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An in-depth exploration of the reaction kinetics and thermo-chemical behaviors of the raceway can offer
practical insights for optimizing the operations of blast furnace (BF), thus achieving a more effective iron
and steel production process. In this study, the dynamic characteristics and the flow, heat and mass trans-
fer behaviors in the BF raceway were simulated by Discrete Element Method-Computational Fluid
Dynamics (DEM-CFD) method at a particulate scale. The effects of coke size distribution and blast velocity
on coke combustion characteristics, thermochemical behavior (particle volume fraction, raceway size,
carbon loss, and coke temperature) and microscopic properties (coordination number (CN), contact nor-
mal force, pore structure and stress) were systematically investigated. The results show that as the blast
velocity decreases or the size ratio k (the largest coke particle size divided by the smallest coke particle
size) increases, the raceway size becomes smaller, resulting in a smaller area of high oxygen (O2) concen-
tration and low carbon monoxide (CO) concentration in the raceway, and higher CO concentration in the
packed bed. For the thermal-chemical behaviors, a lower blast velocity or a higher k value decreases the
number of particles experiencing mass loss, as well as increases individual particle mass loss, the average
coke temperature and its variance. For microscopic properties, the CN distribution becomes wider as k
increases. The contact normal force in the coke bed with k > 1 is significantly higher than that of k = 1.
As k increases or blast velocity decreases, the pore distribution curve shifts to the left and the average
pore volume decreases. The stress acting on the particles in the raceway increases with the blast velocity
or k. These new understandings of the complex reactive flow behaviors in the raceway will shed light on
energy utilization and process optimization.
� 2024 The Society of Powder Technology Japan. Published by Elsevier BV and The Society of Powder

Technology Japan. All rights reserved.
1. Introduction

The blast furnace (BF) is a huge reactor that transforms iron ores
into molten iron, which is a crucial equipment in the iron and steel
industry. Due to the high temperature condition and the huge size
of BF, its operation is very energy-intensive and can cause substan-
tial greenhouse gas (GHG) emissions. Statistics indicate that BF
accounts for more than 70 % energy consumption [1,2] and nearly
90 % CO2 emissions [3] in iron and steel plants. Therefore, it is crit-
ical to optimize the operation of BF for achieving a more energy-
efficient and low-carbon production process [4].
In the BF production, hot air is normally blown through the sur-
rounding tuyeres, resulting in the formation of the raceway. Basi-
cally, the raceway has significant influences on the BF
performance in various aspects, e.g., the gas composition, the sta-
bility of the furnace, the formation of the softening-melting zone,
and the reaction of the dripping zone [5–7]. Hence, the effective
understanding on raceway is crucial for optimizing the perfor-
mance of BF.

In the past decades, many scientists and engineers have been
devoted to improving the understanding of the raceway through
both experimental and numerical studies. Because of the high tem-
perature, huge size, as well as the complex multiphase flows and
thermochemical reactions, experimental studies on BF can be both
challenging and expensive, thus have only been investigated by a
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few researchers. At room temperature, Sastry et al. [8,9] conducted
lateral blowing experiments by using quartz sand and polypropy-
lene particles, and they found that the particle properties have sig-
nificant effects on the formation and rupture of the raceway.
Wright et al. [10] investigated the formation mechanism of the
raceway by comparing the effects of two-dimensional (2D) and
three-dimensional (3D) modelling, conventional and non-
conventional operations, and particle shapes. Nagomi et al. [11]
proposed a model of the raceway based on 3D Computed Tomog-
raphy (CT), which described in detail the spatial structure of the
raceway and particle velocities. In addition, several studies at high
temperatures were also performed. For example, Matsui et al. [12]
used microwave reflection to measure the formation of the race-
way at a high coal injection rate. Zhou et al. [13,14] investigated
the combustion behavior of the raceway using a flame detection
approach based on digital imaging and image processing tech-
niques. It is known that physical experiments can provide insights
into the evolution of the BF raceway and obtain information (e.g.,
temperature and pressure) about the furnace operation at the
macroscopic scale. However, it is difficult to comprehensively
and precisely characterize the detailed microscopic information
of gases and individual particles, such as velocities, forces, and
gas composition.

