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Abstract: Porous carbons as solid adsorbent materials possess effective porosity characteristics that
are the most important factors for gas storage. The chemical activating routes facilitate hydrogen
storage by adsorbing on the high surface area and microporous features of porous carbon-based ad-
sorbents. The present research proposed to predict H2 storage using four nature-inspired algorithms
applied in the random forest (RF) model. Various carbon-based adsorbents, chemical activating
agents, ratios, micro-structural features, and operational parameters as input variables are applied
in the ML model to predict H2 uptake (wt%). Particle swarm and gray wolf optimizations (PSO
and GWO) in the RF model display accuracy in the train and test phases, with an R2 of ~0.98 and
0.91, respectively. Sensitivity analysis demonstrated the ranks for temperature, total pore volume,
specific surface area, and micropore volume in first to fourth, with relevancy scores of 1 and 0.48.
The feasibility of algorithms in training sizes 80 to 60% evaluated that RMSE and MAE achieved 0.6
to 1, and 0.38 to 0.52. This study contributes to the development of sustainable energy sources by
providing a predictive model and insights into the design of porous carbon adsorbents for hydrogen
storage. The use of nature-inspired algorithms in the model development process is also a novel
approach that could be applied to other areas of materials science and engineering.

Keywords: hydrogen storage; machine learning; random forest; nature-based algorithms

1. Introduction

The demand for ecologically friendly fuels and transportation has grown due to
increasing environmental issues [1]. The transition to a hydrogen economy offers one
remedy for this purpose [2]. Fuel-cell electric automobiles can use hydrogen as a zero-
emission carrier since it has highly desirable characteristics that prevent it from generating
carbon dioxide (CO2) [3,4]. The physical adsorption of hydrogen on solid adsorbents
accomplished by extremely large surface areas is one key performance that has received
less consideration. Strong reversibility and fast kinetics are two key factors that make this
approach beneficial [5]. At the same pressure and temperature, an adsorption process could
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provide more hydrogen capability than compression alone. It would also increase safety
and provide more design flexibility for the storage tank by enabling the utilization of lower
pressures or smaller volumes to hold the same quantity of hydrogen.

Hydrogen can be stored in different adsorbent materials such as nanocomposite
and carbon materials. Carbon is one of the best materials for the physical adsorption of
hydrogen. The thermal treatment of an appropriate precursor in an inert environment
coupled with activation is a typical technique to produce porous carbon compounds with
such a large surface area. The process of activation involves the engraving of carbon
materials to create pores [6–8]. High surface areas and hierarchical pore structures make
supreme micro-and mesopore (<2 nm and 2–50 nm) surface and volume characteristics
that facilitate hydrogen adsorption. Microstructures (<2 nm) comparatively play a vital
role compared with meso- and macrostructures (2–50 nm and >50 nm, respectively) in
porous carbon [9]. It can be performed either “chemically” or “physically” at temper-
atures ranging from 250 to 600 ◦C. Physical activation occurs at temperatures between
600 and 1200 ◦C [10–14]. Recently, innovative porous carbon-based materials, including
carbon xerogels, have also been researched [15,16]. Research studies use a method of
selecting a carbon precursor, carbonizing and activating it under a variety of treatment
parameters, evaluating the hydrogen adsorption, and comparing the findings at a chosen
pressure to improve the porous carbon materials to obtain greater hydrogen adsorption
values [17–19].

