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We introduce CaLES, a GPU-accelerated finite-difference solver designed for large-eddy simulations (LES) of 
incompressible wall-bounded flows in massively parallel environments. Built upon the existing direct numeri-

cal simulation (DNS) solver CaNS, CaLES relies on low-storage, third-order Runge-Kutta schemes for temporal 
discretization, with the option to treat viscous terms via an implicit Crank-Nicolson scheme in one or three direc-

tions. A fast direct solver, based on eigenfunction expansions, is used to solve the discretized Poisson/Helmholtz 
equations. For turbulence modeling, the classical Smagorinsky model with van Driest near-wall damping and the 
dynamic Smagorinsky model are implemented, along with a logarithmic law wall model. GPU acceleration is 
achieved through OpenACC directives, following CaNS-2.3.0. Performance assessments were conducted on the 
Leonardo cluster at CINECA, Italy. Each node is equipped with one Intel Xeon Platinum 8358 CPU (2.60 GHz, 32 
cores) and four NVIDIA A100 GPUs (64 GB HBM2e), interconnected via NVLink 3.0 (200 GB/s). The inter-node 
communication bandwidth is 25 GB/s, supported by a DragonFly + network architecture with NVIDIA Mellanox 
InfiniBand HDR. Results indicate that the computational speed on a single GPU is equivalent to approximately 
15 CPU nodes, depending on the treatment of viscous terms and the subgrid-scale model, and that the solver effi-

ciently scales across multiple GPUs. The predictive capability of CaLES has been tested using multiple flow cases, 
including decaying isotropic turbulence, turbulent channel flow, and turbulent duct flow. The high computational 
efficiency of the solver enables grid convergence studies on extremely fine grids, pinpointing non-monotonic grid 
convergence for wall-modeled LES.

Program summary

Program title: CaLES 
CPC Library link to program files: https://doi.org/10.17632/ 
6chjn6zdmz.1

Developer’s repository link: https://github.com/soaringxmc/CaLES

Licensing provisions: MIT License 
Programming language: Fortran 90, OpenACC, CUDA Fortran, MPI 
Nature of problem: Direct numerical simulation (DNS) and large-eddy 
simulation (LES) of incompressible wall-bounded turbulent flows. The 
program is designed for a variety of flow configurations, including chan-

nel flow, duct flow, cavity flow, etc. 
Solution method: The filtered Navier-Stokes equations are solved using 
a fractional-step method. Time integration is performed with a low-

storage, three-step Runge-Kutta scheme, while spatial discretization em-

* Corresponding authors.

E-mail addresses: maochao.xiao@uniroma1.it (M. Xiao), sergio.pirozzoli@uniroma1.it (S. Pirozzoli).

ploys a second-order finite-difference method on staggered grids. The 
coupling between the pressure and velocity fields is achieved through 
a pressure-correction method. The program incorporates subgrid-scale 
(SGS) modeling, featuring the classical Smagorinsky model and its dy-

namic variant, along with wall modeling based on the classical logarith-

mic law.

1. Introduction

Large-eddy simulation (LES) has become an important tool in the 
design processes of spacecraft, aircraft, automobiles, ships, and other 
engineering systems, for cases where traditional Reynolds-averaged 
Navier-Stokes (RANS) models fall short. RANS models often struggle to 
accurately predict complex flow phenomena, such as flow separation, 
rotational turbulence, and three-dimensional turbulent boundary lay-
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ers [1]. Direct numerical simulation (DNS) can provide accurate results 
but become computationally prohibitive at high Reynolds numbers due 
to the high mesh resolutions required. As a result, LES has gained pop-

ularity for offering a reasonable balance between computational cost 
and predictive accuracy, particularly for complex aerodynamic and hy-

drodynamic applications. In recent years, LES has been increasingly 
applied to external aerodynamic flows, especially at the edges of flight 
envelopes, such as high-lift aircraft aerodynamics [2] and iced-wing sep-

arated flows [3]. It has also been used in internal flows, including those 
within aircraft engines [4]. These applications establish LES as a critical 
component in the industry push toward Certification by Analysis [5]. 
Despite significant advancements, both wall models and subgrid-scale 
(SGS) closures for LES remain areas of active development. For wall 
modeling, researchers have been exploring robust models that account 
for more complex flows, such as laminar-turbulent transitions [6] and 
flow separation [7] among others. Concurrently, advancements in SGS 
models have been made, with some of the recent studies emphasizing 
robust SGS models suited to anisotropic grids [8].

It is well established that LES is significantly more computationally 
demanding than RANS, making the development of faster LES solvers 
a critical need. An efficient LES solver is not only essential for large-

scale production simulations, but also invaluable for the development 
and testing of subgrid-scale and wall models. Indeed, as data-driven 
approaches and machine learning techniques are increasingly applied 
to turbulence modeling, the demand for efficient LES solvers becomes 
even more pressing. Previous studies have trained SGS models using 
filtered DNS data [9,10]. However, relying on DNS data can be prob-

lematic, as the SGS tensor in implicitly filtered LES does not perfectly 
align with the SGS stress terms derived from the filtered Navier-Stokes 
equations [11]. This inconsistency is especially significant when grid 
sizes are significantly larger than the Kolmogorov scale, as the numeri-

cal and modeling errors can then be comparable. As a result, SGS models 
trained on filtered DNS data may perform well in a priori tests but fail 
in a posteriori assessments, whereby performance is evaluated in actual 
LES simulations. Consequently, research has increasingly shifted toward 
generating training data directly from LES, and turbulence models are 
optimized for accurate statistical metrics such as mean velocity and wall 
shear stress [12]. In the same vein, reinforcement learning has been ex-

plored for both SGS and wall modeling [13,14]. Such strategies have 
been referred to as “model-consistent” approaches [15]. While these 
strategies show promise, they often require hundreds or even thousands 
of LES runs to generate training data or complete one-time training, un-

derscoring the need for fast and efficient solvers. Moreover, the grid 
convergence properties of wall-modeled LES (WMLES) have become 
increasingly studied [16,17], which also requires many LES runs on 
a series of refined meshes for thorough analysis. Fast LES solvers are 
therefore desirable to enable grid convergence investigations at high 
Reynolds numbers.

Table 1 gives some popular open-source solvers used in academic 
research. Whereas all those solvers are capable of performing DNS 
for canonical flow cases, only URANOS and LESGO currently support 
LES capabilities. It is well-known that incompressible solvers, such 
as LESGO, are typically more efficient than compressible solvers like 
URANOS for simulations of low-Mach-number flows. This efficiency 
mainly derives from allowing much larger time steps when explicit 
time-integration schemes are used. However, a key limitation of LESGO 
is the absence of GPU acceleration, which restricts its scalability and 
efficiency on modern high-performance computing platforms. Given 
the high demand for LES in simulating incompressible flows, partic-

ularly for machine-learning-based turbulence modeling and grid con-

vergence studies, the development of a GPU-accelerated incompressible 
LES solver is highly desirable in academia.

The present work introduces CaLES, a GPU-accelerated incompress-

ible LES solver specifically designed for wall-bounded flows. CaLES 
builds on the capabilities of CaNS [22,23], an open-source DNS solver 
known for its efficiency in solving the incompressible Navier-Stokes 

Table 1
Open-source DNS/LES solvers for academic research.

Solver Governing equations GPU-supported Purposes 
STREAmS-2 [18] Compressible NS Yes DNS 
URANOS [19] Compressible NS Yes DNS/LES 
AFiD [20] Incompressible NS Yes DNS 
LESGO [21] Incompressible NS No DNS/LES 
CaNS [22] Incompressible NS Yes DNS 
CaLES Incompressible NS Yes DNS/LES 

equations. The solver uses a fractional-step method [24]. Temporal dis-

cretization is carried out using a low-storage, third-order Runge-Kutta 
scheme [25]. Spatial discretization is performed using a second-order 
finite-difference method on staggered grids [26], which avoids odd-even 
decoupling phenomena and preserves energy at the discrete level in the 
inviscid limit [27]. The solver employs eigenfunction expansions [28] 
to efficiently solve the Poisson equation. GPU acceleration is achieved 
using a combination of CUDA Fortran and OpenACC directives, and 
performance benchmarks demonstrate that the code performance on 4 
NVIDIA Tesla V100 GPUs in a DGX-2 system is roughly equivalent (0.9 
times slower to 1.6 times faster) to 2048 cores on state-of-the-art CPU-

based supercomputers, and 3.1 to 5.6 times faster when all 16 GPUs 
in the DGX-2 cluster are used [22]. CaLES extends CaNS by support-

ing LES through the inclusion of the classical Smagorinsky model [29] 
with the van Driest damping function [30], and the dynamic Smagorin-

sky model [31,32], along with a logarithmic-law wall model. The solver 
can simulate various canonical flows in Cartesian single-block domains, 
including isotropic turbulence, temporally-evolving turbulent boundary 
layers, channel flows, duct flows, cavity flows, etc. Flexibility and ef-

ficiency make it an ideal platform to develop subgrid-scale and wall 
models, particularly those based on machine learning techniques, and 
to perform grid convergence studies at high Reynolds numbers. In this 
work, we present CaLES as an extension of CaNS, which was designed to 
maintain simplicity and adaptability, facilitating its use across diverse 
applications.

