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SUMMARY

During the past decade, time-lapse seismic technology has been widely applied in hy-
drocarbon reservoir management. It is a very powerful method to obtain information on
reservoir changes in the inter-well regions. This information helps to identify bypassed
hydrocarbons and extend the economic life of a field. In a typical scenario, one baseline
survey and subsequent monitoring surveys are acquired over time. The survey geome-
try is usually exactly repeated and well-sampled to mitigate acquisition effects on the next
steps in the process. By processing and comparing all the datasets, some physical changes,
e.g. reflection amplitude and travel-time changes, can be estimated. These time-lapse
changes are then used to calculate interpretable parameter changes in dynamic reservoir
rock and fluid properties, e.g. pore pressure and fluid saturation.

In a conventional time-lapse processing workflow, all the multiples are first removed
from the data, then independent imaging process is employed to each dataset, given the
same propagation velocity model. Later on, to compensate the ignored velocity variations
between different surveys, a time-shift map (travel-time differences) is estimated from the
calculated images and then applied back to them, yielding the final reflection amplitude
differences. However, this conventional processing strategy is usually sensitive to the suc-
cess of multiple removal and survey repeatability, and also requires well-sampled surveys
providing proper illumination. Moreover, artifacts are often generated in addition to the
actual time-lapse changes due to the non-repeatable uncertainties during the indepen-
dent processing steps. Regarding the time-shift-map tool, the relative velocity changes
derived from the time-shift map are not the actual velocity changes due to its local 1D
subsurface assumption that is embedded.

In order to relax these rigid requirements and have a better velocity change indica-
tor, we propose Simultaneous Joint Migration Inversion (S-JMI) as an effective time-lapse
tool for reservoir monitoring, which combines a simultaneous time-lapse data processing
strategy with the Joint Migration Inversion (JMI) method. JMI is a full wavefield inversion
method that explains the measured reflection data using a parameterization in terms of
reflectivities and propagation velocities. JMI is able to make use of multiples and at the
same time take velocity variations between surveys into account. The simultaneous strat-
egy, which means fitting all the datasets simultaneously, allows the baseline and monitor
parameters to communicate and compensate with each other dynamically during inver-
sion via L2-norm constraints, thus, reducing the non-repeatable uncertainties during the
time-lapse processing workflow. As a result, more accurate time-lapse differences can be
achieved by S-JMI, compared to inverting each dataset independently. Moreover, in or-
der to get more localized time-lapse velocity differences, we further extend the regular
S-JMI to a robust high-resolution S-JMI (HR-S-JMI) process by making a link between the
reflectivity/reflectivity-difference and velocity/velocity-difference during inversion. With
a complex synthetic example based on the Marmousi model, we demonstrate the perfor-
mance of the time-shift-map-based method, sequential JMI, the regular S-JMI and HR-S-
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xii SUMMARY

JMI is improving in this particular order.
Next, we further demonstrate the effectiveness of the proposed method in more real-

life cases with a highly realistic synthetic model based on the Grane field, offshore Nor-
way, and a time-lapse field dataset from the Troll Field. Moreover, in order to investigate
the feasibility of HR-S-JMI in practice, several numerical experiments based on the real-
istic Grane model are conducted, regarding the following aspects: noise, including ran-
dom noise and coherent noise caused by the acoustic assumption; the quality of time-
lapse surveys, including sparse surveys, non-repeated surveys, and Ocean Bottom Node
(OBN) vs streamer (different types of monitoring surveys); non-repeated sources, includ-
ing source positioning errors and non-repeated source wavelets; spatial weighting oper-
ators in the L2-norm constraints; and sensitivity to weak time-lapse effects. These ex-
periments show that HR-S-JMI is very robust to random noise, coherent noise, survey
sparsity, survey non-repeatability, source positioning errors and source wavelet discrep-
ancies. Furthermore, HR-S-JMI remains effective when the spatial weighting operators
in the L2-norm constraints are largely relaxed and HR-S-JMI is capable of detecting weak
time-lapse changes (e.g. velocity changes down to ±35m/s). These features make it a
suitable time-lapse processing solution for cost-effective (semi-)continuous monitoring,
termed i4D survey technology, in which inexpensive localized and sparse surveys are em-
ployed between the conventional full-field surveys. The simultaneous strategy of S-JMI
allows the full-field survey information to compensate the poor illumination of the in-
between sparse surveys during process. Furthermore, calender-time constraints are pro-
posed and applied to the parameter differences between the baseline and monitors along
the calender-time axis by taking advantage of the feature that time-lapse effects usually
develop gradually over time. With a complex synthetic example based on the Marmousi
model, we demonstrate that S-JMI is a promising tool to process datasets acquired from
(semi-)continuous monitoring, like an i4D survey.

In conclusion, we propose high-resolution simultaneous JMI (HR-S-JMI) as an effec-
tive time-lapse processing tool for the following main reasons:

• HR-S-JMI is able to make use of multiples to extend the illumination of the subsur-
face, instead of removing them;

• HR-S-JMI is an extended imaging process, including automatic velocity updating.
Therefore, it takes velocity variations between surveys directly into account;

• HR-S-JMI is a good indicator of velocity changes, it can invert for high-resolution
accurate time-lapse velocity changes;

• HR-S-JMI is robust to the uncertainties existing in the monitoring surveys, e.g. noise,
sparsity, non-repeatability, source positioning errors, source wavelet discrepancy,
etc;

• HR-S-JMI has the ability to detect weak time-lapse changes (velocity changes down
to ±35m/s).



SAMENVATTING

In het afgelopen decennium is de zogenaamde time-lapse seismische technologie breed
toegepast in het beheren en monitoren van productie van olie- en gasreservoirs. Het is een
effectieve methode om informatie te verkrijgen over veranderingen in het reservoir in de
gebieden tussen putten. Deze informatie helpt om achtergebleven delfstoffen te vinden
en het economische leven van een veld te verlengen. In een typisch scenario wordt één
baseline survey en opeenvolgende monitoring surveys vergaard over tijd. De acquisitie ge-
ometrie van de survey wordt over het algemeen exact herhaald en is dicht gesampled, om
acquisitie effecten te voorkomen in de vervolgstappen van het proces. Door alle datasets
te verwerken en te vergelijken kunnen fysische veranderingen worden geschat, zoals de
amplitude van reflecties en veranderingen in de aankomsttijden. Deze veranderingen
worden vervolgens gebruikt om veranderingen in de parameters te berekenen die gebruikt
worden voor de interpretatie van de dynamische gesteente- en vloeistofeigenschappen,
zoals de druk in de poriën en de verzadiging van de vloeistof.

In een conventionele time-lapse processing workflow worden eerst alle meervoudige
reflecties uit de data verwijderd, waarna afbeeldingsmethoden worden toegepast op elke
dataset afzonderlijk, gegeven een gelijk snelheidsmodel voor propagatie. Om te com-
penseren voor de snelheidsvariaties tussen verschillende surveys, welke in eerste instantie
genegeerd worden, wordt een zogenaamde time-shift map (verschillen in looptijd) geschat
van de verkregen afbeeldingen en vervolgens weer toegepast op deze afbeeldingen, wat
de uiteindelijke verschillen in de reflectie amplitudes geeft. Echter, deze conventionele
dataverwerkingsstrategie is meestal gevoelig voor het succes van het verwijderen van de
meervoudige reflecties en de herhaalbaarheid van de survey, en vereist goedgesampelde
surveys die voldoende belichting geven. Daarbij worden er vaak artefacten gecreëerd,
naast de daadwerkelijke time-lapse veranderingen, door onherhaalbare onzekerheden in
de onafhankelijke verwerkingsstappen. Wat betreft het time-shift map aanpak zijn de re-
latieve veranderingen in de snelheid die afgeleid worden van de time-shift map niet de
daadwerkelijke snelheidsveranderingen, door de verankerde aanname van een locale 1D
ondergrond.

Om deze strikte voorwaarden te verzwakken en de indicator voor de snelheidsveran-
dering te verbeteren stellen we “Simultaneous Joint Migration Inversion” (S-JMI) voor als
een effectieve time-lapse middel voor het moditoren van reservoirs, wat een simultane
time-lapse data verwerkingsstrategie combineert met de Joint Migration Inversion (JMI)
methode. JMI is een full-wavefield inversie methode die de gemeten reflectiedata verk-
laart aan de hand van een parametrisatie in termen van reflectiecoëfficiënten en prop-
agatiesnelheden. JMI kan gebruik maken van meervoudige reflecties en kan tegelijker-
tijd rekening houden met snelheidsvariaties tussen de verschillende surveys. De simul-
tane strategie, wat betekent dat alle datasets gelijktijdig worden gefit, laat communicatie
tussen de baseline en de monitoring surveys toe en laat de surveys elkaar dynamisch com-
penseren tijdens de inversie via L2-norm randvoorwaarden, waardoor de onherhaalbare
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xiv SAMENVATTING

onzekerheden gedurende de time-lapse verwerking workflow afnemen. Hierdoor kan S-
JMI preciezere time-lapse verschillen bewerkstelligen in vergelijking met het inverteren
van elke dataset afzonderlijk. Bovendien, om meer gelokaliseerde time-lapse snelhei-
dsverschillen te verkrijgen, bereiden we het normale S-JMI proces uit tot een robuste
hoge-resolutie S-JMI (HR-S-JMI) proces door een link te maken tussen de reflectie- en
snelheidsverschillen tijdens de inversie. Met een gecompliceerd synthetisch voorbeeld,
gebaseerd op het Marmousi model, tonen we aan dat de prestaties van de time-shift-
map-gebaseerde methode, sequentiële JMI, normale S-JMI en HR-S-JMI in deze volgorde
oplopen.

Vervolgens tonen we de effectiviteit van de voorgestelde methode verder aan in een
meer realistische situatie met een zeer realistisch synthetisch model gebaseerd op het
Grane veld, voor de kust van Noorwegen, en een time-lapse veld dataset van het Troll
veld. Bovendien, om de haalbaarheid van HR-S-JMI in de praktijk te onderzoeken, wor-
den verschillende numerieke experimenten gebaseerd op het realistische Grane model
uitgevoerd, met betrekking tot de volgende aspecten: ruis, waaronder random ruis en co-
herente ruis veroorzaakt door de akoestische aanname; de kwaliteit van time-lapse sur-
veys, waaronder sparse surveys, niet-herhaalde surveys, en Ocean Bottom Node (OBN) vs
streamer (verschillende soorten monitoring surveys); niet herhaalde bronnen, waaronder
afwijkingen in bron plaatsing en niet herhaalde source wavelets; spatiële weegoperatoren
in de L2-norm randvoorwaarden; en gevoeligheid voor zwakke time-lapse effecten. Deze
experimenten tonen aan dat HR-S-JMI zeer robust is voor random ruis, coherente ruis,
survey sparsity, survey onherhaalbaarheid, afwijkingen in bron plaatsing en afwijkingen
in het bronsignaal. Tevens blijft HR-S-JMI effectief wanneer de spatiële weegoperatoren in
de L2-norm randvoorwaarden worden losgelaten, en is HR-S-JMI in staat om kleine time-
lapse veranderingen te detecteren (e.g. snelheidsveranderingen tot 35 m/s). Deze eigen-
schappen maken het een geschikte time-lapse verwerkingsoplossing voor een kostenef-
fectieve (semi-)continue monitoring, i4D survey technologie genoemd, waarin goedkope
gelokaliseerde en sparse surveys worden toegepast tussen de conventionele full-field sur-
veys. De simultane strategie van S-JMI zorgt dat de full-field survey informatie kan com-
penseren voor de beperkte belichting van de tussentijdse sparse surveys gedurende de
verwerking. Tevens worden kalender-tijd randvoorwaarden voorgesteld en toegepast op
de parameterverschillen tussen de baseline en de monitor datasets langs de kalender-
tijd-as door gebruik te maken van de eigenschap dat time-lapse effecten zich over het
algemeen geleidelijk door de tijd heen ontwikkelen. Met een gecompliceerd synthetisch
voorbeeld gebaseerd op het Marmousi model laten we zien dat S-JMI een veelbelovende
methode is om datasets verkregen van (semi-)continue monitoring, zoals een i4D survey,
te verwerken.

Concluderend: we stellen hoge-resolutie simultane JMI (HR-S-JMI) voor als een effec-
tieve time-lapse verwerkingsmethode om de volgende hoofdredenen:

• HR-S-JMI is in staat om gebruik te maken van meervoudige reflecties om de belicht-
ing van de ondergrond uit te bereiden, in plaats van ze te verwijderen;

• HR-S-JMI is een uitgebreid afbeeldingsproces, inclusief automatische snelheidaan-
passing. Daardoor houdt het direct rekening met snelheidsveranderingen tussen de
surveys;
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• HR-S-JMI is een goede indicator van snelheidsveranderingen, het kan inverteren
voor hoge-resolutie, accurate, time-lapse snelheidsveranderingen;

• HR-S-JMI is robuust voor de onzekerheden die voorkomen in de monitoring sur-
veys, b.v. ruis, sparsity, onherhaalbaarheid, afwijkingen in bronplaatsing, afwijkin-
gen in de bronsignalen, enzovoorts;

• HR-S-JMI biedt de mogelijkheid om zwakke time-lapse veranderingen te detecteren
(snelheidsveranderingen tot 35 m/s).
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1.1. OVERVIEW OF TIME-LAPSE SEISMIC TECHNOLOGY

Seismic technology plays a key role in oil and gas exploration, in other forms of subsurface
inspection or CO2 injection. In a typical seismic survey, seismic waves are usually gener-
ated by imposing artificial seismic energy into the ground. These seismic waves propa-
gate through the subsurface, reflect or refract off the subsurface geological formations,
travel back to the surface and then get recorded by an array of sensors. Eventually, the
physical properties of the Earth’s subsurface can be estimated from the recorded seismic
data. Time-lapse seismic technology is a very powerful method to obtain information on
production-related changes away from the wells [1, 2]. During the past decade, it has been
widely applied in hydrocarbon reservoir management [1–4]. The obtained information
from time-lapse seismic helps to identify bypassed oil and extend the economic life of a
field. In the case where fluid fronts (i.e. water, steam, CO2) are injected, time-lapse seismic
technology is able to monitor and optimize the costly injection programs [2, 5]. Figure 1.1
shows an example of seismic time-lapse images calculated from the seismic data obtained
at the surface. In this case, gas replacing oil in hydrocarbon production is happening due
to gas injection. In a typical scenario, one baseline survey and subsequent monitoring
surveys are acquired over time. Afterwards, by processing and comparing all the datasets,
some physical parameter changes can be estimated. These physical parameters could be
seismic reflection amplitudes and travel-times, when imaging-based methods are being
used [2, 6]. Or they could be elastic parameters, i.e. compressibility and shear compli-
ance, when amplitude-versus-offset-analysis-based methods are being used [7]. These
time-lapse changes are then used to calculate the changes in dynamic reservoir rock and
fluid properties, e.g. pore pressure and fluid saturation, which are important in dynamic
reservoir interpretation [8, 9].

(a) (b)

Figure 1.1: An example of seismic time-lapse images calculated from the seismic data ob-
tained at the surface: (a) and (b) the baseline and monitor images. The red arrows point at
some time-lapse changes.
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1.2. THE FOUNDATION OF SEISMIC TIME-LAPSE PROCESSING WORK-
FLOW — IMAGING METHODS

Seismic imaging, also known as migration, is a method that uses the principles of seismol-
ogy to estimate reflectivity images of the Earth’s subsurface from seismic data. In the time-
lapse scenario, in order to recover seismic reflection amplitude and travel-time changes,
the basic step is to perform an imaging process to each dataset produced by monitoring
surveys.

Seismic imaging methodologies have been developed continuously in the past decades.
There are several ways to categorize these imaging methods:

• Pre-stack and post-stack
Post-stack migration operates on the stacked section, which is assumed to be a zero-
offset. In contrast, pre-stack imaging is a process in which seismic data is migrated
before being stacked, therefore, the data do not need to be reduced to an approx-
imation of zero-offset section before imaging [10]. Improvements are brought by
pre-stack imaging when the subsurface structures have complex velocity profiles,
though, at the price of a considerable increase in the amount of computations [10].
Nowadays, pre-stack migration is the default method.

• Time-domain and depth-domain
Because seismic data are recorded in the time domain, imaging in the time-domain
is less sensitive to depth and velocity ambiguities compared to depth-domain imag-
ing methods [11]. Moreover, it is also cost-effective. Therefore, time-domain imag-
ing is still one of the most commonly-used imaging methods in the industry. How-
ever, this methodology fails when there exist strong horizontal velocity variations or
complex velocity profiles. Depth-domain imaging was proposed to adapt to this
kind of complex scenarios [10]. It provides an image by mapping the data from
the time-domain directly to the depth-domain given a sufficiently accurate veloc-
ity model (propagation velocity).

• Ray-based, one-way-wave-equation-based, and two-way-wave-equation-based
Ray-based methods are described in terms of migrating individual traces separately
[12]. Kirchhoff migration is the most popular ray-based method. It considers ev-
ery output grid point in the image as a diffractor that is reached from each source
and receiver via a ray-path with certain travel times. These required travel times
are often calculated by ray-tracing [13, 14]. Kirchhoff migration is still widely used
because it does not require high-quality data and is cost-effective. However, Kirch-
hoff migration is based on high-frequency approximations, therefore, the accuracy
of the resulting images is limited in structurally complex areas [15].

Wave-equation-based imaging methods, which are described in terms of wavefield
propagation and an imaging condition, were proposed to address this issue. One-
way-wave-equation imaging is based on a one-way approximation to the two-way
wave-equation, and it propagates the wavefields upward and downward separately.
As a contrast, the full two-way wave-equation propagates the full wavefields in all
directions simultaneously [16–20].
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For broadband imaging, one-way-wave-equation-based migration is cost-efficient,
thus improving the vertical resolution; two-way methodology demands tighter spa-
tial and temporal sampling and is computationally more expensive and memory-
intensive. Moreover, one-way-based methods are less sensitive to the errors in the
given propagation velocity, compared to two-way wave-equation methods [21]. How-
ever, they cannot propagate wavefields beyond 900. In comparison, two-way meth-
ods do not have this dip limitation. [22, 23] proposed to overcome this limitation in
the one-way methods by applying the one-way wavefield propagation in a tilted co-
ordinate system. Furthermore, two-way wave-equation-based methods suffer from
low-frequency artifacts caused by unwanted cross-correlation of the modeled and
back-propagated measured wavefields at non-scattering points along the ray-path,
which are not present in the one-way methods [24].

One-way wave-equation migration is usually positioned between ray-based migra-
tion and two-way wave-equation migration in terms of accuracy and cost-efficiency.

• Non-inversion-based and inversion-based
Inversion-based imaging methods are based on a data-driven process by minimiz-
ing the errors in the model with respect to some objective function. This objective
function measures how well the data re-modeled from the obtained image fits the
recorded data. It has been introduced to provide a subsurface image with more
balanced illumination, reduced artifacts, improved resolution, improved signal-to-
noise ratio, and more reliable amplitudes [25, 26]. However, the inversion scheme
embedded in the imaging methodologies makes it much more expensive, propor-
tional to the number of iterations used during inversion.

Next, a state-of-the-art imaging method — Least-Squares Reverse-Time Migration (LS-
RTM) — and an advanced imaging method — Full Wavefield Migration (FWM) — are re-
viewed.

1.2.1. LEAST-SQUARES REVERSE-TIME MIGRATION

Reverse-Time Migration (RTM) was proposed by [27–29]. The wavefield propagation in
RTM is based on a two-way wave-equation and is usually done by using a finite-difference
scheme, given a propagation velocity model. After the modeled source wavefields and
back-propagated measured wavefields are generated everywhere in the subsurface via for-
ward and backward propagation, a cross-correlation imaging condition is applied to them
to extract the images.

[30] combined RTM with a least-squares inversion scheme, compounding the Least-
Squares Reverse-Time Migration (LS-RTM) method. In this method, the first step is an
RTM process. Next, the data are modeled again from the current image, given the propa-
gation velocity model, by a so-called Born modeling that is based on the linear Born ap-
proximation of the two-way wave-equation [31]. The Born approximation ignores both
transmission effects and internal multiples in the data. The residual wavefields, which are
obtained after a subtraction step between the modeled wavefields and measured wave-
fields, are gradually minimized in a least-squares sense by updating the image model, etc.
The flow chart of LS-RTM is shown in Figure 1.2(a).
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This imaging methodology falls into the categories of pre-stack, depth-domain, two-
way-wave-equation-based, and inversion-based. It inherits the advantages and disad-
vantages of these categories. It performs well in the case of strong lateral velocity varia-
tions, complex velocity profiles or steep dips in the subsurface. Moreover, the inversion
improves the image further with less artifacts and better resolution. However, LS-RTM is
sensitive to the given velocity model, because the unwanted scatters in the forward- and
back-propagated wavefields due to the high contrasts in the velocity model can introduce
artifacts in the final image. Regarding the computational efficiency, it demands exponen-
tially high computational effects and memory usage when going upto high frequency.

Field data

Forward 
modeling*

Simulated 
data

ImageImage 
update

*Linear Born modeling: Born approximation of two-way wave-equation, 
excluding multiples and transmission effects

Data 
comparison

Given 
propagation 

velocity

(a)

Field data

Forward 
modeling*

Simulated 
data

ImageImage 
update
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Data 
comparison

Given 
propagation 

velocity

(b)

Figure 1.2: The flow charts of LS-RTM (a) and FWM (b).
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1.2.2. FULL WAVEFIELD MIGRATION

In order to address these issues in LS-RTM, Full Wavefield Migration (FWM) has been pro-
posed by [32, 33], as a method that honors all multiples and transmission effects properly,
without relying on a finite-difference modeling algorithm.

FWM is also an inversion-based approach that explains the measured reflection data
in terms of reflectivities. The forward modeling process in FWM, called Full Wavefield
Modeling (FWMod), is based on two separate sets of parameters — reflectivities and prop-
agation velocity, which have orthogonal effects on the modeled data; reflectivities are re-
sponsible for the amplitude effects of the data and the propagation velocity is responsible
for the kinematic effects of them [34–36]. With this modeling process, from the current
estimated image, the seismic reflection responses are generated via one-way wavefield
propagation in upward and downward manner. A benefit of using FWMod is that mul-
tiples and transmission effects are explicitly included. Next, the modeled responses are
compared to the measured ones and the resulting residual wavefields, which are then
back-projected into the parameter space. This back-projection constitutes the gradient
calculation of the parameter and a line search procedure. The scale factor for the gradient
is defined and the reflectivity model is updated, from which new seismic data are mod-
eled again, yielding the next iteration, etc. In this way, the residual is slowly driven to zero
[32, 33, 36]. The flow chart of FWM is shown in Figure 1.2(b).