In comparison, numerical simulations can be effective for gen-
erating detailed information on the particle/gas flow dynamics,
heat and mass transfer, and chemical reaction processes in the
BF, thus offering fundamental understanding for aiding the opti-
mization of BF. In previous studies, two types of numerical
approaches are generally adopted to describe the particle–fluid
flow dynamics and thermochemical behaviors in the raceway:
Two-Fluid Model (TFM) and Discrete Element Method-
Computational Fluid Dynamics (DEM-CFD) model [15,16]. The
TFM approach treats both the fluid phase and the particle phase
as continuous media interpenetrating each other and solves the
conservative equations of mass, momentum, and energy at compu-
tational cells with the incorporation of the kinetic theory of gran-
ular flow, which can simulate the large-scale particle–fluid
systems at a relatively low computational cost [17]. Using TFM,
many researchers investigated the effects of operation parameters
on the raceway size and gas/solid motion [18,19] and the pulver-
ized coal injection [20–27]. However, as a continuum and macro-
scopic approach, TFM cannot precisely provide the microscopic
information at the particle scale, such as particle trajectories, par-
ticle residence time, and particle–particle/particle–fluid interac-
tions that can be related to the strong collisions between
particles in the raceway and the quasi-static flow of particles in
the deadman region [28,29]. To solve these problems, researchers
adopted the DEM-CFD model to study the behavior of the raceway
in recent years. As shown in Table 1, the current researches based
on the CFD-DEM method to investigate the behavior of blast fur-
nace raceway can be divided into three levels [30–46]. Level 1:
simulation of gas–solid flow under normal temperature and pres-
sure; level 2: gas–solid two-phase flow simulation considering
flow and heat transfer; level 3: gas–solid two-phase flow simula-
tion that completely considers the flow, heat, mass transfer and
chemical reaction phenomena. From level 1 to level 3, the model
is updated iteratively and becomes more and more complex, which
makes the CFD-DEM simulation of the BF raceway closer to the
actual process. However, it is worth noting that the particles in
the simulations considering flow heat and mass transfer were
mainly assumed to be mono-sized, which is different from the
multi-sized raw materials used in the actual BF. In addition, the
effects of blast parameters and particle properties on the thermo-
chemical behaviors of the raceway and the corresponding micro-
mechanisms are still not fully understood.
2

In this study, the multiphase reacting flow, including heat and
mass transfer, in the BF raceway were simulated by DEM-CFD
method, which considers the reactions of coke combustion and
carbon solution loss from the particle scale. First, the numerical
model and simulation conditions were validated by comparing
the simulation results and literature data. Then, the effects of blast
velocity and particle size distribution on coke combustion charac-
teristics (including gas species distributions and reaction kinetic
rate) in the raceway were investigated. In addition, the thermo-
chemical behaviors (particle volume fraction, raceway size, carbon
loss, and coke temperature) in the raceway were systematically
analyzed and their correlations with different process parameters
were quantified. Finally, the mechanism of the coke combustion
behavior was revealed by characterizing the microscopic proper-
ties such as coordination number, contact normal force, pores,
and stresses. The obtained results are expected to provide insight-
ful guidance for practical BF operation.
2. Numerical method and simulation conditions

2.1. Governing equations

In the utilized CFD-DEM model, the continuum fluid is
described by the local averaged Navier-Stokes equations, and the
motion of each particle is tracked by DEM. In DEM, the normal
force is based on the classical Hertz’s theory [47] and the tangential
force is based on the Mindlin and Deresiewicz simplifications [48]
with the Hertz-Mindlin no-slip model [49]. For gas-particle inter-
action, the drag force model proposed by Gidaspow [17] is used
based on Wen and Yu [50] and Ergun [51]. All the governing equa-
tions and formulas describing the particle and fluid motion are
summarized in Table 2. Four heat transfer models are considered
in this study, namely particle–particle conduction, particle–fluid
convection, particle-ambient radiation, and chemical reaction heat,
details of the governing equations are listed in Table 3. In addition,
the kinetic/diffusion-limited model, proposed by Field [60] and
Baum and Street [61], is used to describe the reaction rate, in which
the models of kinetic or diffusion rates are given in Table 4. The full
nomenclature is given in Table A1 of Appendix A.
2.2. Simulation conditions and model validation

The raceway is the direct power source for the BF, which under-
goes complex physical changes and chemical reactions. Generally,
to reduce the computational cost, a slot model with gas blasted
from the lateral side is used to simulate the raceway, which has
been validated in many studies in terms of capturing and detecting
motion characteristics [6]. As shown in Table 5, two reactions,
including coke combustion (C + O2 ? CO2) and coke solution loss
(C + CO2 ? 2CO), are considered in the raceway. The relevant
kinetic parameters required in the simulations are also included.
And it should be noted that this study is based on all coke opera-
tion and does not consider coal combustion. Fig. 1 presents the
computational geometry and meshes as well as the morphology
of the coke bed, where the length, height, and thickness of the
domain are 200 mm, 600 mm, and 18 mm, respectively. The tuyere
with 6 � 10 mm2 is located at a height of 65 mm from the bottom
of the domain on the left wall of the bed.

For the solid phase, all the particles are spheres following Gaus-
sian distributions as shown in Fig. 2. The particle size ranges from
l � 2r to l + 2r, where l and r are average particle size and the
standard deviation of coke particles, respectively. In this study, the
average particle size l is 5 mm, and to facilitate the analysis, the
size ratio k, defined as the diameter ratio of the largest to the



Table 1
Summary of DEM-CFD simulations on the BF raceway.