The remainder of this paper is organized as follows. Section 2 in-

troduces the governing equations, subgrid-scale models, and numerical 
methods. Section 3 discusses the implementation and performance of the 
solver. Section 4 validates the LES capabilities using decaying isotropic 
turbulence, turbulent channel flow, and turbulent duct flow. Finally, 
Section 5 provides the conclusions of this study.

2. Methodology

2.1. Governing equations and subgrid-scale models

The filtered incompressible Navier-Stokes (NS) equations read as

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0, (1)

𝜕𝑢𝑖
𝜕𝑡 

+
𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
= −1 
𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈

𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

−
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
, (2)

where 𝑢𝑖 represents the filtered velocity, 𝜌 is the fluid density, 𝑝 is 
the filtered pressure, and 𝜈 denotes the kinematic viscosity. The term 
𝜏𝑖𝑗 = 𝑢𝑖𝑢𝑗 − 𝑢𝑖𝑢𝑗 is the subgrid-scale stress tensor, which encapsulates 
the effects of unresolved scales and requires a suitable closure model. 
The isotropic component of the SGS stress is typically absorbed into 
the pressure, resulting in a modified pressure field, 𝑝← 𝑝+ 1

3𝜌𝜏𝑘𝑘. The 
remaining deviatoric part is modeled, according to the Boussinesq as-

sumption, as

𝜏𝑖𝑗 −
1
3
𝜏𝑘𝑘𝛿𝑖𝑗 = −2𝜈𝑡𝑆𝑖𝑗 , (3)

where 𝛿𝑖𝑗 denotes the Kronecker delta, and 𝑆𝑖𝑗 is the filtered strain-rate 
tensor. We implemented two representative closure models: the classical 
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Smagorinsky model [29] and its dynamic version [31,32]. The baseline 
Smagorinsky model reads as [29]

𝜈𝑡 =
(
𝐶𝑠Δ𝐷(𝑦)

)2
𝑆, (4)

where 𝐶𝑠 is a model constant, Δ is the filter width, 𝐷(𝑦) is the near-

wall damping function, and 𝑆 is the rate-of-strain, i.e., 𝑆 =
√

2𝑆𝑖𝑗𝑆𝑖𝑗 . 
The van Driest damping function [30] is commonly used in the pres-

ence of no-slip walls, i.e., 𝐷(𝑦) = 1 − exp (−𝑦∗∕25), where “*” denotes 
the wall distance non-dimensionalized by the wall units. A drawback 
of the standard Smagorinsky model is its inaccurate prediction of the 
eddy dissipation in laminar and transitional flows, leading to erroneous 
wall shear stresses and delayed transition to turbulence. Moreover, the 
optimal value of the model constant 𝐶𝑠 depends significantly on the 
flow features. Lilly [33] showed that for isotropic turbulence, with spa-

tial resolution within the inertial subrange, 𝐶𝑠 ≈ 0.17, whereas Dear-

dorff [34] suggested 𝐶𝑠 ≈ 0.1 for wall-bounded turbulent shear flows. 
The Smagorinsky model can be improved using a dynamic procedure, 
whereby the model coefficient is evaluated dynamically by compar-

ing the eddy dissipation at two filter levels. The dynamic Smagorinsky 
model with Lilly’s modification [31,32] is expressed as:

𝜈𝑡 = 𝑐𝑠Δ2𝑆, (5)

where

𝑐𝑠 =
⟨𝑀𝑖𝑗𝐿𝑖𝑗⟩ ⟨𝑀𝑖𝑗𝑀𝑖𝑗⟩ , (6)

𝐿𝑖𝑗 = 𝑢𝑖𝑢𝑗 − �̃�𝑖�̃�𝑗 , (7)

𝑀𝑖𝑗 = 2Δ2̃𝑆𝑆𝑖𝑗 − 2(𝛼Δ)2̃𝑆 ̃𝑆𝑖𝑗 . (8)

Here, the bar denotes filtering with filter width Δ, the tilde indicates test 
filtering with filter width 𝛼Δ, and the brackets ⟨⟩ represent an averaging 
operation. The ratio of the two filter widths is commonly set to 𝛼 = 2.0. 
The test-filtered strain rate is computed as

̃
𝑆𝑖𝑗 =

1
2

(
𝜕�̃�𝑖
𝜕𝑥𝑗

+
𝜕�̃�𝑗

𝜕𝑥𝑖

)
. (9)

The dynamic Smagorinsky model provides reasonable subgrid-scale dis-

sipation and automatically switches off in laminar flows. However, it 
demands more memory and computational resources than the static 
version and often requires averaging or clipping to ensure numerical 
stability [32].

Wall models are required when the near-wall mesh resolution is 
too coarse to resolve the inner-layer turbulent scales up to the iner-

tial subrange. These models are typically classified into near-wall RANS 
models [35] and wall-stress models [36]. In classical wall-stress models, 
the wall-parallel velocity at a specific wall distance is used as input and 
the wall shear stress is estimated as output, which replaces the no-slip 
boundary condition. The simplest wall-stress model is the logarithmic 
wall law:

𝑈𝑤𝑚
𝑢𝜏

= 1 
𝜅
ln
(
𝑢𝜏ℎ𝑤𝑚
𝜈

)
+𝐵, (10)

where 𝜅 = 0.41, 𝐵 = 5.2, 𝑢𝜏 is the friction velocity, ℎ𝑤𝑚 is the wall-

modeled layer thickness, and 𝑈𝑤𝑚 is the wall-parallel velocity magni-

tude at the top of the wall-modeled layer. At first sight, the logarithmic 
wall model may appear to be accurate only for equilibrium flows, but 
both experience and basic near-wall turbulence physics suggest that this 
is not generally the case [6]. A high-quality WMLES will resolve the 
dynamically important eddies in the outer layer, and should therefore 
accurately capture non-equilibrium effects there. The turbulence time 
scale decreases towards the wall in the inner layer, and thus the tur-

bulence there may well exist in some type of quasi-equilibrium even 
in a non-equilibrium outer flow. The literature contains some evidence 

supporting this, especially when focusing on studies in which the WM-

LES grid and wall-model exchange location were carefully designed to 
limit those errors. For example, Bermejo-Moreno et al. [37] conducted 
WMLES using an equilibrium wall model to study interactions between 
oblique shock waves and turbulent boundary layers in a nearly square 
duct. Despite having secondary corner flows and shock-induced three-

dimensional separation bubbles, their results showed favorable agree-

ment with experimental data.

2.2. Numerical methods

The filtered incompressible Navier-Stokes equations are solved us-

ing a fractional-step method [24]. Time integration is performed with 
a low-storage, three-step Runge-Kutta scheme [25], while spatial dis-

cretization is handled using a second-order finite-difference method on 
staggered grids [26]. The continuity equation (1) and the momentum 
equation (2) are coupled through a pressure-correction method [38]. 
This section provides an overview of the numerical schemes, with a fo-

cus on key aspects of the implementation of SGS and wall models. For 
additional details, refer to the descriptions of CaNS [23].

At each sub-step, the flow field is updated as

𝑢∗𝑖 = 𝑢
𝑘
𝑖 +Δ𝑡

[
𝛼𝜅+1

(
𝐻𝑘𝑖 + 𝜈𝐿𝑗𝑗𝑢

𝑘
𝑖

)
+ 𝛽𝜅+1

(
𝐻𝑘−1𝑖 + 𝜈𝐿𝑗𝑗𝑢𝑘−1𝑖

)
−𝛾𝜅+1𝜕𝑖𝑝𝑘−1∕2

]
, (11)

𝐿𝑗𝑗𝜙 =
𝜕𝑖𝑢

∗
𝑖

𝛾𝑘+1Δ𝑡
, (12)

𝑢𝑘+1𝑖 = 𝑢∗𝑖 − 𝛾𝑘+1Δ𝑡𝜕𝑖𝜙, (13)

𝑝𝑘+1∕2 = 𝑝𝑘−1∕2 + 𝜙. (14)

Here, 𝑘 = 0 corresponds to physical time level 𝑛, and 𝑘 + 1 = 3 cor-

responds to time level 𝑛 + 1. The symbol 𝑢∗
𝑖

denotes the predicted 
velocity, and 𝜙 represents the pressure correction. The Runge-Kutta co-

efficients are 𝛼𝑘+1 = (8∕15,5∕12,3∕4), 𝛽𝑘+1 = (0,−17∕60,−5∕12), and 
𝛾𝑘+1 = 𝛼𝑘+1 + 𝛽𝑘+1. In equation (11), 𝐻𝑖 includes convective and SGS 
stress terms,

𝐻𝑖 =
𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
+
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
, (15)

and the Laplace operator in the diffusive term is defined as

𝐿𝑗𝑗 =
𝜕2

𝜕𝑥𝑗𝜕𝑥𝑗
. (16)

For low-Reynolds-number flows or very fine grids, it may be desirable to 
use implicit temporal discretization for the diffusion terms. With Crank-

Nicolson time integration, this results in

𝑢∗∗𝑖 = 𝑢𝑘𝑖 +Δ𝑡
[
𝛼𝜅+1𝐻

𝑘
𝑖 + 𝛽𝜅+1𝐻

𝑘−1
𝑖 + 𝛾𝜅+1

(
𝜈𝐿𝑗𝑗𝑢

𝑘
𝑖 − 𝜕𝑖𝑝

𝑘−1∕2)] , (17)