Although there is a consensus in the scientific literature on the value of intersecting
fields in micropores for enhancing excess hydrogen absorption, the intensity or the nature
of this relationship has not been able to be quantified. Various parameters influence the
porous carbon adsorption performance. The porous carbon can be mostly obtained by
chemical activating processes that are employed by chemical activating alternatives such as
KOH, ZnCl, acetone, etc. [13,20]. Hence, demonstrating the relations between the chemical
activation and the distribution of pore sizes and hydrogen uptake is complex. While some
researchers suggest the reverse, Sethia and Govind showed that optimized porosity is
more significant than having a wide surface area [21]. Only by quantitatively determining
the relative relevance of the pertinent factors could such inconsistencies be addressed. In
other instances, it is even impossible to determine whether a given factor aids or has no
impact on absorption. The question of how oxygen concentration influences adsorption
is one instance that can be discovered in both theoretical and experimental research. By
applying both approaches, the idea that oxygen concentration enhances sorption can be
confirmed [22]. In addition, there is research that disputes this idea [23]. This research’s
inconsistent findings make it impossible to optimize carbon materials via logical design,
since it is unclear as to which aspects are crucial and how much they contribute. Often,
computational research involving quantum chemistry or molecular simulation has the
potential to tackle problems of this nature. However, the majority of theoretical studies in
the field typically focus on only studying specific types of carbon nanomaterials [24,25],
leaving it unclear as to whether they can be oversimplified to other, particularly amorphous,
forms of carbon.

Artificial intelligence or machine learning (ML) approaches have an ascending trend
in parallel, assisted, and post-evaluation experimental results. ML approaches have been
developed in multidisciplinary subjects [26,27]. This is because it is challenging to de-
sign models that are representative of actual porous carbon materials. This provides
a critical information gap that is unlikely to be filled using experimental methods. A
crucial challenge lies in determining whether the knowledge gained from conceptual or
experimental research could be utilized to later forecast the characteristics of those other
materials having comparable structural and chemical features in a consistent, effective, and
informative way. This is the target of the ML technique, which uses patterns in data to
be automatically identified [28–30]. ML frequently employs methods from data analysis.
While ML creates frameworks that could be used to generate forecasts, data analysis en-
hances the exact solutions. As a result, ML could indeed determine connections between



Energies 2023, 16, 2348 3 of 19

the chemical and structural formations of porous materials, as well as their abilities for
the adsorption process, from the data. These connections could then be used to forecast
the adsorption characteristics of the novel’s as-yet unsynthesized components [31–33].
Table 1 illustrates the ML-based research on hydrogen storage with multiple objectives and
ML models.

Table 1. The previous works of literature on hydrogen storage via machine learning.

Modeling Process ML Model R2 Ref.

The filling tank modeling based on the
conditional features ANN 0.99 [34]

Modeling, considering structural and
conditional parameters ANN - [35]

Micro-textural and porosity features at fixed
condition parameters) SVM 0.98 [33]

Structural and conditional parameters utilized ANN 0.95 [36]
Novel nature-derived algorithms predict the

performance of porous carbon for hydrogen storage.
RF_ (GA, DA,

GWO, and PSO) 0.98 This work

ANN = Artificial neural network, SVM = Support vector machine, RF = Random Forest, GA = Genetic algorithm,
DA = Dragonfly algorithm, GWO = Grey wolf optimization, and PSO = Particle swarm optimization.

The intricate nonlinear interactions between many parameters have been studied
using ML algorithms utilizing a wide range of research data on hydrogen adsorption in
carbon-based materials [37–39]. In a simple ML model, Yangzesheng et al. presented a meta-
learning technique to predict H2 adsorption as a factor of both pressure and temperature
for various nanoporous materials. They created the model, utilizing an encoder–decoder
structure to identify hydrogen adsorption fingerprints for nanoporous materials in their
original forms [40].

As mentioned before, conventional algorithms such as artificial neural networks
(ANNs) are effectively applied in gas adsorption prediction. Nature-derived algorithms
are regarded as novel ML techniques that effectively perform predictive performance. As
shown in Figure 1, this type of algorithm is powered by natural inherent patterns such
as animal groups, the universe, and the living world. In this study, four nature-based
algorithms were applied to predict hydrogen uptake values on porous carbon materials of
biochar, activated carbon (AC), and metal-doped carbon. Multi-features such as adsorbent
types, chemical activating agents (KOH, ZnCl, etc.), micro-structural, and conditional
features are used as input variables. Nature-inspired algorithms possess higher feasibility
and accuracy with qualitative inputs, and facilitate the computational costs. The objectives
of this purpose can be stated in the following points:

• Hydrogen storage on porous carbon materials is achieved through a rediscovery
data-driven approach using the random forest ML model.