FWM falls into the categories of pre-stack, depth-domain, one-way-wave-equation-
based and inversion-based. It also inherits the advantages and disadvantages of these
categories. It is cost-effective and able to go upto high frequency easily because finite-
difference method is not involved in the wavefield propagation steps. It takes all the mul-
tiples and transmission effects into account. Moreover, it is less sensitive to the given
velocity model, because the forward and backward wavefield propagation is by definition
scattering-free. However, without modifications, it fails to image steep dips [23].

1.3. CONSIDERING VELOCITY VARIATIONS BETWEEN DIFFERENT

TIME-LAPSE SURVEYS
In a typical time-lapse processing workflow, after the imaging process is applied to all
the seismic datasets, given the same baseline propagation velocity model, the subtraction
between the estimated images is not providing the actual reflection amplitude changes,
because the velocity variations of the subsurface between different time-lapse surveys are
not taken into account yet. In this section, several strategies, which take care of the veloc-
ity variations and result in velocity change indicator, will be reviewed.

1.3.1. TIME-SHIFT MAP

The current time-lapse practice is to first perform an independent imaging process on
each dataset based on the same given baseline velocity model. In order to compensate
the velocity variations between different time-lapse surveys, a time-shift map is estimated
from the baseline and monitor images using a local cross-correlation method along a cer-
tain moving time window [6]. Then this time-shift map is applied back to realign the im-
ages, yielding the so-called shifted images. The subtraction between the shifted images is
providing the final reflection amplitude differences [37–41]. The schematic representation
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of this time-shift approach is shown in Figure 1.4.
The outputs of this traditional method are travel-time differences (time-shift maps)

and reflection amplitude differences. The time-shift map is only a coarse indicator of the
velocity changes. The relative velocity changes derived from a time-shift map are not the
actual velocity changes because its estimation is normally under the assumption of a lo-
cal 1D subsurface (only vertical variations) [38]. Therefore, a better imaging processing
strategy that is able to take velocity variations between different surveys into account, is
desirable.
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Figure 1.3: The flow charts of FWI (a) and JMI (b).

1.3.2. FULL WAVEFORM INVERSION
Full waveform inversion (FWI) is a powerful method for providing a quantitative descrip-
tion of the subsurface velocity by iteratively minimizing an objective function that mea-
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sures the misfit between measured and modeled data in a least-squares sense [42].

Compared to the imaging method LS-RTM, FWI also solves two-way wave-equation
using a finite-difference scheme, however, with a parameterization of the velocity model.
Thus, linear Born approximation of the two-way wave-equation is not involved in FWI and
internal multiples and transmission effects are in principle properly considered. However,
this non-linear two-way modeling makes FWI a non-linear and ill-posed inversion prob-
lem and its non-convex objective function may suffer from local minima that are not in-
formative about the true parameters. The local minima corresponds to the cycle-skipping
case when the phase match between the modeled and measured data is greater than half
a wavelength and will cause erroneous model updates [43, 44]. Moreover, density varia-
tions are usually not included, thus, compensated by velocity variations. To partly avoid
these issues, FWI is usually only applied to diving waves or to the low-frequency part of the
data [45, 46] and starts from a sufficiently good input velocity model. Thus, it cannot easily
handle reflections in the data and requires long-offset data to have enough depth penetra-
tion as well as very low-frequency components in the data, in order to be less dependent
on the starting model [44]. In order to mitigate these issues, [47] suggested a workflow,
called reflection FWI, to invert long-wavelength components of the velocity model by us-
ing the modeled reflection data generated from images, which are calculated by applying
an imaging method to the reflection data. However, it has the problem of using one inver-
sion parameter to explain both the reflection and propagation effects in the data, making
the inversion even more nonlinear [48, 49]. Therefore, [50] proposed to reduce this non-
linearity by separating the velocity gradients into low-frequency (propagation) and high-
frequency (reflection) parts during the inversion. Note that R-FWI is more expensive than
the conventional FWI due to the extra step of imaging.

The flow chart of FWI is shown in Figure 1.3(a). One straightforward time-lapse work-
flow based on FWI is to use FWI as a tool to estimate the velocity models for each vintage
sequentially, and then these velocity models are used in a separate imaging process, yield-
ing the final reflection amplitudes. This workflow based on sequential FWI and imaging is
shown in Figure 1.5.

1.3.3. JOINT MIGRATION INVERSION

Joint Migration Inversion (JMI) was proposed as one of the methods to overcome the
above-mentioned limitations in FWI [33, 48, 49, 51]. JMI uses the same modeling engine
as FWM: FWMod, which is based on a parameterization in terms of reflectivities and prop-
agation velocity [35]. Unlike FWM, instead of fixing the given propagation velocity model
during inversion, JMI updates the propagation velocity as well. Therefore, JMI can be
considered as an extended form of FWM, because reflectivity is one of its parameters and
it includes automatic velocity updating (see Figure 1.3(b)). It inherits all the advantages
and disadvantages of FWM. Moreover, compared to FWI, the scale separation of parame-
ters in JMI makes it more linear and robust to the initial model. Furthermore, because a
finite-difference-based algorithm is not involved in JMI, it only needs to follow the Nyquist
criterion and does not have to satisfy the Neumann stability condition, therefore, it costs
much less computationally when going upto high frequency.

Please note that various ways of combining of FWI and JMI seem to give improved
results [52–55]. [53, 54] demonstrated that JMI provides an impressive capability to further
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update fine details in the velocity model when using a good initial velocity model, such as
the results from FWI. [55] showed that JMI achieves a better reconstruction of the velocity
trend in the starting model that sufficiently explains the seismic data for the subsequent
FWI.

JMI can be extended to the time-lapse case in a straightforward way by performing in-
dependent JMI processes on each dataset, termed as sequential JMI [56, 57]. The schematic
representation of time-lapse sequential JMI is shown in Figure 1.6.
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Figure 1.4: Schematic representation of a time-lapse processing method based on a time-
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Figure 1.6: Schematic representation of a time-lapse processing method based on sequential
JMI.

1.4. SEQUENTIAL VS SIMULTANEOUS STRATEGY
The three workflows mentioned above (Figures 1.4-1.6, i.e. sequential imaging + a time-
shift map, sequential FWI + sequential imaging, and sequential JMI) are all based on a
straightforward independent processing strategy, also termed as sequential strategy. This
strategy is usually sensitive to the differences of noise, acquisition designs, and the uncer-
tainties happening during the process between different datasets. Therefore, the current
time-lapse acquisition practice is to exactly repeat well-sampled geometries to mitigate
acquisition effects on the final time-lapse differences [58] and the independent process-
ing step also needs to be carefully tailored regarding some various processing "tricks",
such as illumination, preconditioning, smoothing of the gradients, etc [59–61]. However,
we usually are unable to perfectly reconcile large differences in the acquisitions between
different surveys or fully avoid the uncertainty differences in the independent processes.
Therefore, a better processing strategy, which is less sensitive to these non-repeatable ef-
fects, is a demand.

The time-lapse simultaneous strategy was first proposed by [62]. It processes all the
datasets simultaneously and allows the baseline and monitor parameters to communi-
cate and compensate with each other dynamically during inversion via constraints, thus,
reducing the non-repeatable uncertainties during time-lapse processing workflow, com-
pared to inverting each dataset independently. [62] proposed to combine this simultane-
ous strategy with the LS-RTM process. [61, 63, 64] extended this simultaneous strategy
to time-lapse FWI. [65, 66] designed a cost-efficient non-repeated time-lapse acquisition,
and then proposed to use a simultaneous recovery scheme based on the curvelet trans-
form to recover the 4D vintages.

By combining this simultaneous strategy with the methods mentioned in Section 1.3,
we can design the following workflows:

• Simultaneous imaging process + a time-shift map;
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Figure 1.7: Schematic representation of a time-lapse processing method based on simulta-
neous JMI.

• Simultaneous FWI + simultaneous imaging process;

• Simultaneous JMI.

As was just discussed, a typical time-lapse processing workflow — independent imag-
ing followed by a time-shift map estimation — has two main issues:

• The relative velocity changes derived from a time-shift map are not the actual ve-
locity changes due to the local 1D subsurface assumption;

• This time-lapse workflow requires well-sampled and exactly repeated monitoring
surveys, because it is sensitive to the non-repeatable uncertainties caused by mon-
itoring surveys; this requirement for monitoring surveys is costly and makes it not
suitable to frequent monitoring.

Therefore, the main research questions which this thesis will cover are as follows:

• Can we utilize a better imaging process that makes use of multiples and at the same
time taking velocity variations between monitoring surveys into account?

• Can we propose a better indicator for the velocity changes?

• Is there a better processing or inversion strategy, which is less sensitive to the non-
repeatable uncertainties caused by monitoring surveys?

• Do we require the time-lapse acquisition surveys to be well-sampled and exactly
repeated?

1.5. THESIS OUTLINE
In this section, an outline of this thesis will be given.
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• Chapter 2:
This chapter first describes the theoretical details behind FWMod and JMI. Later on,
in a time-lapse scenario, a conventional time-shift-map-based strategy ( i.e. a FWM
process + a time-shift map estimation) and sequential JMI are demonstrated and
compared with a complex synthetic example.

• Chapter 3:
This chapter begins with the theory of S-JMI, including L2 constraints on both reflectivity-
and velocity-differences via user-defined spatial weighting operators. After that,
the theory of high-resolution S-JMI (HR-S-JMI) is introduced, including two ex-
tra constraints: directional total variation regularization on velocities and a time-
lapse reflectivity-difference constraint, which makes a link between reflectivity- and
velocity-difference by constraining the relationship between them. Finally, the ef-
fectiveness of regular S-JMI and HR-S-JMI is demonstrated based on a complex syn-
thetic example.

• Chapter 4:
In this chapter, we further demonstrate the effectiveness of HR-S-JMI as a tool for
reservoir monitoring with a highly realistic synthetic model based on the Grane
field, offshore Norway, and a time-lapse field dataset from the Troll Field. In the
Grane field numerical example, we first investigate whether various time-lapse ef-
fects in this model, i.e. the reservoir time-lapse changes, the effects due to injec-
tion in the overburden, the weak stress-induced effects over the reservoir, and small
water velocity perturbation, can be detected with S-JMI. Then, we compare the in-
verted results using S-JMI with those using a conventional time-lapse method based
on creating time-shift maps and results from a sequential strategy based on JMI.
Furthermore, we show that HR-S-JMI results in a more localized time-lapse velocity
update when there are not enough strong reflections around the target area helping
the inversion of the velocity in regular S-JMI. In the end, with one field data example
based on marine time-lapse data from the Troll Field, we show the feasibility of the
proposed method in a real case where the repeatability of the time-lapse datasets is
not very good.

• Chapter 5:
In this chapter, we investigate the feasibility of using HR-S-JMI in practice, some nu-
merical experiments are conducted to test the dependence of HR-S-JMI on the qual-
ity of the time-lapse datasets including the following aspects: non-repeated noise,
including random noise and coherent noise; the quality of time-lapse surveys, in-
cluding sparse surveys, non-repeated surveys, and Ocean Bottom Node (OBN) vs
Streamer (sparse and non-repeated time-lapse surveys); the quality of sources, in-
cluding source positioning error and non-repeated source wavelet. Moreover, its
robustness to the spatial weighting operators in L2-norm constraints and sensitiv-
ity to weak time-lapse effects are also tested.

• Chapter 6:
This chapter begins with a review of a semi-continuous monitoring technology: i4D
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seismic monitoring, where monitor surveys are much more sparsely sampled com-
pared to the baseline survey. After that, we introduce the theory of S-JMI with extra
calender-time constraints, which take advantage of the feature that time-lapse ef-
fects change (semi-)continuously along the calendar-time axis during (semi-)continuous
monitoring. In the end, with one complex synthetic example, we demonstrate that
S-JMI is an effective tool to process datasets acquired from the semi-continuous
monitoring surveys, which are designed according to the i4D technology. We also
show that the proposed calendar-time constraints significantly improve the quality
of the time-lapse results. In addition, we compare the time-lapse results assuming
all the monitoring datasets are available to those results where only the datasets up
to the current one are used.

• Chapter 7:
This chapter describes the main conclusions of this thesis, followed by some recom-
mendations for further research.

Please note that Chapter 3 and 4 are an extended version of work published in [67–73].
Chapter 6 is an extended version of work published in [74]. Appendix B is an extended
version of work published in [75].
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2
SEQUENTIAL JOINT MIGRATION

INVERSION

The current time-lapse practice is to first remove all multiples from the data, and then per-
form an independent imaging process on each dataset based on the same estimated baseline
velocity model. In order to compensate the velocity variations of the subsurface between dif-
ferent surveys, a time-shift-map-based method is applied to realign the images.

However, in practice, we usually are unable to remove all multiples from the datasets com-
pletely in the first step. Moreover, the time-shift-map tool is normally under the assumption
of a local 1D subsurface (only vertical variations), thus, the relative velocity changes derived
from the time-shift map are not the actual velocity changes. Therefore, a better imaging
process, which is able to make use of multiples and at the same time take velocity variations
between surveys into account, is desirable.

We propose to use the inversion-based Joint Migration Inversion (JMI) method as an effec-
tive time-lapse processing tool for reservoir monitoring. JMI is a full wavefield inversion
method that explains the measured reflection data using a parameterization in terms of
reflectivity and propagation velocity. Transmission effects and internal multiples are in-
cluded in the forward modeling process of JMI, which is termed Full Wavefield Modeling
(FWMod), based on a multi-dimensional version of the Bremmer series. Since reflectivity
is one of the inversion parameters of JMI and velocity only describes the wave propagation
effects, JMI can also be considered as an extended form of least-squares imaging, although
it includes all the multiple scattering and transmission effects, and also employs automatic
velocity updating. We apply JMI in the time-lapse case by conducting JMI for the baseline
and monitor datasets independently, termed as sequential JMI. The differences of the result-
ing models make the final time-lapse changes. Finally, we demonstrate the effectiveness of
sequential JMI with a complex synthetic example based on the Marmousi model, compared
to the conventional time-shift-map-based method, i.e. a FWM process + a time-shift map
estimation.
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2.1. INTRODUCTION

After the baseline and subsequent monitoring surveys are acquired, the time-lapse changes
in the seismic parameters between different surveys are estimated by processing all the
datasets. As was discussed earlier, the most conventional processing workflow is to first
remove all multiples from the data, and then perform an independent imaging process
on each dataset based on the same baseline propagation velocity model. However, the
true velocity model usually varies from survey to survey, yielding misalignments in the
calculated images, which need to be further processed using a time-shift-map-based tool
[1–5]. The schematic representation of this conventional approach was already shown in
Figure 1.4. In practice, we usually are unable to remove all multiples from the datasets
completely in the first step and the time-shift-map-based tool operates normally under
the assumption of a local 1D subsurface (only vertical variations) [2]. Therefore, one im-
portant question arises here: "Can we address a better imaging process that makes use of
multiples, and at the same time taking velocity differences between different surveys into
account?"

Least-squares migration (LSM) and full-waveform inversion (FWI) are two popular
time-lapse processing methods [5–7]. However, because of the strong non-linearity of
FWI, related to the inversion parameters velocity and (poorly resolved) density, this may
not be the best engine for time-lapse analysis. Ignoring non-linear propagation effects
(i.e. multiples and transmission effects) means that LSM will not optimally perform in
situations with large contrasts. More details about FWI and LSM were already discussed
in Section 1.2 and 1.3. Therefore, we propose to employ the inversion-based Joint Migra-
tion Inversion (JMI) method, as proposed as one of the methods to overcome the above
mentioned limitations in FWI and LSM [8–12].

The main engine of JMI is a forward modeling process called Full Wavefield Modeling
(FWMod), which is based on a parameterization in term of reflectivity and propagation
velocity [13]. Note that based on this parameterization, density variations are implicitly
included in the reflectivity. The aim of JMI is to match the modeled data with the mea-
sured data sample by sample. Therefore, JMI can be called a full-waveform inversion
process. JMI can also be considered as an extended form of least-squares imaging [14],
because reflectivity is one of its parameter, although it includes all the multiple scattering
and transmission effects, as well as automatic velocity updating. JMI can be extended to
the time-lapse case by performing independent JMI on each dataset, termed as sequen-
tial JMI [15, 16]. The schematic representation of time-lapse sequential JMI was already
shown in Figure 1.6.

This chapter is organized as follows: we first describe the theoretical details behind
FWMod and JMI. Please note that the FWMod/JMI process is done in the frequency-space
domain. Therefore, in order to simplify the derivations of FWMod and gradients of JMI, we
consider one frequency slice and one shot, which are all orthogonal to each other. It will be
easy to extend this theory to the full frequency and full shots case. The FWMod/JMI theory
is described in 2D here, but can be extended to 3D [17]. Moreover, only P-P reflections are
considered in this work. Finally, in the time-lapse scenario, we demonstrate this time-
lapse approach with a complex synthetic example, compared to the conventional time-
shift-map-based method (i.e. a FWM process + a time-shift map estimation).



2.2. FULL WAVEFIELD MODELING

2

21

2.2. FULL WAVEFIELD MODELING
In FWMod, the model space (x, z) is divided into a fine set of depth levels zm ,m = 0, ..., Nz−
1 separated by a small distance∆z along a certain spatial direction z−axi s, which are so-
called building blocks. For each building block, parameters (reflectivity and propagation
velocity) are defined and wavefields are calculated. One building block used in FWMod is
shown in Figure 2.1. It consists of two parts: (1) reflection and transmission at each level
and (2) propagation in-between two conjunctive levels. Four wavefields are calculated at
each depth level relative to the z − axi s direction: the down-going incoming wavefield
p+ (zm), the up-going incoming wavefield p− (zm), the down-going outgoing wavefield
q+ (zm), the up-going outgoing wavefield q− (zm). In addition, two source wavefields —
down-going source wavefield s+ (zm) and up-going source wavefield s− (zm) — are added
at each depth level. Note that, for one depth level, the dimension of the monochromatic
wavefields (p± (zm), q± (zm), s± (zm)) is (Nx ×1) denoting the size of the x − axi s in the
solution space. All the wavefields are illustrated in Figure 2.1(a).

2.2.1. REFLECTION AND TRANSMISSION AT EACH LEVEL
At the depth level zm , reflection is described via upwards and downwards reflectivity op-
erators R∪ (zm) and R∩ (zm), respectively; and transmission is described via down- and
up-going transmission operators T+ (zm) and T− (zm), respectively. All the operators are
also illustrated in Figure 2.1(b). For one depth level, the reflectivity and transmission op-
erators (R∪/∩ (zm), T± (zm)) are matrices with the dimension of (Nx ×Nx ). The wavefields
are connected by reflectivity and transmission effects (see also [13, 18, 19]):

q+ (zm) = s+ (zm)+T+ (zm)p+ (zm)+R∪ (zm)p− (zm) ,

q− (zm) = s− (zm)+T− (zm)p− (zm)+R∩ (zm)p+ (zm) .
(2.1)

The transmission operator T± (zm) can be further written as follows:

T± (zm) = I+δT± (zm) , (2.2)

where I is a unit matrix sharing the same size as the other operators and δT± (zm) is the
differential transmission in the down/up directions [13].

Furthermore, in the situations where wave conversion can be neglected (like the acous-
tic case), we have

R∩ (zm) =−R∪ (zm) ,

δT+ (zm) = R∪ (zm) ,

δT− (zm) = R∩ (zm) .

(2.3)

Therefore, three unknowns are eliminated in equation 2.1. We further simplify R∪ (zm) as
R (zm) yielding:

q+ (zm) = s+ (zm)+ (I+R (zm))p+ (zm)+R (zm)p− (zm) ,

q− (zm) = s− (zm)+ (I−R (zm))p− (zm)−R (zm)p+ (zm) .
(2.4)

Note that the reflectivity operator R (zm) is supposed to be an angle-dependent parameter
[11, 18], which means it is a function of incident angle of the waves and leads to a large so-
lution space, therefore puts the inversion into the danger of over-parameterization. Thus,
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in this work, we make an assumption of a scalar reflectivity operator by ignoring the in-
fluences of incident angles and using the diagonal values r (zm) = di ag (R (zm)) at each
depth level (see Appendix A).

( )mz+p

( )mz−p ( )mz+q

( )mz−q( )mz−s

( )mz+s

m+1

mz

( )m+1z+p
z

( )m+1z−q

(a)

( )mz+T

( )mz−T
mz

( )mz∪R

( )mz∩R

( ),mzW m+1z ( ),m+1zW mz
m+1z

(b)

Figure 2.1: The fundamental building block of FWMod: schematic illustration of (a) the
modeled wavefields and source wavefields; (b) reflectivity, transmission and propagation
operators.

2.2.2. PROPAGATION IN-BETWEEN TWO CONSECUTIVE LEVELS

In-between the zm and zm+1 levels, the propagation of wavefields are described via down-
and up-going propagation operators W (zm+1, zm) and W (zm , zm+1). The four wavefields
of two consecutive levels are connected by propagation operators (see also [13, 18, 19]):

p+ (zm+1) = W (zm+1, zm)q+ (zm) ,

p− (zm) = W (zm , zm+1)q− (zm+1) .
(2.5)

We build the propagation operators in the frequency-wavenumber domain first and then
transform it back to the frequency-space domain. Within one layer, the dimension of the
propagation operators is (Nx ×Nx ). By assuming the medium in between each two con-
secutive levels is locally homogeneous, we can relate i th row of the propagation opera-
tor W (zm+1, zm) to a phase-shift operator [20] propagating the wavefields from one depth



2.2. FULL WAVEFIELD MODELING

2

23

( )† ,i m m+1z zW

( ),i m+1x z+p

( )mz+q ( ),i mx z−p

( )m+1z−q

( )† ,i m+1 mz zW

mz

m+1z

Figure 2.2: Schematic illustration of the i th row of propagation operator W (zm+1, zm):
w†

i (zm+1, zm) and w†
i (zm , zm+1) in equation 2.6.

level zm to one point at the next depth level (xi , zm+1) (illustrated in Figure 2.2):

w†
i (zm+1, zm) =F−1

x

[
e− j kz∆z e j kx xi

]
,

kz =


√
k2 −k2

x |kx | ≤ |k|
− j

√
k2

x −k2 |kx | > |k|,
k = ω

vi (zm+1, zm)
,

(2.6)

where w†
i (zm+1, zm) denotes the i th row of W (zm+1, zm). F−1

x is the inverse Fourier trans-
form from the (kx , z) domain to the (x, z) domain. " j " is the imaginary unit and vi (zm+1, zm)
is a scalar, representing the propagation velocity at lateral location xi in between zm and
zm+1 levels.

