

Delft University of Technology

CaLES
A GPU-accelerated solver for large-eddy simulation of wall-bounded flows
Xiao, Maochao; Ceci, Alessandro; Costa, Pedro; Larsson, Johan; Pirozzoli, Sergio

DOI
10.1016/j.cpc.2025.109546
Publication date
2025
Document Version
Final published version
Published in
Computer Physics Communications

Citation (APA)
Xiao, M., Ceci, A., Costa, P., Larsson, J., & Pirozzoli, S. (2025). CaLES: A GPU-accelerated solver for
large-eddy simulation of wall-bounded flows. Computer Physics Communications, 310, Article 109546.
https://doi.org/10.1016/j.cpc.2025.109546

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.cpc.2025.109546
https://doi.org/10.1016/j.cpc.2025.109546

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computer Programs in Physics

CaLES: A GPU-accelerated solver for large-eddy simulation

of wall-bounded flows

Maochao Xiao a, ,∗, Alessandro Ceci a, Pedro Costa b, Johan Larsson c, Sergio Pirozzoli a, ,∗

a Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italy
b Process and Energy Department, TU Delft, Leeghwaterstraat 39, Delft 2628 CB, the Netherlands
c University of Maryland, College Park, MD 20742, USA

A R T I C L E I N F O A B S T R A C T

The review of this paper was arranged by
Prof. Weigel Martin

Keywords:

Large-eddy simulation

GPU-accelerated solver

Fast Poisson solver

Wall-bounded turbulence

Wall model

We introduce CaLES, a GPU-accelerated finite-difference solver designed for large-eddy simulations (LES) of
incompressible wall-bounded flows in massively parallel environments. Built upon the existing direct numeri-

cal simulation (DNS) solver CaNS, CaLES relies on low-storage, third-order Runge-Kutta schemes for temporal
discretization, with the option to treat viscous terms via an implicit Crank-Nicolson scheme in one or three direc-

tions. A fast direct solver, based on eigenfunction expansions, is used to solve the discretized Poisson/Helmholtz
equations. For turbulence modeling, the classical Smagorinsky model with van Driest near-wall damping and the
dynamic Smagorinsky model are implemented, along with a logarithmic law wall model. GPU acceleration is
achieved through OpenACC directives, following CaNS-2.3.0. Performance assessments were conducted on the
Leonardo cluster at CINECA, Italy. Each node is equipped with one Intel Xeon Platinum 8358 CPU (2.60 GHz, 32
cores) and four NVIDIA A100 GPUs (64 GB HBM2e), interconnected via NVLink 3.0 (200 GB/s). The inter-node
communication bandwidth is 25 GB/s, supported by a DragonFly + network architecture with NVIDIA Mellanox
InfiniBand HDR. Results indicate that the computational speed on a single GPU is equivalent to approximately
15 CPU nodes, depending on the treatment of viscous terms and the subgrid-scale model, and that the solver effi-

ciently scales across multiple GPUs. The predictive capability of CaLES has been tested using multiple flow cases,
including decaying isotropic turbulence, turbulent channel flow, and turbulent duct flow. The high computational
efficiency of the solver enables grid convergence studies on extremely fine grids, pinpointing non-monotonic grid
convergence for wall-modeled LES.

Program summary

Program title: CaLES
CPC Library link to program files: https://doi.org/10.17632/
6chjn6zdmz.1

Developer’s repository link: https://github.com/soaringxmc/CaLES

Licensing provisions: MIT License
Programming language: Fortran 90, OpenACC, CUDA Fortran, MPI
Nature of problem: Direct numerical simulation (DNS) and large-eddy
simulation (LES) of incompressible wall-bounded turbulent flows. The
program is designed for a variety of flow configurations, including chan-

nel flow, duct flow, cavity flow, etc.
Solution method: The filtered Navier-Stokes equations are solved using
a fractional-step method. Time integration is performed with a low-

storage, three-step Runge-Kutta scheme, while spatial discretization em-

* Corresponding authors.

E-mail addresses: maochao.xiao@uniroma1.it (M. Xiao), sergio.pirozzoli@uniroma1.it (S. Pirozzoli).

ploys a second-order finite-difference method on staggered grids. The
coupling between the pressure and velocity fields is achieved through
a pressure-correction method. The program incorporates subgrid-scale
(SGS) modeling, featuring the classical Smagorinsky model and its dy-

namic variant, along with wall modeling based on the classical logarith-

mic law.

1. Introduction

Large-eddy simulation (LES) has become an important tool in the
design processes of spacecraft, aircraft, automobiles, ships, and other
engineering systems, for cases where traditional Reynolds-averaged
Navier-Stokes (RANS) models fall short. RANS models often struggle to
accurately predict complex flow phenomena, such as flow separation,
rotational turbulence, and three-dimensional turbulent boundary lay-

https://doi.org/10.1016/j.cpc.2025.109546

Received 20 November 2024; Received in revised form 3 February 2025; Accepted 11 February 2025

Computer Physics Communications 310 (2025) 109546

Available online 14 February 2025
0010-4655/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://orcid.org/0000-0001-6528-2641
http://orcid.org/0000-0002-7160-3023
https://doi.org/10.17632/6chjn6zdmz.1
https://doi.org/10.17632/6chjn6zdmz.1
https://github.com/soaringxmc/CaLES
mailto:maochao.xiao@uniroma1.it
mailto:sergio.pirozzoli@uniroma1.it
https://doi.org/10.1016/j.cpc.2025.109546
https://doi.org/10.1016/j.cpc.2025.109546
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2025.109546&domain=pdf
http://creativecommons.org/licenses/by/4.0/