• Considering the chemical activating agents and adsorbent types as inputs for the model.
• The evaluation of the accuracy of the prediction of nature-derived algorithms for

hydrogen storage.
• Feasibility of grey wolf optimization (GWO), dragonfly algorithm (DA), particle swarm

optimization (PSO), and genetic algorithm (GA) in various ranges of data sizes.
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Figure 1. Nature-inspired algorithms in ML for hydrogen storage prediction.

2. Material and Methods
2.1. Sample Data Collection

The works of literature related to hydrogen storage using porous carbon were evalu-
ated to collect the information for the dataset preparation. The extracted data, 566 datasets
from previous scientific reports, were applied to construct and test smart ML models. The
information preparation process was applied by using keywords such as: “metal-doped”,
“activated carbon”, and “porous carbon”, with the combination of “hydrogen storage”,
and “H2 uptake”. Biochar, activated carbon, and metal-doped carbon as adsorbent mate-
rials were detected. The related structural, activating, and conditional parameters were
extracted for the modeling process. Figure 2 shows the dataset provision and modeling
implementation procedures. The details of calculating the variables and raw datasets are
provided in the Supplementary Materials Section (SI).

Eleven independent variables are considered for constructing the RF model to predict
hydrogen storage capacity, as shown in Table 2. They are divided into four categories
including solid adsorbent, chemical activating, structural characteristics, and conditional
parameters. The first category consists of porous carbon types such as biochar, activated
carbon, and metal-doped carbon. The second includes chemical activating agents and
ratios. The chemical agents mostly possess alkali, acidic, and metal chloride types. The
textural features are specific surface area, micro-/mesopore volume, total pore volume, and
average pore diameter. Finally, the conditions consist of temperature and pressure features.
The ratio of activating agents is calculated using the following equation:

AR =
mA

mC
(1)

where mA and mC are the mass of the activation agent and the mass of the carbon precur-
sor, respectively.
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Figure 2. The process of datasets preparation and modeling via ML.

Table 2. The description of independent variables and output.

Category Input Symbol Unit

Solid adsorbents Adsorbent kind NQ AK -

Chemical activating Activating Agent NQ AA -
Activating Ratio AR -

Structural features

Specific surface area SSA m2g−1

Micropore volume Vmic cm3g−1

Mesopore volume Vmes cm3g−1

Total pore volume Vt cm3g−1

Vmic/Vt Fv -
Average pore diameter AVD nm

Conditional
parameters

Pressure P bar
Temperature T K

Storage Hydrogen H2 %wt

2.2. The Smart Machine-Learning Model

Random forests (RFs) are a set of approaches consisting of the construction of decision
tree collecting, derived from a randomly varying tree orientation program. The decision
trees are prominent options to address the related challenges as they exhibit low bias and
large variation. These make them very probable to benefit from an optimization model [41].



Energies 2023, 16, 2348 6 of 19

Figure 3 displays the random forest approach for the regression issue. The procedure of
the RF model for training data is summarized as follows [42]: (i) Select generated data
points randomly from the training sample. (ii) Construct a tree structure connected with the
number of data samples. (iii) Select the number N of trees for a certain aim to develop and
repeat steps 1 and 2. (iv) For new data samples, forecast the value for the data sample using
each of the N-tree trees, and exhibit the new data sample to the average of all anticipated
values. Indeed, this ML model provides a deep understanding of the decision tree by
controlling the level of nonlinearity in the training database [41,43]. Each tree is generated
based on the randomly selected subset of the variables in the decision tree-building process,
and creates various results from different trees. The average marks of all the decision trees
are determined as the outcomes of the RF models [44]. This objective is completed by
switching Out-of-Bag (OOB) samples from a specific predictor to estimate the increase in
evaluation error, while the remaining parameter is kept the same. The mean square error
(MSEOOB) is determined as follows [41,45]:

MSEOOB =
1

NT

NDT

∑
i=1

(
hi − ĥi

)2
(2)

where NDT stands for the number of OOB samples, and ĥi represents the OOB prediction
for training data samples. The Sciki-learn toolkit, namely “sklearn.ensemble.RandomForest-
Regressor”, was used to train and test the RF models [46]. The tuning hyperparameter was
optimized by nature-inspired algorithms that are introduced in the next section.