As we can see from equation 2.6, the propagation velocity is implicitly embedded in
the propagation operator. Numerically, we define vi to the grids of the solution space for
simplicity as follows:

vi (zm+1, zm) ≡ vi (zm) ,

vi (zm , zm+1) ≡ vi (zm) .
(2.7)

Based on the definition equation 2.7, the propagation operators between two consecutive
levels have the following simplified relationship.

W (zm+1, zm) ≡ W (zm , zm+1) . (2.8)

2.2.3. RECURSIVE MODELING SCHEME
The above describes the basic building blocks of FWMod, which is formulated by equa-
tion 2.4 and 2.5. Based on the current reflectivity values r and propagation velocity distri-
bution v, by extrapolating the four wavefields (p± and q±) downwards from z0 to zNz−1 and
then upwards from zNz−1 to z0 with these building blocks, one round-trip of modeling is
constructed, yielding only primaries. Subsequently, based on the updated four wavefields,
next round-trip of modeling is constructed, then the first order of internal multiples is in-
cluded. Transmission effects are automatically included as well. By recursively applying
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these building blocks, contributions from more orders of multiples are taken into account,
thereby making the four wavefields more complete. Note that such a recursive modeling
scheme can be treated as a generalization of the so-called Bremmer series [21, 22].
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Figure 2.3: Numerical example: (a) and (b) the true velocity and reflectivity model.
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Figure 2.4: Numerical example based on the model in Figure 2.3: snapshots at 0.44s: the
first round-trip of modeling yielding only primaries: (a) downwards from z0 to zNz−1 (p+),
(b) upwards from zNz−1 to z0 (p−) and (c) their summation (p++p−); the second round-trip
modeling yielding primaries and the first order of internal multiples: (d) downwards from
z0 to zNz−1 (p+), (e) upwards from zNz−1 to z0 (p−) and (f) their summation (p++p−).

Furthermore, FWMod based on these building blocks is quite flexible and can be eas-
ily extended to include more physics by upgrading the building block. For example, by
reformulating the propagation operator W, anisotropy [23] or Q-effects [24] can be taken
into account. Moreover, the reflectivity operator R is fully data-driven and able to explain
the elastic amplitudes (if non-diagonal elements in R are included) without explicitly im-
posing an elastic wave-equation [25].

2.2.4. NUMERICAL DEMONSTRATION
In this subsection, based on a simple 1.5 D model shown in Figure 2.3, one numerical
example will be demonstrated to visualize the process of FWMod.

With the velocity and reflectivity models in Figure 2.3 as the parameters, FWMod is
implemented recursively based on the basic building blocks described by equation 2.4
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Figure 2.5: Numerical example based on the model in Figure 2.3: pseudo VSP cross-section
at 1600m: the first round-trip of modeling yielding only primaries: (a) downwards from z0

to zNz−1 (p+), (b) upwards from zNz−1 to z0 (p−) and (c) their summation (p+ +p−); the
second round-trip modeling yielding primaries and the first order of internal multiple: (d)
downwards from z0 to zNz−1 (p+), (e) upwards from zNz−1 to z0 (p−) and (f) their summa-
tion (p++p−).

and 2.5. By one down-going extrapolation from z0 to zNz−1 and one up-going extrapola-
tion from zNz−1 to z0, one round-trip of modeling is constructed, yielding the primaries.
Based on the current wavefields, another round-trip of modeling is constructed, yielding
primaries and the first-order of internal multiples. Note that transmission effects are auto-
matically included as well. We visualize the whole process with the snapshots at 0.44s and
pseudo VSP cross-sections at 1600m of the modeled middle-shot wavefields in Figure 2.4
and Figure 2.5, respectively. It is clearly visible that the internal multiples are generated
during the second round-trip of modeling.

( )mz−∆p ( )mz+∆q

( )mz−∆q

mz

m+1z
( )m+1z+∆p

Figure 2.6: Schematic illustration of the redatumed residual wavefields.

2.3. INVERSION
Due to the recursive form of FWMod, it is known that all wavefields at each depth level
are functions of the parameters in the full solution space, which makes rigorous gradient



2

26 2. SEQUENTIAL JOINT MIGRATION INVERSION

derivation impossible. Therefore, we make two assumptions in this work:

• All the wavefields saved from the previous round-trip of modeling are not treated as
functions of reflectivity and propagation velocity;

• The contributions of transmissions are ignored when it comes to calculating the
reflectivity gradients. Note that transmission effects are still taken into account in
the modeling.

2.3.1. DEFINITION OF THE OBJECTIVE FUNCTION
In the inversion, subsurface parameters are updated by fitting the measured wavefields
with the modeled wavefields. Therefore, we can define the following least-squares objec-
tive function at the surface:

J = 1

2

∑
ω

∑
shot s

||∆p− (z0) ||22, (2.9)

where ||.||22 describes the sum of the squares of the values (i.e. the Frobenius norm).
∆p− (z0) is the residual wavefield at the surface z0, which is the difference between the
measured and modeled wavefields at the surface.

The nature of FWMod yields wavefields (up-/down-going in/outgoing wavefields) at
each depth level. Assume we can ’measure’ all the wavefields in the whole solution space,
our forward modeled wavefields should perfectly match the ’measured’ wavefields at each
depth level, when the models are absolutely true. Therefore, in order to simplify the
derivation of the gradients of reflectivities and velocity at a certain depth level zm , we can
project the objective function along with the measured wavefield at the surface into the
following redefined objective functions [19, 26]:

J1 = 1

2
||∆p+ (zm+1) ||22,

J2 = 1

2
||∆p− (zm) ||22,

J3 = 1

2
||∆q+ (zm) ||22,

J4 = 1

2
||∆q− (zm) ||22,

(2.10)

where four redatumed residual wavefields are as follows: the down-going incoming resid-
ual wavefield ∆p+ (zm+1), the up-going incoming residual wavefield ∆p− (zm), the down-
going outgoing residual wavefield∆q+ (zm), the up-going outgoing residual wavefield∆q− (zm),
illustrated in Figure 2.6. Under the two assumptions mentioned at the beginning of this
section and based on equations 2.4 and 2.5,∆q+ (zm) and∆q− (zm) are functions of R (zm).
Therefore, we will use J3 and J4 to update reflectivities. Note that∆p+ (zm+1) is also a func-
tion of R (zm), however, according to equation 2.5, J1 has the same contribution as J3 re-
garding reflectivity update. When it comes to velocity update, ∆p+ (zm+1) and ∆p− (zm)
are functions of W (zm , zm+1) or W (zm+1, zm), which are the propagation operators in-
between two consecutive levels. Therefore, J1 and J2 are used to update velocity. Note
that ∆q− (zm) is also a function of W (zm , zm+1), however, based on equation 2.4, J4 has
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the same contribution as J2 regarding velocity update. These redatumed residual wave-
fields are calculated by adjoint (time-reverse) full wavefield modeling with the residual
wavefield at the surface ∆p− (z0) as the adjoint source [27].

2.3.2. GRADIENTS OF THE REFLECTIVITY AND PROPAGATION VELOCITY
Regarding the gradient of the reflectivity model, by using equations 2.4 and 2.5 and con-
sidering the assumptions, we take the partial derivative of J3 and J4 relative to ri (zm) (one
element: r (zm) at lateral location xi ):

∂J3

∂ri (zm)
=−∂q+

i (zm)

∂ri (zm)
{∆q+

i (zm)}H

=−∂{ri (zm) p−
i (zm)}

∂ri (zm)
{∆q+

i (zm)}H

=−p−
i (zm) {∆q+

i (zm)}H ,

∂J4

∂ri (zm)
=−∂q−

i (zm)

∂ri (zm)
{∆q−

i (zm)}H

=−∂{−ri (zm) p+
i (zm)}

∂ri (zm)
{∆q−

i (zm)}H

= p+
i (zm) {∆q−

i (zm)}H ,

(2.11)

where (.)H represents Hermitian conjugate. p±
i (zm), q±

i (zm), ∆q±
i (zm), ∆p±

i (zm) denote
the wavefields at lateral location xi . From equation 2.11, we can see that the gradient
of reflectivity operator is given by cross-correlating wavefields propagating in opposite
directions. The schematic illustration is shown in Figure 2.7.

( )i mz−Δq ( )i mz+p

(a)

( )i mz−p

( )i mz+Δq

(b)

Figure 2.7: Schematic illustration of the reflectivity gradient contributions by combining
wavefields propagating in opposite directions: (a) the contribution by combining the down-
going incoming modeled wavefield p+ (zm) with the up-going outgoing residual wavefield
∆q− (zm); (b) the contribution by combining the up-going incoming modeled wavefield
p− (zm) with the down-going outgoing residual wavefield ∆q+ (zm). The blue triangles and
red explosive mark on the surface represent receivers and source, respectively.
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In a similar way, for the gradient of the propagation velocity, we take the partial deriva-
tive of J1 and J2 relative to the in-between propagation velocity vi (zm):

∂J1

∂vi (zm)
=−∂p+

i (zm+1)

∂vi (zm)
{∆p+

i (zm+1)}H

=−∂{w†
i (zm+1, zm)q+ (zm)}

∂vi (zm)
{∆p+

i (zm+1)}H

=−{
∂w†

i (zm+1, zm)

∂vi (zm)
q+ (zm)}{∆p+

i (zm+1)}H

∂J2

∂vi (zm)
=−∂p−

i (zm)

∂vi (zm)
{∆p+

i (zm)}H

=−∂{w†
i (zm , zm+1)q− (zm+1)}

∂vi (zm)
{∆p−

i (zm)}H

=−{
∂w†

i (zm , zm+1)

∂vi (zm)
q− (zm+1)}{∆p−

i (zm)}H .

(2.12)

Now, we elaborate the gradient of w†
i (zm+1, zm) and w†

i (zm , zm+1) relative to vi (zm). The
derivative of a vector by a scalar is known as the tangent vector:

∂w†
i (zm+1, zm)

∂vi (zm)
≡ ∂w†

i (zm , zm+1)

∂vi (zm)
=F−1

x

[
jω∆z

v2
i (zm)

k

kz
e− j kz∆z e j kx xi

]
. (2.13)

Note that the size of
∂w†

i (zm+1, zm)

∂vi (zm)
,
∂w†

i (zm , zm+1)

∂vi (zm)
, q+ (zm) and q− (zm+1) is (1×Nx ) and

(Nx ×1), respectively. Therefore, the size of their multiplication is (1×1) which matches
{∆p+

i (zm+1)}H and {∆p−
i (zm)}H . From equation 2.12, we can see that the gradient of prop-

agation velocity is given by combining the wavefields going in the same direction. The
schematic illustration is shown in Figure 2.8.

By repeating equation 2.11 and 2.12, we calculate all the gradient contributions in the
full solution space. In the end, we sum them together over shots and frequencies, yielding
the final gradients.

2.3.3. OPTIMIZATION
After the gradients are calculated, the parameters can be updated and the residual wave-
fields are slowly driven to zero by utilizing an appropriate optimization approach [10, 12].
The flow diagram of the JMI process was already shown in Figure 1.3(b). One of the key
features of the JMI process is the parameterization: two separate sets of parameters —
r and v — have orthogonal effects on the modeled data; the reflectivity is responsible for
the amplitudes of the reflections, and the propagation velocity is responsible for the phase
effects of them. Regarding minimizing the residual wavefields during inversion, the zero-
phase part of the residual contributes to the reflectivity gradient and the non-zero-phase
part contributes to the propagation velocity gradient, which are also orthogonal to each
other. This type of parameterization allows temporarily non-physical solutions: if the ve-
locity is wrong at the beginning, the reflectivity will be estimated at the wrong depth level,
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( )i mz−Δp
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Figure 2.8: Schematic illustration of the velocity gradient contributions by combining wave-
fields propagating in the same direction: (a) the contribution by combining the down-
going outgoing modeled wavefield q+ (zm) with the down-going incoming residual wave-
field ∆p+ (zm+1); (b) the contribution by combining the up-going outgoing modeled wave-
field q− (zm+1) with the up-going incoming residual wavefield ∆p− (zm). The blue triangles
and red explosive mark on the surface represent receivers and source, respectively.

but the modeled events are still not too far from the measured data (i.e. the near-offset
part of data fits well). Therefore, the cycle-skipping effects are largely suppressed. This
feature makes JMI robust to the initial model.

2.3.4. NUMERICAL DEMONSTRATION
As we mentioned in Section 2.3.2, the gradient of reflectivity is calculated by combining
wavefields propagating in opposite directions and the gradient of propagation velocity is
given by combining wavefields going in the same direction. For the purpose of visualizing
the gradient calculation, we assume two scenarios: (1) when there is an error in the re-
flectivity model, but the velocity model is correct; (2) when there is an error in the velocity
model and the associated error in the reflector depth level.

The first scenario is shown in Figure 2.9. Due to the reflectivity error, the amplitude
of the modeled wavefield is wrong compared to the measured one (Figures 2.9(a)-2.9(c)).
This residual wavefield is then back-projected into the reflectivity gradient. Figure 2.9(d)
shows the gradient from one shot record and Figure 2.9(e) shows the full gradient by sum-
ming together the contributions from all the shots.

The second scenario is shown in Figure 2.10. There is a velocity error in the first layer.
In Figures 2.10(a)-2.10(c), it can be observed that the zero-offset part of the modeled wave-
field fits well with the measured one, because the reflectivity updates in JMI are always es-
timated at certain depth levels to at least make the near-offset part of data fit well. There-
fore, error in the velocity model results in the associated error in the reflector depth levels.
In the case of a too low velocity model, the reflectors are estimated at shallower depth
levels, and vice versa. In this way, the cycle-skipping effects are suppressed. Another
observation is that the larger the offset, the larger the misfits between the modeled and
measured wavefield, which are then used to calculate the velocity gradient. For one shot
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Figure 2.9: Numerical example based on the simple model in Figure 2.3: the scenario when
there is an error in the reflectivity model, but the velocity model is correct. (a) The measured
wavefield, (b) the modeled wavefield, (c) the residual wavefield; (d) the reflectivity gradi-
ent calculated from one shot record, (e) the reflectivity gradient by summing together the
contributions from all the shot records.

record, the gradient is shown in Figure 2.10(d). After combining the contributions from all
the shot records, the full gradient is shown in Figure 2.10(e).

2.4. EXAMPLE
In order to demonstrate the effectiveness of JMI as a time-lapse processing tool, we con-
sider the baseline model shown in Figures 2.11(a) and 2.11(b), which are modified from
the well-known Marmousi model. We add two gas-sand traps and one oil-sand trap to the
original Marmousi model according to the geology information of Marmousi provided
by [28]. Several time-lapse changes are embedded in the monitor model. For the gas-
sand traps, water-gas replacement causes a 100m/s increase on the reservoir velocity, and
for the oil-sand trap, injection reduces the reservoir velocity by −150m/s. Furthermore,
overall subsurface, pressure perturbations are also considered. The reasonable velocity
changes caused by such pressure perturbation in the reservoir are approximately 4% of
the local velocity. And that of the overburden and underburden areas are around 0−2%
and decreases as a function of distance to the reservoir. In addition, a small water-layer
velocity change caused by an assumed water temperature change is also included. Details
about the imposed time-lapse variation are shown in Figures 2.11(c) and 2.11(d). Accord-
ing to OBN (Ocean Botton Node) acquisition, the source sampling is designed as 20m, and
the receiver sampling is 200m. The time-lapse datasets are generated using FWMod, in-
cluding multiples (both surface and internal multiples) and transmission effects. Initial re-
flectivities are zero and the initial velocity model is a very simple vertical gradient (shown
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Figure 2.10: Numerical example based on the simple model in Figure 2.3: the scenario when
there is an error in the velocity model and the associated error in the reflector depth level. (a)
The measured wavefield, (b) the modeled wavefield, (c) the residual wavefield; (d) the veloc-
ity gradient calculated from one shot record, (e) the velocity gradient by summing together
the contributions from all the shot records.

in Figures 2.11(e) and 2.11(f)). The band-width of frequency used for JMI is 5H z −40H z,
and 20% random noise energy is added to the datasets. Table 2.1 shows a list of acquisition
and inversion parameters used in this example.

Table 2.1: Marmousi example: a list of acquisition and inversion parameters.

Modeling
method

Band-
width

Surface/Internal
multiple

Random
noise

Wavelet Source
arrangement

Receiver
arrangement

Other

FWMod 5 −
40H z

Yes/Yes 20% Ricker,
20H z
peak freq.

0−4000m with
20m spacing
at z = 0m

0−4000m with
200m spacing
at z = 0m

In this example, we compare two strategies: a conventional time-lapse strategy based
on a time-shift map and sequential JMI. First of all, the baseline reflectivity and velocity
are inverted using JMI and the results are shown in Figures 2.12. This baseline velocity
then serves as the velocity model in the conventional time-shift-based method and as
the starting model for sequential JMI. Because of the inversion process included in JMI,
the inverted image is quite accurate and the estimated velocity model also exhibits some
details regarding the true structures. Here fine details are not expected in the inverted
velocity model, as it only explains the propagation effects in the data.

The workflow of the conventional strategy based on a time-shift map is shown in Fig-
ure 2.13. The monitor image is then inverted using FWM with the baseline velocity model
in Figure 2.12(a). This inverted monitor image is shown in Figure 2.15(a). Afterwards, both
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Figure 2.11: Marmousi example: (a) and (b) the true baseline velocity and reflectivity model;
(c) and (d) the true time-lapse velocity difference and reflectivity difference; (e) and (f) the
initial velocity and reflectivity model.

baseline and monitor images are converted to the time domain via stretching. Next, the
corresponding time-variant time-shift map is calculated using a local cross-correlation
method with a 300ms time window, the results being shown in Figure 2.15(b). By ig-
noring the layer compaction, the time-shift τ is related to the velocity difference ∆V by
∂τ

∂t
= −∆V

V
[29]. Therefore, the velocity difference can be calculated from ∆V = −V

∂τ

∂t
,

which is shown in Figure 2.15(c). It can be seen that this velocity difference is a very coarse
indicator of the true velocity changes with low resolution and accuracy. The shifted image
difference calculated by the time-shift map is shown in Figure 2.15(d). The positions of the
true time-lapse changes are pointed out with black and white arrows. We can see that the
shifted time-lapse image difference is of quite good quality. To some extent, this conven-
tional approach with FWM as the imaging tool, which takes multiples and transmission
effects into account, serves its purpose, however, fails to indicate the time-lapse velocity
changes accurately.

The workflow of sequential JMI is shown in Figure 2.14. We apply JMI again to both the
baseline and monitor datasets, yielding the inverted baseline and monitor results shown
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Figure 2.12: Marmousi example: (a) and (b) the inverted baseline velocity and reflectivity
model using JMI. This baseline velocity then serves as the velocity model in the conventional
time-shift-based method and as the starting model for sequential JMI.

in Figures 2.16(a)-2.16(d). After subtracting the inverted results of JMI of each dataset, the
time-lapse differences are shown in Figures 2.16(e) and 2.16(f). It is obvious that the time-
lapse changes in Figure 2.16(e) can be easily distinguished, including the small changes
due to the velocity changes in the water-layer. Therefore, sequential JMI is a more ef-
fective time-lapse velocity indicator compared to the conventional time-shift strategy. By
comparing Figure 2.16(f) to Figure 2.15(d), we can see that the inverted image changes us-
ing sequential JMI are further improved by employing automatic velocity updating during
the independent process, especially the time-lapse changes in the oil-sand trap. However,
there are still many obvious imprints in both time-lapse image and velocity differences.

2.5. DISCUSSION

2.5.1. HANDLING AVO EFFECTS

In order to handle the angle-versus-offset (AVO) effects in the data, the reflectivity oper-
ator R in Equation 2.4 is supposed to be an angle-dependent parameter [11, 18], which
means it is a function of incident angles. However, this complete version of reflectivity
leads to a very large solution space, therefore puts JMI into the danger of over-parameterization.
The velocity errors might be compensated by some wrong updates of angle-dependent re-
flectivities. Thus, in this work, we make an assumption of scalar reflectivity operators by
only using the diagonal values of the reflectivity operator. As a result, this version of JMI
cannot easily handle large-offset data due to the AVO effects. We propose to mitigate this
AVO challenge in JMI using a local attribute – local orthogonalization – between the mod-
eled and measured data during inversion. The smoothed local orthogonalization weight
indicates those areas of modeled data that do not correlate well with the measured data.
Afterwards, the high weight part containing strong AVO effects is suppressed adaptively
from the residual based on the local orthogonalization weights. As a result, the artifacts
brought by the AVO effects in the inverted models are largely suppressed. Appendix A pro-
vides more theoretical details and demonstrates the effectiveness of this proposed method
with a complex synthetic example.
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Figure 2.13: The flow chart related to the conventional strategy based on a time-shift map.

2.5.2. INDEPENDENT PROCESSING STRATEGY

Both the conventional time-shift-map-based method and sequential JMI are based on an
independent processing strategy, which means the time-lapse changes are obtained by
subtracting the results of independent process on each dataset. Artifacts are often intro-
duced in addition to the real time-lapse changes due to the non-repeatable uncertainties
between different datasets, which are caused by noise, acquisition designs, and indepen-
dent processing steps. For example, in the following three scenarios, this independent
processing strategy fails:

• The acquisition geometries of the monitoring surveys are not repeated very well;

• The acquisition geometries of the monitoring surveys are under-sampled with very
sparse receivers or sources;

• Various processing "tricks" are included inside the independent processing sequence,
such as illumination preconditioning, smoothing of the gradients, advanced opti-
mization methods, etc.