Year Authors Objectives Main achievements

2000 Xu et al. [30] Simulations of gas–solid
flow

Found that differences in lateral gas velocities lead to two manifestations of raceway and fluidization
in the beds

2003 Feng et al. [31] Investigated the gas/solid flow patterns and kinetic mechanisms of raceway formation
2006 Nouchi et al. [32] Simulated solid flow and stress distributions in BF and analyzed the effects of hearth depth and

burden load on coke free space
2010 Adema et al. [33] Developed a model to describe the solid burden flow and the formation, shape, structure and

permeability of cohesive zone
2022 Kamble et al. [34] Analyzed the effects of gas velocity, particle material/size, the flux and size of coal on the raceway

shape and size
2022 Nijssen et al. [35] Studied the effects of burden weight, bi-disperse packing, blocked tuyeres on liquid/solid flow in the

hearth using a full-3D model
2019 Wei et al. [36] Coupled simulations of flow

and heat transfer
Compared the heat transfer characteristics and microstructure of raceway for particles of prolate/
oblate ellipsoids and spheres and found raceway size of prolate ellipsoidal particles is the smallest

2020 Wei et al. [37] Studied the effects of gas velocity and particle shape on the raceway evolution, microstructure,
temperature and bed porosity

2020 Wei et al. [38] Investigated the influence of tetrahedron-like and octahedron-like particles on the microstructure and
heat transfer of BF

2022 Wei et al. [39] Explored the changing laws of BF raceway morphology and pressure drop with cylindrical particles
2020 Hou et al. [40] Simulations of integrated

flow, heat and mass transfer
Developed a model to predict the flow pattern, temperature distribution and iron ore reduction
characteristics in BF

2020 Cui et al. [41] Simulated the effects of gas velocity, particle size, bed height, and discharge rate on the flow and
thermochemical behaviors of raceway

2021 Wang et al. [42] Proposed a model to characterize the raceway dynamics and coke combustion and quantified the
effect of operating parameters

2022 E et al. [43] Explored the effects of blast parameters on raceway evolution and formation, microscale properties
and coke combustion

2023 E et al. [44] Studied the dynamics, microstructure and thermochemical behaviors in raceways of BF with hydrogen
injection operations

2023 Aminnia et al. [45] Developed a 3D model that incorporates gas–solid reacting flow to examine the coke combustion and
heat distribution in raceway

2023 Xu et al. [46] Simulated three adjacent raceways inside an industrial-scale BF

Table 2
Governing equations and formulas describing the particle and fluid motion.

Governing equations of fluid motion [52] @
@t eqg

� �
þr eqgug

� �
¼ Smf

(1) Continuity equation

@
@t eqgug

� �
þr eqgugug

� �
¼ �rpþr e s

��
� �

� Sp þ eqgg
(2) Momentum conservation equation

s ¼ lþ lt

� � rug þruT
g � 2

3rug I
h i

(3) Viscous stress tensor

Sp ¼
Pnp

i¼1
Fd;iþFLS;iþFLM;ið Þ

DV
(4) Momentum sink

Fluid-particle interaction force [17] Fd;i ¼ b
qg

ug � vpi
� � (5) Drag force on an individual particle

b ¼
l 1�eð Þ
ed2p

150 1� eð Þ þ 1:75Rep
� 	

; e � 0:8

3
4CD

l 1�eð Þ
d2p

e�2:7Rep; e > 0:8

8<
:

(6) Gas–solid interphase drag coefficient

CD ¼
24
Rep

1þ 0:15Re0:687p

� �
;Rep � 1000

0:43;Rep > 1000

(
(7) Drag coefficient for a single sphere

Rep ¼ eqg ug�vpij jdp
l

(8) Reynolds number calculation formula

Governing equations of particle motion mi
dvpi

dt ¼ Fd;i þ FLS;i þ FLM;i þ
Pk

j¼1FC;ij þmig (9) Newton’s second law of translational motion

Ii
dwpi

dt ¼ Pk
j¼1 T t

ij þ Tn
ij

� �
(10) Newton’s second law of angular motion

mici
dTi
dt ¼ P

j qi;j þ qi;conv þ qi;reac þ qi;rad
� �

(11) Energy conservation equation

FC;ij ¼ Fn
c;ij þ Ft

c;ij þ Fn
d;ij þ F t

d;ij
(12) Contact force

FLS;i ¼ 1:615 ug � vpi
� �

qglg

� �
0:5d2pCLS

ffiffiffiffiffiffiffiffiffi
@ug

@n

��� ���r
sgn @ug

@n

� � (13) Saffman lift force [53]