Figure 3. The schematic of the random forest technique for a regression problem. Solid color means
that the prediction is correct, while the light color means that the prediction is incorrect.

Thus, before the RF model in the training process, the data must be normalized over
the range of [0, 1]. The popularly applied method of normalization and of processing the
data linearly over a constant range is as follows:

xn =

(
x− xmin

xmax − xmin

)
× (rmax − rmin) + rmin (3)

where x, xn show the original data and all the normalized variable values. In addition,
xmin,max correspond to the maximum and minimum values of the variable, respectively.
rmaxand min present the desired values of the transformed variable range. The hydrogen up-
take dataset is randomly shuffled and repeated to obtain the properly placed segmentation.
In total, 60 to 80% of all porous carbon samples were randomly selected for the training
phase, and 40 to 20% of them were chosen.
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2.3. Nature-Inspired Methods
2.3.1. Particle Swarm Optimization (PSO)

Among the most popular optimization routes utilized in technology is particle swarm
optimization, or PSO for short. This is because of its effectiveness, ease of use, and gen-
eral application. In 1995, Eberhart and Kennedy presented one of the most well-known
randomized algorithms as a strong optimal control tool [47]. Like a flock of birds or a
swarm of fish, it moves in a group. Well-researched coverage of the idea, modifications,
and significant applications in power grids could be found in [48]. To optimize the tuning
hyperparameters by tuning the RF model, the following steps were considered: (1) Making
a swarm of particles with random beginning positions and velocities. (2) Objective function
computation for tuning parameters. (3) Upgrading each particle’s position and velocity
based on an analysis of its optimal location relative to that of the total population. (4) These
procedures are repeated up to some maximum number of times, or until some halting
requirement is achieved.

2.3.2. Genetic Algorithm (GA)

The genetic algorithm (GA) is an important tool related to genetic populations, to de-
termine the optimal functions [49,50]. GA stands for one branch of evolutionary calculation
that includes the following steps: genetics, mutation, natural selection, and crossover [51].
A set of preliminary candidates is produced, and their respective computed values are
determined [52]. The processing of GA could be highlighted as follows: (i) Population
origination: This stage randomly creates a population of n individuals. (ii) Determine the
adaptive values: The phase evaluates the adaptation of each individual. (iii) Selection:
The process chooses two members of the population, depending on their adaptability.
(iv) Crossover: A crossover between two parents is created to generate a new individual.
(v) Mutation: For each possible variant picked, new individuals are produced. (vi) Select
the result: The GA algorithm finishes while the stopping constraint is achieved, and the
optimal solution is provided for the present population. If the stopping conditions are not
fulfilled, the new group will be perpetually formed by repeating the three steps (selection,
crossover, and mutation). Several subsurface ML-based studies have used the grid search
for tuning the ML models [53]. However, GA might be better in terms of the optimization
problems. Thus, this study used GA to propose hybrid ML models by coupling GA-RF for
better regression prediction.

2.3.3. Grey Wolf Optimization (GWO)

The majority of grey wolves are group animals. On the whole, one should expect to be
in a group of between 5 and 12 individuals. Among them, the norms of social dominance
are quite rigid. The following steps are the key processes of a grey pack of wolves, according
to [54]:

• The alpha wolves are the ones who dominate the pack and who make all the important
calls. The pack must follow the alpha’s lead at all times.

• They are the alpha’s subordinates, and they aid the alpha in deciding and in carrying
out various tasks. The beta is the most likely choice for alpha.

• The alpha is the scapegoat. The alpha wolf must always take a back seat to the pack’s
other alphas. Only these wolves are given food anymore.