All these scenarios increase the non-repeatable uncertainties during the process of dif-
ferent datasets. In order to relax these rigid requirements, a better processing strategy is
desirable, and this leads to the next chapter.
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2.6. CONCLUSION
In the conventional time-lapse processing workflow, multiple removal from the data is
needed as a preprocessing step. Then an independent imaging process is employed on
each dataset based on the same estimated baseline velocity model. Afterwards, a time-
shift-map-based method is applied to realign the images to compensate the ignored ve-
locity variations between different surveys. However, in practice, we usually are unable
to remove all multiples from the datasets completely and the time-shift-map tool is nor-
mally under the assumption of a local 1D subsurface. Therefore, we propose to use a
better imaging process — JMI — which is able to make use of multiples and at the same
time take velocity variations between surveys into account.

Joint Migration Inversion with its modeling tool Full Wavefield Modeling has been de-
scribed. The main features of JMI are as follows:

• Scale separation of parameters:
Two separate sets of parameters — reflectivity and propagation velocity — have or-
thogonal effects on the modeled data; the reflectivity is responsible for the ampli-
tude effects of the data, and the propagation velocity is responsible for the phase
effects.

• Flexible building block in FWMod (no finite-difference-based methods are used):
It consists of two parts: reflection and transmission at each level and propagation
in-between two consecutive levels. It is quite flexible and can be easily extended to
include more physics, e.g. anisotropy, Q-effects, and elastic amplitudes.

• Transmission effects and internal multiples are included.

• Propagation velocity estimation is automatically included in a fully hands-off man-
ner.

• It is robust to the initial model:
When given the wrong velocity model, JMI always estimates the reflectors at the
most proper depth levels to at least make the near-offset part of data fit well. There-
fore, cycle-skipping effects are suppressed.
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Figure 2.15: Marmousi example: (a) the inverted monitor reflectivity model using FWM
with the baseline velocity model in Figure 2.12(b); (b) the time-variant time-shift map; (c)
and (d) the calculated time-lapse velocity-difference and shifted reflectivity-difference based
on the time-shift map. The positions of the true time-lapse changes are pointed out with
black and white arrows.

Finally, with a complex synthetic example based on the Marmousi model, we demon-
strate that sequential JMI, which utilizes JMI as the time-lapse processing tool, is a better
indicator of the time-lapse effects, compared to the conventional time-shift-map-based
method.
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3
HIGH-RESOLUTION SIMULTANEOUS

JOINT MIGRATION INVERSION

In both the conventional method based on a time-shift map and sequential JMI proposed
in Chapter 2, time-lapse changes are obtained by subtracting the results of independent
process on each dataset. Artifacts are often generated in addition to the actual time-lapse
changes due to the non-repeatable uncertainties between different datasets caused by noise,
acquisition designs, and independent process. Therefore, the currently employed time-lapse
acquisition practice requires to exactly repeat well-sampled geometries to mitigate acquisi-
tion effects on the final time-lapse differences. Moreover, the independent process is always
carefully tailored to maximally reduce the non-repeatable uncertainties during the process-
ing step.

In order to relax these rigid requirements, we propose Simultaneous Joint Migration Inver-
sion (S-JMI) as an effective time-lapse tool for reservoir monitoring, which combines a joint
time-lapse data processing strategy with the Joint Migration Inversion (JMI) method. S-
JMI inverts for both datasets simultaneously and utilizes various constraints on the esti-
mated reflectivities and velocity. As a result, the obtained time-lapse differences have higher
accuracy compared to inverting each dataset separately. S-JMI fits both datasets simulta-
neously and allows the baseline and monitor parameters to communicate and compensate
with each other dynamically during inversion via a user-defined spatial weighting operator,
thus, reducing the non-repeatable uncertainties during the time-lapse process. Moreover, in
order to get more localized velocity differences, we further extend the regular S-JMI to a ro-
bust high-resolution S-JMI (HR-S-JMI) process by using the time-lapse reflectivity-difference
as an extra constraint for the velocity-difference estimation during inversion. This con-
straint makes a link between the reflectivity- and the velocity-difference by exploiting the
relationship between them. We demonstrate the feasibility of the proposed method with a
complex synthetic example based on the same time-lapse models described in Section 2.4.
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3.1. INTRODUCTION
In order to recover time-lapse physical changes (i.e. reflection amplitudes, travel-time),
the most conventional approach is to perform an independent imaging process on each
dataset produced by exactly repeated acquisitions, after multiple removal. Later on, a
time-shift map estimated from the images is used to realign the reflectors, yielding the
final time-lapse differences [1–5].

Joint Migration Inversion (JMI) aims to estimate the reflectivities along with propaga-
tion velocity through a data-fitting process [6–10]. The most straightforward extension of
JMI to the time-lapse case is sequential JMI, which was discussed in Chapter 2. It con-
ducts JMI on the baseline and monitor datasets independently, and the differences of
the two resulting models should reveal the time-lapse changes. The schematic represen-
tations of the conventional time-shift-based approach and sequential JMI were already
shown in Figures 1.4 and 1.6, respectively. Both methods mentioned above are based
on an independent processing strategy. Artifacts are often introduced in addition to the
true time-lapse changes due to the differences of noise, the acquisition design, and the
uncertainties in the process between different datasets. Therefore, in order to mitigate
these non-repeatable effects, the current time-lapse acquisition practice is to exactly re-
peat well-sampled geometries to mitigate acquisition effects on the final time-lapse dif-
ferences [11]. Moreover, some processing "tricks" in the independent process, such as il-
lumination, preconditioning, smoothing of gradients, etc, are always carefully tailored to
maximally reduce the non-repeatable uncertainties [12–14]. However, we usually are un-
able to perfectly reconcile large differences in the acquisitions between different surveys
or fully avoid the uncertainty differences between the independent processes. Therefore,
one important question is: "Is there a better processing strategy which is less sensitive to
these non-repeatable effects?"

Some researchers have already done investigations on the non-repeatability issues.
[15] addressed it by using a joint time-lapse least-squares migration process, which re-
duces the differences of the uncertainties during process by fitting both datasets simul-
taneously. [14, 16, 17] extended this joint strategy to full waveform inversion. [18, 19]
designed a cost-efficient non-repeated time-lapse acquisition, and then proposed to use
a joint recovery scheme based on the curvelet transform to recover the 4D vintages. [20]
proved that, because JMI is an inversion process, the actual locations of the seismic mea-
surements — providing a sufficient illumination of the subsurface with primaries and
multiples is achieved — is not so important, such that the method becomes largely in-
dependent of geometry. In this work, to mitigate the artifacts brought by these non-
repeatable effects, we propose a high-resolution simultaneous JMI (HR-S-JMI) process,
which combines the joint time-lapse strategy with the benefit of JMI, together with vari-
ous constraints helping to get use of all the information and improve the resolution.

This chapter is organized as follows: we begin with the theory of S-JMI, including L2
constraints on both reflectivity- and velocity-differences via a user-defined spatial weight-
ing function. After that, we introduce the theory of high-resolution S-JMI with two ex-
tra constraints on velocities: directional total variation regularization and a time-lapse
reflectivity-difference constraint, which makes a link between reflectivity- and velocity-
difference by constraining the relationship between them. Finally, we demonstrate the
effectiveness of regular S-JMI and HR-S-JMI with a complex synthetic example based on
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the same time-lapse model described in Section 2.4.

3.2. SIMULTANEOUS JMI

We rewrite the objective function 2.9 as:

J J M I = 1

2

∑
ω

∑
shot s

||d− (z0)−p− (z0,r,v) ||22, (3.1)

where p− (z0,r,v) describes the modeled up-going wavefield as a function of r and v. r and
v represent reflectivity and propagation velocity in the whole solution space, respectively.
Their size is (Nx ×Nz ). d− (z0) denotes the recorded wavefield at depth z0.

We proposed a simultaneous JMI method, which combines JMI with a simultaneous
time-lapse processing strategy. Compared to the sequential JMI inverting each dataset se-
quentially, this simultaneous JMI makes it more suitable to handle non-repeatable effects.
The flowchart of simultaneous JMI (S-JMI) is shown in Figure 3.1.

seismic 
vintage #1

R #0

seismic 
vintage #0

V #0 ∆R ∆V

S-JMI

L2 on ∆R

L2 on ∆V

Figure 3.1: The flow chart of regular S-JMI.

In this work, we parameterize the S-JMI algorithm with the baseline reflectivity/velocity
and the time-lapse reflectivity-/velocity-difference. In order to obtain more accurate time-
lapse differences, we also extend it to include L2-norm constraints by minimizing the fol-
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lowing objective function:

JS-J M I = 1

2

∑
ω

∑
shot s

||d− (z0) [T0]−p− (z0,r [T0] ,v [T0]) ||22

+ 1

2

NT −1∑
n=1

∑
ω

∑
shot s

||d− (z0) [Tn]−p− (z0,r [T0]+∆r [Tn] ,v [T0]+∆v [Tn]) ||22

+
NT −1∑
n=1

λ1 [Tn] {||Λr (x, z)∆r [Tn] ||22 +||Λv (x, z)∆v [Tn] ||22},

∆r [Tn] = r [Tn]− r [T0] ,n = 1,2, ..., NT −1,

∆v [Tn] = v [Tn]−v [T0] ,n = 1,2, ..., NT −1,

(3.2)

where Tn represents the calender-time (i.e. acquisition time) of the nth dataset, and NT is
the total number of datasets. In particular, T0 represents the baseline calender-time. The
first two terms in equation 3.2 are re-written from equation 3.1 corresponding to all the
datasets as a function of baseline reflectivity/velocity and time-lapse reflectivity-/velocity-
difference. The third term describes L2-norm constraints on the reflectivity- and velocity-
difference, respectively, where λ1 [Tn] is a weighting parameter. Λr and Λv are spatial
weighting operators, where the values vary between 0 and 1. They are usually derived
from some prior information and indicate where time-lapse variations in the subsurface
model are expected (values close to 0 therefore, less penalized). This constraint makes it
possible for the baseline and monitor parameters to communicate and compensate with
each other during inversion: we impose that the reflectivities and velocities should be al-
most the same outside the area influenced by production, indicated via Λr and Λv being
close to the value 1.

3.3. HIGH-RESOLUTION S-JMI — BRIDGING THE GAP BETWEEN

REFLECTIVITY AND VELOCITY UPDATE
As explained in the theory of JMI, the propagation velocity inverted using JMI can only
explain propagation effects in the data, while the high-frequency components of velocity
are hidden in the reflectivities. Therefore, a high-resolution time-lapse velocity-difference
can not be obtained using regular JMI. However, it is usually a demand. Therefore, we
propose to add two extra constraints to equation 3.2 on baseline velocity and velocity-
difference to get a more localized time-lapse velocity-difference. The flow chart of HR-S-
JMI is shown in Figure 3.2. The new objective function can be formulated as follows:

Jhi g h-r es = JS-J M I

+ {λ2 [T0] ||r [T0]−µ [T0]rest (v [T0]) ||22

+
NT −1∑
n=1

λ2 [Tn] ||∆r [Tn]−µ [Tn]∆rest (∆v [Tn]) ||22},

+ {λ3 [T0] (||∇1v [T0] ||1 +||∇2v [T0] ||1)

+
NT −1∑
n=1

λ3 [Tn] (||∇1∆v [Tn] ||1 +||∇2∆v [Tn] ||1)}.

(3.3)
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The first constraint in this equation helps to make a link between not only baseline reflec-
tivity and velocity, but also time-lapse reflectivity- and velocity-difference. This basically
is a constraint on the relationship between reflectivity and velocity, which can also be ex-
plained as a constraint on density. Note that this constraint was proposed by [21] and we
extend it to a time-lapse application.

Assuming waves are normal-incident to the boundary between different depth levels
and the density is constant, the reflectivities as a function of velocity can be simplified to:

rest (x, zn+1) ' v (x, zn+1)− v (x, zn)

v (x, zn+1)+ v (x, zn)
. (3.4)

By additionally assuming that the horizontal variation of velocity is much smaller than
the vertical variation, a numerical approximation of rest and ∆rest can be obtained from
v and ∆v :

rest (x, zn+1) ∼ {v (x, zn+1)− v (x, zn)}∗ const ant ,

∆rest (x, zn+1) ∼ {∆v (x, zn+1)−∆v (x, zn)}∗ const ant .
(3.5)

As we can see from equation 3.5, the estimated reflectivity rest and reflectivity-difference
∆rest do not contain the scale of the correct reflectivity, therefore, we approximate the
correct scaling µ in equation 3.3 by balancing the energy between the estimated rest and
r, ∆rest and ∆r. Afterwards, we obtain the high-frequency components of velocity and
velocity-difference update from this constraint by taking the numerical integral of {r [T0]−
µ [T0]rest (v [T0])} and {∆r [Tn]−µ [Tn]∆rest (∆v [Tn])} along the z axis with a weighting pa-
rameter λ2 [Tn].

∆R=>∆Vadd

seismic 
vintage #1

R #0

seismic 
vintage #0

V #0 ∆R ∆V

High-resolution S-JMI

L2 on ∆R

L2 on ∆V DTV on ∆V

R=>Vadd

DTV on V

Figure 3.2: The flow chart of HR-S-JMI.

The second constraint in equation 3.3 denotes a directional total variation regular-
ization [22] on the baseline velocity and velocity-difference. This constraint smooths the
model by enhancing the sparsity of the spatial gradient of the velocity, thereby, preserving
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its edges and meanwhile it optimally includes geologic information. ∇1 and ∇2 are the ro-
tated and scaled version of horizontal and vertical gradient operator according to the local
dip and weighting parameter, respectively. λ3 [Tn] controls the strength of the regulariza-
tion. We solve the directional total variation using the split-Bregman iterative algorithm
[23]. Appendix B provides more theoretical details and demonstrates the effectiveness of
the directional total variation regularization with a complex synthetic example.

3.4. EXAMPLE

In order to demonstrate the effectiveness of S-JMI and high-resolution S-JMI as time-lapse
processing tools, we consider the same time-lapse models, geometry settings and param-
eter settings described in Section 2.4. In this section, we show two more strategies: regular
S-JMI and HR-S-JMI, and compare their results with the those from sequential JMI in Sec-
tion 2.4.

The inverted baseline reflectivity and velocity using S-JMI are shown in Figures 3.3(a)
and 3.3(b). Compared to Figures 2.16(a) and 2.16(b), S-JMI achieves better results with less
distortions by making use of both datasets during inversion. From the inverted baseline
results and some information about injection wells, we get to know the approximate posi-
tions of the reservoir and injection point, based on which the spatial weighting operators
used in S-JMI are designed and shown in Figures 3.3(c) and 3.3(d).

In terms of time-lapse differences, much better results are achieved by using S-JMI
for both reflectivity and velocity model shown in Figures 3.3(e) and 3.3(f), when com-
paring them to the results using sequential JMI in Figures 2.16(e) and 2.16(f). The true
reservoir-related time-lapse changes are pointed out with black and white arrows. The
image-difference is very clear and the velocity time-lapse effects can also be distinguished
now, even through their resolution is not as good as the true time-lapse effects. They look
somehow smeared, because the velocity model achieved by the regular S-JMI can only
explain propagation effects in the data. The high-frequency components of velocity are
still hidden in the reflectivities. Still, by observing the good recovery of the reflectivity-
differences, we can tell that the current inverted velocity model is good enough to explain
the propagation effects, which means the vertical integral of this smooth velocity differ-
ence is almost equal to the integral of the true one. Regarding the changes outside the
reservoirs, the small water-layer change is also well-recovered.

The inverted baseline results by using HR-S-JMI are shown in Figures 3.4(a) and 3.4(b).
More fine details can be seen in Figure 3.4(a) due to the link between the velocity and re-
flectivity update together with the directional TV in HR-S-JMI. Because the inverted veloc-
ity using regular S-JMI is already able to explain the propagation effects very well, a veloc-
ity model with fine details does not make an obvious difference to improving the reflec-
tivity result. The inverted time-lapse differences obtained by using HR-S-JMI are shown
in Figures 3.4(c) and 3.4(d). The inverted velocity-difference is more localized compared
to Figure 3.3(e) by exploiting the relationship between the reflectivity- and the velocity-
difference. However, as was mentioned earlier, a more localized velocity-difference does
not make much difference for the improvement of the inverted reflectivity-difference.
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Figure 3.3: Marmousi example: (a) and (b) the inverted baseline velocity and reflectivity
model using regular S-JMI. The improvements compared to Figure 2.16(b) are highlighted
using red arrows; (c) and (d) the spatial weighting operators for velocity and reflectivity; (e)
and (f) the inverted time-lapse velocity- and reflectivity-difference using regular S-JMI. The
positions of the true time-lapse changes are pointed out with black and white arrows.

3.5. DISCUSSION

3.5.1. COMPUTATIONAL REQUIREMENTS

The conventional method based on a time-shift map is the most efficient one. However,
it fails to act as an indicator of the actual velocity-difference. Assuming the amount of
computation efforts of JMI applied to one vintage is K , the computation time of S-JMI
and sequential JMI is around 2K . In the case when more seismic vintages are available,
there is no need to invert all the datasets together. Instead, one high-quality dataset from
a full-field survey can be chosen as the reference baseline dataset for S-JMI to invert si-
multaneously together with the target seismic vintages. This aspect will be discussed with
more details in Chapter 6.
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Figure 3.4: Marmousi example: (a) and (b) the inverted baseline velocity and reflectiv-
ity model using HR-S-JMI; (c) and (d) the inverted time-lapse velocity- and reflectivity-
difference using HR-S-JMI. The positions of the true time-lapse changes are pointed out with
black and white arrows.

3.5.2. CONSTRAINT LINKING REFLECTIVITY AND VELOCITY UPDATE

Regarding the constraint that makes a link between reflectivity and velocity update, there
is one step of approximating the correct scaling µ in equation 3.3. Currently, we simply
calculate it linearly by balancing the energy of the estimated rest and r,∆rest and∆r, which
might lead to an unbalanced velocity contribution. One possible solution is to estimate a
2D spatially varying µ adaptively. More research will be done in the future to make it more
robust.

3.6. CONCLUSION
In order to ensure the success of the conventional method based on a time-shift map
and sequential JMI, the currently employed time-lapse acquisition practice is needed to
exactly repeat well-sampled geometries to mitigate acquisition effects on the final time-
lapse differences. Moreover, the independent process is always carefully tailored regard-
ing some processing "tricks" to maximally reduce the non-repeatable uncertainties to the
maximum. To relax these rigid requirements, a flexible and efficient method is needed.

We proposed a so-called (high-resolution-)S-JMI as a tool for reservoir monitoring.
The simultaneous strategy of S-JMI reduces the non-repeatable uncertainties by fitting
both datasets simultaneously and at the same time allows the baseline and monitor pa-
rameters to communicate and compensate with each other flexibly and dynamically dur-
ing inversion. In order to obtain a more localized time-lapse velocity-difference, we ex-
tend the regular S-JMI to a robust HR-S-JMI process by adding two extra constraints on
the velocity update — a directional total variation constraint and a time-lapse reflectivity-
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difference constraint — during inversion. This time-lapse reflectivity-difference constraint
elegantly connects reflectivity- and velocity-difference update by exploiting the relation-
ship between them during inversion. In the end, one complex synthetic example based
on marmousi model (the same time-lapse models described in Section 2.4) shows that
(HR-)S-JMI is able to reliably recover the time-lapse effects in the reflectivity and velocity
model. In particular, HR-S-JMI is capable of achieving a high-resolution velocity-difference.
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4
A REALISTIC SYNTHETIC EXAMPLE

AND A FIELD DATA EXAMPLE

In this chapter, we demonstrate the effectiveness of high-resolution Simultaneous Joint Mi-
gration Inversion (HR-S-JMI) as a tool for reservoir monitoring with a highly realistic syn-
thetic model based on the Grane field, offshore Norway, and a time-lapse field dataset from
the Troll Field.

In the Grane field numerical example, we first investigate whether various time-lapse ef-
fects in this model, i.e. the reservoir time-lapse changes, the effects due to injection in the
overburden, the weak stress-induced effects over the reservoir, and small water velocity per-
turbation, can be detected with S-JMI. Then, we compare the inverted results using S-JMI
with those using a conventional time-lapse method based on creating a time-shift map and
results from a sequential strategy based on JMI. Furthermore, we show that making a link
between reflectivity and velocity update can help to achieve a more localized velocity update
when there are not enough strong reflections around the target area helping the inversion of
the velocity.

In the field data example based on a set of marine time-lapse data from the Troll Field, we
show the effectiveness of HR-S-JMI in a real case where the repeatability of the time-lapse
datasets is not very good.
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4.1. SYNTHETIC DATA EXAMPLE BASED ON A REALISTIC TIME-
LAPSE MODEL FROM THE GRANE FIELD

4.1.1. AN INTRODUCTION TO THE TIME-LAPSE MODEL
To investigate the feasibility of potential time-lapse inversion methods, [1] designed real-
istic time-lapse models based on the Grane field, offshore Norway provided by Equinor.
In this work, we choose one 2D slice and the chosen time-lapse models are shown in Fig-
ures 4.1. The reflectivity and reflectivity-difference in Figures 4.1(e) and 4.1(f) are calcu-
lated from the density and velocity models. To make the model more realistic, the Vp

model is roughened by adding relative velocity variations obtained from impedance con-
trasts from the seismic images. All the time-lapse effects are based on existing models
and observations, including: production-related changes in the reservoir (gas-oil replace-
ment), a small change in the shallow part of the water column, a local change in the over-
burden caused by waste injection, and a small stress-induced effect (< 5m/s) over the
reservoir. [1] and [2] have already done investigations based on this model. They showed
that full waveform inversion is capable of recovering production-related changes and local
changes caused by waste injection with reasonable accuracy (although with lower resolu-
tion and amplitude than the true one). However, the changes in the water column and the
small stress-induced effects are too small to be reliably recovered.