M. Xiao, A. Ceci, P. Costa et al.

ers [1]. Direct numerical simulation (DNS) can provide accurate results
but become computationally prohibitive at high Reynolds numbers due
to the high mesh resolutions required. As a result, LES has gained pop-

ularity for offering a reasonable balance between computational cost
and predictive accuracy, particularly for complex aerodynamic and hy-

drodynamic applications. In recent years, LES has been increasingly
applied to external aerodynamic flows, especially at the edges of flight
envelopes, such as high-lift aircraft aerodynamics [2] and iced-wing sep-

arated flows [3]. It has also been used in internal flows, including those
within aircraft engines [4]. These applications establish LES as a critical
component in the industry push toward Certification by Analysis [5].
Despite significant advancements, both wall models and subgrid-scale
(SGS) closures for LES remain areas of active development. For wall
modeling, researchers have been exploring robust models that account
for more complex flows, such as laminar-turbulent transitions [6] and
flow separation [7] among others. Concurrently, advancements in SGS
models have been made, with some of the recent studies emphasizing
robust SGS models suited to anisotropic grids [8].

It is well established that LES is significantly more computationally
demanding than RANS, making the development of faster LES solvers
a critical need. An efficient LES solver is not only essential for large-

scale production simulations, but also invaluable for the development
and testing of subgrid-scale and wall models. Indeed, as data-driven
approaches and machine learning techniques are increasingly applied
to turbulence modeling, the demand for efficient LES solvers becomes
even more pressing. Previous studies have trained SGS models using
filtered DNS data [9,10]. However, relying on DNS data can be prob-

lematic, as the SGS tensor in implicitly filtered LES does not perfectly
align with the SGS stress terms derived from the filtered Navier-Stokes
equations [11]. This inconsistency is especially significant when grid
sizes are significantly larger than the Kolmogorov scale, as the numeri-

cal and modeling errors can then be comparable. As a result, SGS models
trained on filtered DNS data may perform well in a priori tests but fail
in a posteriori assessments, whereby performance is evaluated in actual
LES simulations. Consequently, research has increasingly shifted toward
generating training data directly from LES, and turbulence models are
optimized for accurate statistical metrics such as mean velocity and wall
shear stress [12]. In the same vein, reinforcement learning has been ex-

plored for both SGS and wall modeling [13,14]. Such strategies have
been referred to as “model-consistent” approaches [15]. While these
strategies show promise, they often require hundreds or even thousands
of LES runs to generate training data or complete one-time training, un-

derscoring the need for fast and efficient solvers. Moreover, the grid
convergence properties of wall-modeled LES (WMLES) have become
increasingly studied [16,17], which also requires many LES runs on
a series of refined meshes for thorough analysis. Fast LES solvers are
therefore desirable to enable grid convergence investigations at high
Reynolds numbers.

Table 1 gives some popular open-source solvers used in academic
research. Whereas all those solvers are capable of performing DNS
for canonical flow cases, only URANOS and LESGO currently support
LES capabilities. It is well-known that incompressible solvers, such
as LESGO, are typically more efficient than compressible solvers like
URANOS for simulations of low-Mach-number flows. This efficiency
mainly derives from allowing much larger time steps when explicit
time-integration schemes are used. However, a key limitation of LESGO
is the absence of GPU acceleration, which restricts its scalability and
efficiency on modern high-performance computing platforms. Given
the high demand for LES in simulating incompressible flows, partic-

ularly for machine-learning-based turbulence modeling and grid con-

vergence studies, the development of a GPU-accelerated incompressible
LES solver is highly desirable in academia.

The present work introduces CaLES, a GPU-accelerated incompress-

ible LES solver specifically designed for wall-bounded flows. CaLES
builds on the capabilities of CaNS [22,23], an open-source DNS solver
known for its efficiency in solving the incompressible Navier-Stokes

Table 1
Open-source DNS/LES solvers for academic research.

Solver Governing equations GPU-supported Purposes
STREAmS-2 [18] Compressible NS Yes DNS
URANOS [19] Compressible NS Yes DNS/LES
AFiD [20] Incompressible NS Yes DNS
LESGO [21] Incompressible NS No DNS/LES
CaNS [22] Incompressible NS Yes DNS
CaLES Incompressible NS Yes DNS/LES

equations. The solver uses a fractional-step method [24]. Temporal dis-

cretization is carried out using a low-storage, third-order Runge-Kutta
scheme [25]. Spatial discretization is performed using a second-order
finite-difference method on staggered grids [26], which avoids odd-even
decoupling phenomena and preserves energy at the discrete level in the
inviscid limit [27]. The solver employs eigenfunction expansions [28]
to efficiently solve the Poisson equation. GPU acceleration is achieved
using a combination of CUDA Fortran and OpenACC directives, and
performance benchmarks demonstrate that the code performance on 4
NVIDIA Tesla V100 GPUs in a DGX-2 system is roughly equivalent (0.9
times slower to 1.6 times faster) to 2048 cores on state-of-the-art CPU-

based supercomputers, and 3.1 to 5.6 times faster when all 16 GPUs
in the DGX-2 cluster are used [22]. CaLES extends CaNS by support-

ing LES through the inclusion of the classical Smagorinsky model [29]
with the van Driest damping function [30], and the dynamic Smagorin-

sky model [31,32], along with a logarithmic-law wall model. The solver
can simulate various canonical flows in Cartesian single-block domains,
including isotropic turbulence, temporally-evolving turbulent boundary
layers, channel flows, duct flows, cavity flows, etc. Flexibility and ef-

ficiency make it an ideal platform to develop subgrid-scale and wall
models, particularly those based on machine learning techniques, and
to perform grid convergence studies at high Reynolds numbers. In this
work, we present CaLES as an extension of CaNS, which was designed to
maintain simplicity and adaptability, facilitating its use across diverse
applications.