• Deltas are submissive to alphas and betas, but they hold the upper hand over omegas.
This group includes watchmen, guardians, elders, hunters, and caretakers. Scouts
keep an eye on the territory’s fringes and sound the alarm if they see any trouble. The
oldest wolves are the seasoned former pack leaders. Hunters aid the pack’s alphas
and betas in their pursuit of prey and in supplying the pack with food.

The optimal solution in the GWO computer formula is denoted by the letter “alpha.”
Beta and delta are the names of the second- and third-best options. We will assume that
omega is the case for the remaining potential answers.
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2.3.4. Dragonfly Algorithm (DA)

In comparison to other optimization algorithms, the Dragonfly algorithm (DA) is a
relatively new metaheuristic algorithm. It performs well when faced with a variety of
optimization problems such as continuous, single-objective, and multi-objective optimiza-
tion [55]. Dragonflies operate in small groups in search of food in nature; this process is
called hunting mechanisms. Larger groups of dragonflies fly together in one direction,
causing the swarm to migrate in a process known as the migration mechanism [56]. Five
processes define the swarming behaviors of dragonflies [57]:

(a) Distancing one from the others to reduce the risk of a static accident is known
as “separation”.

(b) The term “alignment” describes how one search agent’s speed corresponds to the
speeds of similar agents in the area.

(c) The terms “attraction” and “distraction” refer to the allure of the food supply for
migrating creatures, and the human impulse to flee from danger, respectively.

2.4. Optimization of Tuning Parameters

The random forest model and four nature-inspired algorithms have tuning parameters
that need to be optimized. As shown in Table 3, four statistical parameters are optimized.
These features are evaluated in range and optimal value. The ideal value of estimators
is determined as 175, and the max depth is set as 21. The tuning parameters of the
algorithms are optimized, as shown in Table 4. The variables of nature-derived algorithms
are optimized, and the values are determined. For example, the tuning variables of GA for
population size, mutation rate, the number of iterations, and the selective pressure, are 25,
0.05, 25, and 2. Two main variables of PSO include the size of the swarm and the number
of iterations, which are 100 and 25. Other algorithms are optimized with the same process
that is applied in the ML model.

Table 3. The optimal tuning parameters of RF were optimized by considering nature-inspired methods.

Method Tuning Parameter Range Optimal Value

Random Forest (RF)

Number of estimators 10–1000 175
Max features 0–20 0.263

Min samples leaf 1–40 1
Max depth 5–500 21

Table 4. The parameter setting is considered for each optimization method.

Method Variable Values

Dragonfly algorithm (DA)
Population size 50

Timeout 60 × 60
Number of iterations 25

Grey wolf optimization
(GWO)

Number of wolves 80
Number of iterations 25

a Linearly decreased from 4 to 0

Particle swarm optimization
(PSO)

Size of swarm 100
Number of iterations 25

c1 2.05
c2 2.05
γ 0.659

Genetic algorithm (GA)

Selective pressure 2
Population size 25
Mutation rate 0.05

Number of iterations 25
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2.5. Evaluation Criteria

The Pearson correlation coefficient (PCC) was utilized to measure the linear depen-
dence between all dependent and independent variables. The PCC was conducted to
check the collinearity value and the linear correlation between the independent and depen-
dent variables. The existence of linear dependence between the variables is determined
as follows:

PCC =
∑n

i=1(xi − x)∑n
i=1(yi − y)√

∑n
i=1(xi − x)2

√
∑n

i=1(yi − y)2
(4)

where x and y represent the independent and dependent variables, and
–
x and

–
y are their

mean values. The significant levels based on the correlation coefficient are calculated as:

t =
PCC
√

N − 2√
1− PCC2

(5)

where N represents the number of samples.
Three criteria were appraised to evaluate the performance of the machine learning

(ML) technique. These abovementioned criteria are presented in the previous studies used
to predict the reliability of the output accuracy. Root mean square error (RMSE), mean
absolute error (MAE), and the coefficient of determination (R2) can evaluate the accuracy of
models as follows:

MAE =

(
N

∑
r=1

∣∣Hr − Hp
∣∣

N

)
(6)

RMSE =

√√√√( N

∑
r=1

∣∣Hr − Ĥp
∣∣2)/(N − 1) (7)

R2 = 1−
N

∑
1

(
Hr − Hp

)2/
N

∑
1

(
Hr − Ĥr

)2 (8)

where Hr and Hp indicate the real and predicted values, and Ĥp is the average of the
predicted values.

