

Note that as defined in Definition 4, even when requirements
in Lemma 4 are satisfied, state-tracking ILC only assures the
estimated state x̂ to perfectly track the state trajectory rx.
Therefore, the accuracy of x̂ heavily effects the performance.
This means that improving the state estimation can directly
improve the performance of state-tracking ILC. In causal op-
eration, without a perfect modelling of the plant Gd, there is
always an estimation delay. Faster estimation can be performed
by using a higher bandwidth state observer, but this comes with
the cost of an estimation more susceptible to noise.

The aim of this paper is to investigate an effective non-causal
approach for state estimation and implement it to state-tracking
ILC. By utilizing the non-causality, more measurement data are
used for the estimation, resulting to a better state estimation and
state tracking performance.

3. CONCEPTUAL IDEA

In this section, the idea of an effective non-causal state observer
is presented.
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3.1 Effective offline state estimation

One major option for offline state estimation is fixed-interval
smoothing (Simon, 2006; Anderson and Moore, 2005). Fixed-
interval smoothing is a Kalman smoothing method which can
be applied when all N ∈ N samples of the measurement data are
provided beforehand. It obtains a state estimation by combining
a forward estimation and backward estimation as in Fig. 2.
However, as time k of the estimation comes closer to N, the
backward estimation becomes more unreliable.

To address this problem, assuming converged states for the
beginning and end of the plant, a novel backward estimation
method of applying stable inversion (Van Zundert and Oomen,
2018) to state estimation is presented. In this paper, fixed-
interval smoothing utilizing the backward estimation method
is referred as the non-causal state observer.

4. DESIGN OF NON-CAUSAL STATE OBSERVER

In this section, the design procedure of the non-causal state
observer is presented. By combining a forward estimation (Sec-
tion 4.2) and backward estimation (Section 4.3), a non-causal
state estimation (Section 4.4) is achieved.

The followings are assumed in this section.
Definition 9 (Apriori and aposteriori estimations). A state
estimation obtained at time k based on measurements up to
time j is described as, x̂[k | j] = E(x[k] | y[1], · · · , y[ j]). An
apriori estimate is based on measurements up to time k− 1, and
an aposteriori estimate is based on measurements up to time k,
which are same to x̂[k | k − 1] and x̂[k | k], respectively.
Lemma 5 (Full-order state observer). The state estimation
results obtained by a causal full-order state observer is an
apriori estimate.

Proof. From the state equation of a discrete time full-order
state observer (20), the state estimation of time k is calculated
only by measurements up to time k − 1.

x̂[k] = Adx̂[k − 1] +Bdu[k − 1] +H(y[k − 1] − ŷ[k − 1]),
ŷ[k − 1] = Cdx̂[k − 1].

(20)
where H denotes the observer gain of the state observer. □

This paper mainly introduces four state estimation methods.
The forward apriori estimate, forward aposteriori estimate,
backward apriori estimate, and mixed non-causal estimate.
Symbols are notified by using the subscript o, f , b, m, respec-
tively.
Remark 1. For full use of the whole N sample of measurement
data, the mixed non-causal estimate x̂m is composed by the
forward aposteriori estimate x̂ f = E(x[k] | y[1], · · · , y[k]) and
the backward apriori estimate x̂b = E(x[k] | y[k+1], · · · , y[N]).

4.1 Identification of the Discrete time plant, System noise, and
Measurement noise

The first step of designing a non-causal state observer is to
identify the discrete time plant Gd = Cd(zI − Ad)−1Bd +
Dd, and set the covariance matrix of the system noise M and
measurement noise N. M and N are tuning factors decided by
the designer, determining the bandwidth of the state observer.

By solving the Discrete-time Algebraic Riccati Equation (21),
the observer gain H can be designed.
AdXA⊤d −X −AdXC⊤d (CdXC⊤d + N)−1CdXA⊤d +M = 0.

(21)
Example 1 (Bandwidth of a state observer). Consider a nomi-
nal system Gn =

0.82224(z+0.9022)
(z−1)(z−0.7341) with sampling time Ts = 0.01 s.

The discretized system by zero-order-hold assuming control-
lable canonical form would be,

Gn =


An Bn
Cn Dn


=


1 0.0086 0.8222
0 0.7341 156.4035
1 0 0

 .