𝑢∗𝑖 − 𝛾𝜅+1
𝜈Δ𝑡
2 
𝐿𝑗𝑗

(
𝑢∗𝑖
)
= 𝑢∗∗𝑖 − 𝛾𝜅+1

𝜈Δ𝑡
2 
𝐿𝑗𝑗𝑢

𝑘
𝑖 , (18)

𝑝𝑘+1∕2 = 𝑝𝑘−1∕2 + 𝜙− 𝛾𝑘+1
𝜈Δ𝑡
2 
𝐿𝑗𝑗𝜙. (19)

Equations (17) and (18) are intentionally not combined to illustrate that 
𝑢∗∗
𝑖

provides a better approximation of 𝑢𝑘+1
𝑖

than the sum of the terms on 
the right-hand side of equation (18) [22]. Alternatively, implicit treat-

ment of the viscous terms can be performed only in the 𝑦 direction, 
resulting in

𝑢∗∗𝑖 = 𝑢𝑘𝑖 +Δ𝑡
{
𝛼𝑘+1

[
𝐻𝑘𝑖 + 𝜈

(
𝐿11 +𝐿33

)
𝑢𝑘𝑖
]

+𝛽𝑘+1
[
𝐻𝑘−1𝑖 + 𝜈

(
𝐿11 +𝐿33

)
𝑢𝑘−1𝑖

]
+ 𝛾𝑘+1

(
𝜈𝐿22𝑢

𝑘
𝑖 − 𝜕𝑖𝑝

𝑘−1∕2)} ,
(20)(

1 − 𝛾𝜅+1
𝜈Δ𝑡
2 
𝐿22

)
𝑢∗𝑖 = 𝑢

∗∗
𝑖 − 𝛾𝜅+1

𝜈Δ𝑡
2 
𝐿22𝑢

𝑘
𝑖 , (21)

𝑝𝑘+1∕2 = 𝑝𝑘−1∕2 + 𝜙− 𝛾𝑘+1
𝜈Δ𝑡
2 
𝐿22𝜙. (22)
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Fig. 1. Schematic of the wall-model implementation. 

In the solver, 𝑧 is designated as the coordinate direction along which 
non-uniform grid spacing can be applied, typically corresponding to the 
wall-normal direction in a plane channel. However, to maintain consis-

tency with the conventions in the turbulence community, we refer to 
the wall-normal direction as 𝑦 throughout this paper. The Poisson equa-

tion (12), once discretized, is solved using an eigenfunction expansion 
method [28], which allows for an efficient solution using the Thomas 
algorithm along the 𝑦 direction. When implicit treatment of the viscous 
diffusive terms is applied, the resulting three modified Helmholtz equa-

tions in equation (18) are solved with the same direct solver used for 
the Poisson equation.

The SGS stress terms are always handled explicitly, regardless of the 
time integration scheme used for the viscous terms. This allows the SGS 
stress terms to be grouped with the convective terms, as shown in equa-

tion (15). The SGS model is evaluated at cell centers, where both the 
SGS viscosity and the strain-rate tensor are stored. The diagonal compo-

nents of the strain-rate tensor are directly computed at the cell centers, 
while the non-diagonal components are first calculated at the cell edge 
midpoints and then averaged to the cell centers. In the dynamic proce-

dure, two-dimensional (2D) or three-dimensional (3D) box filters can be 
applied. The implementation of the filters assumes uniform grid spac-

ing for simplicity. The 3D box filter cannot be used in the first off-wall 
layer, hence a 2D box filter is applied through linear extrapolation of the 
wall-parallel velocity to the ghost points, followed by the application of 
a 3D filter. In this layer, we set 𝛼 = 41∕3 in equation (8), which mathe-

matically corresponds to a 2D box filter. Our WMLES tests on channel 
flows indicate that using this value in this first layer yields more accu-

rate results than 𝛼 = 81∕3. The averaging operation in equation (6) is 
performed in the homogeneous directions, and the averaged coefficient 
is clipped to zero when it is negative. The velocity components are av-

eraged to the cell centers before applying the test filter to evaluate 𝐿𝑖𝑗
in equation (7).

For the wall model, the Newton–Raphson iterative method is used to 
determine the wall shear stress from equation (10), typically requiring 3 
to 7 iterations to achieve convergence in wall shear stress within a rela-

tive tolerance of 0.01%. Fig. 1 illustrates how the wall model is coupled 
to the LES solution. The input velocity at the top of the wall-modeled 
layer is the magnitude of the instantaneous wall-parallel velocity, which 
is evaluated as 𝑈𝑤𝑚 = (𝑢2𝑤𝑚 +𝑤2

𝑤𝑚)
1∕2, where 𝑢𝑤𝑚 and 𝑤𝑤𝑚 are the 𝑥-

and 𝑧-direction velocities, respectively. The two components are ob-

tained via linear interpolation in the wall-normal direction between 
locations 1 and 2. The resulting wall shear stress is then used as the 
boundary condition for the wall-parallel velocity vector. The imperme-

ability condition is enforced for the wall-normal velocity component. 
When a staggered grid is used, the two wall-parallel velocity components 
(e.g., 𝑢 and 𝑤) are stored at different cell face centers. Consequently, 
when the wall model is used to enforce the boundary condition for 𝑢, as 
illustrated in Fig. 1, interpolation of 𝑤 to the location of 𝑢 is required 

to evaluate the wall-parallel velocity vector. Similarly, for 𝑤, interpola-

tion of 𝑢 to the location of 𝑤 is performed. This approach minimizes the 
number of interpolations, which is desirable when computing either SGS 
viscosity or wall models on staggered grids. When utilizing a wall model, 
the wall-normal derivatives of the wall-parallel velocity components are 
determined from first-order one-sided finite-difference scheme in the 
first off-wall layer, thus avoiding crossing the under-resolved layer be-

tween the wall and the first off-wall wall-parallel velocity location [36]. 
In CaLES, one-sided finite differencing is achieved through linear ex-

trapolation of the wall-parallel velocity to the ghost points, followed 
by second-order central differencing. This procedure is crucial for ac-

curate evaluation of the strain-rate tensor required to evaluate the SGS 
viscosity. The viscous terms in the filtered Navier-Stokes equations are 
evaluated as usual in the first off-wall layer, as the wall shear stress is 
directly provided by the wall model, and the layer between the first and 
second off-wall locations of the wall-parallel velocity can be regarded as 
properly resolved. When the viscous terms are handled implicitly in all 
three directions, the wall model can only be applied in the 𝑦-direction, 
as homogeneous boundary conditions are required in the other two di-

rections where Fourier transforms are applied. However, this limitation 
may be irrelevant, as explicit time integration is commonly used for 
wall-modeled LES due to the large thickness of the first off-wall layer of 
cells. This restriction does not apply when the viscous terms are handled 
implicitly only in the 𝑦-direction.

3. Implementation and performance

3.1. Overall implementation strategy

CaLES is developed using CaNS-2.3.0 as its baseline solver. Algo-

rithm 1 outlines the overall solution procedure for explicit time inte-

gration. When the viscous terms are handled implicitly, 𝑢∗
𝑖

is computed 
using equations (17) and (18), and 𝑝𝑘+1∕2 is updated from equation (19). 
When the viscous terms are handled implicitly only in the 𝑦-direction, 𝑢∗

𝑖

is determined by equations (20) and (21), while 𝑝𝑘+1∕2 is updated from 
equation (22). To ensure consistency with boundary conditions, ghost 
cells are updated immediately after any variable is updated. Algorithm 2
details the procedure for applying boundary conditions. The calculation 
of wall shear stress using the wall model must be performed after all 
other boundary conditions have been applied, as the wall model com-

putation relies on the updated ghost-point values at boundary points.

Algorithm 1 Overall solution procedure.

1: Initialize velocity 𝑢𝑖 and pressure 𝑝.
2: Compute eddy viscosity 𝜈𝑡.
3: Set iteration counter 𝑛 = 0.

4: while 𝑛 ≤ 𝑛max do

5: Increment iteration counter: 𝑛← 𝑛+ 1.

6: Determine time step Δ𝑡.
7: for 𝑘 = 0 to 2 do

8: Compute intermediate velocity 𝑢∗
𝑖

using equation (11);

9: Compute the right-hand side of the Poisson equation and solve for 𝜙
in equation (12);

10: Update 𝑢𝑘+1𝑖 using the correction procedure of equation (13);

11: Update 𝑝𝑘+1∕2 using equation (14);

12: Compute 𝜈𝑘+1𝑡 .

13: end for

14: end while

15: Terminate simulation.

Algorithm 2 Boundary condition treatment.

1: Perform ghost-cell exchange between blocks.

2: Update all boundary conditions except wall-model boundary conditions.

3: Compute wall shear stress using equation (10).

4: Update wall-model boundary conditions.
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Fig. 2. Elapsed wall-clock time per time step per grid point for different methods when the viscous terms are handled explicitly (a), or implicitly in the 𝑦 direction 
(b).