3. Results and Discussion
3.1. Initial Correlation Evaluation

The initial statistical criteria are provided in Table 5. The specific surface area is
approximately between 0 and 4300 m2g−1. The range of pore volume is 0 to 2.6 cm3g−1.
The conditional features such as temperature and pressure are mostly 77 to 303, and 1 to
270 bar, respectively.

Table 5. The statistical criteria of input features for hydrogen storage in porous carbon.

Quantitative Feature Minimum Average Maximum Stedv

Ratio 0 2.24 5 1.5798
SSA (m2g−1) 0.42 2207.438 4310 1009.4183

Vmic (cm3g−1) 0 0.84 2.01 0.5098
Vmes (cm3g−1) 0 0.33 1.8 0.3625

Vt (cm3g−1) 0 1.17 2.6 0.5973
Vmic/Vt 0.03 0.72 1 0.2255

AVD (nm) 0.24 2.01 4.43 0.5177
Pressure (bar) 1 35.55 270 43.3089

Temperature (K) 77 142.93 303 98.7025
H2 (%wt) 0 2.811 12.6 2.3539



Energies 2023, 16, 2348 10 of 19

Principally, the Pearson correlation coefficient (PCC) matrix is used to disclose the
variables’ relations to each other. Figure 4 illustrates all input variables compared with
hydrogen uptake, which distinguishes the significant level and the correlation coefficient.
Hydrogen uptake was notably exhibited a highly significant level with chemical activating,
micro-structural, and operational variables (p < 0.01). The p-value indicates the reliability
of the linear relationship of correlation, where all variables prominently have high p-value
levels. Nevertheless, the correlation between H2 storage and AVD was not significant.
The activating agent ratio (AR), activating agent type (AA), and adsorbent kind (AK)
were correlated with H2 uptake 0.392, 0.291, and 0.271, with p-value < 0.01, respectively.
Adsorbent kinds consist of bio-char, activated carbon, and metal doped-AC. ACs and metal-
doped ACs such as Ni-AC, Pb-AC, etc., significantly can adsorb hydrogen, with as high a
porosity as compared with biochar [58]. ACs exclusively perform the hydrogen uptake by
physisorption in cryogenic temperatures at a specific surface area of ~4000 m2g−1 [22,59].
Metal-doped ACs donate the active sites on the carbon surface for storage, even with low
porosities [60,61]. Furthermore, the chemical activating processes donate high porosities to
the carbon structure, which facilitates the hydrogen storage on the porous carbon. Alkali
agents are the most popular with post-purifying using diluted acid (HCl) [62,63]. Thus, the
correlation coefficient between the independent variables was observed. AA and AR are
correlated with SSA and Vmic, at 0.286 to 0.485 with p-value < 0.001. The specific surface
area (SSA) and total pore volume (Vt) have a significant level p-value < 0.001 and a high
correlation of 0.438 and 0.293 for hydrogen uptake. This is because the hydrogen uptake is
facilitated by low-temperature conditions (77 K). Hence, the correlation value between the
H2 storage and temperature is −0.605.

Figure 4. Pearson correlation matrix of the input variables and hydrogen uptake as an output variable.
The values display the value of the correlation and the significance levels in parentheses between
all variables.



Energies 2023, 16, 2348 11 of 19

Finally, it can be noted that AR, AA, and AK of the chemical activating process is
positively correlated with hydrogen storage. Following it, the structural characteristics such
as surface and porosity in the range of 2–50 nm are highly appropriate to be considered as
input for the Ml model. The cryogenic storage of hydrogen at 77 K is significantly correlated
with H2 uptake, with a p-value < 0.001. As temperature possesses a high importance, the
pressure comparatively showed a low correlation coefficient.