The remainder of this paper is organized as follows. Section 2 in-

troduces the governing equations, subgrid-scale models, and numerical
methods. Section 3 discusses the implementation and performance of the
solver. Section 4 validates the LES capabilities using decaying isotropic
turbulence, turbulent channel flow, and turbulent duct flow. Finally,
Section 5 provides the conclusions of this study.

2. Methodology

2.1. Governing equations and subgrid-scale models

The filtered incompressible Navier-Stokes (NS) equations read as

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0, (1)

𝜕𝑢𝑖
𝜕𝑡

+
𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
= −1
𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈

𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

−
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
, (2)

where 𝑢𝑖 represents the filtered velocity, 𝜌 is the fluid density, 𝑝 is
the filtered pressure, and 𝜈 denotes the kinematic viscosity. The term
𝜏𝑖𝑗 = 𝑢𝑖𝑢𝑗 − 𝑢𝑖𝑢𝑗 is the subgrid-scale stress tensor, which encapsulates
the effects of unresolved scales and requires a suitable closure model.
The isotropic component of the SGS stress is typically absorbed into
the pressure, resulting in a modified pressure field, 𝑝← 𝑝+ 1

3𝜌𝜏𝑘𝑘. The
remaining deviatoric part is modeled, according to the Boussinesq as-

sumption, as

𝜏𝑖𝑗 −
1
3
𝜏𝑘𝑘𝛿𝑖𝑗 = −2𝜈𝑡𝑆𝑖𝑗 , (3)

where 𝛿𝑖𝑗 denotes the Kronecker delta, and 𝑆𝑖𝑗 is the filtered strain-rate
tensor. We implemented two representative closure models: the classical

Computer Physics Communications 310 (2025) 109546

2

M. Xiao, A. Ceci, P. Costa et al.

Smagorinsky model [29] and its dynamic version [31,32]. The baseline
Smagorinsky model reads as [29]

𝜈𝑡 =
(
𝐶𝑠Δ𝐷(𝑦)

)2
𝑆, (4)

where 𝐶𝑠 is a model constant, Δ is the filter width, 𝐷(𝑦) is the near-

wall damping function, and 𝑆 is the rate-of-strain, i.e., 𝑆 =
√

2𝑆𝑖𝑗𝑆𝑖𝑗 .
The van Driest damping function [30] is commonly used in the pres-

ence of no-slip walls, i.e., 𝐷(𝑦) = 1 − exp (−𝑦∗∕25), where “*” denotes
the wall distance non-dimensionalized by the wall units. A drawback
of the standard Smagorinsky model is its inaccurate prediction of the
eddy dissipation in laminar and transitional flows, leading to erroneous
wall shear stresses and delayed transition to turbulence. Moreover, the
optimal value of the model constant 𝐶𝑠 depends significantly on the
flow features. Lilly [33] showed that for isotropic turbulence, with spa-

tial resolution within the inertial subrange, 𝐶𝑠 ≈ 0.17, whereas Dear-

dorff [34] suggested 𝐶𝑠 ≈ 0.1 for wall-bounded turbulent shear flows.
The Smagorinsky model can be improved using a dynamic procedure,
whereby the model coefficient is evaluated dynamically by compar-

ing the eddy dissipation at two filter levels. The dynamic Smagorinsky
model with Lilly’s modification [31,32] is expressed as:

𝜈𝑡 = 𝑐𝑠Δ2𝑆, (5)

where

𝑐𝑠 =
⟨𝑀𝑖𝑗𝐿𝑖𝑗⟩ ⟨𝑀𝑖𝑗𝑀𝑖𝑗⟩ , (6)

𝐿𝑖𝑗 = 𝑢𝑖𝑢𝑗 − �̃�𝑖�̃�𝑗 , (7)

𝑀𝑖𝑗 = 2Δ2̃𝑆𝑆𝑖𝑗 − 2(𝛼Δ)2̃𝑆 ̃𝑆𝑖𝑗 . (8)

Here, the bar denotes filtering with filter width Δ, the tilde indicates test
filtering with filter width 𝛼Δ, and the brackets ⟨⟩ represent an averaging
operation. The ratio of the two filter widths is commonly set to 𝛼 = 2.0.
The test-filtered strain rate is computed as

̃
𝑆𝑖𝑗 =

1
2

(
𝜕�̃�𝑖
𝜕𝑥𝑗

+
𝜕�̃�𝑗

𝜕𝑥𝑖

)
. (9)

The dynamic Smagorinsky model provides reasonable subgrid-scale dis-

sipation and automatically switches off in laminar flows. However, it
demands more memory and computational resources than the static
version and often requires averaging or clipping to ensure numerical
stability [32].