4.1.2. S-JMI AS AN EFFECTIVE TIME-LAPSE PROCESSING TOOL
The time-lapse datasets are generated via acoustic finite difference (FD) modeling using
both the density and velocity model in Figure 4.1. The middle shot profile from the base-
line and monitor datasets and their corresponding differences are shown in Figure 4.2. As
we have mentioned before, current version of JMI cannot easily handle large-offset data
due to the AVO effects. Therefore, a subset of the datasets with offsets from −2500m to
2500m is used in this example. According to Ocean Bottom Node (OBN) acquisition, the
source spacing is set to 25m and the receiver spacing to 100m, although all the acquisi-
tions were done at the surface. We use a Ricker wavelet with 20H z peak frequency. Initial
reflectivities are zero and the initial velocity model is a very simple vertical gradient with
water-layer information (shown in Figures 4.3). The band-width of frequency during JMI
is 5H z −40H z. In addition, 20% random noise energy is added to the datasets. Table 4.1
shows a list of acquisition and inversion parameters used in the Grane example.

Table 4.1: Grane example: a list of acquisition and inversion parameters.

Modeling
method

Band-
width

Surface/Internal
multiples

Random
noise

Wavelet Source
arrangement

Receiver
arrangement

Other

Acoustic
FD

5 −
40H z

No/Yes 20% Ricker,
20H z
peak freq.

0−9000m with
25m spacing
at z = 0m

0−9000m with
100m spacing
at z = 0m

Only use
offsets upto
±2500m

In this subsection, we compare three strategies: (1) sequential JMI, (2) S-JMI, (3) a
conventional time-lapse strategy based on a time-shift map.

For the first strategy — sequential JMI, the inverted baseline reflectivity and velocity
using JMI are shown in Figures 4.4(a) and 4.4(b). Because of the inversion process in-
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Figure 4.1: Grane example: (a) and (b) true baseline velocity and time-lapse velocity-
difference; (c) and (d) true baseline density and time-lapse density-difference; (e) and (f)
true baseline reflectivity and time-lapse reflectivity-difference.

cluded in JMI, all the inverted images are quite accurate and the estimated velocity mod-
els also exhibit some details. The red-blobs in Figure 4.4(a) are due to the edge effects.
In terms of time-lapse differences, the inverted velocity in Figure 4.4(c) can provide some
time-lapse information, but they are quite noisy. The inverted reflectivity model 4.4(d)
also shows noisy time-lapse effects. For the latter comparison purpose, during this se-
quential JMI process, illumination preconditioning and smoothing of the gradients are
included (results are shown in Figures 4.4(c) and 4.4(d)). As was mentioned before, this
independent strategy is sensitive to various processing "tricks", which increase the uncer-
tainties during process. We show an extra scenario where illumination preconditioning
and smoothing of gradients are excluded during sequential JMI. The results are shown
in Figures 4.4(e) and 4.4(f). It can be seen that more clear time-lapse differences are
achieved.

For the second strategy — S-JMI, the baseline results are shown in Figures 4.5(a) and
4.5(b). Afterwards, from the inverted baseline results and some information about injec-
tion wells, we get to know the approximate position of the reservoir and injection point,
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Figure 4.2: Grane example: the middle shot profile at X = 4500m from the baseline data
(a), from the monitor data (b), and (c) the difference between (a) and (b), displayed with a
different amplitude scale.
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Figure 4.3: Grane example: (a) and (b) initial velocity and reflectivity model.

based on which the spatial weighting operators used in S-JMI are designed and shown
in Figures 4.5(c) and 4.5(d). Despite reservoir changes, we also consider changes due
to pressure perturbation and injection for the velocity spatial weighting operator design.
For the reflectivity model, we use a more strict spatial weight by ignoring them. Regard-
ing the time-lapse differences, by using S-JMI instead of inverting each dataset indepen-
dently, much better results are achieved for both reflectivity and velocity model, shown
in Figures 4.5(e) and 4.5(f). Note that the processing ’tricks’, e.g. illumination precondi-
tioning and smoothing of the gradients, are included in S-JMI. The image-difference in
the reservoir is very clear with reliable amplitudes located at the correct position, which
means the travel-time (propagation) has been well explained via the velocity update. The
production-related velocity changes in the reservoir, local changes in the overburden due
to injection, and water-layer changes are all reasonably recovered, albeit not with as good
resolution and amplitude as the true time-lapse effects. They look somewhat smeared, be-
cause there are no strong reflections helping to make the velocity update localized, while
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Figure 4.4: Grane example: (a) and (b) the inverted baseline velocity and reflectivity us-
ing sequential JMI; (c) and (d) the inverted time-lapse velocity- and reflectivity-difference
using sequential JMI including illumination preconditioning and smoothing of gradients;
(e) and (f) the inverted time-lapse velocity- and reflectivity-difference using sequential JMI
excluding illumination preconditioning and smoothing of gradients.

the velocity parameter can only explain propagation effects in the data. The current in-
verted velocity model is good enough to explain the propagation effects, which means the
vertical integral of this smooth velocity difference is almost equal to the integral of the true
one. Besides, the small stress-induced effect over the reservoir is mixed with the unlocal-
ized reservoir-related time-lapse changes and cannot be distinguished.

Now, we show the third strategy — the conventional time-lapse strategy based on a
time-shift map. The monitor image is inverted using FWM with the same baseline ve-
locity model inverted using JMI shown in Figure 4.4(a). This inverted monitor image in
Figure 4.6(a) and the inverted baseline image in Figure 4.4(b) are then used to calculate
the time-shift map, which is shown in Figure 4.6(b). Finally, the velocity difference can
be calculated from this time-shift map and is shown in Figure 4.6(c). It can be seen that
this velocity-difference is a very coarse indicator of the actual velocity changes with low
resolution and accuracy. The shifted image difference realigned with the time-shift map is
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Figure 4.5: Grane example: (a) and (b) the inverted baseline velocity and reflectivity using
S-JMI; (c) and (d) the spatial weighting operators for velocity and reflectivity; (e) and (f) the
inverted time-lapse velocity- and reflectivity-difference using S-JMI.

shown in Figure 4.6(d). We can see that the shifted time-lapse image difference is of quite
good quality, because this time-lapse model satisfies the "1D assumption" requirement of
this conventional method based on the time-shift map. To some extent, the conventional
method serves its purpose, as it is able to indicate the time-lapse reflectivity difference
as well as S-JMI. However, it fails to indicate the time-lapse velocity change accurately.
Therefore, S-JMI is a more effective tool for reservoir monitoring compared to the con-
ventional time-shift strategy.

4.1.3. MORE LOCALIZED TIME-LAPSE CHANGES BROUGHT BY HIGH-RESOLUTION

S-JMI
As we have seen from the previous subsection, in S-JMI, the velocity can only explain prop-
agation effects in the data and look somehow smeared, the high-frequency components
of velocity are hidden in the reflectivities. However, for time-lapse processing workflow,
high-resolution time-lapse velocity difference is usually a demand.

Therefore, in this subsection, we will show that HR-S-JMI, which connects the reflectivity-
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Figure 4.6: Grane example: results using the conventional time-shift-based method: (a)
the inverted monitor reflectivity model using FWM with the baseline velocity model in
Figure 4.4(a); (b) the estimated time-shift map from the inverted images in Figures 4.6(a)
and 4.4(b); (c) and (d) the calculated time-lapse velocity-difference and shifted reflectivity-
difference based on the time-shift map.

and velocity-difference by exploiting the relationship between them, can lead to a high-
resolution time-lapse velocity. In the Grane model, there are insufficient strong reflections
around the target area so it is difficult to obtain a localized velocity-difference using the
regular S-JMI.

The inverted baseline results by using HR-S-JMI are shown in Figures 4.7(a) and 4.7(b).
More fine details can be seen in Figure 4.7(a) due to the link between the velocity and re-
flectivity updates together with the directional Total Variation regularization in HR-S-JMI.
Regarding the inverted reflectivity, since the inverted velocity using regular S-JMI is al-
ready able to explain the propagation effects very well, an inverted velocity model with
fine details does not obviously improve the reflectivity result. The inverted time-lapse dif-
ferences obtained by using HR-S-JMI are shown in Figures 4.7(c) and 4.7(d). The inverted
velocity-difference has higher resolution compared to Figure 4.5(e). Figures 4.8 shows a
comparison of velocity-difference using different methods at two different lateral loca-
tions, X = 3100m and X = 4700m. We can see that the inverted velocity-difference using
regular S-JMI (red line) looks smeared compared to the true differences (blue line). By
linking the baseline reflectivity and velocity, reflectivity- and velocity-difference, HR-S-JMI
leads to higher-resolution results (yellow line). However, as was mentioned before, a more
localized velocity-difference does not make much difference for the inverted reflectivity-
difference.
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Figure 4.7: Grane example: (a) and (b) the inverted baseline velocity and reflectivity using
HR-S-JMI; (c) and (d) the inverted time-lapse velocity- and reflectivity-difference using HR-
S-JMI.
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Figure 4.8: Grane example: comparison of the inverted velocity-difference using different
methods at (a) X = 3100m and (b) X = 4700m.

4.2. FIELD DATA EXAMPLE BASED ON THE MARINE TIME-LAPSE

DATASETS OF THE TROLL FIELD
In this section, with one field data example based on a set of marine time-lapse datasets
from the Troll Field provided by Equinor, we will show the feasibility of the proposed
method in a real case, where the repeatability of the time-lapse datasets is not very good.

The offshore Troll Field is located west of Norway. In this example, only a part from
the available seismic survey is selected. A 2D baseline streamer survey was acquired in
1997 (Figure 4.9(a)) and its response is compared to a 2D monitor streamer survey ac-
quired in 2002 (Figure 4.9(b)). The difference of seismic records between the two surveys
is displayed in Figure 4.9(c). First of all, several preprocessing steps are applied to both
datasets. One of these steps is near-trace interpolation using the parabolic Radon trans-
formation [3]. The near-offset gap to be interpolated was approximately 85m. Another
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Figure 4.9: Troll example: a seismic record from the baseline data (a), same seismic record
from the monitor data (b), and (c) the data difference between (a) and (b).
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preprocessing step is pre-stack surface-related multiple elimination to reduce interfering
multiples with reservoir reflections [4]. In addition, both source and receiver spacing is
regularized to 12.5m for the streamer surveys, such that split-spread shot records can be
constructed. In this example, however, only the sub-datasets with a source spacing of 50m
are used for the inversion in order to accelerate the calculation. Note that we can see that
there are high values almost everywhere in the data difference in Figure 4.9(c), and it is
hard to distinguish where the time-lapse effects from the reservoir-related region, which
means that the non-repeatability introduced by acquisition or preprocessing is quite an
issue.
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Figure 4.10: Troll example: (a) and (b) the initial velocity and reflectivity model.

The initial velocity model is estimated using NMO analysis (Figure 4.10(a)) and the ini-
tial reflectivities are zero (Figure 4.10(b)). The stack image in time from the baseline data
based on the initial velocity is shown in Figure 4.11(a) and its corresponding difference
with the monitor stack image is shown in Figure 4.11(b). The time-lapse changes on the
stack image-difference are also not very obvious due to the non-repeatability issue. Ac-
cording to [5], there is one hydrocarbon and water contact around 1.7s, which is pointed
by a black arrow in Figure 4.11(b). This hydrocarbon is gas with an underlying oil leg vary-
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Figure 4.11: Troll example: (a) the baseline stack image in time and (b) its corresponding
time-lapse difference. The arrow indicates the reservoir.

ing in thickness from 0 to 28m. The wavelet spectrum used in the inversion is estimated
by summing together all the shot gathers at k = 0 in the f-k domain. The band-width of
frequency during S-JMI is 5H z −40H z.

The inverted baseline velocity and reflectivities are shown in Figures 4.12(a) and 4.12(b).
Because of the inversion process included in JMI, the inverted image is quite accurate,
even though there are some distortions near the boundaries because of the aperture ef-
fect. Due to making a link between the reflectivity and velocity update, the estimated ve-
locity models also exhibit some details. From the inverted baseline results and some prior
information, we get to know the approximate position of the reservoir, based on which the
spatial weighting operators used in S-JMI are designed and shown in Figures 4.13(a) and
4.13(b). The final inverted time-lapse differences are shown in Figures 4.14(a) and 4.14(b).
Both the time-lapse reflectivity and velocity are reasonably recovered. The reflectivity dif-
ference is very clear and the velocity time-lapse effect can also be clearly distinguished.
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Figure 4.12: Troll example: (a) and (b) the inverted baseline velocity and reflectivities. The
arrow indicates the reservoir.

Note that the conventional time-lapse strategy based on a time-shift map, such as
demonstrated in Figure 2.13, was also applied to these data, however, it was not working
due to the severe acquisition and pre-processing discrepancy.

4.3. CONCLUSION

We show one realistic synthetic example and one field data example to demonstrate the
effectiveness of HR-S-JMI as a tool for reservoir monitoring. Regarding the realistic syn-
thetic example, we use a synthetic time-lapse model based on the Grane field offshore
Norway. HR-S-JMI is able to reliably recover the time-lapse effects in the reflectivity model
and also get a high-resolution inverted time-lapse velocity-difference. Regarding the field
data example, a set of marine field data from the Troll Field in the North Sea is used. Both
the time-lapse reflectivity- and velocity-difference are reasonably recovered via HR-S-JMI,
even though the repeatability of these time-lapse datasets is not good.
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Figure 4.13: Troll example: (a) and (b) the spatial weighting functions for velocity and re-
flectivities during S-JMI.
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5
FEASIBILITY AND ROBUSTNESS

STUDY

In the previous chapters, high-resolution Simultaneous Joint Migration Inversion (HR-S-
JMI), which combines a simultaneous time-lapse data processing strategy with the Joint
Migration Inversion method, has been proposed as an effective time-lapse processing tool
for reservoir monitoring. In order to investigate the feasibility of using HR-S-JMI in practice,
some numerical experiments are conducted to test the dependence of HR-S-JMI on the qual-
ity of the time-lapse datasets including the following aspects: noise, including random noise
and coherent noise caused by the acoustic assumption; the quality of time-lapse surveys, in-
cluding sparse surveys, non-repeated surveys, and Ocean Bottom Node (OBN) vs streamer
(sparse and non-repeated time-lapse surveys); non-repeated sources, including source po-
sitioning errors and non-repeated source wavelets. Moreover, its robustness to the L2-norm
constraints based on spatial weighting operators and sensitivity to weak time-lapse effects
are also tested.

All the experiments are carried on with a highly realistic synthetic time-lapse model based
on the Grane field offshore Norway described in Section 4.1.
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5.1. NOISE
In this section, two experiments are employed to investigate whether HR-S-JMI is robust
enough to handle two types of noise: random noise and coherent noise caused by the
acoustic assumption in JMI.

5.1.1. RANDOM NOISE
The time-lapse datasets are generated via acoustic finite difference (FD) modeling using
both the density and velocity model shown in Figure 4.1. The associated acquisition and
inversion settings are listed in Table 5.1 and the initial models were already shown in Fig-
ure 4.3. Random noise is added with random amplitude and phase in the frequency do-
main. The noise level can be expressed as the overall energy ratio between the noise and
signals of the entire shot gather:

Noi sel evel =
∑N−1

i=0

∑M−1
j=0 n2

i , j∑N−1
i=0

∑M−1
j=0 d 2

i , j

·100%, (5.1)

where M and N are the numbers of traces and shots respectively, and n2
i , j and d 2

i , j are

the noise energy and signal energy of i th shot and j th trace. The following noise levels
are considered in this experiment: 20%, 60%, 100%, and 200%. Figure 5.1 displays a near-
offset trace of baseline and monitor data difference with different random noise energy.
Figure 5.2 shows the final inverted baseline results using HR-S-JMI. Because of the inver-

Table 5.1: Random noise: a list of acquisition and inversion parameters.

Modeling
method

Band-
width

Surface/Internal
multiples

Random
noise

Wavelet Source
arrangement

Receiver
arrangement

Other

Acoustic
FD

5 −
40H z

No/Yes 20%,
60%,
100%,
200%

Ricker,
20H z
peak freq.

0−9000m with
25m spacing
at z = 0m

0−9000m with
100m spacing
at z = 0m

Only use
offsets upto
±2500m

sion process included in JMI, all the inverted results capture the main geological features
and the artifacts introduced by the random noise are barely visible. The time-lapse re-
flectivity and velocity changes are shown in Figure 5.3. It can be seen that HR-S-JMI is
very robust to random noise, although the resulting differences are contaminated by the
noise in proportion to its energy level. In particular, HR-S-JMI is able to give reasonable
time-lapse differences, even when the random noise energy is twice as the signal energy
(200%) being shown in Figures 5.3(g) and 5.3(h). Its robustness to the random noise can
be attributed to both the inversion process in JMI and the simultaneous strategy, which
gets use of all the datasets during inversion.

5.1.2. COHERENT NOISE CAUSED BY THE ACOUSTIC ASSUMPTION
In this experiment, the impact of coherent noise caused by the acoustic assumption on
the effectiveness of HR-S-JMI is tested. The time-lapse datasets are generated via elastic
finite difference modeling using both the density, P-wave velocity, and S-wave velocity.
The density and P-wave velocity models were already shown in Figures 4.1(a)-4.1(d). The
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Figure 5.1: Random noise: a near-offset trace of the difference between baseline and monitor
datasets, with 0%, 20%, 60%, 100%, and 200% random noise energy.

S-wave velocity and S-wave velocity-difference are shown in Figure 5.4. Figure 5.5 dis-
plays a near-offset trace of clean elastic and acoustic modeled data difference, and elastic
data difference with 20% random noise energy. We can see a small amplitude misfit be-
tween acoustic and elastic data difference and this small misfit is overwhelmed by the 20%
random noise. The related acquisition and inversion settings are listed in Table 5.2. The
time-lapse reflectivity and velocity changes inverted using HR-S-JMI with the acoustic as-
sumption are shown in Figure 5.6, which are almost as good as the results from acoustic
data in Figures 5.3(a) and 5.3(b). Therefore, HR-S-JMI is robust to the mild coherent noise
caused by the acoustic assumption in this example.

Table 5.2: Coherent noise: a list of acquisition and inversion parameters.

Modeling
method

Band-
width

Surface/Internal
multiples

Random
noise

Wavelet Source
arrangement

Receiver
arrangement

Other

Elastic
FD

5 −
40H z

No/Yes 20% Ricker,
20H z
peak freq.

0−9000m with
25m spacing
at z = 0m

0−9000m with
100m spacing
at z = 0m

Only use
offsets upto
±2500m

5.2. QUALITY OF TIME-LAPSE SURVEYS
In this section, three experiments regarding the quality of the time-lapse monitoring sur-
veys are conducted to investigate the ability of HR-S-JMI to handle sparse surveys, non-
repeated surveys (interleaved surveys), and different types of surveys — OBN vs streamer,
which is sparse and at the same time non-repeated monitoring.
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Figure 5.2: Random noise: the inverted baseline velocity and reflectivity model from the
datasets with 20% (a) and (b), 60% (c) and (d), 100% (e) and (f), 200% (g) and (h) random
noise energy level.

5.2.1. SPARSE SURVEYS

Sparse spatial survey design is usually desired in the context of frequent monitoring due to
its cost-effectiveness. In this experiment, we assume both baseline and monitor datasets
are generated with a source spacing as 50m and receiver spacing as 200m. Compared
to the previous experiments, only one fourth of the datasets remains used. The related
acquisition and inversion settings are shown in Table 5.3.

The baseline inverted results using HR-S-JMI starting from the initial models in Fig-
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Figure 5.3: Random noise: the inverted time-lapse velocity- and reflectivity-differences from
the datasets with 20% (a) and (b), 60% (c) and (d), 100% (e) and (f), 200% (g) and (h) ran-
dom noise energy level.

ures 4.3 are shown in Figures 5.7(a) and 5.7(b). Most geological features are reasonably
captured. Compared to the results using dense data in Figures 5.2(a) and 5.2(b), the in-
verted velocity model is noisier and the inverted reflectivities have weaker amplitude and
are less focusing due to insufficient illumination. The final time-lapse differences are
shown in Figures 5.7(c) and 5.7(d). It can be seen that the reservoir-related time-lapse
effects and the local change due to injection are all very well recovered. However, some ar-
tifacts due to the sparsity of data are visible, although they are not strong enough to cover
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Table 5.3: Sparse surveys: a list of acquisition and inversion parameters.

Modeling
method

Band-
width

Surface/Internal
multiples

Random
noise

Wavelet Source
arrangement

Receiver
arrangement

Other

Acoustic
FD

5 −
40H z

No/Yes 20% Ricker,
20H z
peak freq.

0−9000m with
50m spacing
at z = 0m

0−9000m with
200m spacing
at z = 0m

Only use
offsets upto
±2500m
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Figure 5.4: Coherent noise: (a) and (b) the true baseline S-wave velocity and S-wave velocity-
difference.
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Figure 5.5: Coherent noise: a near-offset trace of clean elastic and acoustic modeled data
difference and elastic data difference with with 20% random noise energy.

up the actual time-lapse effects. Therefore, HR-S-JMI is very robust to sparse time-lapse
acquisition surveys, which makes a valuable feature for frequent monitoring.

5.2.2. NON-REPEATED SURVEYS

In this subsection, the robustness of HR-S-JMI to mild non-repeatability issue of time-
lapse surveys is tested. Both baseline and monitor datasets are generated with a source
spacing as 25m and receiver spacing as 100m. However, the first receiver of the baseline
starts at x = 0m, while the first receiver of the monitor starts at x = 50m. In this case,
the illumination of both surveys are almost the same. This type of monitoring surveys is
termed interleaved surveys. Please note that the interleaved surveys may not be realistic in
this case, assuming that receivers are permanently deployed, however, it still helps to show
the idea that HR-S-JMI is suitable to the case of non-repeated geometries. The related
acquisition and inversion settings are shown in Table 5.4. Figure 5.8 shows the inverted
time-lapse changes based on interleaved monitoring surveys, which are almost as good as
using repeated surveys in Figures 5.3(a) and 5.3(b). Therefore, HR-S-JMI is able to handle
the datasets from moderately changed monitoring geometries, in which the illuminations
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Figure 5.6: Coherent noise: (a) and (b) the inverted time-lapse velocity- and reflectivity-
difference from data modeled with elastic finite difference modeling.
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Figure 5.7: Sparse surveys: (a) and (b) the inverted baseline velocity and reflectivity model;
(c) and (d) the inverted time-lapse velocity- and reflectivity-difference.

of both surveys are similar.