3.2. H2 Uptake Prediction

The random forest (RF) ML model is selected as the base of the modeling process for
hydrogen uptake prediction. As shown in Figure 5, four algorithms were effectively merged
with RF that showed a superior ability for hydrogen storage prediction. R2 approximately
achieved ~0.98 for the training phase. Although the test accuracy descended which it
obtained 0.91 to 0.93, the results were still satisfying enough. Particle swarm and gray wolf
optimizations (PSO and GWO) in the RF model exhibited the same results in the train and
test phases as R2 of ~0.98 and 0.91, respectively. The genetic algorithm (GA) leads a bit
higher in hydrogen prediction in the test phase (R2 of ~0.93). In addition, the RF_Dragonfly
algorithm (RF_DA) indicated a precise prediction performance of 0.98 and 0.90 in the train
and test steps, respectively. The differences in population size are tuned based on the
algorithm’s optimization and computational resources. In addition, the train dataset sizes
are randomly evaluated as 60 to 80% from 566 datasets, and the best accuracies are achieved
at 80% and 20% in the train and test phases, respectively.

3.3. Generalizability Evaluation

The feasibility of algorithms to predict the hydrogen uptake value can be compared
using generalizability analysis. As illustrated in Table 6, the R2 criteria of algorithms,
specifically the grey wolf algorithm, exhibited a high accuracy in the training phase, at 0.99
of R2. The accuracy in the train size (TS) of 60% to 80% approximately achieved ~0.84 to
0.92 of R2 in the test phase, respectively. These results are repeated for other algorithms:
dragonfly, genetic, and particle swarm optimization algorithms. By decreasing the training
size from 80 to 60%, RMSE and MAE are 0.6 to 1, and 0.38 to 0.52.

Table 6. The three criteria of RMSE, MAE, and R2 in various training dataset sizes (TS).

Training Size (TS) Algorithm
RMSE MAE R2

Train Test Train Test Train Test

60%

RF_PSO 0.339 0.994 0.184 0.505 0.980 0.836
RF_GA 0.337 0.964 0.185 0.524 0.981 0.848
RF_DA 0.336 0.990 0.186 0.500 0.9805 0.836

RF_GWO 0.335 0.978 0.185 0.496 0.979 0.834

70%

RF_PSO 0.296 0.623 0.181 0.387 0.9862 0.9216
RF_GA 0.290 0.641 0.184 0.420 0.9867 0.9241
RF_DA 0.293 0.664 0.186 0.420 0.9865 0.9183

RF_GWO 0.286 0.631 0.183 0.409 0.9870 0.9263

80%

RF_PSO 0.313 0.667 0.184 0.420 0.9848 0.9106
RF_GA 0.284 0.598 0.175 0.387 0.9873 0.9281
RF_DA 0.297 0.649 0.181 0.400 0.9863 0.9168

RF_GWO 0.291 0.624 0.179 0.377 0.9865 0.9215

3.4. Sensitivity Analysis

Sensitivity analysis is achieved based on the measured relevancy score to investigate
the impact of the inputs on hydrogen storage. As can be seen in Figure 6, temperature
and pressure contain the 1 and 0.3 scores in the first and sixth ranks. In addition, the
micro-structural variables of total pore volume, SSA, and Vmic exhibit scores of 0.48 in
the second to fourth ranks. The average pore diameter and mesopore volume have 0.28
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and 0.24 scores. These values comparatively are low in comparison with the other values.
Adsorbent kinds (biochar, activated carbon, and metal-doped carbon) comparatively have
a score of 0.18.

Figure 5. Observing the real and predicted values of hydrogen uptake on porous carbon in the train
and test phases (circles and triangles represent the real and predicted values, respectively).