By setting M = diag(10−6, 1), N = 10−6, the bandwidth of the
state observer is 37 Hz

4.2 Forward estimation

The forward estimation x̂ f is obtained from a causal state
observer. By using the positive definite solution X+ of (21),
the observer gain of the causal state observer Ho is calculated
as

Ho = AdX
+C⊤d (CdX

+C⊤d + N)−1. (22)
From (20), the causal state estimation x̂o is obtained. The
covariance matrix of the estimation error for the causal state
observer is Po =X+.

By using the following Lemma 6, the forward estimation x̂ f
and covariance matrix of the estimation error P f is determined.
Lemma 6 (Forward aposteriori estimation and covariance ma-
trix). The forward aposteriori estimation and covariance ma-
trix of the estimation error are formulated as

x̂ f = x̂o +Kg(y −Cdx̂o), (23)
P f = (I −KgCd)Po, (24)

where Kg denotes the Kalman gain defined by, Kg = A−1
d Ho.

Proof. See literature Simon (2006); Anderson and Moore
(2005). □

4.3 Backward estimation

The backward estimation x̂b is obtained by applying stable
inversion (Van Zundert and Oomen, 2018) to an unstable state
observer, which has the same bandwidth as the causal state
observer. By using the negative definite solution X− of (21), the
observer gain of the backward state observer Hb is calculated
as

Hb = AdX
−C⊤d (CdX

−C⊤d + N)−1. (25)
By calculating the state equation backwards as in (26), the
backward state estimation x̂b is obtained.
x̂b[k] = A−1

d (x̂b[k + 1] −Bdu[k] −Hb(y[k] − ŷ[k])) ,
ŷ[k] = Cdx̂b[k].

(26)

The covariance matrix of the estimation error of backward state
observer Pb is determined by the following Lemma 7.
Lemma 7 (Covariance matrix of the backward state observer).
The covariance matrix of the estimation error of backward state
observer Pb is the positive definite solution of the following
Discrete-time Algebraic Riccati Equation,

A
′

dXA
′⊤
d −X −A

′

dXC⊤d (CdXC⊤d + N)−1CdXA
′⊤
d

+M
′
= 0, (27)

where A
′

d = A−1
d and M

′
= A−1

d M (A−1
d )⊤.
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Fig. 3. State trajectory rx for the second order system.
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Fig. 4. Convergence condition of the state-tracking ILC assum-
ing Qs = In. Results of using a causal state observer ( )
and non-causal state observer ( ) are shown.

Proof. Due to calculating the state estimation backwards as in
(26), state matrix of the system and covariance of the system
noise become, A

′

d = A−1
d and M

′
= A−1

d M (A−1
d )⊤, respec-

tively. □

4.4 Composition of the estimations

The non-causal state estimation x̂m is obtained by combining
the forward estimation x̂ f obtained in Section 4.2 and the back-
ward estimation x̂b obtained in Section 4.3. The composition is
done based on the covariance matrix of both state estimation
errors. Defining a splitting ratio

S = Pb(P f + Pb)−1, (28)
the non-causal state estimation x̂m is composed by

x̂m = Sx̂ f + (I − S)x̂b. (29)

For proof of S = Pb(P f+Pb)−1 being the most optimal splitting
ratio, see literature Simon (2006).

5. SIMULATION VALIDATION

In this section, the performance of the state-tracking ILC utiliz-
ing the non-causal state observer is presented. The performance
is compared with the previous state-tracking ILC which uses a
causal state observer. In Section 5.3, the improved on-sample
state tracking is demonstrated.
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Fig. 5. Simulation results of the state estimation error of a
causal observer ( ) and the non-causal observer ( ). In
the 1st iteration when only feedback is applied, xo = xm
holds.

5.1 Simulation setup and approach

For simulation, a second order system G = 17699
s(s+32.04) with

sampling time Ts = 0.01 s and a continuous time reference r
shown in Fig. 3 is considered. The discretized system by zero-
order-hold is Gd =

0.79756(z+0.8988)
(z−1)(z−0.7259) . When the nominal plant

and feedback controller are respectively Gn =
0.82224(z+0.9022)

(z−1)(z−0.7341)

and Kd =
0.016365(z−0.7653)

(z−0.746) , assuming the controllable canonical
form, the state reference and state are given as rx = [r, ṙ]⊤ and
x � [x1, x2]⊤ = [y, ẏ]⊤ respectively.