Wall models are required when the near-wall mesh resolution is
too coarse to resolve the inner-layer turbulent scales up to the iner-

tial subrange. These models are typically classified into near-wall RANS
models [35] and wall-stress models [36]. In classical wall-stress models,
the wall-parallel velocity at a specific wall distance is used as input and
the wall shear stress is estimated as output, which replaces the no-slip
boundary condition. The simplest wall-stress model is the logarithmic
wall law:

𝑈𝑤𝑚
𝑢𝜏

= 1
𝜅
ln
(
𝑢𝜏ℎ𝑤𝑚
𝜈

)
+𝐵, (10)

where 𝜅 = 0.41, 𝐵 = 5.2, 𝑢𝜏 is the friction velocity, ℎ𝑤𝑚 is the wall-

modeled layer thickness, and 𝑈𝑤𝑚 is the wall-parallel velocity magni-

tude at the top of the wall-modeled layer. At first sight, the logarithmic
wall model may appear to be accurate only for equilibrium flows, but
both experience and basic near-wall turbulence physics suggest that this
is not generally the case [6]. A high-quality WMLES will resolve the
dynamically important eddies in the outer layer, and should therefore
accurately capture non-equilibrium effects there. The turbulence time
scale decreases towards the wall in the inner layer, and thus the tur-

bulence there may well exist in some type of quasi-equilibrium even
in a non-equilibrium outer flow. The literature contains some evidence

supporting this, especially when focusing on studies in which the WM-

LES grid and wall-model exchange location were carefully designed to
limit those errors. For example, Bermejo-Moreno et al. [37] conducted
WMLES using an equilibrium wall model to study interactions between
oblique shock waves and turbulent boundary layers in a nearly square
duct. Despite having secondary corner flows and shock-induced three-

dimensional separation bubbles, their results showed favorable agree-

ment with experimental data.

2.2. Numerical methods

The filtered incompressible Navier-Stokes equations are solved us-

ing a fractional-step method [24]. Time integration is performed with
a low-storage, three-step Runge-Kutta scheme [25], while spatial dis-

cretization is handled using a second-order finite-difference method on
staggered grids [26]. The continuity equation (1) and the momentum
equation (2) are coupled through a pressure-correction method [38].
This section provides an overview of the numerical schemes, with a fo-

cus on key aspects of the implementation of SGS and wall models. For
additional details, refer to the descriptions of CaNS [23].

At each sub-step, the flow field is updated as

𝑢∗𝑖 = 𝑢
𝑘
𝑖 +Δ𝑡

[
𝛼𝜅+1

(
𝐻𝑘𝑖 + 𝜈𝐿𝑗𝑗𝑢

𝑘
𝑖

)
+ 𝛽𝜅+1

(
𝐻𝑘−1𝑖 + 𝜈𝐿𝑗𝑗𝑢𝑘−1𝑖

)
−𝛾𝜅+1𝜕𝑖𝑝𝑘−1∕2

]
, (11)

𝐿𝑗𝑗𝜙 =
𝜕𝑖𝑢

∗
𝑖

𝛾𝑘+1Δ𝑡
, (12)

𝑢𝑘+1𝑖 = 𝑢∗𝑖 − 𝛾𝑘+1Δ𝑡𝜕𝑖𝜙, (13)

𝑝𝑘+1∕2 = 𝑝𝑘−1∕2 + 𝜙. (14)

Here, 𝑘 = 0 corresponds to physical time level 𝑛, and 𝑘 + 1 = 3 cor-

responds to time level 𝑛 + 1. The symbol 𝑢∗
𝑖

denotes the predicted
velocity, and 𝜙 represents the pressure correction. The Runge-Kutta co-

efficients are 𝛼𝑘+1 = (8∕15,5∕12,3∕4), 𝛽𝑘+1 = (0,−17∕60,−5∕12), and
𝛾𝑘+1 = 𝛼𝑘+1 + 𝛽𝑘+1. In equation (11), 𝐻𝑖 includes convective and SGS
stress terms,

𝐻𝑖 =
𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑗
+
𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
, (15)

and the Laplace operator in the diffusive term is defined as

𝐿𝑗𝑗 =
𝜕2

𝜕𝑥𝑗𝜕𝑥𝑗
. (16)

For low-Reynolds-number flows or very fine grids, it may be desirable to
use implicit temporal discretization for the diffusion terms. With Crank-

Nicolson time integration, this results in

𝑢∗∗𝑖 = 𝑢𝑘𝑖 +Δ𝑡
[
𝛼𝜅+1𝐻

𝑘
𝑖 + 𝛽𝜅+1𝐻

𝑘−1
𝑖 + 𝛾𝜅+1

(
𝜈𝐿𝑗𝑗𝑢

𝑘
𝑖 − 𝜕𝑖𝑝

𝑘−1∕2)] , (17)

𝑢∗𝑖 − 𝛾𝜅+1
𝜈Δ𝑡
2
𝐿𝑗𝑗

(
𝑢∗𝑖
)
= 𝑢∗∗𝑖 − 𝛾𝜅+1

𝜈Δ𝑡
2
𝐿𝑗𝑗𝑢

𝑘
𝑖 , (18)

𝑝𝑘+1∕2 = 𝑝𝑘−1∕2 + 𝜙− 𝛾𝑘+1
𝜈Δ𝑡
2
𝐿𝑗𝑗𝜙. (19)

Equations (17) and (18) are intentionally not combined to illustrate that
𝑢∗∗
𝑖

provides a better approximation of 𝑢𝑘+1
𝑖

than the sum of the terms on
the right-hand side of equation (18) [22]. Alternatively, implicit treat-

ment of the viscous terms can be performed only in the 𝑦 direction,
resulting in

𝑢∗∗𝑖 = 𝑢𝑘𝑖 +Δ𝑡
{
𝛼𝑘+1

[
𝐻𝑘𝑖 + 𝜈

(
𝐿11 +𝐿33

)
𝑢𝑘𝑖
]

+𝛽𝑘+1
[
𝐻𝑘−1𝑖 + 𝜈

(
𝐿11 +𝐿33

)
𝑢𝑘−1𝑖

]
+ 𝛾𝑘+1

(
𝜈𝐿22𝑢

𝑘
𝑖 − 𝜕𝑖𝑝

𝑘−1∕2)} ,
(20)(

1 − 𝛾𝜅+1
𝜈Δ𝑡
2
𝐿22

)
𝑢∗𝑖 = 𝑢

∗∗
𝑖 − 𝛾𝜅+1

𝜈Δ𝑡
2
𝐿22𝑢

𝑘
𝑖 , (21)

𝑝𝑘+1∕2 = 𝑝𝑘−1∕2 + 𝜙− 𝛾𝑘+1
𝜈Δ𝑡
2
𝐿22𝜙. (22)

Computer Physics Communications 310 (2025) 109546

3

M. Xiao, A. Ceci, P. Costa et al.

Fig. 1. Schematic of the wall-model implementation.