FLM;i ¼ 1
8qg vrj j2pd2pCLM

wrvr
wrj j vrj j

(14) Magnus lift force [54]
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smallest coke particles, with the range of 1.0–––4.0 is selected to
replace the standard deviation r. It should be noted that coke beds
with k = 1 are made up of mono-sized particles. The height of the
coke bed with k = 1 is 300 mm, and the weight of the coke bed for
the other k is the same as that for k = 1 to avoid its influence on the
simulation results. Periodic boundary condition is applied in the
thickness direction to eliminate wall effects. Poisson’s ratio, fric-
tion coefficients and restitution coefficient of coke particles are
3

referred to the work of E et al. [43], and the detailed physical
and numerical parameters used in the simulations are listed in
Table 6. To ensure the reliability of the simulation results, the
DEM time step is set to 30 % of the Rayleigh time step which is
given by [64,65]:

TR ¼ pR q
G

� �1=2
0:1631tþ 0:8766ð Þ�1 ð25Þ



Table 3
Governing equations of four heat transfer models.

Particle-particle conduction [55] qi;j ¼ hi;j Ti � Tj
� �

(15)

hi;j ¼ 2ki
3Fn

i r
�

4E�

h i1=3 (16)

Particle-fluid convection [37,56,57] qi;conv ¼ hi;conv � Ai � Tg � Ti
� �

(17)

hi:conv ¼ 6 1� eð ÞkiNu=d2i (18)

Nu ¼
2þ 0:6e3:5Re1=2p Pr1=3 Rep � 200

� �
2þ 0:5e3:5Re1=2p Pr1=3 þ 0:02e3:5Re0:8p Pr1=3 200 < Rep < 1500

� �
2þ 0:000045e3:5Re1:8p Rep � 1500

� �
8><
>:

(19)

Particle-ambient radiation [58,59] qi;rad ¼ reeAi T4
local;i � T4

i

� �
(20)

Chemical reaction heat [60] qi;reac ¼ �DHreac (21)

Table 4
Governing equations of the reaction model.

Kinetic/Diffusion-limited
model [61,62]

D0 ¼ C1
TiþT1ð Þ=2½ �0:75

di
(22) Diffusion rate

R ¼ C2e� E=R1Tð Þ (23) Kinetic rate
dmi
dt ¼ �Aipox

D0R
D0þR

(24) Reaction rate

Table 5
The chemical reactions and related kinetic parameters used in the simulations [63].

Reactions Equations Pre-exponential
factor, s�1

Activation Energy,
kJ/mol

Reaction 1 C + O2 ? CO2 1225 9.977*107

Reaction 2 C + CO2 ? 2CO 7351 1.380*108

Fig. 1. (a) Schematic diagram of computational geometry and meshes; (b) initial
packing of the coke bed.
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where R is the particle radius; q is the particle density; G is the
shear modulus and t is the Poisson’s ratio. So the DEM time steps
in the granular systems with different size distributions are
4.02 � 10�5 s, 3.28 � 10�5 s, 2.70 � 10�5 s, 2.05 � 10�5 s, and
1.58 � 10�5 s, respectively. As for the CFD time step, the previous
study proved that the CFD time step should be 1–100 times the
DEM time step in the CFD-DEM coupling [66]. Therefore, the CFD
time step of 10�3 s was adopted in this work. The Courant number
in the raceway is 12.9–13.8 by referring to the formula of the Cour-
ant number [67]. It should be noted that the implicit method to cal-
culate the volume fraction in the Eulerian model, so the values of
the Courant number are more generous compared to the explicit
method. In addition, to analyze the sensitivity of Young’s modulus,
Fig. 3(a) shows the effect of Young’s modulus on the spatial distri-
bution of particle diameter and temperature in the raceway when
ug = 132 m/s and k = 1. It is found that the raceway size becomes
smaller with the increase of Young’s modulus, and when the
Young’s modulus exceeds 107 Pa, the raceway size and particle
diameter/temperature do not change significantly. Therefore, the
value of Young’s modulus is chosen as 107 Pa in this work. For the
gas phase, hot air is introduced from the tuyere with a fixed veloc-
ity, pressure outlet boundary condition is employed on the upper
surface of the domain, and the no-slip condition is applied at the
wall. The fluid flow is determined by the standard k-e turbulent
model. The domain is divided into uniform grid cells, and the mesh
independence in the simulation is verified by varying the number of
meshes, as shown in Fig. 3(b), where three grid domains were
tested, containing 2070, 3600 and 5550 CFD cells, respectively.
The difference between the molar fraction distributions obtained
with different grid cells is not significant. Thus, the computational
domain containing 3600 CFD cells is chosen in this work. The effec-
tiveness of DEM-CFD model is verified by comparing gas composi-
tions along the central axis of the tuyere with those obtained in
4

others’ physical experiments [68] and numerical simulations [43],
as shown in Fig. 3(c). Clearly, satisfactory agreement can be
observed, implying the effectiveness and accuracy of our numerical
model.