The GPU porting was implemented using OpenACC directives. A key 
factor to achieving high acceleration is to minimize data transfer be-

tween GPU and CPU memory. In the solver, large arrays are transferred 
only during the initialization or the first time step using unstructured 
data lifetimes. From the second iteration onward, only scalars or small 
arrays are transferred between CPU and GPU memory, except when 
flow-field output is required. According to the OpenACC Programming 
and Best Practices Guide [39], parallel regions are defined using either 
the “kernels” construct or the“parallel” construct. Specifically, the “ker-

nels” construct allows the compiler to automatically exploit parallelism 
in a region of code, while the “parallel” construct, often used in con-

junction with the “loop” construct and the “collapse” clause, is applied 
to accelerate key loops for optimal performance. We use the “kernel-

s” construct for simple array assignments, and the “parallel” construct 
to speed up loops for the computation of advective, viscous and SGS 
stress terms, as well as for time advancement. Additionally, the “async” 
clause is applied to the kernels, parallel, update, and data directives 
(both structured and unstructured), enabling the CPU to continue with 
other tasks while the accelerator performs operations, without waiting 
for their completion. The FFTs required by the Poisson/Helmholtz solver 
are carried out using the cuFFT library from the CUDA Toolkit. For ad-

ditional details, refer to [22].

In line with CaNS-2.3.0, parallelization of the code is achieved 
through MPI, with each rank allocated to one GPU. The structured 
grid block is partitioned into subdomains using a 2D pencil-like de-

composition. The pencil axis is recommended to be aligned with the 
𝑥-direction for optimal efficiency, except when viscous terms are han-

dled implicitly in the 𝑦-direction, in which case alignment with the 
𝑦-axis is preferable. The cuDecomp library [40] manages the transpose 
operations required for FFT-based transforms and ghost-cell exchanges. 
The library not only optimizes the pencil domain decomposition layout, 
but also finds the most efficient communication backends for trans-

poses and ghost-cell exchanges. This process involves runtime testing 
of different grid decomposition layouts and communication backends 
to identify the best-performing combination. Notably, transpose oper-

ations and ghost-cell exchanges can utilize different communication 
backends. Supported communication methods include CUDA-aware MPI 
point-to-point, MPI all-to-all, NVIDIA Collective Communication Library 
(NCCL), and NVIDIA Shared Memory (NVSHMEM), with different stag-

ing strategies. Given that the optimal setup is highly system-dependent, 
the hardware-adaptive decomposition provided by cuDecomp is crucial 
for efficient resource utilization [40].

3.2. Performance analysis

Assessment of the code performance was conducted on the Booster 
partition of the Leonardo cluster at CINECA, Italy. Each node of the clus-

ter is equipped with an Intel Xeon Platinum 8358 CPU (2.60 GHz, 32 
cores) and four NVIDIA A100 GPUs (64 GB HBM2e). The intra-node 

Table 2
Estimated memory footprint per grid point for different 
methods. “SM” denotes the Smagorinsky model with the 
van Driest damping function, and “DSM” is the dynamic 
Smagorinsky model.

Method DNS WRLES (SM) WRLES (DSM) 
Explicit 136 bytes 168 bytes 352 bytes 
Implicit-𝑦 160 bytes 192 bytes 376 bytes 

communication bandwidth is 200 GB/s, supported by NVLink 3.0. The 
inter-node bandwidth is 25 GB/s, facilitated by the DragonFly + net-

work architecture using NVIDIA Mellanox InfiniBand HDR, giving each 
GPU an effective communication rate of approximately 6.25 GB/s. The 
performance comparison is made between a single GPU card and a CPU 
node. The test case under consideration is flow in a plane channel with 
two walls in the 𝑦 direction, and periodic boundary conditions in the 
other two directions. The grid size is (𝑁𝑥,𝑁𝑦,𝑁𝑧) = (512,384,1440), 
which is approximately the maximum grid size that can fit into GPU 
memory when the Smagorinsky model with the van Driest damping 
function is activated and the viscous terms are handled implicitly along 
the 𝑦 direction. It is noteworthy that, during runs on a single GPU, data 
sharing is also performed when handling periodic boundary conditions 
in the two decomposed directions, with the pencil-axis as the non-

decomposed direction. Fig. 2 compares the wall-clock time for different 
methods when the viscous terms are handled explicitly or implicitly in 
the 𝑦 direction. The inclusion of the wall model results in negligible com-

putational overhead. However, applying the static Smagorinsky model 
with the van Driest damping function increases the computational cost 
by approximately 0.3 ns per step per grid point. When the viscous terms 
are handled explicitly, the speed-up factors relative to the CPU node 
are 13× for DNS and 19× for wall-resolved LES (WRLES). If the viscous 
terms are handled implicitly in the 𝑦 direction, the speed-up factors are 
12× for DNS and 17× for WRLES. The greater speed-up of WRLES is due 
to the increased computational intensity introduced by the subgrid-scale 
model.

Fig. 3 reports the wall-clock time breakdown for different computa-

tional components. The most time is consumed by the Poisson solver 
and the computation of the right-hand side of the momentum equa-

tion. The calculation of eddy viscosity using the Smagorinsky model 
with the van Driest damping function is the third most time-consuming 
part. When the viscous terms are handled implicitly in the 𝑦 direction, 
the Helmholtz solver is the third most time-consuming component, fol-

lowed by the eddy viscosity calculation. Table 2 presents the estimated 
memory footprint per grid point for different methods. The incorpora-

tion of the Smagorinsky model with the van Driest damping function 
increases memory usage per grid point by 32 bytes, or approximately 
20% of the DNS memory footprint. In contrast, the dynamic Smagorin-

sky model requires an additional 216 bytes, or about 150% of the DNS 
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Fig. 3. Comparison of wall-clock time breakdown for different computational components, when the viscous terms are handled explicitly (a), or implicitly in the 
𝑦 direction (b). “RHS” denotes the time spent calculating the right-hand side of the momentum equation, given the eddy viscosity; “Implicit” indicates the time 
required to solve the Helmholtz equations when the viscous terms are handled implicitly in the 𝑦 direction; “Solver” corresponds to the time spent solving the 
Poisson equation; “Correction” denotes the time allocated for the correction procedure; and “SGS” represents the time required to evaluate the eddy viscosity using 
the classical Smagorinsky model with the van Driest damping function.

Fig. 4. Strong (a) and weak (b) code scaling performance. Here, 𝑁𝑛𝑜𝑑𝑒𝑠 denotes the number of nodes, 𝑇2 represents the wall-clock time for 𝑁𝑛𝑜𝑑𝑒𝑠 = 2, and 𝑇 is the 
wall-clock time for a given 𝑁𝑛𝑜𝑑𝑒𝑠.

memory footprint. Note that memory requirements for WMLES simu-

lations exactly match those of the corresponding WRLES cases and are 
therefore omitted from the table.

We now proceed to analyze the strong and weak scalability perfor-

mance of the solver. For the strong scaling experiments, a fixed grid 
size of (𝑁𝑥,𝑁𝑦,𝑁𝑧) = (512,384,1440×4×2) is used. This grid is gener-

ated by refining the previous single GPU grid by a factor of 8 along the 
spanwise 𝑧 direction, resulting in a size close to the maximum allow-

able grid on two nodes when the viscous terms are handled implicitly in 
the 𝑦 direction with the Smagorinsky model and the van Driest damp-

ing function activated. For the weak scaling tests, the grid size was 
set to (512,384,1440 × 4 × 𝑁𝑛𝑜𝑑𝑒𝑠). We begin the scaling tests from 
two nodes instead of one, to avoid performance degradation caused 
by transitioning from fast intra-node communication to slower inter-

node communication. The wall-clock time for two nodes, 𝑇2, is used as 
the reference for reporting the code scaling performance. The domain 
decomposition is aligned with the 𝑥-axis when the viscous terms are 
handled explicitly, and with the 𝑦-axis when the viscous terms are han-

dled implicitly in the 𝑦 direction. Fig. 4 presents the results for both 
strong and weak scaling. In GPU-resident, distributed-memory simula-

tions of turbulent flows, weak scaling is the most critical performance 
metric. Maximizing GPU occupancy is always desirable, making it essen-

tial that the code maintains high performance for a fixed problem size 
per computational subdomain or MPI task, and consequently per GPU. 
Fig. 4(b) demonstrates that the weak scaling performance across the 
different computational configurations has small variations. The com-

putational time increases by approximately 80% as the number of nodes 
increases from 2 to 64. When the viscous terms are handled implicitly 
in the 𝑦 direction, there are no data points for 𝑁𝑛𝑜𝑑𝑒𝑠 = 64 due to GPU 
memory limitations. The fully implicit scheme is not analyzed here due 
to its low computational efficiency when Fourier transforms are applied 
to solve the momentum equations. In such cases, more efficient tech-

niques, such as the alternating-direction-implicit (ADI) scheme [24], 
may be employed due to its 𝑂(𝑁) computational complexity for a sin-

gle dimension and its additional options for parallel implementation. 
By contrast, FFT methods have 𝑂(𝑁 log𝑁) complexity and typically re-

quire extensive data transpositions. However, it should be noted that 
ADI can still be computationally expensive in a distributed-memory set-

ting, as it requires either transposing the domain or solving a sequence 
of three tri-diagonal systems in all three directions.

4. Validation

The solver is validated using three representative cases: homoge-

neous decaying isotropic turbulence (DIT), turbulent channel, and tur-

bulent duct flow. The DIT case is employed to validate the SGS models, 
while the channel case at Re𝑏 = 20,000 is to validate the wall-resolved 
LES capability. The channel flow at Re𝑏 = 250,000 and the duct flow are 
instead employed to validate the wall-modeled LES capability. In these 
simulations, the viscous terms are handled explicitly, except for the wall-

resolved LES of the channel flow, where they are handled implicitly in 
the 𝑦 direction. For all simulations, the time step is dynamically adjusted 
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Fig. 5. Decaying isotropic turbulence: computed velocity spectra with 323 (a,b) and 643 (c,d) grid points. The experimental spectra [41] are shown unfiltered (a, c) 
and box-filtered (b, d). In each plot, the results for three time instants 𝑡𝑈0∕𝑀 = 42, 98, and 171 are displayed from top to bottom. The vertical dashed lines denote 
the Nyquist limits.

to its maximum allowable value for numerical stability, multiplied by a 
safety factor of 0.95.