For the state observer, the covariance matrix of the system
noise and measurement noise are set to M = diag(10−6, 1),
N = 10−6. From Example 1, the bandwidth of the state observer
is 37 Hz. In this simulation, results of state-tracking ILC using
a causal state observer x̂o and the proposed non-causal state
observer x̂m are compared.

From Section 2.1, the learning filter is constructed based on the
nominal plant information to achieve Ls = J−1

x . For perfect
state-tracking, Qs = In is desired (Lemma 4) and from Fig. 4
the convergence condition shows that such robustness filter is
applicable for both cases.

Learning gain α = 0.5 is exploited to mitigate the amplification
of the time-varying disturbance (Oomen and Rojas, 2017) by
replacing (7) as

f
j+1
= Qs( f

j
+ αLsex̂, j), (30)

and for each ILC, 30 iteration learning is performed.

5.2 Improved state estimation

Fig. 5 shows the state estimation results of the two methods
in the 1st iteration, when only feedback is applied. This figure
shows that by effectively utilizing the non-causality, the non-
causal state observer outperforms the causal state observer in
state estimation. As mentioned in Section 2.2, the performance
of state-tracking ILC depends on the accuracy of state estima-
tion. Therefore, Fig. 5 directly indicates the final state-tracking
error of both state-tracking ILC, shown in the later Fig. 7.
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For simulation, a second order system G = 17699
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sampling time Ts = 0.01 s and a continuous time reference r
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x � [x1, x2]⊤ = [y, ẏ]⊤ respectively.

For the state observer, the covariance matrix of the system
noise and measurement noise are set to M = diag(10−6, 1),
N = 10−6. From Example 1, the bandwidth of the state observer
is 37 Hz. In this simulation, results of state-tracking ILC using
a causal state observer x̂o and the proposed non-causal state
observer x̂m are compared.

From Section 2.1, the learning filter is constructed based on the
nominal plant information to achieve Ls = J−1

x . For perfect
state-tracking, Qs = In is desired (Lemma 4) and from Fig. 4
the convergence condition shows that such robustness filter is
applicable for both cases.

Learning gain α = 0.5 is exploited to mitigate the amplification
of the time-varying disturbance (Oomen and Rojas, 2017) by
replacing (7) as

f
j+1
= Qs( f

j
+ αLsex̂, j), (30)

and for each ILC, 30 iteration learning is performed.

5.2 Improved state estimation

Fig. 5 shows the state estimation results of the two methods
in the 1st iteration, when only feedback is applied. This figure
shows that by effectively utilizing the non-causality, the non-
causal state observer outperforms the causal state observer in
state estimation. As mentioned in Section 2.2, the performance
of state-tracking ILC depends on the accuracy of state estima-
tion. Therefore, Fig. 5 directly indicates the final state-tracking
error of both state-tracking ILC, shown in the later Fig. 7.
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Fig. 6. Simulation results of the tracking error of state-tracking
ILC. State-tracking ILC using the non-causal state ob-
server ( ) outperforms the state-tracking ILC using only
a causal state observer ( ).

5.3 Improved on-sample state tracking performance

Fig. 6 shows the norm comparison of the two methods and
it shows that the proposed state-tracking ILC using the non-
causal state observer outperforms the previous state-tracking
ILC using the causal state observer. In the final iteration, the
norm of tracking error is reduced by 99.1%. Fig. 7 shows the
tracking error comparison of the final iteration. From the result,
due to better state estimation by the non-causal state observer,
x̂m becomes closer to the actual state x, resulting to a better
state tracking error.

6. CONCLUSION

The developed non-causal state estimation framework fits the
last remaining piece of non-causality which can be imple-
mented to state-tracking ILC. Due to making full use of data, a
more precise state estimation can be achieved without compro-
mising the noise sensitivity. Application to a second order sys-
tem and the validation demonstrate a superior on-sample state-
tracking performance over the previous state-tracking ILC, by
utilizing the improved state estimation yielded from the non-
causal state observer.
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