3. Results and discussion

3.1. Coke combustion characteristics

The combustion and reaction processes occurring within the
raceway affect the distribution of the gas components. Fig. 4
depicts the distribution of the molar fractions of each gas compo-
nent (including O2, CO) in the raceway under different blast veloc-
ities and k. It should be emphasized that the analysis in this study
is mainly based on the area around the tuyere due to the fact that
the reactions of carbon combustion and the carbon-solution loss



Fig. 2. (a) Particle size distributions used in the simulations, where the mean size l = 5 mm and the k varies from 1.0 to 4.0; (b) morphologies of the formed coke beds with
different k.

Table 6
Particle and fluid parameters used in the simulations [43].

Parameters Values Parameters Values

Diameter of coke particle, dp 2–8 mm Blast velocity,
ug

129–138 m/s

Density of coke particles, qp 1020 kg/
m3

Blast
temperature, Tg

1273 K

Number of coke particles, N 9056–
10789

Oxygen
concentration,
�

0.21

Initial temperature of coke
particle, Tinitial

800 K Gas density, qg 1.2 kg/m3

Thermal conductivity of
coke particles, kcoke

1.7 W/
m∙K

Gas dynamic
viscosity, lg

1.8e-5 kg/m�s

Specific heat capacity of
coke particles, ccoke

850 J/
kg∙K

Gas thermal
conductivity, kg

0.0262 W/m∙K

Restitution coefficient, e 0.8 Gas specific
heat capacity, cg

1006 J/kg∙K

Particle-particle/wall sliding
friction coefficient, ls

0.4 Emissivity, ee 0.8

Particle-particle/wall sliding
friction coefficient, lr

0.05 Fluid time step,
4tf

0.001 s

Young’s modulus of coke
particle, E

107 kg/
m∙s2

Solid time step,
4ts

1.58 � 10�5 s-
4.02 � 10�5 s

Poisson ratio of coke
particle, t

0.3
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hardly occur in the upper region of the coke bed. When high-
temperature O2 is injected into the raceway from the tuyere, the
coke particles around the tuyere experience intense combustion
due to the high oxygen concentration, which results in the release
of a large amount of heat and CO2 around the raceway. Subse-
quently, CO2 is converted to CO by the carbon-solution loss reac-
tion with the coke. As the reaction continues, the produced CO
fills the entire coke bed, causing its concentration in the coke
bed to far exceed the raceway. In addition, the regions of high O2

concentration and low CO concentration close to the tuyere
decrease in sizes with the decrease of blast velocity and the
increase of k by comparing the molar fraction distributions of O2

and CO for different k or blast velocities.
Considering and controlling the gas molar fraction distribution

along the tuyere are essential for designing and optimizing the
combustion system. Fig. 5 illustrates the molar fraction distribu-
tion of gas species (O2, CO) along the central axis of the tuyere
for different blast velocities and k. As k increases or blast velocity
decreases, the size of the raceway decreases, and the faster the
variation rate of O2/CO molar fractions along the tuyere. This is
mainly due to the lower bed porosity formed at the wider size dis-
tribution or the smaller blast velocity, and thus the hot air is not
5

easy to diffuse in the bed. Such change can also be revealed from
the subsequent characterization of the pore sizes of the bed. In
addition, a larger k leads to a higher molar fraction of CO in the
coke bed due to more carbon loss of coke in this case, resulting
in a larger amount of CO due to more coke gasification. This can
also be confirmed by the subsequent analysis of the mass loss in
the coke bed.

Understanding and controlling the interaction between the dis-
tributions of gas components and the kinetic rates of the reactions
in BF is important to optimize the reaction process and enhance
production efficiency. The kinetic rate distributions for Reaction
1 and Reaction 2 under different blast velocities and k are shown
in Fig. 6. It can be seen that the kinetic rates of the reactions are
concentrated in the annular region around the cavity of the race-
way. The kinetic rate reaches the maximum at the position along
the central axis of the tuyere due to the strong interaction of mass,
momentum, and energy between gas and solid phases. In addition,
the raceway size increases due to the increase of the blast velocity
and the decrease of k, thus the annular region where the reactions
occur gradually expands. Fig. 7 shows the distribution of kinetic
rates along the central axis of tuyere for Reaction 1 and Reaction
2 at different blast velocities and k. The distribution curve shifts
to the right with increasing blast velocity and decreasing k. How-
ever, it should be noted that the peaks of kinetic rates along the
central axis of the tuyere do not show an obvious pattern, which
is mainly because the reaction kinetic rates are related to particle
sizes. The particles are always in the annular flow in the raceway,
resulting in different spatial distributions of coke particles with
different sizes at different moments.
3.2. Thermo-chemical behavior

The particle volume fraction of the coke bed is of great impor-
tance to the smelting and operational stability of the BF. The heat
transfer and combustion performance of the BF can be improved by
appropriately controlling the volume fraction of the coke bed. The
raceway size directly affects the burden flow and the reaction pro-
cess in the BF. Fig. 8(a) depicts the spatial distribution of particle
volume fraction in the coke bed at different blast velocities and
k. The region of the coke bed where the particle volume fraction
is lower than 0.3 is recognized as the raceway [44]. The center sec-
tion along the direction of thickness was used to estimate the race-
way size in this study. From the figures it can be seen that the
raceway size becomes larger with the increase of the blast velocity
and the decrease of k, and the effect of coke size distribution on the
raceway size is not obvious when k exceeds 3.