4.1. Decaying isotropic turbulence

We first validate the LES capability using freely decaying isotropic 
turbulence. The physical experiment was performed by Comte-Bellot 
and Corrsin [41], with decaying turbulence generated behind a mesh 
with size 𝑀 = 5.08 cm, and freestream velocity 𝑈0 = 10 m/s. The 
Taylor microscale Reynolds number (Re𝜆 = 𝑢𝑟𝑚𝑠𝜆∕𝜈, where 𝑢𝑟𝑚𝑠 is the 
root-mean-square of a fluctuating velocity component, 𝜆 is the Taylor 
microscale, and 𝜈 is the kinematic viscosity) is 71.6 at 𝑡𝑈0∕𝑀 = 42, 
decreasing to 60.6 at 𝑡𝑈0∕𝑀 = 171. In a reference frame moving with 
the average flow velocity, the problem is modeled as freely decaying 
isotropic turbulence. We simulate this by considering the flow inside a 
cubic domain with periodic boundary conditions, where the box edge 
length is 9 × 2𝜋 cm (≈ 11𝑀). Two grid resolutions are employed, with 
32 and 64 cells in each direction, respectively. The corresponding grid 
spacings are Δ∕𝜂 = 60 and 30, where 𝜂 is the Kolmogorov length scale 
at 𝑡𝑈0∕𝑀 = 42. The computations are initialized with a synthetic tur-

bulent field whose energy spectrum matches the filtered experimental 
spectrum at the initial time 𝑡𝑈0∕𝑀 = 42. The filtering is done either 
with a spectral cutoff filter or a physical box filter. When the spectral 
cutoff filter is applied, the initial field is directly generated on the LES 
grids using an open-source tool [42]. For the physical box filter, a field 
is first generated on a grid of 2563, then it is filtered onto the LES grids.

Fig. 5 compares the computed energy spectra with experimental 
results at three time instants, namely 𝑡𝑈0∕𝑀 = 42, 98 and 171. The 
classical Smagorinsky model (SM) with 𝐶𝑠 = 0.18 accurately predicts 
the results on both meshes, regardless of the filter used. The only ex-

ception is the coarse grid when box filter is applied, in which case the 
model does not yield sufficient subgrid-scale dissipation. Our tests show 
that a larger model constant, 𝐶𝑠 = 0.22, yields good agreement with 
the filtered experimental spectra (not shown in Fig. 5). The dependence 
of the model constant on the grid resolution is a common drawback 
of static SGS models [43,44]. In contrast, the dynamic Smagorinsky 
model (DSM) does not rely on model constants and reasonably agrees 
with experimental data. Notably, the computed velocity spectra exhibit 
near-perfect agreement with experimental results when the box filter is 
applied, which aligns with the implementation of DSM, where the test 
filter is a box filter. Larger deviations are generally observed at the scales 
close to the Nyquist limits, likely due to the numerical errors associated 
with finite-differencing at high wavenumbers [45].

4.2. Wall-resolved turbulent plane channel flow

Fully developed channel flow is simulated in a domain of (𝐿𝑥,𝐿𝑦,𝐿𝑧) 
= (12.8ℎ,2.0ℎ,4.8ℎ), with ℎ the channel half-height. No-slip boundary 
conditions are imposed in the 𝑦 direction and periodic boundary condi-

tions are applied to the 𝑥 and 𝑧 directions. The bulk velocity is main-

tained constant in time using a time-varying, spatially uniform body 
force. The bulk Reynolds number is defined as Re𝑏 = 2𝑢𝑏ℎ∕𝜈, with 𝑢𝑏
the bulk velocity and 𝜈 the kinematic viscosity. The friction Reynolds 
number is defined as Re𝜏 = 𝑢𝜏ℎ∕𝜈, where 𝑢𝜏 = (𝜏𝑤∕𝜌)1∕2 is the fric-

tion velocity, and the friction coefficient is defined as 𝐶𝑓 = 𝜏𝑤∕(𝜌𝑢2𝑏∕2). 
The bulk Reynolds number is 20,000 and reference DNS data [46] have 
Re𝜏,𝐷𝑁𝑆 = 543.5 and 𝐶𝑓,𝐷𝑁𝑆 = 0.00591. Table 3 reports the computa-

tional parameters for the wall-resolved LES cases, where 𝑁𝑥 , 𝑁𝑦, and 
𝑁𝑧 denote the number of grid points in each direction, and Δ𝑥, Δ𝑦, 
and Δ𝑧 represent the corresponding grid spacings. Specifically, Δ𝑦𝑐 de-
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Table 3
Computational parameters for WRLES of channel flow.

Mesh (𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧) Δ𝑥+ Δ𝑧+ Δ𝑦+
𝑐

Δ𝑦+
𝑤

𝐴𝑅 SGS Re𝜏 𝐶𝑓 𝜖𝑓 #ETT 
192 × 128 × 128 36.2 20.4 21.5 0.59 1.8 SM 568.4 0.00646 ± 0.14% 9.38% 32.6 
288 × 192 × 192 24.2 13.6 14.3 0.39 1.8 SM 567.3 0.00644 ± 0.17% 8.95% 32.6 
384 × 256 × 256 18.1 10.2 10.8 0.29 1.8 SM 556.8 0.00620 ± 0.16% 4.95% 32.6 
576 × 384 × 384 12.1 6.8 7.2 0.19 1.8 SM 544.8 0.00594 ± 0.10% 0.50% 32.6 
192 × 128 × 128 36.2 20.4 21.5 0.59 1.8 DSM 537.3 0.00577 ± 0.13% -2.25% 32.6 
288 × 192 × 192 24.2 13.6 14.3 0.39 1.8 DSM 541.6 0.00587 ± 0.13% -0.69% 32.6 
384 × 256 × 256 18.1 10.2 10.8 0.29 1.8 DSM 539.4 0.00582 ± 0.16% -1.49% 32.6 
576 × 384 × 384 12.1 6.8 7.2 0.19 1.8 DSM 534.7 0.00572 ± 0.17% -3.22% 32.6 

Fig. 6. Turbulent channel flow: visualization of streamwise velocity obtained with WRLES using the SM model on a mesh with Δ+
𝑧
= 6.8 (a) and profiles of mean 

total (solid), resolved and modeled turbulent (dashed), resolved turbulent (dash-dotted), modeled turbulent (dotted), and viscous (solid) shear stress obtained with 
WRLES using the SM and DSM models on a grid with Δ+

𝑧
= 20.4 (b). In (a), the wall-parallel plane located at 𝑦+ ≈ 15. In (b), normalization is based on the wall units 

of each simulation.

notes the grid spacing at the channel centerline, and Δ𝑦𝑤 is the height 
of the first off-wall layer. The superscript “+ ” indicates normalization 
by DNS wall units, whereas superscript “*” used below indicates nor-

malization by the wall units of the simulation. The symbols “SM” and 
“DSM” denote use of the classical Smagorinsky model with the van 
Driest damping function and of the dynamic Smagorinsky model, respec-

tively. #ETT denotes the time-averaging interval, expressed in terms of 
the eddy turnover time ℎ∕𝑢𝜏,𝐷𝑁𝑆 . Four sets of grids are used to assess 
grid convergence, with Δ𝑥+ decreasing from approximately 40 to 10
while maintaining an aspect ratio of 𝐴𝑅 = Δ𝑥∕Δ𝑧 = 1.8. At the chan-

nel centerline, the wall-normal grid spacing is approximately equal to 
the spanwise spacing. Table 3 also includes the skin friction coefficient, 
with its standard uncertainty estimated using a modified batch means 
method [47]. Its relative error is determined as

𝜖𝑓 =
𝐶𝑓 −𝐶𝑓,𝐷𝑁𝑆
𝐶𝑓,𝐷𝑁𝑆

. (23)

The results show that the SM model becomes increasingly accurate as 
the grid is refined, although it shows approximately 10% error on the 
coarsest grid. In contrast, the DSM model consistently exhibits errors of 
less than approximately 3% across all the grid resolutions.

Fig. 6(a) shows a visualization of the flow computed on the finest 
grid, where the near-wall low- and high-speed streaks are clearly ob-

served. To verify the LES implementation, Fig. 6(b) presents the profiles 
of the various contributions to the total shear stress for the grid with 
Δ𝑧+ = 20.4. Achievement of a linear distribution of the total shear 
stress provides evidence of general reliability of the LES implementa-

tion. Overall, the DSM model generates higher levels of modeled stress 
along with a lower peak of the resolved shear stress, as compared to 
the SM model with the van Driest damping function, because the DSM 
yields higher eddy viscosity levels.