5.2.3. SPARSE AND NON-REPEATED SURVEYS — OBN VS STREAMER
In this experiment, we show a specific case of sparse and non-repeated surveys — Ocean
Bottom Node (OBN) vs streamer acquisition. For the baseline survey, which is designed
according to sparse OBN survey, the receivers are employed on the ocean-bottom (z =
120m) with a spacing of 200m and sources are on the surface (z = 0m) with a spacing of
50m. For the monitor survey based on a streamer survey, both receivers and sources are
located on the surface (z = 0m) with a spacing of 50m. Note that, the sources are designed
in the same way in both surveys.

In order to minimize the influence of acquisition geometry discrepancy during pro-
cess, we first forward-propagate the sources to the ocean-bottom level (virtual sources
are on the ocean-bottom level now) and back-propagate the measured wavefields from
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Table 5.4: Interleaved surveys: a list of acquisition and inversion parameters.

Modeling
method

Band-
width

Surface/Internal
multiples

Random
noise

Wavelet Source ar-
rangement

Receiver
arrangement

Other

Acoustic
FD

5 −
40H z

No/Yes 20% Ricker,
20H z
peak freq.

0−9000m with
25m spacing
at z = 0m

baseline:
0−8900m
with 100m
spacing at
z = 0m;
monitor:
50−8950m
with 100m
spacing at
z = 0m

Only use
offsets upto
±2500m

Table 5.5: OBN vs streamer: a list of acquisition and inversion parameters.

Modeling
method

Band-
width

Surface/Internal
multiples

Random
noise

Wavelet Source
arrangement

Receiver
arrangement

Other

Acoustic
FD

5 −
40H z

No/Yes 20% Ricker,
20H z
peak freq.

0−9000m with
50m spacing
at z = 0m

baseline:
0−9000m with
200m spacing
at z = 120m;
monitor:
0−9000m with
50m spacing
at z = 0m

Only use
offsets upto
±2500m

the streamer survey to the ocean-bottom level as well (virtual receivers are on the ocean-
bottom level now). Now, both (virtual) receivers and (virtual) sources are on the ocean-
bottom level. Next, we extract a subset out of the dataset acquired from the streamer
survey to make it have the same geometry as the OBN survey, in which receiver spacing
is 200m. Note that it is not necessary for this subset to share exactly the same geome-
try as the sparse survey, since HR-S-JMI is able to handle the time-lapse datasets from
moderately changed monitoring geometries, like the interleaved surveys discussed earlier.
Meanwhile, in order to get use of the extra illumination provided by the denser streamer
survey, we also input the full dataset acquired from streamer survey as a reference dataset
during simultaneous inversion of HR-S-JMI. The final inverted baseline results and time-
lapse differences are shown in Figure 5.9. Because of the sufficient illumination provided
by the streamer survey, the inverted baseline results in Figures 5.9(a) and 5.9(b) are quite
accurate. The velocity difference, being shown in Figure 5.9(c), is reasonably recovered.
However, the local change due to injection is overwhelmed by the artifacts caused by non-
repeatability of surveys. Regarding the time-lapse image difference in Figure 5.9(d), it is
quite clear and focused. Thus, the inverted velocity-difference, though being noisy, is good
enough to explain the travel-time difference between two surveys. Therefore, it can be ex-
pected that HR-S-JMI can deliver reliable time-lapse changes even when the baseline and
monitor datasets are acquired from different types of surveys — OBN vs streamer.
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Figure 5.8: Interleaved surveys: (a) and (b) the inverted time-lapse velocity- and reflectivity-
difference.
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Figure 5.9: OBN vs streamer: (a) and (b) the inverted baseline velocity and reflectivity model;
(c) and (d) the inverted time-lapse velocity- and reflectivity-difference.

5.3. NON-REPEATED SOURCES
In this section, we focus on the performance of HR-S-JMI in two scenarios when the
sources are not fully repeated: source positioning errors and non-repeated source wavelets.

5.3.1. SOURCE POSITIONING ERRORS

In practice, the source/receiver positions are not always correctly measured during ac-
quisition by GPS equipment. Small positioning deviations are expected during a typical
time-lapse monitoring surveys [1]. In this experiment, the time-lapse surveys are designed
based on OBN, in which the positions of receivers are fixed and well-measured. We as-
sume the baseline survey positioning is well-done, however, the source positioning of the
monitor survey is randomly perturbed by x =−5m, 5m or 0m. The rest of the acquisition
and inversion settings is the same as those in Section 4.1, which was already shown in Ta-
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ble 4.1. Compared to the resulting differences without source positioning errors shown
in Figures 5.3(a) and 5.3(b), the final inverted time-lapse differences, being shown in Fig-
ure 5.10, are almost of the same quality, only some weak artifacts introduced by the as-
sumed unknown positioning errors can be seen. Therefore, HR-S-JMI is able to deliver
good results when there exist small source positioning errors during monitoring.
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Figure 5.10: Source positioning error: (a) and (b) the inverted time-lapse velocity- and
reflectivity-difference.
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Figure 5.11: Non-repeated wavelets: the source wavelets for the baseline and monitor sur-
veys.

5.3.2. NON-REPEATED SOURCE WAVELETS

During actual time-lapse monitoring, the source wavelet is possibly different from survey
to survey. In this experiment, we focus on the impact of source wavelet discrepancy on
the performance of HR-S-JMI. For both surveys, the source wavelets are a Ricker wavelet
with a dominant frequency of 20H z. However, for the baseline, the wavelet has no phase
rotation. For the monitor survey, the Ricker wavelet has 40o phase rotation. Both wavelets
are shown in Figure 5.11. The related acquisition and inversion settings are listed in Ta-
ble 5.6. Assuming both wavelets are known and correctly input into a HR-S-JMI process,
the inverted time-lapse changes are shown in Figures 5.12(a) and 5.12(b). We can see that
the source wavelet discrepancy does not affect the time-lapse results, as long as the cor-
rect wavelets are used in HR-S-JMI. However, when we assume baseline wavelet is correct,
but a wrong monitor source wavelet (regular Ricker wavelet with no phase rotation) is
used, HR-S-JMI fails to detect the time-lapse effects properly and the artifacts caused by
incorrect source wavelet are fixed up with the actual time-lapse changes, being shown in
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Figures 5.12(c) and 5.12(d). Therefore, the source wavelet discrepancy does not affect the
effectiveness of HR-S-JMI, as long as the correct source wavelet is used for each survey.

Table 5.6: Non-repeated wavelets: a list of acquisition and inversion parameters.

Modeling
method

Band-
width

Surface/Internal
multiples

Random
noise

Wavelet Source
arrangement

Receiver
arrangement

Other

Acoustic
FD

5 −
40H z

No/Yes 20% Ricker,
20H z
peak freq.
with
baseline:
0o phase
rotation;
monitor:
40o

phase
rotation

0−9000m with
25m spacing
at z = 0m

0−9000m with
100m spacing
at z = 0m

Only use
offsets upto
±2500m
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Figure 5.12: Non-repeated wavelets: (a) and (b) the inverted time-lapse velocity- and
reflectivity-difference, assuming both wavelets are known and correctly input into a HR-
S-JMI process; (c) and (d) the inverted time-lapse velocity- and reflectivity-difference, as-
suming the baseline wavelet is correct, although a wrong monitor source wavelet is used.

5.4. ROBUSTNESS TO THE L2-NORM CONSTRAINTS BASED ON

SPATIAL WEIGHTING OPERATORS
In this section, we investigate the impact of different spatial weighting operators in the
L2-norm constraints of HR-S-JMI (the third term in Equation 3.2) on the final time-lapse
results. The operators used in Section 4.1 were already shown in Figures 4.5(c) and 4.5(d).



5

76 5. FEASIBILITY AND ROBUSTNESS STUDY

We then design a bank of spatial weighting operators with higher level of relaxation for
velocity-/reflectivity-difference, which are shown in Figure 5.13. It can be seen that the
level of relaxation increases from Figures 5.13(a),5.13(b) to Figures 5.13(g),5.13(h). In par-
ticular, for the spatial weighting operators in Figures 5.13(g),5.13(h), both operators are
unity, which means there is no prior information provided in this case. 20% random noise
is included in both datasets. The final time-lapse differences corresponding to these spa-
tial weighting operators are shown in Figure 5.14. We can see that the L2-norm constraints
based on the spatial weighting operators do help the imaging/inversion and result in less
noisy time-lapse differences by importing prior information via the L2-norm constraints.
Because they allow the baseline and monitor parameters to communicate with each other
by imposing that the parameters should be similar outside the target area influenced by
production or injection. When the spatial weighting operators are relaxed, HR-S-JMI re-
mains effective. In particular, even when there is no prior information available, which
is shown in Figures 5.14(g) and 5.14(h), HR-S-JMI still provides much better results com-
pared to the results based on the sequential JMI (in Figures 4.4(c)-4.4(f). Therefore, the
effectiveness of HR-S-JMI does not depend on the spatial weighting operators used in the
L2-norm constraints, however, a relaxed version of the L2-norm constraints based on prior
information is recommended in order to achieve less noisy time-lapse changes, especially
for the velocity change estimation.

5.5. SENSITIVITY TO WEAK TIME-LAPSE EFFECTS
In some real-life time-lapse situations, time-lapse effects could be much weaker than the
ones in the Grane model being shown in Figure 4.1. In this section, we will demonstrate
to what extend HR-S-JMI is able to detect weak time-lapse differences. In order to do so,
based on the Grane model in Figure 4.1, we define four weaker velocity and density dif-
ferences, in which the values are 80%, 60%, 40%, and 20% of the original differences, re-
spectively. The associated reflectivity differences are calculated from the new velocity and
density differences. One near-offset trace of the set of new velocity differences is shown
in Figure 5.15. For the last scenario (20% of the original differences), the highest absolute
value is only 35.18m/s. 20% random noise is included in both datasets. By using HR-S-
JMI, the final time-lapse differences are shown in Figure 5.16. Note that the clipping of the
figures is also adjusted proportionally. When the model difference is 80%, 60%, and 40% of
the original one, both velocity and reflectivity differences are reliably detected, shown in
Figures 5.16(a)-5.16(e). In the case when the difference is only 20% of the original one, the
velocity difference in Figure 5.16(g) is quite noisy, though it is good enough to explain the
small travel-time difference because the inverted image difference is very well recovered,
being shown in Figure 5.16(h). Therefore, HR-S-JMI has good sensitivity to weak time-
lapse effects. It functions reliably even in the case when the maximum value of velocity
change is around ±35m/s.

5.6. CONCLUSION
In this chapter, several numerical experiments based on the Grane field, offshore Norway
are carried on to investigate the feasibility of using HR-S-JMI in some scenarios, where
the quality of the time-lapse surveys or datasets is not perfect. The experiments take the
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Figure 5.13: Robustness to spatial weighting operators: a bank of spatial weighting opera-
tors with different level of relaxation, which are designed based on prior information. The
level of relaxation increases from (a),(b) to (g),(h); in particular, in (g) and (h), both spatial
weighting operators are unity, which means there is no prior information provided.

following aspects into account:

• Random noise;

• Coherent noise caused by the acoustic assumption;

• Sparse surveys;
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Figure 5.14: Robustness to the choice of the spatial weighting operators: the inverted time-
lapse velocity- and reflectivity-differences corresponding to the spatial weighting operators
shown in Figure 5.13.

• Non-repeated surveys;

• Different types of surveys: OBN vs streamer;

• Source positioning errors;

• Non-repeated source wavelets;

• Robustness to the L2-norm constraints;
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Figure 5.15: Sensitivity to weak time-lapse effects: one near-offset trace of the velocity differ-
ence, in which the values are 80%, 60%, 40%, and 20% of the original one.

• Sensitivity to weak time-lapse effects.

HR-S-JMI is very robust to random noise and coherent noise caused by acoustic as-
sumption. Regarding the time-lapse survey design, HR-S-JMI is able to deliver reliable
time-lapse differences when the surveys are sparse or mildly changed during monitor-
ing. Moreover, it can be expected that HR-S-JMI inverts reasonably accurate time-lapse
changes even when the baseline and monitor datasets are acquired from different types
of surveys — OBN vs streamer. When there exist small errors during source position mea-
surements, the inverted results by using HR-S-JMI are almost as good as the error-free
case. The source wavelet discrepancy between surveys does not affect the effectiveness of
the method, as long as the correct source wavelet is used for each survey. Furthermore,
the method remains effective when the spatial weighting operators in the L2-norm con-
straints are largely relaxed, however, a relaxed version of the L2-norm constraints based
on prior information is recommended in order to achieve less noisy time-lapse changes.
In the end, HR-S-JMI has the ability to detect weak time-lapse changes. It provides reli-
able results even in the case when the maximum value of time-lapse velocity-difference is
around ±35m/s.
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Figure 5.16: Sensitivity to weak time-lapse effects: the inverted time-lapse velocity- and
reflectivity-differences, in which the values are 80% (a) and (b), 60% (c) and (d), 40% (e)
and (f), and 20% (g) and (h) of the original one. Note that the clipping of the figures is also
adjusted proportionally.
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S-JMI WITH CALENDER-TIME

CONSTRAINTS AS A PROCESSING

TOOL FOR SEMI-CONTINUOUS

SURVEYS

Nowadays, in order to get a better understanding of the dynamic time-lapse changes, fre-
quent seismic monitoring is necessary, although it will generate a considerable cost increase.
Therefore, low-cost frequent monitoring, e.g. sparse and/or non-repeated surveys, is desired.
However, most imaging/inversion methodologies are based on repeated and dense moni-
toring acquisition geometries. As was discussed in the previous Chapters, Simultaneous
Joint Migration Inversion (S-JMI), as an effective time-lapse tool for reservoir monitoring,
combines a simultaneous time-lapse processing strategy with the Joint Migration Inversion
(JMI) method. It is largely independent of the utilized acquisition geometry, e.g. sparse and
non-repeated monitoring surveys. This feature makes it suitable for inexpensive frequent
monitoring surveys. Therefore, we propose to use S-JMI for the datasets acquired from in-
expensive semi-continuous time-lapse monitoring surveys, which are based on a so-called
instantaneous 4D (i4D) survey technology. In the i4D technology, inexpensive localized and
sparse surveys, termed i4D surveys, are employed between the conventional full-field sur-
veys. This technology can be treated as a special case of changing geometries during moni-
toring. In this case, the simultaneous strategy of S-JMI allows the full-field survey informa-
tion to compensate the poor illumination of the sparse i4D surveys during process. Further-
more, we propose to apply extra constraints on the reflectivity- and velocity-differences be-
tween the baseline and monitors along the calendar-time axis, termed calendar-time con-
straints. These constraints take advantage of the feature that time-lapse effects develop al-
most continuously along the calendar-time axis during semi-continuous monitoring. With
a complex synthetic example based on the Marmousi model, we demonstrate that S-JMI is
a promising tool to process datasets from the semi-continuous monitoring surveys based on
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the i4D survey technology. We also show that the extra calender-time constraints signifi-
cantly improve the quality of time-lapse effects. Finally, we compare the time-lapse results
assuming all the monitor datasets are available to those results where only the datasets up
to the current one are used.

6.1. INTRODUCTION
In order to get a better understanding of the dynamic time-lapse changes, frequent seis-
mic monitoring is necessary [1]. Most time-lapse processing methodologies, e.g. the con-
ventional method based on a time-shift map and sequential JMI described in Chapter 2,
are based on repeated and dense monitoring acquisition geometries. However, such suffi-
cient monitoring surveys are normally unaffordable. Therefore, two important questions
are: "Do we need to reacquire seismic data in exactly the same way in order to address
time-lapse differences?", and "Do we require the time-lapse acquisitions with dense re-
ceiver/source sampling?"

For the first question, we propose to reverse the argument: by changing the acqui-
sition geometry during the monitoring, we obtain more information on the subsurface.
[2, 3] and [4] demonstrated that if time-lapse acquisitions are done with designed non-
repeatable acquisition, a better time-lapse response will be provided. Some researchers
have already done investigations on the non-repeatability issue. [5–7] addressed it by us-
ing a joint time-lapse processing strategy. [8] proved that, because JMI is an inversion
process, the actual locations of the seismic measurements — providing a sufficient illumi-
nation of the subsurface with primaries and multiples is achieved — is not so important,
such that the method becomes largely independent of geometry. They show that small
time-lapse effects are successfully recovered from a strongly scattering overburden when
there exists a non-repeatability issue, based on a sequential time-lapse strategy. Further-
more, in Chapter 3, simultaneous JMI (S-JMI) was proposed, which combines the joint
time-lapse strategy with the benefit of JMI, to relax the rigid requirements of monitoring
surveys. The experiments in Chapter 5 have shown that S-JMI does not require dense ge-
ometry sampling or exactly repeated geometries during monitoring. This leads to the an-
swer of the second question: S-JMI is able to handle time-lapse datasets generated from
sparse surveys. Therefore, the capability of handling sparse and non-repeated surveys
makes S-JMI a promising processing tool for inexpensive frequent seismic monitoring
scenarios.

Regarding the cost-effective frequent seismic monitoring acquisition design, [9], [10],
and [11] proposed to shoot inexpensive localized and/or sparse surveys, termed i4D sur-
veys, between conventional full-field surveys. Most time-lapse processing methodologies
are based on dense monitoring surveys and only compare the differences between the
same type of surveys (between full-field surveys, or between sparse i4D surveys). There-
fore, in this chapter, we propose to use S-JMI as the processing tool for the datasets ac-
quired from inexpensive semi-continuous time-lapse monitoring surveys based on the
i4D survey technology. S-JMI allows the full-field survey information to compensate the
poor illumination of the sparse i4D surveys during process and also compares the differ-
ences between different types of surveys. Moreover, during the processing workflow, we
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propose to add extra calender-time constraints on the image- and velocity-differences be-
tween the monitors and baseline surveys along the calendar-time axis, termed calender-
time constraints, to further improve the time-lapse results.

The chapter is organized as follows: we begin with the review of the previously pro-
posed i4D seismic monitoring technology [9–11]. After that, we introduce the theory of
S-JMI with the extra calender-time constraints, which take advantage of the feature that
time-lapse effects develop almost continuously along the calendar-time axis during semi-
continuous monitoring. Finally, with one complex synthetic example based on the Mar-
mousi model, we demonstrate that S-JMI is an effective tool to process datasets acquired
from the semi-continuous monitoring surveys, which are designed according to the i4D
technology. We also show that the proposed calendar-time constraints significantly im-
prove the quality of the time-lapse results. In addition, we compare the time-lapse results
assuming all the monitoring datasets are available to those results where only the datasets
up to the current one are used.

6.2. REVIEW OF A SEMI-CONTINUOUS FREQUENT MONITORING

CONCEPT — I4D TECHNOLOGY
Time-lapse seismic typically requires multiple surveys over time to optimize development
decisions. Some time-lapse changes, such as compaction and aquifer drive, happen at
relatively slow time scales. Therefore, proper monitoring surveys are usually employed
every 3-5 years. Time-lapse changes, which are usually associated with water injection,
are taking place relatively rapidly [9, 10, 12, 13]. In this case, typical monitoring surveys
with a repeat frequency of 3-5 years may miss important effects. In order to get a better
understanding of the latter scenario, frequent seismic monitoring is necessary, although
it will generate a proportionate cost increase. [9], [10], and [11] proposed a new frequent
monitoring method, the so-called instantaneous 4D (i4D) technology. They addressed
this dilemma by shooting inexpensive localized and/or sparse surveys, termed i4D sur-
veys, every 6 months to 1 year, between conventional full-field surveys employed every
3-5 years. The cost level of i4D surveys is low enough to make it affordable to be carried
on frequently. The schematic representation of this i4D concept is shown in Figure 6.1. In
this work, we also refer to this kind of frequent monitoring concept as semi-continuous
monitoring. However, most imaging/inversion methods are based on repeated and dense
monitoring acquisition geometries and only compare the differences between the same
type of surveys. Therefore, a more powerful processing tool is desirable to fit this new
semi-continuous monitoring technology.

Full-field 
survey

sparse
  i4D

Full-field 
survey

localized+
  sparse             

sparse
  i4D

localized+
  sparse             

sparse
  i4D

localized+
  sparse             

Figure 6.1: Schematic representation of the i4D acquisition technology.
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6.3. THEORY OF S-JMI WITH CALENDER-TIME CONSTRAINTS FOR

SEMI-CONTINUOUS DATASETS
As was discussed in the previous chapters, Simultaneous Joint Migration Inversion (S-JMI)
is an effective time-lapse tool for reservoir monitoring, which combines a joint time-lapse
data processing strategy with the Joint Migration Inversion (JMI) method. S-JMI is largely
independent of the utilized acquisition geometry, e.g. sparse and/or changed surveys.
This feature makes it suitable for the inexpensive semi-continuous i4D technology, which
can be treated as a special case of changing geometries during monitoring. The simulta-
neous strategy of S-JMI can help compensate the poor illumination of the sparse surveys
with full-field survey information during process. The schematic representation of S-JMI
was already shown in Figure 1.7.

The S-JMI algorithm is parameterized with the baseline reflectivity/velocity and the
time-lapse reflectivity-/velocity-difference. Its objective function was already shown in
equation 3.2. For the i4D monitoring scenario, we assume that the baseline survey ([T0])
is a full-field survey providing sufficient illumination. Therefore, the L2-norm constraints
can help to compensate the poor illumination of the i4D sparse surveys with the full-field
baseline survey information during inversion.

When the monitoring surveys are employed almost continuously over calendar-time,
the time-lapse parameter changes between baseline and monitors (∆r [Tn] and ∆v [Tn])
also evolve semi-continuously over calender-time T . In this case, by taking advantage of
this feature, two extra constraints are proposed and added to the objective function 3.2:

JS-J M I -i 4D = JS-J M I

+
Nx−1∑
n=0

λ4||C−1
(z,T )∆r (xn) ||1

+
Nx−1∑
n=0

λ5||S−1
(z,T )∆v (xn) ||22.