Fig. 3. (a) Effect of Young’s modulus on the spatial distribution of particle diameter and temperature in the raceway when ug = 132 m/s and k = 1; (b) gas species distributions
along the tuyere axis with different mesh divisions; (c) comparison of gas compositions along the central axis of the tuyere in the current work with the results of Nogami
et al. [68] and E et al. [43].

Fig. 4. Spatial distributions of the gas species of O2 (a) and CO (b) under different blast velocities and k.
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To clearly characterize the interphase interaction between gas
and solid in the BF, the spatial distribution of particle mass loss
in coke bed under various blast velocities and k are investigated
in Fig. 9. The results show that the number of particles undergoing
mass loss in the coke bed increases with the increase of blast veloc-
ity or the decrease of k, but the mass loss of individual particles
decreases. The mass loss probability distributions and total mass
loss in the coke bed under different conditions are shown in
Fig. 10(a) and (b). The disturbance of gas within the raceway is
6

intensified with the increase in the blast velocity, which leads to
a violent movement of coke particles and hence more coke parti-
cles being involved in the raceway. The width of the mass loss
probability distribution hardly varies with the blast velocity, but
its peak value increases with the blast velocity, which leads to an
increase in the total mass loss of the coke bed. When k increases,
the average pore size of the coke bed decreases, limiting the gas
flow through the coke bed and enhancing the species transport
of individual coke particles. As a result, the mass loss probability



Fig. 5. Molar fraction distributions of O2 (a) and CO (b) along the central axis of the tuyere under various blast velocities and k.

Fig. 6. Spatial distributions of the kinetic rates of Reaction 1 (a) and Reaction 2 (b) under different blast velocities and k.

Fig. 7. Kinetic rates distributions of the gas species for Reaction 1 (a) and Reaction 2 (b) along the central axis of the tuyere under different blast velocities and k.

Fig. 8. (a) Spatial distributions of particle volume fraction of coke beds under different blast velocities and k; (b) variations of the raceway area with k for different blast
velocities in the center section of the coke bed.
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Fig. 9. Spatial distributions of particle mass loss in the coke bed under different
blast velocities and k.
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distribution curve widens and its peak value decreases. In addition,
the wider the coke size distribution, the more total mass loss of the
coke bed.

The temperature of coke particles in the raceway has a signifi-
cant influence on the reaction rate and homogeneity of smelting
in the BF. In this study, the temperature distributions of coke par-
ticles in the raceway are analyzed under different blast velocities
and coke size distributions, as shown in Fig. 11(a). It can be seen
that the smaller the blast velocity or the larger k, the higher the
temperature of coke particles, which is consistent with the distri-
bution of the mass loss. This is mainly due to more intense gasifi-
cation reaction occurring to the particles, and hence more reaction
heat is generated. In addition, Fig. 11(b) analyzes the average tem-
perature and the variance of coke particles in the raceway. It can be
seen that the average temperature of the coke particles and its
variance increase with the decrease of the blast velocity or the
increase of k. Besides, the increase rate of the average temperature
and its variance both decrease with the increase of k.

Fig. 12(a) further presents the probability distributions of parti-
cle temperature under different blast velocities and k. It can be
seen that the width of the probability distribution of particle tem-
perature does not change significantly with the blast velocity,
while its peak increases with the increase of the blast velocity. In
addition, the wider coke size distribution leads to more inhomoge-
neous combustion and heat transfer of coke particles, which in
Fig. 10. (a) Probability distributions of mass loss under various blast velocities and k; (b)
velocities.
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turn induces wider width and lower peak of the probability distri-
bution of particle temperature in the raceway. The relationship
between the carbon loss and temperature of coke particles in the
BF indeed exists, which is affected by a variety of factors such as
temperature, size distribution of coke particles, and so on. Fig. 12
(b) explores the relationship between the coke temperature and
the mass loss for different particle size distributions and blast
velocities. It can be observed that the particle temperature
increases slowly as further carbon is lost from the coke, which is
mainly due to the fact that the organic matter inside the coke is
gradually consumed to form charcoal ash covering the surface of
the coke particles with the combustion and gasification of coke,
thus reducing the rate of combustion and gasification, and there-
fore resulting in the limitation of heat transfer [69]. In addition,
the wider the particle size distribution, the faster the particle tem-
perature rises with carbon loss of coke, owing to the greater num-
ber of smaller-sized particles in the wider particle size distribution.
Smaller particles have a larger area to react with gases due to their
larger specific surface area, and the chemical reaction rate is faster,
resulting in a faster increase in temperature.
3.3. Microstructure analysis