Fig. 7 presents the mean streamwise velocity profiles obtained with 
the SM and DSM models. The velocity profiles normalized by the wall 

units of each simulation exhibit sensitivity to grid refinement, particu-

larly with the SM model. However, although not shown, when normal-

ized by the wall units of DNS, the velocity profiles show little depen-

dence on grid refinement, with all four grid resolutions closely matching 
the DNS data. Consequently, the grid sensitivity of the velocity profiles, 
when normalized by the wall units of each simulation, primarily stems 
from the grid dependence of the skin friction, particularly when the SM 
model is applied (see Table 3). Fig. 8 shows the turbulent normal and 
shear stresses, normalized by the DNS wall units, disregarding the mod-

eled stress. When the SM model is applied, the resolved shear stress is 
over-predicted, whereas it is under-predicted with the DSM model. This 
behavior aligns with the corresponding over- and under-estimation of 
the friction coefficient by the two models. As for the normal stress, the 
peak of the streamwise component is over-estimated, as also observed 
in other studies [48]. Overall, grid refinement leads to convergence of 
all the profiles towards the DNS data.

4.3. Wall-modeled turbulent plane channel flow

The computational setup is identical to that of the previous WRLES 
case, except that the bulk Reynolds number is 250,000 and that wall-

model boundary conditions are imposed on the walls. The reference 
data [46] have Re𝜏,DNS = 5185.9 and 𝐶𝑓,DNS = 0.00344. Table 4 provides 
the computational parameters for the WMLES cases. The parameter def-

initions are the same as in Table 3, but the cell spacings are given in 
terms of the half-channel height. We use aspect ratios of 𝐴𝑅 = 1.0 and 
𝐴𝑅 = 2.0, with thirteen grids generated through uniform refinement in 
all three directions for the grid convergence study. The finest grid has 
approximately Δ𝑧+ = 10, which qualifies it as a WRLES case. For all the 
cases, the wall-modeled layer thickness is ℎ𝑤𝑚 = 0.1ℎ. Fig. 9(a) visu-

alizes the turbulent channel flow obtained with WMLES using the SM 
model on a mesh with Δ𝑧∕ℎ = 0.012. The low- and high-speed streaks 
are clearly visible on the plane at 𝑦∕ℎ = 0.1. Fig. 9(b) presents the pro-
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Table 4
Computational parameters for WMLES of turbulent channel flow.

Mesh (𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧) Δ𝑥∕ℎ Δ𝑧∕ℎ Δ𝑦𝑐∕ℎ Δ𝑦𝑤∕ℎ 𝐴𝑅 SGS Re𝜏 𝐶𝑓 𝜖𝑓 #ETT 
128 × 32 × 48 0.100 0.100 0.100 0.0252 1.0 SM 5165.0 0.00341 ± 0.10% -0.81% 20.7 
192 × 48 × 72 0.067 0.067 0.067 0.0167 1.0 SM 5155.4 0.00340 ± 0.16% -1.17% 20.7 
256 × 64 × 96 0.050 0.050 0.050 0.0125 1.0 SM 5178.9 0.00343 ± 0.17% -0.27% 20.7 
384 × 96 × 144 0.033 0.033 0.033 0.0083 1.0 SM 5147.3 0.00339 ± 0.19% -1.48% 20.7 
512 × 128 × 192 0.025 0.025 0.025 0.0063 1.0 SM 5115.7 0.00335 ± 0.06% -2.69% 20.7 
640 × 160 × 240 0.020 0.020 0.020 0.0050 1.0 SM 5101.7 0.00333 ± 0.27% -3.22% 20.7 
768 × 192 × 288 0.017 0.017 0.017 0.0042 1.0 SM 5097.0 0.00333 ± 0.22% -3.40% 20.7 
896 × 224 × 336 0.014 0.014 0.014 0.0036 1.0 SM 5109.9 0.00334 ± 0.23% -2.91% 20.7 
1024 × 256 × 384 0.013 0.012 0.012 0.0031 1.0 SM 5121.6 0.00336 ± 0.24% -2.46% 20.7 
1536 × 256 × 576 0.008 0.008 0.012 0.0031 1.0 SM 5181.7 0.00344 ± 0.45% -0.16% 20.7 
2048 × 512 × 768 0.006 0.006 0.006 0.0016 1.0 SM 5248.3 0.00353 ± 0.64% 2.42% 20.7 
4096 × 1024 × 1536 0.003 0.003 0.003 0.0008 1.0 SM 5249.3 0.00353 ± 0.60% 2.46% 20.7 
6144 × 1536 × 2304 0.002 0.002 0.002 0.0005 1.0 SM 5248.4 0.00353 ± 0.56% 2.43% 20.7 
128 × 32 × 48 0.100 0.100 0.100 0.0252 1.0 DSM 5229.5 0.00350 ± 0.27% 1.69% 20.7 
192 × 48 × 72 0.067 0.067 0.067 0.0167 1.0 DSM 5235.3 0.00351 ± 0.26% 1.91% 20.7 
256 × 64 × 96 0.050 0.050 0.050 0.0125 1.0 DSM 5243.1 0.00352 ± 0.08% 2.22% 20.7 
384 × 96 × 144 0.033 0.033 0.033 0.0083 1.0 DSM 5217.6 0.00348 ± 0.20% 1.23% 20.7 
512 × 128 × 192 0.025 0.025 0.025 0.0063 1.0 DSM 5181.1 0.00344 ± 0.09% -0.19% 20.7 
640 × 160 × 240 0.020 0.020 0.020 0.0050 1.0 DSM 5163.1 0.00341 ± 0.15% -0.88% 20.7 
768 × 192 × 288 0.017 0.017 0.017 0.0042 1.0 DSM 5151.3 0.00340 ± 0.31% -1.33% 20.7 
896 × 224 × 336 0.014 0.014 0.014 0.0036 1.0 DSM 5150.5 0.00340 ± 0.16% -1.36% 20.7 
1024 × 256 × 384 0.013 0.012 0.012 0.0031 1.0 DSM 5161.8 0.00341 ± 0.29% -0.93% 20.7 
1536 × 256 × 576 0.008 0.008 0.012 0.0031 1.0 DSM 5179.5 0.00343 ± 0.15% -0.25% 20.7 
2048 × 512 × 768 0.006 0.006 0.006 0.0016 1.0 DSM 5207.5 0.00347 ± 0.73% 0.83% 20.7 
4096 × 1024 × 1536 0.003 0.003 0.003 0.0008 1.0 DSM 5236.4 0.00351 ± 0.25% 1.96% 20.7 
6144 × 1536 × 2304 0.002 0.002 0.002 0.0005 1.0 DSM 5197.2 0.00346 ± 0.43% 0.44% 20.7 
64 × 32 × 48 0.200 0.100 0.100 0.0252 2.0 SM 5227.3 0.00350 ± 0.22% 1.60% 20.7 
96 × 48 × 72 0.133 0.067 0.067 0.0167 2.0 SM 5335.4 0.00364 ± 0.09% 5.85% 20.7 
128 × 64 × 96 0.100 0.050 0.050 0.0125 2.0 SM 5346.2 0.00366 ± 0.09% 6.28% 20.7 
192 × 96 × 144 0.067 0.033 0.033 0.0083 2.0 SM 5325.2 0.00363 ± 0.12% 5.44% 20.7 
256 × 128 × 192 0.050 0.025 0.025 0.0063 2.0 SM 5264.4 0.00355 ± 0.09% 3.05% 20.7 
320 × 160 × 240 0.040 0.020 0.020 0.0050 2.0 SM 5208.7 0.00347 ± 0.06% 0.88% 20.7 
384 × 192 × 288 0.033 0.017 0.017 0.0042 2.0 SM 5153.5 0.00340 ± 0.16% -1.24% 20.7 
448 × 224 × 336 0.029 0.014 0.014 0.0036 2.0 SM 5113.3 0.00335 ± 0.18% -2.78% 20.7 
512 × 256 × 384 0.025 0.012 0.012 0.0031 2.0 SM 5075.8 0.00330 ± 0.18% -4.20% 20.7 
768 × 384 × 576 0.017 0.008 0.008 0.0021 2.0 SM 5057.8 0.00327 ± 0.37% -4.88% 20.7 
1024 × 512 × 768 0.013 0.006 0.006 0.0016 2.0 SM 5165.5 0.00342 ± 2.07% -0.79% 20.7 
2048 × 1024 × 1536 0.006 0.003 0.003 0.0008 2.0 SM 5196.9 0.00346 ± 1.12% 0.42% 20.7 
3072 × 1536 × 2304 0.004 0.002 0.002 0.0005 2.0 SM 5192.6 0.00345 ± 0.53% 0.26% 20.7 
64 × 32 × 48 0.200 0.100 0.100 0.0252 2.0 DSM 5360.1 0.00368 ± 0.12% 6.83% 20.7 
96 × 48 × 72 0.133 0.067 0.067 0.0167 2.0 DSM 5356.5 0.00367 ± 0.08% 6.69% 20.7 
128 × 64 × 96 0.100 0.050 0.050 0.0125 2.0 DSM 5355.5 0.00367 ± 0.07% 6.65% 20.7 
192 × 96 × 144 0.067 0.033 0.033 0.0083 2.0 DSM 5338.3 0.00365 ± 0.08% 5.96% 20.7 
256 × 128 × 192 0.050 0.025 0.025 0.0063 2.0 DSM 5294.1 0.00359 ± 0.09% 4.22% 20.7 
320 × 160 × 240 0.040 0.020 0.020 0.0050 2.0 DSM 5244.4 0.00352 ± 0.04% 2.27% 20.7 
384 × 192 × 288 0.033 0.017 0.017 0.0042 2.0 DSM 5192.8 0.00345 ± 0.10% 0.27% 20.7 
448 × 224 × 336 0.029 0.014 0.014 0.0036 2.0 DSM 5142.5 0.00339 ± 0.13% -1.67% 20.7 
512 × 256 × 384 0.025 0.012 0.012 0.0031 2.0 DSM 5111.4 0.00334 ± 0.21% -2.85% 20.7 
768 × 384 × 576 0.017 0.008 0.008 0.0021 2.0 DSM 5066.6 0.00329 ± 0.69% -4.55% 20.7 
1024 × 512 × 768 0.013 0.006 0.006 0.0016 2.0 DSM 5141.1 0.00338 ± 0.90% -1.72% 20.7 
2048 × 1024 × 1536 0.006 0.003 0.003 0.0008 2.0 DSM 5205.0 0.00347 ± 0.72% 0.74% 20.7 
3072 × 1536 × 2304 0.004 0.002 0.002 0.0005 2.0 DSM 5219.5 0.00349 ± 0.53% 1.30% 20.7 

files of various contributions to the total shear stress for the grid with 
Δ𝑧∕ℎ = 0.050. The linear distribution of total shear stress is predicted 
accurately, demonstrating the correct implementation of WMLES. Over-

all, DSM yields higher levels of modeled stress, with a lower peak in the 
resolved shear stress, compared to the SM model. This aligns with the 
WRLES results (Fig. 6(b)).