In the solver, 𝑧 is designated as the coordinate direction along which
non-uniform grid spacing can be applied, typically corresponding to the
wall-normal direction in a plane channel. However, to maintain consis-

tency with the conventions in the turbulence community, we refer to
the wall-normal direction as 𝑦 throughout this paper. The Poisson equa-

tion (12), once discretized, is solved using an eigenfunction expansion
method [28], which allows for an efficient solution using the Thomas
algorithm along the 𝑦 direction. When implicit treatment of the viscous
diffusive terms is applied, the resulting three modified Helmholtz equa-

tions in equation (18) are solved with the same direct solver used for
the Poisson equation.

The SGS stress terms are always handled explicitly, regardless of the
time integration scheme used for the viscous terms. This allows the SGS
stress terms to be grouped with the convective terms, as shown in equa-

tion (15). The SGS model is evaluated at cell centers, where both the
SGS viscosity and the strain-rate tensor are stored. The diagonal compo-

nents of the strain-rate tensor are directly computed at the cell centers,
while the non-diagonal components are first calculated at the cell edge
midpoints and then averaged to the cell centers. In the dynamic proce-

dure, two-dimensional (2D) or three-dimensional (3D) box filters can be
applied. The implementation of the filters assumes uniform grid spac-

ing for simplicity. The 3D box filter cannot be used in the first off-wall
layer, hence a 2D box filter is applied through linear extrapolation of the
wall-parallel velocity to the ghost points, followed by the application of
a 3D filter. In this layer, we set 𝛼 = 41∕3 in equation (8), which mathe-

matically corresponds to a 2D box filter. Our WMLES tests on channel
flows indicate that using this value in this first layer yields more accu-

rate results than 𝛼 = 81∕3. The averaging operation in equation (6) is
performed in the homogeneous directions, and the averaged coefficient
is clipped to zero when it is negative. The velocity components are av-

eraged to the cell centers before applying the test filter to evaluate 𝐿𝑖𝑗
in equation (7).

For the wall model, the Newton–Raphson iterative method is used to
determine the wall shear stress from equation (10), typically requiring 3
to 7 iterations to achieve convergence in wall shear stress within a rela-

tive tolerance of 0.01%. Fig. 1 illustrates how the wall model is coupled
to the LES solution. The input velocity at the top of the wall-modeled
layer is the magnitude of the instantaneous wall-parallel velocity, which
is evaluated as 𝑈𝑤𝑚 = (𝑢2𝑤𝑚 +𝑤2

𝑤𝑚)
1∕2, where 𝑢𝑤𝑚 and 𝑤𝑤𝑚 are the 𝑥-

and 𝑧-direction velocities, respectively. The two components are ob-

tained via linear interpolation in the wall-normal direction between
locations 1 and 2. The resulting wall shear stress is then used as the
boundary condition for the wall-parallel velocity vector. The imperme-

ability condition is enforced for the wall-normal velocity component.
When a staggered grid is used, the two wall-parallel velocity components
(e.g., 𝑢 and 𝑤) are stored at different cell face centers. Consequently,
when the wall model is used to enforce the boundary condition for 𝑢, as
illustrated in Fig. 1, interpolation of 𝑤 to the location of 𝑢 is required

to evaluate the wall-parallel velocity vector. Similarly, for 𝑤, interpola-

tion of 𝑢 to the location of 𝑤 is performed. This approach minimizes the
number of interpolations, which is desirable when computing either SGS
viscosity or wall models on staggered grids. When utilizing a wall model,
the wall-normal derivatives of the wall-parallel velocity components are
determined from first-order one-sided finite-difference scheme in the
first off-wall layer, thus avoiding crossing the under-resolved layer be-

tween the wall and the first off-wall wall-parallel velocity location [36].
In CaLES, one-sided finite differencing is achieved through linear ex-

trapolation of the wall-parallel velocity to the ghost points, followed
by second-order central differencing. This procedure is crucial for ac-

curate evaluation of the strain-rate tensor required to evaluate the SGS
viscosity. The viscous terms in the filtered Navier-Stokes equations are
evaluated as usual in the first off-wall layer, as the wall shear stress is
directly provided by the wall model, and the layer between the first and
second off-wall locations of the wall-parallel velocity can be regarded as
properly resolved. When the viscous terms are handled implicitly in all
three directions, the wall model can only be applied in the 𝑦-direction,
as homogeneous boundary conditions are required in the other two di-

rections where Fourier transforms are applied. However, this limitation
may be irrelevant, as explicit time integration is commonly used for
wall-modeled LES due to the large thickness of the first off-wall layer of
cells. This restriction does not apply when the viscous terms are handled
implicitly only in the 𝑦-direction.

3. Implementation and performance

3.1. Overall implementation strategy

CaLES is developed using CaNS-2.3.0 as its baseline solver. Algo-

rithm 1 outlines the overall solution procedure for explicit time inte-

gration. When the viscous terms are handled implicitly, 𝑢∗
𝑖

is computed
using equations (17) and (18), and 𝑝𝑘+1∕2 is updated from equation (19).
When the viscous terms are handled implicitly only in the 𝑦-direction, 𝑢∗

𝑖

is determined by equations (20) and (21), while 𝑝𝑘+1∕2 is updated from
equation (22). To ensure consistency with boundary conditions, ghost
cells are updated immediately after any variable is updated. Algorithm 2
details the procedure for applying boundary conditions. The calculation
of wall shear stress using the wall model must be performed after all
other boundary conditions have been applied, as the wall model com-

putation relies on the updated ghost-point values at boundary points.