Figure 6. The relevancy score illustrates the impact of the independent variables on hydrogen storage.
The green color means conditional parameters, red color means structure of characteristics, blue
means chemical activation parameter, and the grey color means type of adsorbents.
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4. Conclusions and Further Research

In this study, hydrogen uptake is modeled using four nature-inspired algorithms in the
random forests (RFs) model. Four main categories include the characteristics of adsorbent
type, chemical activation, and the micro-structural and operational conditions modeled
using the RF model. The ML assessment accurately predicted the porous carbon adsorbents
for hydrogen storage. Dragonfly, grey wolf, particle swarm, and genetic optimization
algorithms exhibited 0.91 to 0.93 and 0.99 of R2 for the test and train phases, respectively.
Moreover, the generalizability analysis in the training size area of 60 to 80% leads to
accuracies of 0.29 to 0.34 of RMSE, 0.18 to 0.19 of MAE, and 0.99 of R2 in the training phase.
In the test phase, these values achieved 0.6 to 1, 0.4 to 0.5, and 0.84 to 0.93, respectively. The
sensitivity analysis demonstrated the ranks for temperature, total pore volume, specific
surface area, and micropore volume in first to fourth, with relevancy scores of 1 and 0.48.
The RF model as a machine learning (ML) technique endorses the computational approach
to achieve the advanced H2 energy storage objectives. The contribution can be stated in
several points such as: (i) This work creates ML models to estimate the hydrogen storage
capacities of different porous carbon adsorbents. This model may be used to guide the
design of novel adsorbents for hydrogen storage, a crucial step in the development of
renewable energy sources. (ii) The nature-inspired algorithms such as GWO, DA, GA, and
PSO choose the model’s most pertinent characteristics. These algorithms are well-known
for discovering optimal solutions to complicated problems, as they are based on evolution
and the swarm behavior observed in nature. (iii) The achievements have demonstrated
that using nature-inspired methods to pick model features enhances the model’s accuracy.
In addition to its accuracy and resilience, the random forest algorithm is a useful approach
to estimating the hydrogen storage capacities of porous carbon adsorbents. (iv) The survey
sheds light on the connection between the structural characteristics of carbon materials and
their hydrogen storage capacities. This can inform the creation of novel hydrogen storage
materials with optimal architectures.

5. Limitations and Future Works

The porous carbon-based adsorbent materials with various synthesizing processes for
hydrogen storage attracted an ascending trend, as shown in Figure 7. Thus, researchers
will be faced with a high quantity of experimental works and datasets. On the other hand,
the importance of multi-features for porous carbons is observed through machine learning
(ML) techniques. This approach is fast and helpful for designing the optimal porous carbon
adsorbents. The limitations can be emphasized below:

• Although ML models achieve high predictive performances or optimizations, in-depth
independent variables are needed for advanced evaluation. The variables can be
introduced as energy bonds, adsorption energy, bond angles, etc.

• To save time, costs, and the reuse of datasets, a platform for archiving datasets should
be designed so that ML researchers can access big data.

• The qualitative features such as biomass precursors, inherent constituents, and ligno-
cellulose portions must be simplified for smart modeling.

Future ML studies can propose dialectic algorithms to tune synthesizing variables
based on the precursors for adsorbent materials. In addition, upcoming modeling research
can be constructed using molecular-based variables for the smart monitoring of the optimal
state of gas adsorption, and specifically, hydrogen uptake.
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Figure 7. The review of studies utilized various precursors to synthesize various porous adsorbent
materials for hydrogen storage [16,18,33,59,60,64,72,80,83,86,90,93,97,98,104,107].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en16052348/s1, SI file includes some equations for variables
calculations and datasets with corresponding references. Table S1. The datasets extracted from
previous experimental studies in hydrogen storage on porous carbons. References [64–109] are cited
in the supplementary materials.
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Nomenclature

AC Activated carbon
AK Adsorbent kind
AVD Average pore diameter
AA Activating agent
AR Activating ratio
BCPs Biomass-based carbon precursors
BACs Bio-derived ACs
DA Dragonfly algorithm
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GA Genetic algorithm
GWO Grey wolf optimization
ML Machine learning
OOB Out-of-Bag
PSO Particle swarm optimization
R2 Mean square error
RMSE Root mean square error
RF Random forest
SSA Specific surface area
Vt Total pore volume
Vmic Micropore volume
Vmes Mesopore volume
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