(6.1)

The first constraint is an L1 denoising constraint on the reflectivity-differences between
the baseline and monitors along the calender-time axis. Nx is the number of samples
along the x-axis of the model and xn is the nth point of x. C−1

(z,T ) is a sparsity-promoting
transform from the (z,T ) domain. λ4 is a weighting parameter. We solve this L1 denoising
problem by a soft-thresholding process in the curvelet domain [14]. The second constraint
is a smoothing regularization on the velocity-differences along the calender-time axis and
S−1

(z,T ) is a smoothing operator. λ5 denotes the weight of this penalty term. In the current
implementation, both constraints are evaluated independently for each spatial location
x.

The schematic representation of the proposed S-JMI with calender-time constraints
for semi-continuous frequent monitoring is shown in Figure 6.2.

6.4. EXAMPLE
In this section, with a Marmousi-based example we will demonstrate that S-JMI is a suit-
able tool to process the datasets acquired from the semi-continuous frequent monitoring
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Figure 6.2: Schematic representation of S-JMI with the extra calender-time constraints for
semi-continuous monitoring based on the i4D technology.

T

Figure 6.3: The true reflectivity models for the semi-continuous monitoring based on i4D,
considering 12 datasets in total. The area enclosed with the yellow curve is the gas-sand
trap. The red arrows point to the time-lapse changes, where the water-gas replacement
gradually happens over time. The receivers and sources are shown as red dots and green
line, respectively.

surveys based on the i4D technology proposed by [9], and also show the effectiveness of
the extra calender-time constraints.

We consider a Marmousi-based model with a gas-sand trap highlighted in Figure 6.3.
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For the sake of this initial analysis, we assume that water-gas replacement gradually hap-
pens over time during the monitoring, pointed out with red arrows in Figure 6.3. The time-
lapse changes due to pressure perturbations in the reservoir and overburden/underburden
area are also considered. There are 12 surveys in total. Based on an OBN-type acquisition,
the receiver and source sampling is 400m and 20m, respectively, for the full-field surveys.
For the sparse i4D surveys, the receiver sampling is 800m and the source sampling re-
mains the same. Moreover, the receivers and sources are only placed locally to illuminate
the target area, shown as red dots and green line, respectively, in Figure 6.3. We set the
1st and 12th surveys to be full-field surveys and the surveys between them to be sparse
i4D surveys. In this acquisition design, the setting of the i4D surveys is part of the setting
of the full-field survey. To minimize the side effects of changing geometries during moni-
toring, we extract the subsets out of the datasets acquired from full-field surveys to make
it have the same geometry as the i4D surveys. We call these two subsets together with
the datasets from i4D surveys as the main datasets. Please note that it is not necessary to
design the setting of the sparse i4D surveys exactly as part of the full-field survey, since
S-JMI is able to handle the time-lapse datasets from moderately changed monitoring ge-
ometries, like interleaved geometries discussed in Chapter 5. Meanwhile, in order to get
use of the extra illumination provided by the full-field surveys, we also input the full-field
datasets acquired from full-field surveys as two reference datasets during simultaneous
inversion. The initial reflectivities are zero and the initial velocity model is a very simple
vertical gradient (shown in Figures 6.4(a) and 6.4(b)). Both primaries and multiples are
considered, and 20% random noise is added to all the datasets. After applying regular JMI
to the baseline dataset (1st full-field dataset), we get the inverted baseline reflectivity and
velocity models being shown in Figures 6.4(c) and 6.4(d). This inverted baseline velocity
model then serves as the initial velocity for the following time-lapse process.

Table 6.1: i4D example: a list of acquisition and inversion parameters.

Modeling
method

Band-
width

Surface/Internal
multiples

Random
noise

Wavelet Source
arrangement

Receiver
arrangement

other

FWMod 5 −
40H z

Yes/Yes 20% Ricker,
20H z
peak freq.

full surveys:
0−4000m with
20m spacing
i4D surveys:
1600−4000m
with 20m
spacing

full surveys:
0−4000m with
400m spacing
i4D surveys:
1600−4000m
with 800m
spacing

We compare four scenarios: 1© sequential JMI, 2© S-JMI, 3© S-JMI with the calender-
time constraints, and in the end, 4© S-JMI applied to the currently acquired datasets,
which means the time-lapse differences are calculated using only the datasets that have
already been acquired by the current calendar-time. For example, the 1st ,2nd ,3r d datasets
are the input data when calculating the difference between the 3r d and the 2nd survey. In
addition, the calender-time constraints are switched on after the 7th survey in scenario 4.

The inverted final images on the target area from the 3r d ,5th ,7th ,9th i4D surveys for
scenario 1 and 2 are shown in Figure 6.5 and 6.6, respectively. Compared to the inverted
results using sequential JMI (scenario 1), the images in Figure 6.6 inverted by using S-
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Figure 6.4: i4D example: (a) and (b) initial reflectivity and velocity model for JMI; (c) and
(d) the inverted baseline reflectivity and velocity model.
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Figure 6.5: i4D example: the inverted reflectivity models using sequential JMI for the: 3r d

(a), 5th (b), 7th (c), 9th (d) sparse i4D survey.

JMI (scenario 2) reveal more complete subsurface information by making use of all the
datasets and multiples to compensate the poor illumination. We can see that several im-
prints and artifacts using sequential JMI (scenario 1) in Figure 6.5 are now suppressed in
the S-JMI (scenario 2) results in Figures 6.6.
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Figure 6.6: i4D example: the inverted reflectivity models using S-JMI for the: 3r d (a), 5th (b),
7th (c), 9th (d) sparse i4D survey.

In terms of the time-lapse differences, we demonstrate 6 sets of the reflectivity dif-
ferences: 2nd −1st ,4th −3r d ,6th −5th ,8th −7th ,10th −9th , and 12th −11th . In Figure 6.7
(scenario 1), the final reflectivity differences inverted using sequential JMI can provide
some time-lapse information, but they are quite noisy due to the poor illumination of the
sparse i4D surveys and the additive random noise in the data. The inverted time-lapse
effects using S-JMI shown in Figure 6.8 (scenario 2) are much more clear, because S-JMI
allows us to make use of all the datasets to compensate with each other. However, they are
still somewhat noisy. Furthermore, by taking advantage of the feature that the time-lapse
changes evolve almost continuously over calender-time in this case of frequent monitor-
ing, S-JMI with the extra calender-time constraints along the monitoring time, as visible
in Figure 6.9 (scenario 3), achieves much better results. Now the time-lapse effects are
almost completely isolated from artifacts related to the sparse geometries.

In the end, we test a more realistic scenario, scenario 4, where S-JMI is applied only to
the currently acquired datasets. The corresponding time-lapse differences are shown in
Figure 6.10. We can see that the inverted differences in scenario 4, even at the early stage of
monitoring, show much better quality compared to the sequential JMI in Figure 6.7 (sce-
nario 1), by making use of the 1st full-field survey as the reference full-field dataset to com-
pensate the poor illumination. This also indicates that S-JMI can do a pretty good job even
with very few datasets being inverted simultaneously, as long as at least one high-quality
dataset from full-field survey is included as the reference full-field dataset during inver-
sion. As can be expected, the inverted differences in scenario 4 are noisier compared to
Figure 6.9 (scenario 3) for the earlier surveys, because of the effectiveness of the calendar-
time constraints in scenario 3. However, surprisingly enough, these differences seem less
noisy than the ones in Figure 6.8 (scenario 2). In this case, assuming one high-quality
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Figure 6.7: i4D example: the inverted reflectivity differences using sequential JMI: 2nd survey
− 1st survey (a), 4th survey − 3r d survey (b), 6th survey − 5th survey (c), 8th survey − 7th

survey (d), 10th survey − 9th survey (e), 12th survey − 11th survey (f).

full-field dataset is already included in S-JMI, adding more worse-quality datasets (from
sparse i4D surveys) to invert simultaneously apparently introduces more noise (scenario
4 vs scenario 2).

6.5. DISCUSSION

6.5.1. COMPUTATIONAL ASPECTS

In the case of (semi-)continuous monitoring, assuming that the amount of computation
efforts of JMI applied to one full-field vintage is K and to one sparse i4D vintage is M

(M << K ) and there are N f ul l
T full-field vintages and N i 4D

T sparse i4D vintages, the com-

putation time of S-JMI is around N i 4D
T ∗M +N f ul l

T ∗K +N f ul l
T ∗M if all the datasets are

inverted simultaneously. Note that, in order to minimize the side effects of using different
types of surveys during monitoring, we also include the subsets of the full-field datasets as
the extra input to make it have similar illumination as the sparse i4D surveys (corresponds
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Figure 6.8: i4D example: the inverted reflectivity differences using S-JMI, assuming all the
datasets are available: 2nd survey − 1st survey (a), 4th survey − 3r d survey (b), 6th survey −
5th survey (c), 8th survey − 7th survey (d), 10th survey − 9th survey (e), 12th survey − 11th

survey (f).

to N f ul l
T ∗M in computation time).

However, as was mentioned in the previous section, there is no need to invert all the
datasets together. Instead, one high-quality dataset from a full-field survey can be chosen
as the reference dataset for S-JMI to invert simultaneously together with the target seismic
vintages, yielding the inverted time-lapse results as good as the scenario where all the
datasets are inverted simultaneously. Therefore, to calculate the time-lapse difference of
any two surveys, the computation time of S-JMI is around 2∗M +K .

6.5.2. THE FEASIBILITY OF THE CALENDER-TIME CONSTRAINTS

One requirement of applying the proposed calender-time constraints during the time-
lapse process is the smoothness and consistency of the time-lapse changes over calender-
time during semi-continuous monitoring. However, one important goal of frequent mon-
itoring is to better understand unexpected events especially around the injectors. In this
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Figure 6.9: i4D example: the inverted reflectivity differences using S-JMI with the extra L1
calender-time constraints, assuming all the datasets are available: 2nd survey − 1st survey
(a), 4th survey − 3r d survey (b), 6th survey − 5th survey (c), 8th survey − 7th survey (d), 10th

survey − 9th survey (e), 12th survey − 11th survey (f).

case, one solution is to use spatial weighting operators for the calender-time constraints,
which put less strong constraints on the area close to the injection point and stronger con-
straints outside this target area, instead of the constant weighting parameters λ2 and λ3

used in the objective function 6.1. Another solution is to use a better constraint which
is less sensitive to the impulsive changes, like total variation regularization discussed in
Appendix B.

6.6. CONCLUSION
In order to get a better understanding of the dynamic time-lapse changes, low-cost fre-
quent seismic monitoring is desired. When using a simultaneous inversion approach,
we can allow the monitoring surveys to be much sparser sampled than the baseline sur-
vey and still get good time-lapse imaging results. Therefore, we propose simultaneous
Joint Migration Inversion (S-JMI) as a suitable tool for accurate time-lapse imaging for
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Figure 6.10: i4D example: the inverted reflectivity differences using S-JMI applied to the the
datasets up to the current one and the calendar-time constraints are switched on after 7th

survey: 2nd survey − 1st survey (a), 4th survey − 3r d survey (b), 6th survey − 5th survey (c),
8th survey − 7th survey (d), 10th survey − 9th survey (e), 12th survey − 11th survey (f).

such sparse-data monitoring scenario. To further enhance the time-lapse quality, as-
suming semi-continuous monitoring, we augment this with calendar-time constraints
on the reflectivity- and velocity-differences between the baseline and monitors along the
calendar-time axis. These constraints take advantage of the feature that time-lapse effects
develop almost continuously along the calendar-time axis, when the monitoring surveys
are employed almost continuously over calendar-time. This is demonstrated on a syn-
thetic dataset based on the Marmousi model. Finally, we show that S-JMI can perform
well even when only the datasets up to the current one are used, as long as at least one
high-quality dataset from full-field survey is included as the reference full-field dataset
during inversion.
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7
CONCLUSION AND

RECOMMENDATIONS

7.1. CONCLUSION
The conventional time-lapse processing workflow is usually sensitive to the non-repeatable
uncertainties between different vintages caused by noise, acquisition designs, and inde-
pendent processing. Therefore, in order to reduce these non-repeatable uncertainties,
all the datasets are usually acquired from well-sampled and well-repeated acquisition
surveys and the independent processing is always carefully tailored to maximally reduce
the non-repeatable uncertainties during processing. Moreover, the conventional method,
based on a time-shift map, is not always a good indicator of the actual velocity differences
due to its local 1D subsurface assumption. Therefore, a time-lapse processing tool, which
is less demanding on acquisition and has a better velocity change indicator, is desirable.

In this thesis, we proposed Simultaneous Joint Migration Inversion (S-JMI) as an ef-
fective time-lapse tool for reservoir monitoring. The method combines a simultaneous
data processing strategy with the Joint Migration Inversion (JMI) method. JMI is a full
wavefield inversion method with a parameterization in terms of reflectivity and propa-
gation velocity. JMI is able to make use of multiples and at the same time takes velocity
variations between different monitoring surveys into account. The simultaneous strat-
egy allows the baseline and monitor parameters to communicate and compensate with
each other dynamically during inversion via L2-norm constraints, thus, suppressing the
non-repeatable uncertainties during the time-lapse processing. Moreover, in order to get
higher resolution time-lapse velocity-differences, we further extended the regular S-JMI to
a robust high-resolution S-JMI (HR-S-JMI) process by exploiting the relationship between
the reflectivity- and velocity-difference during inversion.

We demonstrated that the performance of time-shift-map-based method, sequential
JMI, the regular S-JMI and HR-S-JMI is improving in this particular order, with a complex
synthetic example based on the Marmousi model, a highly realistic synthetic model based
on the Grane field offshore Norway and a time-lapse field dataset from the Troll Field.
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We then investigated the robustness of HR-S-JMI in practice by conducting several nu-
merical experiments based on the realistic Grane model, regarding the following aspects:
noise, including random noise and coherent noise caused by the acoustic assumption; the
quality of time-lapse surveys, including sparse surveys, non-repeated surveys, and Ocean
Bottom Node (OBN) vs Streamer (different types of surveys during monitoring); non-
repeated sources, including source positioning error and non-repeated source wavelet;
spatial weighting operators in the L2-norm constraint; and sensitivity to weak time-lapse
effects. These experiments show that HR-S-JMI is very robust to random noise and coher-
ent noise. It is able to deliver reliable time-lapse differences when the surveys are sparse or
mildly changed during monitoring, even when the baseline and monitor datasets are ac-
quired from different types of surveys. Small source positioning errors and source wavelet
discrepancy between vintages do not affect the effectiveness of the method, as long as
the correct source wavelet is used for each survey. Moreover, the method remains ef-
fective when L2-norm constraints are largely relaxed, however, a relaxed version of the
L2-norm constraints based on reliable prior information is recommended to achieve less
noisy time-lapse changes. Furthermore, HR-S-JMI has the ability to detect weak time-
lapse changes. It provides reliable results even in the case when the maximum value of the
time-lapse velocity-difference is down to ±35m/s. These features make S-JMI a promising
solution for inexpensive frequent monitoring.

Therefore, in the end, we proposed S-JMI as an effective processing tool for a cost-
effective semi-continuous monitoring survey design, termed i4D survey technology. To
further improve the results, calendar-time constraints were proposed and applied to the
parameter differences between the baseline and monitors along the calendar-time axis
by imposing that time-lapse effects usually develop gradually over time. With a complex
synthetic example based on the Marmousi model, we demonstrated that S-JMI is a suit-
able tool for processing the datasets acquired from semi-continuous monitoring based on
such i4D technology.

7.2. RECOMMENDATIONS FOR FURTHER RESEARCH

7.2.1. 3D EXTENSION

Current work is still limited to a 2D assumption, which will limit its application to field
data, as the correct physics cannot be described under this 2D assumption. Therefore, a
3D extension is desirable to realize the full potential of the method. The use of multiples
can make a more obvious improvement on mitigating 3D acquisition footprints because
of the extended illumination provided by multiples. The FWMod, FWM and JMI process
can straightforwardly be extended to a full 3D situation [1, 2]. Its implementation in the
time-lapse context, however, is left for further research.

7.2.2. INCLUDING AVO EFFECTS

Due to the danger of over-parametrization, the current version of JMI cannot easily han-
dle the angle-versus-offset (AVO) effects in the data when automatic velocity updating
is included. Thus, in the time-lapse context, the artifacts in the final model differences
brought by the amplitude misfits due to AVO might disguise weak time-lapse effects. In
Appendix A, we try to solve this challenge by using a local attribute – local orthogonaliza-
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tion – between the modeled and measured data during inversion. However, this strategy
is only able to relieve the AVO issue in JMI to some extend and will not provide the final
solution. One possible solution is to use another criterion for velocity updating in JMI,
e.g. a velocity analysis in the image-domain [3]. However, this image-domain JMI is more
expensive, although more robust, and results in a lower resolution in the final velocity
update compared to the data-domain JMI. Another possible approach is to scale the am-
plitudes of the data to remove the AVO effects via deep learning as a pre-processing step.
More research on this topic is desired in the future.

7.2.3. INCLUDING ANISOTROPIC EFFECTS
Current work is still based on the assumption that the Earth is isotropic. However, in
many real-life time-lapse cases, overburden anisotropy will affect travel-time changes,
thus cover up some weak time-lapse effects. Incorporating the anisotropic effects into
JMI process has already been discussed in [4]. Applying it to (HR-)S-JMI is desired in order
to get reliable results on field data.

7.2.4. TOWARDS TARGET-ORIENTED TIME-LAPSE INVERSION
Current work allows the inversion to only focus on the time-lapse effects on areas of in-
terest via L2-norm constraints based on spatial weighting operators on the model differ-
ences. In some situations, e.g. CO2 sequestration, sudden time-lapse changes are ex-
pected through the whole solution space. In this case, the spatial weighting operators
should be largely relaxed. There are also many situations where only local time-lapse
changes are expected. Therefore, doing inversion in the whole solution space could be a
waste during processing. Instead, a target-oriented (HR-)S-JMI for the redatumed datasets
on the target region is a much more cost-effective choice.

7.2.5. TOWARDS AMPLITUDE INVERSION AND ELASTIC INVERSION
As was mentioned in the previous chapters, the inverted velocity differences using S-JMI
are still smeared. More accurate velocity changes can be acquired using HR-S-JMI by ex-
ploiting an approximate relationship between reflectivities and velocity. However, this
strategy is an approximate and implicit way to update velocity using amplitude informa-
tion in the data. Amplitude inversion is a more accurate and explicit way to use amplitude
information for the velocity updating. However, it is inapplicable in the whole solution
space due to its heavy calculation requirement. Therefore, in order to get more reliable
high-resolution time-lapse velocity changes, a target-oriented amplitude inversion is one
possible solution [5]. In this case, JMI can be an optimal full-wavefield redatuming tool,
which takes all the multiples into account [6].

Moreover, a target-oriented elastic amplitude inversion, which inverts for compress-
ibility and shear compliance, can be an even better solution, because its parameters are
more closely related to the final interpretable parameters, e.g. pore pressure and fluid
saturation [7].

7.2.6. AUTOMATIC WAY TO CHOOSE THE SPATIAL WEIGHTING OPERATORS
We have investigated the impact of different spatial weighting operators on the time-lapse
results in Chapter 5 and came to a conclusion that (HR-)S-JMI remains effective even
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when there is no prior information available. However, less noisy velocity- and reflectivity-
differences can be obtained by importing prior information via the spatial weighting oper-
ators, therefore, a relaxed version of the L2-norm constraints based on prior information
is recommended. Sometimes, there is no explicit prior knowledge of the ’truth’ available,
however, some information is contained implicitly in the data itself. For example, a simi-
larity map between the calculated parameter gradients of different vintages could be used
to make a relaxed and flexible weighting operators. A robust and automatic way to decide
the spatial weighting operators can be an interesting topic in the further research.
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A
APPENDIX A: MITIGATING AVO

EFFECTS IN JMI USING LOCAL

ORTHOGONALIZATION

Joint migration inversion (JMI) is a recently proposed full wavefield inversion method, which
tries to minimize the mismatch between observed reflection data and forward modeled
data. Transmission effects and surface/internal multiples are included in the forward mod-
eling process using a multi-dimensional version of the Bremmer series. However, since the
current implementation of JMI uses an angle-independent reflectivity model, it cannot eas-
ily handle large-offset data due to the angle-versus-offset (AVO) effects. In this work, we
propose to mitigate this AVO challenge in JMI using a local attribute – local orthogonaliza-
tion – between the modeled and recorded data during inversion. The local orthogonaliza-
tion weight indicates those areas of modeled data that do not correlate with the recorded
data. Afterwards, the high orthogonalization part containing strong AVO effects is sub-
tracted from the residual adaptively based on the orthogonalization weight. We demon-
strate the effectiveness of our proposed method with a complex synthetic example based on
the Marmousi model.
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A.1. INTRODUCTION
As was discussed in the previous chapters in this thesis, Joint Migration Inversion (JMI)
is an inversion algorithm that automatically derives both a reflectivity model (i.e. the
image) and a propagation velocity model in the least-squares sense based on full wave-
field modeling (FWMod) [1]. This modeling takes into account transmission effects and
surface/internal multiples [2]. The forward modeling of JMI simulates the data in a way
that amplitudes are defined by the estimated reflectivities, whereas travel-times are sep-
arately controlled by the velocity model. This separation should help to reduce the non-
linearity in the inversion process [3]. Currently in JMI, velocity and reflectivity models
are estimated in a flip-flop manner. However, due to the angle-independent reflectivity
model, JMI cannot correctly match the part of the recorded data where includes strong
AVO effects, e.g. the large offset parts, so for the time being JMI is only capable of han-
dling limited-offsets. In order to physically describe the AVO characteristics in the data,
angle-dependent reflectivities should be considered [4], but in JMI this will result in over-
parametrization in the inversion, i.e. it may lead to a wrong velocity update which can still
help to minimize the data misfit. In order to mitigate AVO issue of JMI, [5] proposed to
do the velocity update in the image-domain, so that angle-dependent reflectivity model
can be estimated while avoiding over-parametrization. However, this image-domain JMI
is more expensive, although more robust, and results in lower resolution in the final veloc-
ity update compared to the data-domain JMI. [6] proposed to use a new objective func-
tion, called zero-lag cross-correlation objective function of normalized redatumed wave-
fields, to help relax the requirement for the strong amplitude matching in the least-squares
sense. Numerically, they normalized the redatumed residual, instead of surface residual,
to mitigate the AVO mismatch adaptively at different depth levels, because the AVO effects
vary for different events. However, because the normalization is still done linearly in a
trace-by-trace manner, when it comes to very complex model generating strong AVO ef-
fects, this method fails. Therefore, using a local seismic attribute map to detect and scale
the AVO mismatch area in the residual might be a solution.