Algorithm 1 Overall solution procedure.

1: Initialize velocity 𝑢𝑖 and pressure 𝑝.
2: Compute eddy viscosity 𝜈𝑡.
3: Set iteration counter 𝑛 = 0.

4: while 𝑛 ≤ 𝑛max do

5: Increment iteration counter: 𝑛← 𝑛+ 1.

6: Determine time step Δ𝑡.
7: for 𝑘 = 0 to 2 do

8: Compute intermediate velocity 𝑢∗
𝑖

using equation (11);

9: Compute the right-hand side of the Poisson equation and solve for 𝜙
in equation (12);

10: Update 𝑢𝑘+1𝑖 using the correction procedure of equation (13);

11: Update 𝑝𝑘+1∕2 using equation (14);

12: Compute 𝜈𝑘+1𝑡 .

13: end for

14: end while

15: Terminate simulation.

Algorithm 2 Boundary condition treatment.

1: Perform ghost-cell exchange between blocks.

2: Update all boundary conditions except wall-model boundary conditions.

3: Compute wall shear stress using equation (10).

4: Update wall-model boundary conditions.

Computer Physics Communications 310 (2025) 109546

4

M. Xiao, A. Ceci, P. Costa et al.

Fig. 2. Elapsed wall-clock time per time step per grid point for different methods when the viscous terms are handled explicitly (a), or implicitly in the 𝑦 direction
(b).

The GPU porting was implemented using OpenACC directives. A key
factor to achieving high acceleration is to minimize data transfer be-

tween GPU and CPU memory. In the solver, large arrays are transferred
only during the initialization or the first time step using unstructured
data lifetimes. From the second iteration onward, only scalars or small
arrays are transferred between CPU and GPU memory, except when
flow-field output is required. According to the OpenACC Programming
and Best Practices Guide [39], parallel regions are defined using either
the “kernels” construct or the“parallel” construct. Specifically, the “ker-

nels” construct allows the compiler to automatically exploit parallelism
in a region of code, while the “parallel” construct, often used in con-

junction with the “loop” construct and the “collapse” clause, is applied
to accelerate key loops for optimal performance. We use the “kernel-

s” construct for simple array assignments, and the “parallel” construct
to speed up loops for the computation of advective, viscous and SGS
stress terms, as well as for time advancement. Additionally, the “async”
clause is applied to the kernels, parallel, update, and data directives
(both structured and unstructured), enabling the CPU to continue with
other tasks while the accelerator performs operations, without waiting
for their completion. The FFTs required by the Poisson/Helmholtz solver
are carried out using the cuFFT library from the CUDA Toolkit. For ad-

ditional details, refer to [22].

In line with CaNS-2.3.0, parallelization of the code is achieved
through MPI, with each rank allocated to one GPU. The structured
grid block is partitioned into subdomains using a 2D pencil-like de-

composition. The pencil axis is recommended to be aligned with the
𝑥-direction for optimal efficiency, except when viscous terms are han-

dled implicitly in the 𝑦-direction, in which case alignment with the
𝑦-axis is preferable. The cuDecomp library [40] manages the transpose
operations required for FFT-based transforms and ghost-cell exchanges.
The library not only optimizes the pencil domain decomposition layout,
but also finds the most efficient communication backends for trans-

poses and ghost-cell exchanges. This process involves runtime testing
of different grid decomposition layouts and communication backends
to identify the best-performing combination. Notably, transpose oper-

ations and ghost-cell exchanges can utilize different communication
backends. Supported communication methods include CUDA-aware MPI
point-to-point, MPI all-to-all, NVIDIA Collective Communication Library
(NCCL), and NVIDIA Shared Memory (NVSHMEM), with different stag-

ing strategies. Given that the optimal setup is highly system-dependent,
the hardware-adaptive decomposition provided by cuDecomp is crucial
for efficient resource utilization [40].

3.2. Performance analysis

Assessment of the code performance was conducted on the Booster
partition of the Leonardo cluster at CINECA, Italy. Each node of the clus-

ter is equipped with an Intel Xeon Platinum 8358 CPU (2.60 GHz, 32
cores) and four NVIDIA A100 GPUs (64 GB HBM2e). The intra-node

Table 2
Estimated memory footprint per grid point for different
methods. “SM” denotes the Smagorinsky model with the
van Driest damping function, and “DSM” is the dynamic
Smagorinsky model.

Method DNS WRLES (SM) WRLES (DSM)
Explicit 136 bytes 168 bytes 352 bytes
Implicit-𝑦 160 bytes 192 bytes 376 bytes

communication bandwidth is 200 GB/s, supported by NVLink 3.0. The
inter-node bandwidth is 25 GB/s, facilitated by the DragonFly + net-

work architecture using NVIDIA Mellanox InfiniBand HDR, giving each
GPU an effective communication rate of approximately 6.25 GB/s. The
performance comparison is made between a single GPU card and a CPU
node. The test case under consideration is flow in a plane channel with
two walls in the 𝑦 direction, and periodic boundary conditions in the
other two directions. The grid size is (𝑁𝑥,𝑁𝑦,𝑁𝑧) = (512,384,1440),
which is approximately the maximum grid size that can fit into GPU
memory when the Smagorinsky model with the van Driest damping
function is activated and the viscous terms are handled implicitly along
the 𝑦 direction. It is noteworthy that, during runs on a single GPU, data
sharing is also performed when handling periodic boundary conditions
in the two decomposed directions, with the pencil-axis as the non-