Fig. 10 presents the computed velocity results on the grids with 
𝐴𝑅 = 1.0 and 𝐴𝑅 = 2.0 and Fig. 11 shows the resolved turbulent nor-

mal and shear stresses for 𝐴𝑅 = 1.0. Profiles on four different grids are 
displayed to demonstrate grid convergence. For 𝐴𝑅 = 1.0, the profiles 
agree well with the DNS data, although the resolved turbulent stress 
profiles show noticeable variations with grid refinement. Notably, the 
streamwise velocity fluctuations are over-predicted, and the resolved 
turbulent shear stress generally increases as the grid resolution im-

proves. The LES-computed velocity profile in the wall-modeled layer 
should not be taken seriously, as it is expected to be replaced by the 

wall model, i.e., the logarithmic law in equation (10). In contrast, the 
computed velocity profiles for 𝐴𝑅 = 2.0 become more sensitive to grid 
refinement, although the results on the fine grids exhibit good accu-

racy.

For grid convergence study, Fig. 12 plots the variations of prediction 
errors with Δ𝑧∕ℎ for different quantities, including 𝐶𝑓 , 𝑈 , ⟨𝑢𝑢⟩, ⟨𝑣𝑣⟩, ⟨𝑤𝑤⟩, and ⟨𝑢𝑣⟩. For 𝐶𝑓 , the relative error is defined in the same way 
as in equation (23), and for the other quantities, the relative error is 
defined as

𝜖𝜙 =

[∫ 𝑦∕ℎ=1.0
𝑦∕ℎ=0.1

(
𝜙− 𝜙𝑟𝑒𝑓

)2
𝑑 (𝑦∕ℎ)

]1∕2
|||∫ 𝑦∕ℎ=1.0𝑦∕ℎ=0.1 𝜙𝑟𝑒𝑓 𝑑 (𝑦∕ℎ)

||| , (24)

where 𝜙 denotes outer-scaled quantities. Notably, the integration is 
performed from 𝑦 = 0.1ℎ to 𝑦 = ℎ, excluding the wall-modeled layer, 
since this layer is contaminated by significant numerical errors and is 
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Fig. 7. Turbulent channel flow: profiles of mean streamwise velocity obtained with WRLES using the SM (a) and DSM (b) models. Normalization is based on wall 
units of each simulation. The DNS data is from [46].

Fig. 8. Turbulent channel flow: profiles of resolved turbulent normal stress (a,b) and shear stress (c,d) obtained with WRLES using the SM (a,c) and DSM (b,d) 
models. Normalization is based on the DNS wall units. The DNS data is from [46]. Line codes: ⟨𝑢𝑢⟩ (solid), ⟨𝑣𝑣⟩ (dashed), ⟨𝑤𝑤⟩ (dash-dotted).

expected to be replaced by the velocity profile yielded from the wall 
model. Fig. 12 pinpoints non-monotonic grid convergence, for both the 
SGS models on grids with the two aspect ratios, as also noted by Meyers 
and Sagaut [49] for WRLES. In our results, the streamwise component 
of the turbulent normal stress exhibits the most marked non-monotonic 
convergence. Non-monotonic convergence is also observed in the skin 
friction and turbulent shear stress. On the finest grid with 𝐴𝑅 = 1.0, the 
error in wall friction is 2.43% for the SM model and 0.44% for the DSM 
model. The errors for the finest grid with 𝐴𝑅 = 2.0 are 0.26% and 1.30%, 
respectively. Notably, the sign of the error on the finest grids is always 

positive. We have also conducted WMLES for cases with Re𝑏 = 20,000. 
Although the results are not shown here, the signs of the errors for very 
fine grids are also positive. This is consistent with the fact that mean wall 
shear stress obtained with WMLES is biased toward larger values when 
the instantaneous velocity is used as input for the wall model. Addition-

ally, we note that grids with 𝐴𝑅 = 1.0 exhibit better grid convergence 
compared to those with 𝐴𝑅 = 2.0, as variations with grid refinement be-

come smaller in the errors of wall shear stress and mean velocity profile, 
and therefore the non-monotonic grid convergence behavior becomes 
less pronounced.
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Fig. 9. Turbulent channel flow: visualization of streamwise velocity obtained with WMLES using the SM model on a mesh with Δ𝑧∕ℎ = 0.012 (a) and profiles of mean 
total (solid), resolved and modeled turbulent (dashed), resolved turbulent (dash-dotted), modeled turbulent (dotted) and viscous (solid) shear stress computed with 
WMLES using the SM and DSM models, for the grid with Δ𝑧∕ℎ = 0.050 and 𝐴𝑅 = 1.0 (b). In (a), the wall-parallel plane is located at 𝑦∕ℎ = 0.1. In (b), the dashed 
line denotes 𝑦∕ℎ = 0.1. Normalization is based on the wall units of each simulation.

Fig. 10. Turbulent channel flow: profiles of mean streamwise velocity obtained with WMLES using the SM (a,c) and DSM (b,d) models on the grids with 𝐴𝑅= 1.0
(a,b) and 𝐴𝑅= 2.0 (c,d). The dashed line denotes 𝑦∕ℎ= 0.1. Normalization is based on the wall units of each simulation. The DNS data is from [46].

4.4. Wall-modeled turbulent square duct flow

Fully developed turbulent duct flow is simulated using WMLES, fol-

lowing the setup in Fig. 13(a). The computational domain is (𝐿𝑥,𝐿𝑦,𝐿𝑧) 
= (12.8ℎ,2.0ℎ,2.0ℎ), where ℎ is half of the duct side length. Wall-

modeled boundary conditions are applied in the 𝑦 and 𝑧 directions, 
whereas periodic boundary conditions are enforced in the streamwise 

𝑥 direction. The simulation maintains the bulk velocity constant by ap-

plying a time-varying, spatially uniform body force. The bulk Reynolds 
number (Re𝑏 = 2𝑢𝑏ℎ∕𝜈) is 40,000. DNS at the same Reynolds num-

ber was conducted in [50], which yielded Re𝜏,𝐷𝑁𝑆 = 1055, 𝐶𝑓,𝐷𝑁𝑆 =
0.00557. In our simulations, the wall-modeled layer thickness is set 
to ℎ𝑤𝑚 = 0.1ℎ. Table 5 provides the computational parameters, where 
Re𝜏 = 𝑢𝜏ℎ∕𝜈 represents the perimeter-averaged friction Reynolds num-
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Fig. 11. Turbulent channel flow: profiles of resolved turbulent normal stress (a,b) and shear stress (c,d) obtained with WMLES using the SM (a,c) and DSM (b,d) 
models on the grids with 𝐴𝑅= 1.0. The dashed line denotes 𝑦∕ℎ= 0.1. Normalization is based on the wall units of the DNS (a,b) and the wall units of each simulation 
(c,d). Normalization is based on the DNS wall units. The DNS data is from [46]. Line codes: ⟨𝑢𝑢⟩ (solid), ⟨𝑣𝑣⟩ (dashed), ⟨𝑤𝑤⟩ (dash-dotted).

Table 5
Parameters for the WMLES of turbulent square duct flow.