Local seismic attributes measure seismic signal characteristics locally in the neigh-
bourhood of each point [7]. One of the most useful local attributes is local similarity,
which has found successful applications in different areas of seismic data processing: im-
age registration [8, 9], velocity analysis [10, 11], time-frequency analysis [12], structure-
enhancing filtering [13–15], etc. Another local attribute is called local orthogonalization
[16], which has been successfully applied to random noise removal [16] and ground-roll
noise attenuation [17].

In this work, we propose a robust AVO-preserving JMI based on scalar reflectivities
with the help of a local attribute – local orthogonalization weight – between the modeled
and recorded data during inversion. The local orthogonalization weight is calculated in
a least-squares sense with the help of shaping regularization and it is able to indicate the
part of modeled data that does not correlate with the recorded data. The high orthog-
onalization part mostly contains the strong AVO effects, which cannot be explained by
JMI with scalar reflectivities. This mismatch due to AVO effects is then subtracted from
the residual adaptively based on the local orthogonalization weight. We demonstrate the
effectiveness of our proposed method using a complex synthetic example based on the
Marmousi model.
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A.2. AVO-PRESERVING JMI WITH LOCAL ORTHOGONALIZATION
[16] proposed a local orthogonalization approach for retrieving useful signals from the
noise section based on the assumption that the final estimated signal and noise should
be orthogonal to each other. In this work, we calculate the local orthogonalization weight
between the modeled and recorded data shot by shot during inversion. We then subtract
the AVO amplitude mismatch from the residual wavefield adaptively based on the local
orthogonalization weight.

The local orthogonalization weights imply which part of modeled data does not cor-
relate well with the recorded data, e.g. high AVO effects and random noise. We define one
shot profile, which is collapsed into one dimension, of the modeled and recorded data
in the time-domain as p−

0 and d−
0 , respectively. The local orthogonalization weight w is

calculated in a least-squares sense as follows [16]:

w = argmin
w

∥ d−
0 −di ag

(
p−

0 w
) ∥2

2 . (A.1)

Here, di ag
(
p−

0

)
is a diagonal matrix composed of p−

0 . Then the least-squares problem A.1
is solved with the help of shaping regularization [18] using a local-smoothness constraint:

w =[λ2I+T (di ag
(
p−

0

)T di ag
(
p−

0

)−λ2I)]−1T di ag
(
p−

0

)T d−
0 , (A.2)

where T is a triangle smoothing operator and λ is a scaling parameter set as

λ= ‖di ag
(
p−

0

)T di ag
(
p−

0

)‖2.
By assuming that the high local orthogonalization weight, which is windowed by a

threshold, indicates the part of residual with strong AVO amplitude mismatch and random
noise. We can obtain the new residual wavefields e−0,new :

e−0,new =
{

d−
0 −di ag

(
p−

0

)
w w Ê ε max (w)

d−
0 −p−

0 other wi se,
(A.3)

where .∗ denotes element-wise multiplication and ε is a pre-set threshold and usually set
to 0.2. This threshold is used to detect the relatively high local orthogonalization weights.
It can be observed that the part of the new residual, where the local orthogonalization
weight is relatively low, remains the same as the original residual, because low weight
means a good match between the modeled and measured data. While the rest of the resid-
ual, where the weight is relatively high, is scaled adaptively based on this local weight.

The controlling parameter for calculating the local weight is the smoothing radius of
the triangle smoother. As the smoothing radius increases, the temporal and spatial resolu-
tions of the weight decrease, but it indicates the AVO amplitude mismatch more robustly.
In order to relieve the calculation efforts, local orthogonalization weights are only updated
around every 25 iterations.

A.3. EXAMPLE
In order to demonstrate the effectiveness of the proposed method, we consider the models
shown in Figures A.1(a) and A.1(b), which are scaled from the top half of the Marmousi
model. The dataset in this section is generated via acoustic finite difference modelling
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using both the density and velocity model. The source spacing is set to 100m, and the
receiver spacing to 20m. We use a Ricker wavelet with 20H z peak frequency. 20% random
noise energy is added to the generated dataset. The band-width of frequency during JMI
is 5H z − 40H z. Surface multiples are excluded in the modelling, but internal multiples
are included. Initially, reflectivities are shown in Figure A.1(d) and the velocity is shown in
figure A.1(c), which is a strongly smoothed version of figure A.1(d).
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Figure A.1: AVO-preserving JMI: (a) and (b) the true velocity and reflectivity model; (c) and
(d) initial velocity and reflectivity model.
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Figure A.2: AVO-preserving JMI: the recorded data d−
0 generated using the finite-difference

modeling and the modeled data p−
0 using FWMod with the scalar reflectivity assumption at

a late iteration during JMI: (a) and (b) at X = 1000m; (c) and (d) at X = 3200m.

We compare two strategies: the conventional JMI and the proposed AVO-preserving
JMI with the help of local orthogonalization. Two recorded shot profiles d−

0 (generated us-
ing the finite-difference modeling at the beginning) and modeled shot profiles p−

0 (mod-
eled with FWMod in JMI with the scalar reflectivity assumption) at a late iteration are
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shown in Figures A.2 (X = 1000m and X = 3200m). We can clearly observe high ampli-
tudes at larger offsets (pointed with red arrows) in the recorded data, whereas, FWMod is
not able to generate these AVO effects due to the scalar reflectivity assumption. Moreover,
the AVO effects in the data are different for different events and shallower events normally
have stronger AVO effects at smaller offsets compared to the deeper events.

Due to the inversion process included in JMI, the inverted image using the conven-
tional JMI is quite accurate and the estimated velocity model also shows some details
(shown in Figure A.3). However, because the AVO amplitude effects cannot be modeled
in JMI, there are clearly visible low-frequency artifacts in the inverted reflectivity. Note
that, as was mentioned in Chapter 2, the reflectivity model in JMI explains the amplitude
mismatch in the residual, meanwhile, the phase mismatch is explained by the velocity
model. Therefore, there are some artifacts pointed out by the black arrows in the velocity
model due to the AVO effects, but they are not as obvious as those in the reflectivity model.
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Figure A.3: AVO-preserving JMI: (a) and (b) the inverted velocity and reflectivity model using
conventional JMI.
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Figure A.4: AVO-preserving JMI: the estimated local orthogonalization weight w and the
windowed versionΛ.∗w: (a) and (b) between Figures A.2(a) and A.2(b); (c) and (d) between
Figures A.2(c) and A.2(d).

The estimated local orthogonalization weights w between the recorded and the mod-
eled data are shown in Figures A.4(a) and A.4(c) and the windowed onesΛ.∗w are shown
in Figures A.4(b) and A.4(d). We can see that the local orthogonalization map is able to de-
tect the area with high AVO amplitude mismatch. The corresponding conventional resid-
ual e−0 and the new residual e−0,new are shown in Figures A.5. The AVO mismatch is nicely
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suppressed in Figures A.5(b) and A.5(d) compared to Figures A.5(a) and A.5(c). They are
highlighted by red arrows. In addition, the random noise in the new residual, which also
has high orthogonalization weight, is attenuated.
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Figure A.5: AVO-preserving JMI: the conventional residual e−0 and the new residual e−0,new
using the proposed method: (a) and (b) between Figures A.2(a) and A.2(b); (c) and (d) be-
tween Figures A.2(c) and A.2(d).

Based on the new residual calculated with the high local orthogonalization weight,
the proposed AVO-preserving JMI achieves much better results, which are shown in Fig-
ures A.6. The inverted reflectivity model in Figure A.6(a) is significantly improved with
barely no low-frequency artifacts and much better resolution, compared to figure A.3(a).
Moreover, in the inverted velocity model in Figure A.6(b), some of the artifacts are sup-
pressed and more details (highlighted by black arrows and square) are recovered, espe-
cially in the deeper part.
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Figure A.6: AVO-preserving JMI: (a) and (b) the inverted velocity and reflectivity model using
the proposed AVO-preserving JMI.

A.4. CONCLUSION
In order to mitigate the AVO challenge in JMI, we propose AVO-preserving JMI using the
local orthogonalization between the modeled and recorded data during inversion. The
local orthogonalization weight is able to indicate the part of modeled data that does not
correlate with the recorded data. The high orthogonalization part usually contains the
strong AVO effects and are then subtracted from the residual based on the orthogonal-
ization weight, thereby, reducing its negative impacts on the updating process. Thus, the
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inverted model has a higher resolution than that from the traditional JMI framework with-
out considering the AVO effect. Our synthetic test based on the Marmousi model demon-
strates the effectiveness of the proposed method.
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B
APPENDIX B: JMI WITH AN

AUTOMATIC DIRECTIONAL TOTAL

VARIATION CONSTRAINT

Joint migration inversion (JMI) is a recently proposed full wavefield inversion method, ex-
plaining the reflection data with decoupled velocity and reflectivity parameters. This as-
sumption of scale separation helps to reduce the non-linearity of inversion problem. How-
ever, the velocity update may still suffer from being trapped in local minima. To optimally
include geologic information, we propose JMI with directional total variation as an L1-
norm regularization on the velocity. We design the directional total variation operator
based on the local dip field, instead of ignoring the local structural direction of the subsur-
face and only using horizontal- and vertical-gradients in the traditional TV. The local dip
field is estimated using plane-wave destruction based on a raw reflectivity model, which is
usually calculated from the initial velocity model. With a complex synthetic example based
on the Marmousi model, we demonstrate that the proposed method is much more effective
compared to JMI without regularization, JMI with the conventional TV regularization, and
JMI with L2 directional Laplacian smoothing.
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B.1. INTRODUCTION
Seismic full waveform inversion (FWI) is a powerful method for providing a quantitative
description of the subsurface properties by iteratively minimizing an objective function
that measures the misfit between observed and predicted data in the least-squares sense
[1]. However, FWI is a non-linear and ill-posed inverse problem and its objective func-
tion may suffer from local minima that are not informative about the true parameters [2].
Using regularization methods is an effective way to mitigate this ill-posedness and non-
uniqueness of FWI.

Joint Migration Inversion (JMI) was proposed as one of the methods to overcome the
above-mentioned limitations in FWI [3–5]. It is an inverse algorithm to automatically de-
rive both velocity and reflectivity based on the full wavefield modeling (FWMod) process
[6] that takes transmission effects and surface/internal multiples into account. In the FW-
Mod procedure, the velocity only affects the kinematics without any scattering effect in
the modeling operators and the reflectivities only deal with scattering effects. These char-
acteristics lead to a reduced non-linearity in the inversion process. Even though not as
severe as FWI, the velocity update may still suffer from being trapped in local minima.
With the help of regularization, JMI can get a more accurate inverted velocity, and thus
achieve a better inverted reflectivity [7, 8].

The popular regularization methods include: quadratic L2-norm-based regulariza-
tion, such as Tikhonov regularization [9], and laplacian smoothing [10–12], which tend
to produce models with blurred discontinuities; non-quadratic L1-norm-based regular-
ization, such as total variation (TV) [7, 13], smooths the model by enhancing the sparsity
of the spatial gradient of the velocity, thereby preserving its edges. However, regular TV
regularization only tends to reduce the horizontal and vertical gradients of each gridpoint
in the model regardless of their structural direction. Thus, TV is not suitable where the lo-
cal geologic structure has a dominant structural direction. Unlike general digital images,
the spatial changes of the seismic model always have some specific geological structures,
like tilted layers, faults, or edges of a salt body. [14] proposed a directional TV method
and applied it to digital image denoising. However, they only consider one single domi-
nant direction for all pixels, which is obviously ineffective for complex-textured geologies.
Therefore, we propose a directional TV constraint based on a rough estimate of the sub-
surface image.

This appendix is organized as follows: we first formulate the conventional TV and
the proposed directional TV. Finally, with a complex Marmousi-model-based example, we
show that the proposed method is more effective than the alternative methods, when the
model contains tilted layers and steep faults. In the end, we also show that the L1 direc-
tional TV works better than the L2 directional Laplacian smoothing regarding the preser-
vation of edges and the steering of the update away from the local minimum. Note that
this work is published in [15], where also FWI with (directional) TV was described.

B.2. JMI WITH TV AND DIRECTIONAL TV
In this work, we consider anisotropic TV as the basic regularization method, since TV can
smooth the model and at the same time preserve edges by enhancing the sparsity of the
spatial gradient of the velocity difference. In addition, the anisotropic version is easier
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to minimize compared to the isotropic one. Furthermore, we restrict ourselves to the 2D
case, although extension to the full 3D situation is relatively straightforward.

The extended objective function of JMI with a TV constraint can be expressed as

Jtot =µJ J M I +λCT V (v) =µJ J M I +λ||∇x v||1 +λ||∇z v||1. (B.1)

Here, J J M I the objective function of JMI in a least-squares sense, which was descried in
equation 2.9 in Chapter 2. v is the propagation velocity constrained by TV. ∇x and ∇z rep-
resent horizontal- and vertical-gradient operator, respectively. For one gridpoint

(
i , j

)
in a

cartesian coordinate (x, z), ∇x v
(
i , j

)= vi+1, j − vi , j and ∇z v
(
i , j

)= vi , j+1 − vi , j (illustrated
in Figure B.1(a) with the black dashed arrows). µ is the weight parameter of the fidelity
term. λ is the coefficient of the constraint term. The latter two together control the bal-
ance between the regularization and the misfit function.

x [m]
0 500 1000 1500 2000 2500 3000 3500

De
pt

h 
[m

]

0

500

1000
1500

2000

2500

3000

3500

4000

(a)

x [m]

0 500 1000 1500 2000 2500 3000 3500

D
e
p

th
 [
m

]
0

500

1000
-0.2

-0.1

0

0.1

0.2

(b)

x [m]

0 500 1000 1500 2000 2500 3000 3500

D
e

p
th

 [
m

]

0

500

1000
1500

2000

2500

3000

3500

4000

(c)

x [m]

0 500 1000 1500 2000 2500 3000 3500

D
e
p

th
 [
m

]

0

500

1000
-0.2

-0.1

0

0.1

0.2

(d)

Figure B.1: DTV: (a) and (b) the true velocity and reflectivity model; (c) and (d) the initial
velocity and reflectivity model. The black dash arrows illustrate ∇x v

(
i , j

)
and ∇z v

(
i , j

)
, the

green solid arrows illustrate ∇1v
(
i , j

)
and ∇2v

(
i , j

)
, based on the structural dip at

(
i , j

)
.

However, this conventional TV regularization only tends to reduce the horizontal- and
vertical-gradients of each gridpoint in the model, regardless of the geological direction of
the model. Therefore, TV is not suitable where the local structure has a dominant direc-
tion. Unlike general digital images, the spatial changes in the subsurface always follow
some specific geological structures, e.g., tilted layers, faults, and edges of a salt body. In
this case, we propose JMI with directional TV and we design the directional TV based on
the local dip estimated from a rough reflection image using the plane-wave destruction
(PWD) algorithm [16].

The misfit function with directional TV can be formulated as

Jtot =µJ J M I +λCDT V (v) =µJ J M I +λ||∇1v||1 +λ||∇2v||1, (B.2)
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where ∇1 and ∇2 are the gradient operators of the dominant direction and the direction
perpendicular to the dominant direction, respectively. From the viewpoint of physical
meaning, ∇1 and ∇2 are the rotated and scaled version of ∇x and ∇z , according to the esti-
mated local dip and a weighting parameter. Mathematically, for one point

(
i , j

)
, ∇1v

(
i , j

)
and ∇2v

(
i , j

)
can be represented as(∇1v

(
i , j

)
∇2v

(
i , j

))=ΛR

(∇x v
(
i , j

)
∇z v

(
i , j

))
HereΛ=

(
α1 0
0 α2

)
,R =

(
cosθ −sinθ
sinθ cosθ

)
,

(B.3)

where Λ and R represent scaling matrix and rotation matrix, respectively. α1 and α2 rep-
resent the weights on the gradient of the dominant direction and its perpendicular direc-
tion, respectively, and θ is the dip of the local structure. An illustration of such a directional
TV is shown in Figure B.1(a) with the green solid arrows.

Please note that if we assume α1 = α2 = 1 and θ = 0o , then Λ turns into an identity
matrix, which means the same weights are put on both directions, and R also becomes an
identity matrix, indicating that the target directions are horizontal and vertical. Therefore,
we can see that the conventional TV is actually a special case of the directional TV, and
in turn, the directional TV is a more general version of the conventional TV and more
suitable to a model with complex geologic structures. In this work, we solve JMI with the
conventional TV and directional TV effectively using the split-Bregman iterative algorithm
[17].

B.3. EXAMPLE
In order to demonstrate the effectiveness of the proposed method, we consider the same
synthetic model as the example in Appendix A being shown in Figures B.1(a) and B.1(b).
Ricker wavelet with a dominant frequency of 20H z is used as the source wavelet. The
shot spacing is 200 m and the receiver spacing is 20 m. The horizontal and vertical grid
size are 20 m and 10 m, respectively. Surface multiples are excluded in the modeling, but
internal multiples and transmission effects are included. The direct wave is removed, as
it cannot be explained by JMI. Initially, reflectivities are zero and the initial velocity is a
very simple vertical gradient, which is even simpler than the initial velocity model used
in Appendix A being shown in Figure B.1(d)). First, with the initial model, we apply 30
iterations of JMI with 5H z − 25H z frequency bandwidth to the dataset and then denoise
the inverted image via a simple soft-thresholding in the curvelet domain [18]. Then, with
this preprocessed inverted reflectivity shown in Figure B.2(b), we can estimate the dip field
using plane-wave destruction algorithm proposed by [16], shown in Figure B.2(c). This
estimated dip field is then used to build the directional TV operators for each gridpoint.
Meanwhile, the inverted velocity in Figure B.2(a) can be used as an initial velocity model
for the next step.

Next, we compare results from the regular JMI without any regularization, JMI with
conventional TV, JMI with directional TV and JMI with L2 directional Laplacian smooth-
ing. The frequency bandwidth during the second step of JMI is 5H z − 40H z. We use the
same µ and λ for both the conventional TV and directional TV. µ is also increasing with
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Figure B.2: DTV: the inverted velocity (a) and the denoised inverted reflectivity model (b)
using JMI with 5H z − 25H z frequency bandwidth. (c) The estimated dip field (in degrees).

iteration and λ = 1.2. For directional TV, α1 : α2 = 3 : 1 and α1 +α2 = 2. For the conven-
tional TV, Λ is an identity matrix. After 50 iterations for each method, the inverted results
are shown in Figures B.3 and B.4. Because of the inversion process included in JMI, all
the estimated velocity models in Figure B.4 are surprisingly stable and show some details.
Moreover, all the images in Figure B.3 are quite accurate compared to the true reflectivity
structures.

In Figure B.3(a), the regular JMI without any regularization is slightly trapped in a lo-
cal minimum, e.g., in the lower right area pointed by the green arrow. With the help of
TV regularization, JMI with conventional TV in Figure B.3(b) achieves a better result by
smoothing the model via enhancing the sparsity of the spatial gradient of the velocity
difference, which allows us to steer away from the local minimum. Instead of using the
conventional TV, a much better inverted velocity with more clear edges of structures is
obtained in Figure B.3(c) using JMI with directional TV. This is because we consider the
structural directions of the spatial gradient and their weights according to the local dip
from the associated image. Please note some obvious improvements pointed out by the
black arrows. In addition, compared to L1 directional TV, L2 directional Laplacian smooth-
ing results in a smoother velocity model being shown in Figure B.3(d); however, it inten-
sifies the local minima issue and tends to produce models with blurred discontinuities.
That is because the directional Laplacian smoothing may over-smooth the velocity and
cannot preserve edges very well; it is also more sensitive to the accuracy of the estimated
dip field, compared to L1 directional TV. As a result of the improvement of the inverted ve-
locity result, the inverted reflectivity model also becomes more accurate (Figure B.4): the
inverted reflectivities highlighted with white arrows in Figure B.4(c) have better focusing
and less distortions than the other alternatives.
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Figure B.3: DTV: The inverted velocity using (a) regular JMI without any regularization,
(b) JMI with conventional TV, (c) JMI with directional TV, and (d) JMI with L2 directional
laplacian smoothing.

B.4. DISCUSSION

JMI with directional TV has been demonstrated to be a more effective method than the
alternatives. We design the directional TV based on the dip field calculated from an ini-
tial image. By considering the local structural directions of the spatial gradient and their
weights according to the local dip, the proposed method achieves a better result com-
pared to JMI without regularization or with conventional TV. In the case of complex sub-
surface structures, the local dip map cannot be estimated properly. However, directional
TV regularization is not sensitive to the accuracy of the estimated dip, because even using
an arbitrary dominant direction would not be worse than using horizontal- and vertical-
gradients, which means using conventional TV in a complex area.

In terms of the parameter selection, we choose a relaxation strategy for µ, which is
increasing exponentially. In this way, we relax the strength of the L1 constraint gradually
to make the inversion converge. λ is a constant which depends on the scale of the data.
We can set a proper λ to make sure around 60%−70% of the energy is passed through the
shrinkage step in the split-Bregman iterative algorithm, in order to improve the stability
of the algorithm. Regarding the weights on the dominant direction and its perpendicular
direction of gradients, it depends on the accuracy of the estimated dip field and the bias
of the subsurface structures. Usually, α1 : α2 = 2 : 1 is a safe choice. In this work, we
use α1 : α2 = 3 : 1 for both examples, which puts more weight on the dominant spatial
direction of the velocity gradient, because the structures of the Marmousi model are quite
tilted and biased.
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Figure B.4: DTV: The inverted reflectivity model using (a) regular JMI without any regu-
larization, (b) JMI with conventional TV, (c) JMI with directional TV, and (d) JMI with L2
directional laplacian smoothing.

B.5. CONCLUSION
Joint migration inversion (JMI) with the directional total variation (TV) has been demon-
strated to be a more effective method than the alternatives (i.e., JMI without regulariza-
tion, with the conventional TV, or L2 directional Laplacian smoothing). We designed the
directional TV based on the dip field calculated from a raw image. By considering the lo-
cal structural directions of the spatial gradient and their weights according to the local dip,
the proposed method achieves a better result compared to JMI without regularization or
with conventional TV.
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