decomposed direction. Fig. 2 compares the wall-clock time for different
methods when the viscous terms are handled explicitly or implicitly in
the 𝑦 direction. The inclusion of the wall model results in negligible com-

putational overhead. However, applying the static Smagorinsky model
with the van Driest damping function increases the computational cost
by approximately 0.3 ns per step per grid point. When the viscous terms
are handled explicitly, the speed-up factors relative to the CPU node
are 13× for DNS and 19× for wall-resolved LES (WRLES). If the viscous
terms are handled implicitly in the 𝑦 direction, the speed-up factors are
12× for DNS and 17× for WRLES. The greater speed-up of WRLES is due
to the increased computational intensity introduced by the subgrid-scale
model.

Fig. 3 reports the wall-clock time breakdown for different computa-

tional components. The most time is consumed by the Poisson solver
and the computation of the right-hand side of the momentum equa-

tion. The calculation of eddy viscosity using the Smagorinsky model
with the van Driest damping function is the third most time-consuming
part. When the viscous terms are handled implicitly in the 𝑦 direction,
the Helmholtz solver is the third most time-consuming component, fol-

lowed by the eddy viscosity calculation. Table 2 presents the estimated
memory footprint per grid point for different methods. The incorpora-

tion of the Smagorinsky model with the van Driest damping function
increases memory usage per grid point by 32 bytes, or approximately
20% of the DNS memory footprint. In contrast, the dynamic Smagorin-

sky model requires an additional 216 bytes, or about 150% of the DNS

Computer Physics Communications 310 (2025) 109546

5

M. Xiao, A. Ceci, P. Costa et al.

Fig. 3. Comparison of wall-clock time breakdown for different computational components, when the viscous terms are handled explicitly (a), or implicitly in the
𝑦 direction (b). “RHS” denotes the time spent calculating the right-hand side of the momentum equation, given the eddy viscosity; “Implicit” indicates the time
required to solve the Helmholtz equations when the viscous terms are handled implicitly in the 𝑦 direction; “Solver” corresponds to the time spent solving the
Poisson equation; “Correction” denotes the time allocated for the correction procedure; and “SGS” represents the time required to evaluate the eddy viscosity using
the classical Smagorinsky model with the van Driest damping function.

Fig. 4. Strong (a) and weak (b) code scaling performance. Here, 𝑁𝑛𝑜𝑑𝑒𝑠 denotes the number of nodes, 𝑇2 represents the wall-clock time for 𝑁𝑛𝑜𝑑𝑒𝑠 = 2, and 𝑇 is the
wall-clock time for a given 𝑁𝑛𝑜𝑑𝑒𝑠.

memory footprint. Note that memory requirements for WMLES simu-

lations exactly match those of the corresponding WRLES cases and are
therefore omitted from the table.

We now proceed to analyze the strong and weak scalability perfor-

mance of the solver. For the strong scaling experiments, a fixed grid
size of (𝑁𝑥,𝑁𝑦,𝑁𝑧) = (512,384,1440×4×2) is used. This grid is gener-

ated by refining the previous single GPU grid by a factor of 8 along the
spanwise 𝑧 direction, resulting in a size close to the maximum allow-

able grid on two nodes when the viscous terms are handled implicitly in
the 𝑦 direction with the Smagorinsky model and the van Driest damp-

ing function activated. For the weak scaling tests, the grid size was
set to (512,384,1440 × 4 × 𝑁𝑛𝑜𝑑𝑒𝑠). We begin the scaling tests from
two nodes instead of one, to avoid performance degradation caused
by transitioning from fast intra-node communication to slower inter-

node communication. The wall-clock time for two nodes, 𝑇2, is used as
the reference for reporting the code scaling performance. The domain
decomposition is aligned with the 𝑥-axis when the viscous terms are
handled explicitly, and with the 𝑦-axis when the viscous terms are han-

dled implicitly in the 𝑦 direction. Fig. 4 presents the results for both
strong and weak scaling. In GPU-resident, distributed-memory simula-

tions of turbulent flows, weak scaling is the most critical performance
metric. Maximizing GPU occupancy is always desirable, making it essen-

tial that the code maintains high performance for a fixed problem size
per computational subdomain or MPI task, and consequently per GPU.
Fig. 4(b) demonstrates that the weak scaling performance across the
different computational configurations has small variations. The com-

putational time increases by approximately 80% as the number of nodes
increases from 2 to 64. When the viscous terms are handled implicitly
in the 𝑦 direction, there are no data points for 𝑁𝑛𝑜𝑑𝑒𝑠 = 64 due to GPU
memory limitations. The fully implicit scheme is not analyzed here due
to its low computational efficiency when Fourier transforms are applied
to solve the momentum equations. In such cases, more efficient tech-

niques, such as the alternating-direction-implicit (ADI) scheme [24],
may be employed due to its 𝑂(𝑁) computational complexity for a sin-

gle dimension and its additional options for parallel implementation.
By contrast, FFT methods have 𝑂(𝑁 log𝑁) complexity and typically re-

quire extensive data transpositions. However, it should be noted that
ADI can still be computationally expensive in a distributed-memory set-

ting, as it requires either transposing the domain or solving a sequence
of three tri-diagonal systems in all three directions.