The design and optimization of microstructures are of great sig-
nificance to the operation and smelting efficiency of the BF. By
rationally designing the microstructure, the gas and hot air can
be fully mixed within the raceway to improve combustion effi-
ciency. The coordination number (CN) is closely related to the con-
nectivity and heat transfer of granular matter, which is a basic and
important parameter to describe the packing structure. Fig. 13(a)
and (b) depict the spatial and probability distributions of CN in
the coke bed under different blast velocities and k, respectively.
It can be seen that the large raceway leads to the presence of more
freely moving particles, resulting in a higher proportion of particles
with CN = 0 at the larger blast velocity. The overall CN distribution
curve does not change significantly with the blast velocity. In addi-
tion, the CN distribution becomes wider as k increases.

The force between particles is an important parameter to char-
acterize the internal structure of the BF. By monitoring and analyz-
ing the variation of contact normal forces, the particle collision,
fragmentation and erosion processes under different process con-
ditions can be studied and understood. The spatial distributions
of contact normal force in the coke granular system under different
k and blast velocities are given in Fig. 14(a), where the color and
thickness of the ‘‘bars” represent the magnitude of the contact nor-
variations of total mass loss in the coke bed with the size ratio k under different blast



Fig. 11. (a) Distributions of particle temperature and particle volume fraction of coke bed under different blast velocities and k; (b) variation of the mean and standard
deviation of particle temperature with k under different blast velocities.

Fig. 12. (a) Probability distributions of particle temperature under different blast velocities and k; (b) relationships between particle temperature and its mass loss under
different blast velocities and k.

Fig. 13. Spatial profiles (a) and probability distributions (b) of CN under different blast velocities and k.
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mal force between particles. Those large contact normal forces are
mainly concentrated around the raceway due to the intense colli-
sion between the circulating and stagnant particles at the bound-
ary of the raceway, which is transmitted to the surrounding
particles in a net-like pattern. The weaker contact normal forces
are mainly distributed in the loose packing region above the race-
way. Fig. 14(b) shows the probability distribution of contact nor-
mal force in the coke particle system under different k and blast
9

velocities. The probability distributions of contact normal forces
for other k are significantly larger compared to that for k = 1, which
is also verified in the results of Huang et al. [70]. In addition, when
k > 1, the probability distributions do not show the obvious differ-
ence, owing to two reasons: the increase of k leads to the smaller
raceway, which weakens the gas–solid interaction and makes the
contact normal force decrease, and the collisions between larger
and smaller particles result in the larger normal contact forces.



Fig. 14. Spatial (a) and probability (b) distributions of contact normal forces under different blast velocities and k.
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Understanding the information of pore structure, distribution
and channel connectivity in the raceway is essential for optimizing
the tuyere design and improving the distribution and permeability
of the gas. In this section, the pore structure of the coke bed is ana-
lyzed by using the Radical Tessellation (RT), which is suitable for
the quantitative characterization of pores formed by particles with
different sizes [71–73]. This method divides the entire packing bed
into a group of non-overlapping convex Polyhedra (RPs), where
each RP contains one particle. Thus, the pore size Vc around each
particle in a RP can be calculated by:

Vc ¼ Vrp � Vp ð25Þ
Fig. 15. (a) The visualization of RT networks of coke beds formed under different conditio
(c).
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where Vc is the volume of the pore in each RP; Vrp is the volume of
the RP; and Vp is the volume of the particle in the RP. A larger Vc rep-
resents a larger volume of pore around a particle.

Fig. 15(a) shows the visualization of the RT network of the coke
bed obtained under various blast velocities and k. Fig. 15(b) and (c)
depict the effects of blast velocity and k on the pore volume distri-
bution. As illustrated in the figures the peak of each curve is mainly
distributed in the range of 40–50mm3. For a given blast velocity, as
k increases, the pore volume distribution shifts to the left, implying
small porosity in the bed, which is mainly because small particles
can fill the pores formed by large particles as a general phe-
nomenon in the packing of multi-sized particles [74]. On the other
ns; pore size distributions in the coke beds under different k (b) and blast velocities



Fig. 16. Influences of the blast velocity (a) and k (b) on the average pore size.

Fig. 17. (a) Effect of blast velocity and k on the mean stress; spatial distributions of stress (b) and velocity (c) in the coke bed with different k.
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hand, for a fixed particle size distribution, increasing blast velocity
causes the pore volume distribution shifting to the right and the
porosity in the bed increasing. When k is larger than 2, the pore
volume distribution curve does not change significantly with blast
velocity, which is because the particles with a wider size distribu-
tion are easier to be rearranged to fill the voids in the bed when
perturbed by the hot air. Fig. 16 illustrates the effects of blast
velocity and k on the average pore volume. It can be seen that
the average pore volume increases with blast velocity and the
growth rate of the pore volume is slower as k increases. The aver-
age pore volume decreases with the increase of k, and the growth
rate of the pore volume is not obviously changed with the blast
velocity.