Mesh (𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧) Δ𝑥∕ℎ Δ𝑦∕ℎ Δ𝑧∕ℎ 𝐴𝑅 SGS Re𝜏 𝐶𝑓 𝜖𝑓 #ETT 𝐾 𝜖𝐾

128 × 80 × 80 0.100 0.025 0.025 4.0 SM 1065.9 0.00568 ± 0.08% 2.08% 52.8 2.17 × 10−5 -33.63% 
256 × 80 × 80 0.050 0.025 0.025 2.0 SM 1044.5 0.00546 ± 0.09% -1.97% 52.8 2.85 × 10−5 -12.77% 
512 × 80 × 80 0.025 0.025 0.025 1.0 SM 1038.6 0.00539 ± 0.11% -3.08% 52.8 4.05 × 10−5 24.05% 
768 × 120 × 120 0.017 0.017 0.017 1.0 SM 1041.4 0.00542 ± 0.17% -2.55% 52.8 4.03 × 10−5 23.58% 
1024 × 160 × 160 0.013 0.013 0.013 1.0 SM 1040.9 0.00542 ± 0.11% -2.66% 52.8 3.67 × 10−5 12.41% 
2048 × 320 × 320 0.006 0.006 0.006 1.0 SM 1044.3 0.00545 ± 0.17% -2.03% 52.8 3.99 × 10−5 22.21% 
128 × 80 × 80 0.100 0.025 0.025 4.0 DSM 1066.3 0.00569 ± 0.10% 2.16% 52.8 2.35 × 10−5 -27.83% 
256 × 80 × 80 0.050 0.025 0.025 2.0 DSM 1051.0 0.00552 ± 0.10% -0.76% 52.8 3.15 × 10−5 -3.53% 
512 × 80 × 80 0.025 0.025 0.025 1.0 DSM 1046.3 0.00547 ± 0.10% -1.65% 52.8 3.54 × 10−5 8.37% 
768 × 120 × 120 0.017 0.017 0.017 1.0 DSM 1047.0 0.00548 ± 0.11% -1.51% 52.8 3.69 × 10−5 13.08% 
1024 × 160 × 160 0.013 0.013 0.013 1.0 DSM 1045.7 0.00547 ± 0.09% -1.76% 52.8 3.64 × 10−5 11.41% 
2048 × 320 × 320 0.006 0.006 0.006 1.0 DSM 1044.9 0.00546 ± 0.13% -1.91% 52.8 4.09 × 10−5 25.29% 

ber, and 𝐶𝑓 = 𝜏𝑤∕(𝜌𝑢2𝑏∕2) is the perimeter-averaged skin friction coeffi-

cient. Six meshes with uniform grid spacings in all three directions are 
used for the grid convergence study, with the finest having Δ+

𝑧 = 6.3. 
Fig. 13(b) visualizes the turbulent flow on the finest grid obtained with 
WMLES using the SM model with the van Driest damping function. This 
visualization clearly captures the low- and high-speed streaks, as well as 
the coherent structures responsible for the secondary flow. Table 5 lists 
the relative error in the skin friction coefficient, with absolute values 
within approximately 3% for all the cases. This supports the general 
applicability of the logarithmic law as a wall model to predict fric-

tion in flows with moderate geometrical complexity. We also report the 
secondary-flow kinetic energy, defined as [51]

𝐾 =

0 

∫
𝑦∕ℎ=−1

0 

∫
𝑧∕ℎ=−1

1
2

((
𝑉

𝑢𝑏

)2
+
(
𝑊

𝑢𝑏

)2
)
𝑑 (𝑦∕ℎ)𝑑 (𝑧∕ℎ) , (25)

where 𝑉 and 𝑊 are the mean velocity components in the 𝑦 and 𝑧 di-

rections, respectively. The DNS result from [50] gives a reference value 
of 3.26 × 10−5. The relative errors on the finest grid are approximately 
22% for the WMLES simulation with the SM model and 25% for the DSM 
model. Notably, the convergence behavior of both the skin friction coef-

ficient and the cross-flow kinetic energy is non-monotonic for both SGS 
models.

Fig. 14 presents contours obtained with the SM model for the 
mean velocity components (𝑈+, 𝑉 +), turbulent normal stresses (⟨𝑢𝑢⟩+, 
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Fig. 12. Turbulent channel flow: prediction error as a function of Δ𝑧∕ℎ or Δ𝑧+ for various statistical properties, as obtained from WMLES with SM (a,c) and DSM 
(b,d) models for grids with 𝐴𝑅= 1.0 (a,b) and 𝐴𝑅= 2.0 (c,d).

Fig. 13. Computational setup for the square duct flow (a) and visualization of turbulent flow obtained with WMLES using the SM model on a mesh with Δ𝑧∕ℎ = 0.006
(b). The planes display contours of the streamwise velocity, with the wall-parallel plane located at 𝑦∕ℎ= 0.1.
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Fig. 14. Turbulent square duct flow: cross-stream contours of mean velocity 𝑈+ (row 1) and 𝑉 + (row 2), turbulent normal stresses ⟨𝑢𝑢⟩+ (row 3) and ⟨𝑣𝑣⟩+ (row 4), 
and shear stress ⟨𝑢𝑣⟩+ (row 5), computed on different grids using WMLES with the SM model. Normalization is based on the DNS wall units. Only a quarter of the full 
domain is presented. The horizontal axis is 𝑧 and the vertical axis is 𝑦. Δ𝑧∕ℎ = 0.025 (column 1), Δ𝑧∕ℎ = 0.017 (column 2), Δ𝑧∕ℎ = 0.013 (column 3), Δ𝑧∕ℎ = 0.006
(column 4) and DNS [50] (column 5).

⟨𝑣𝑣⟩+), and turbulent shear stress (⟨𝑢𝑣⟩+). Only one quarter of the full 
domain is presented. The contours of 𝑊 +, ⟨𝑤𝑤⟩+, and ⟨𝑢𝑤⟩+ are not 
displayed, as they are symmetric with respect to the diagonal, to those 
of 𝑉 +, ⟨𝑣𝑣⟩+, and ⟨𝑢𝑣⟩+, respectively. The distributions obtained for 
various grids show little variations in the core region and agree rea-

sonably well with the reference DNS data. The primary benefit of grid 
refinement is an increase in the overall accuracy in the near-wall region.

We further extract the profiles of these quantities along the wall and 
corner bisectors (see Fig. 13(a)). Fig. 15 displays the profiles of mean 
streamwise velocity along both the wall bisector and the corner bisector. 
Consistent with the contours in Fig. 14, the mean streamwise velocity 
profiles show minor variations with grid refinement, indicating satis-

factory grid convergence properties. In contrast, the most significant 
variations are observed in the turbulent normal stress ⟨𝑢𝑢⟩ (Fig. 16). 
Unlike the results for channel flow, the predicted peak in ⟨𝑢𝑢⟩ along the 

wall bisector increases with grid refinement, leading to improved ac-

curacy. Small oscillations are observed near the turbulent stress peak 
for the coarser grids, which we attribute to the absence of grid clus-

tering near the wall; these oscillations gradually disappear with grid 
refinement. Notably, the variations in shear stress exhibit a clearly non-

monotonic pattern as the grid is refined.

5. Conclusion

We have introduced CaLES, a GPU-accelerated solver designed for 
large-eddy simulation of incompressible wall-bounded flows. Based on 
the GPU-accelerated DNS solver CaNS, CaLES demonstrates significant 
computational efficiency improvements through GPU parallelization us-

ing a combination of CUDA Fortran and OpenACC directives, and good 
scalability on massively parallel architectures. The incorporation of SGS 
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Fig. 15. Turbulent square duct flow: profiles of mean streamwise velocity along the wall bisector (a,b) and corner bisector (c,d) obtained from WMLES with the SM 
(a,c) and DSM (b,d) models. The dashed line denotes 𝑦∕ℎ= 0.1. Normalization is based on the wall units of each simulation. The DNS data is from [50].

models, including static and dynamic Smagorinsky models, along with a 
wall model, extends the solver’s applicability to wall-resolved and wall-

modeled LES.

Performance evaluation conducted on state-of-the-art high-perfor-

mance computing clusters, shows that CaLES achieves substantial speed-

ups using GPU acceleration compared to its CPU-only counterparts. The 
solver efficiently scales across multiple GPUs, achieving approximately 
15× speed-up on a single GPU compared to a full CPU node, making 
it highly effective for high-fidelity simulations on large computational 
grids. Validation cases—such as decaying isotropic turbulence, turbu-

lent channel flow, and turbulent duct flow—confirm the solver’s accu-

racy for LES, with the dynamic Smagorinsky model exhibiting somewhat 
superior performance in grid convergence and turbulence prediction.

CaLES has also been applied for wall-modeled LES of turbulent chan-

nel and duct flows. Its high computational efficiency enables WMLES 
for channels with Re𝜏 = 5200 on progressively refined grids, meeting 
the grid requirements for wall-resolved LES. A key observation is the 
non-monotonic grid convergence in WMLES for channel and duct flows, 
particularly in wall friction, streamwise velocity fluctuations, and tur-

bulent shear stresses. These results underscore the complexities inherent 
in WMLES and emphasize the need for continued research into SGS and 
wall models.

In summary, CaLES offers the computational efficiency and flexibil-

ity needed to investigate turbulent flows with moderate complexity at 
high Reynolds numbers. Its open-source availability makes it a valu-

able tool for fast simulations, which is particularly important in the 

application of machine learning to develop robust SGS and wall models, 
including data-driven approaches and reinforcement learning.

Finally, we should emphasize that the purpose of this work is not to 
carry out a physical investigation of the performance of SGS models and 
wall models. Instead, our aim is to incorporate well-established models 
into a baseline solver that can easily incorporate other models, such 
as the Vreman subgrid-scale model [48] and the ordinary differential 
equation-based wall model [36].
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Fig. 16. Turbulent square duct flow: profiles of resolved turbulent normal stress (a,b) and shear stress (c,d) along the wall bisector as obtained from WMLES with 
the SM (a,c) and DSM (b,d) models. The dashed line denotes 𝑦∕ℎ= 0.1. Normalization is based on the DNS wall units. The DNS data is from [50]. Line codes: ⟨𝑢𝑢⟩
(solid), ⟨𝑣𝑣⟩ (dashed), ⟨𝑤𝑤⟩ (dash-dotted).
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