The mechanical stresses on the particle surfaces in the raceway
are derived from the impact force of gas flow, and particle collision
force. Fig. 17(a)-(b) analyzes the spatial distribution of stresses at
different k, as well as the effects of blast velocity and k on the aver-
age stress. It can be seen that a higher k or blast velocity corre-
sponds to a higher stress in the raceway. This is mainly because
the main source of stress comes from the impact force of the air-
flow. Thus, the stress in the coke bed increases with the blast
velocity. At the same blast velocity, the smaller the average pore
volume of the packing structure with wider coke size distribution
11
restricts the gas flow and increases the interaction between the
particles, which leads to an increase in the stress acting on the
particles and a decrease in the particle velocity. This is also illus-
trated in the analysis of the particle velocities in the raceway in
Fig. 17(c).

4. Conclusions

The kinetic characteristics and flow, heat and mass transfer
behaviors in the raceway of BF were simulated by DEM-CFD
method, in which the chemical reactions including coke combus-
tion and carbon solution loss were considered. The effects of coke
size distribution and blast velocity on coke combustion character-
istics, thermochemical behavior and microstructure were system-
atically investigated, and the corresponding mechanism was
analyzed. The main conclusions are as follows:

1. For combustion characteristics, the variation rate of O2/CO
along the axis of tuyere becomes faster with the increase of k
or the decrease of blast velocity. Besides, the reaction kinetic
rate is mainly concentrated in the annular region around the
raceway cavity, and this region expands with increasing blast
velocity and decreasing size ratio k.
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2. With the increase of blast velocity and the decrease of k, the
raceway size becomes larger. In addition, when the k exceeds
3, the effect of coke size distribution on the raceway size is
not obvious.

3. For the thermal-chemical behaviors, as the blast velocity
decreases or k increases, the number of particles in the coke
bed undergoing mass loss decreases, but the mass loss of indi-
vidual particles becomes larger, the temperature of coke parti-
cles rises more obviously, and the average coke temperature
and its variance increase. However, the total mass loss increases
with the blast velocity or k. In addition, the probability distribu-
tion of temperature does not vary significantly with the blast
velocity, but its peak value increases with the blast velocity.
At a larger k, the temperature probability distribution is wider
and the peak is lower. And the increase rate of coke tempera-
ture with carbon loss is faster.

4. For microstructure, the overall CN distribution does not change
significantly when blast velocity increases, except for the higher
proportion of particles with CN = 0. The CN distribution
becomes wider as k increases. The large contact normal forces
are mainly concentrated around the raceway, and the weaker
contact normal forces are mainly distributed in the loose pack-
ing region above the raceway. The contact normal forces in the
coke bed with k > 1 are significantly higher than those of k = 1.
As k increases or blast velocity decreases, the pore distribution
curve shifts to the left and the average pore volume decreases.
When the k is larger than 2, increasing the blast velocity has lit-
tle effect on the pore distribution of the bed. The stress acting
on the particles in the raceway increases with the blast velocity
or k.
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Appendix A

Table A1
Nomenclature
Symbols
 Descriptions
 Symbols
 Descriptions
e
 Fluid volume
fraction, �
mi
 Particle mass, kg
qg
 Gas density, kg/m3
 xpi
 Particle angular
velocity, rad/s
ug
 Gas velocity, m/s
 T t
ij
Tangential torque,
kg/m2
p
 Static pressure, Pa
 Tn
ij
 Normal torque, kg/

m2
g
 Gravity
acceleration, m/s2
CLS
 Saffman lift
coefficient, �
l
 Gas dynamic
viscosity, N�s/m2
CLM
 Magnus lift
coefficient, �
lt
 Turbulent
viscosity, N�s/m2
vr
 Relative velocity,
m/s
DV
 Volume of
computational cell,
m3
wr
 Relative angular
velocity, rad/s
tpi
 Particle
translational
velocity, m/s
H
 Displacement
vector, m
dp
 Particle diameter,
m

t
 Time, s
Ii
 Inertial moment,
kg/m2
Ti
 Particle
temperature, K
ki
 Thermal
conductivity, W/
(m�K)
Ai
 Particle surface
area, m2
Fi
n
 Particle normal

force, N

Tg
 Fluid temperature,

K

E*
 Effective particle

radius, m

Nu
 Nusslet number, �
r
 Stefan-Boltzmann
constant, �
ee
 Particle emissivity,
�

C1
 The diffusion rate
constant, �
C2
 Pre-exponential
factor, s�1
E
 Activation energy,
J/mol
R1
 Gas constant,
8.314 J/(mol�K)
Tlocal,i
 Average particle–
fluid temperature,
K

pox
 The partial
pressure of the
oxidant, Pa
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