4. Validation

The solver is validated using three representative cases: homoge-

neous decaying isotropic turbulence (DIT), turbulent channel, and tur-

bulent duct flow. The DIT case is employed to validate the SGS models,
while the channel case at Re𝑏 = 20,000 is to validate the wall-resolved
LES capability. The channel flow at Re𝑏 = 250,000 and the duct flow are
instead employed to validate the wall-modeled LES capability. In these
simulations, the viscous terms are handled explicitly, except for the wall-

resolved LES of the channel flow, where they are handled implicitly in
the 𝑦 direction. For all simulations, the time step is dynamically adjusted

Computer Physics Communications 310 (2025) 109546

6

M. Xiao, A. Ceci, P. Costa et al.

Fig. 5. Decaying isotropic turbulence: computed velocity spectra with 323 (a,b) and 643 (c,d) grid points. The experimental spectra [41] are shown unfiltered (a, c)
and box-filtered (b, d). In each plot, the results for three time instants 𝑡𝑈0∕𝑀 = 42, 98, and 171 are displayed from top to bottom. The vertical dashed lines denote
the Nyquist limits.

to its maximum allowable value for numerical stability, multiplied by a
safety factor of 0.95.

4.1. Decaying isotropic turbulence

We first validate the LES capability using freely decaying isotropic
turbulence. The physical experiment was performed by Comte-Bellot
and Corrsin [41], with decaying turbulence generated behind a mesh
with size 𝑀 = 5.08 cm, and freestream velocity 𝑈0 = 10 m/s. The
Taylor microscale Reynolds number (Re𝜆 = 𝑢𝑟𝑚𝑠𝜆∕𝜈, where 𝑢𝑟𝑚𝑠 is the
root-mean-square of a fluctuating velocity component, 𝜆 is the Taylor
microscale, and 𝜈 is the kinematic viscosity) is 71.6 at 𝑡𝑈0∕𝑀 = 42,
decreasing to 60.6 at 𝑡𝑈0∕𝑀 = 171. In a reference frame moving with
the average flow velocity, the problem is modeled as freely decaying
isotropic turbulence. We simulate this by considering the flow inside a
cubic domain with periodic boundary conditions, where the box edge
length is 9 × 2𝜋 cm (≈ 11𝑀). Two grid resolutions are employed, with
32 and 64 cells in each direction, respectively. The corresponding grid
spacings are Δ∕𝜂 = 60 and 30, where 𝜂 is the Kolmogorov length scale
at 𝑡𝑈0∕𝑀 = 42. The computations are initialized with a synthetic tur-

bulent field whose energy spectrum matches the filtered experimental
spectrum at the initial time 𝑡𝑈0∕𝑀 = 42. The filtering is done either
with a spectral cutoff filter or a physical box filter. When the spectral
cutoff filter is applied, the initial field is directly generated on the LES
grids using an open-source tool [42]. For the physical box filter, a field
is first generated on a grid of 2563, then it is filtered onto the LES grids.

Fig. 5 compares the computed energy spectra with experimental
results at three time instants, namely 𝑡𝑈0∕𝑀 = 42, 98 and 171. The
classical Smagorinsky model (SM) with 𝐶𝑠 = 0.18 accurately predicts
the results on both meshes, regardless of the filter used. The only ex-

ception is the coarse grid when box filter is applied, in which case the
model does not yield sufficient subgrid-scale dissipation. Our tests show
that a larger model constant, 𝐶𝑠 = 0.22, yields good agreement with
the filtered experimental spectra (not shown in Fig. 5). The dependence
of the model constant on the grid resolution is a common drawback
of static SGS models [43,44]. In contrast, the dynamic Smagorinsky
model (DSM) does not rely on model constants and reasonably agrees
with experimental data. Notably, the computed velocity spectra exhibit
near-perfect agreement with experimental results when the box filter is
applied, which aligns with the implementation of DSM, where the test
filter is a box filter. Larger deviations are generally observed at the scales
close to the Nyquist limits, likely due to the numerical errors associated
with finite-differencing at high wavenumbers [45].

4.2. Wall-resolved turbulent plane channel flow

Fully developed channel flow is simulated in a domain of (𝐿𝑥,𝐿𝑦,𝐿𝑧)
= (12.8ℎ,2.0ℎ,4.8ℎ), with ℎ the channel half-height. No-slip boundary
conditions are imposed in the 𝑦 direction and periodic boundary condi-

tions are applied to the 𝑥 and 𝑧 directions. The bulk velocity is main-

tained constant in time using a time-varying, spatially uniform body
force. The bulk Reynolds number is defined as Re𝑏 = 2𝑢𝑏ℎ∕𝜈, with 𝑢𝑏
the bulk velocity and 𝜈 the kinematic viscosity. The friction Reynolds
number is defined as Re𝜏 = 𝑢𝜏ℎ∕𝜈, where 𝑢𝜏 = (𝜏𝑤∕𝜌)1∕2 is the fric-

tion velocity, and the friction coefficient is defined as 𝐶𝑓 = 𝜏𝑤∕(𝜌𝑢2𝑏∕2).
The bulk Reynolds number is 20,000 and reference DNS data [46] have
Re𝜏,𝐷𝑁𝑆 = 543.5 and 𝐶𝑓,𝐷𝑁𝑆 = 0.00591. Table 3 reports the computa-

tional parameters for the wall-resolved LES cases, where 𝑁𝑥 , 𝑁𝑦, and
𝑁𝑧 denote the number of grid points in each direction, and Δ𝑥, Δ𝑦,
and Δ𝑧 represent the corresponding grid spacings. Specifically, Δ𝑦𝑐 de-

Computer Physics Communications 310 (2025) 109546

7

M. Xiao, A. Ceci, P. Costa et al.

Table 3
Computational parameters for WRLES of channel flow.

Mesh (𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧) Δ𝑥+ Δ𝑧+ Δ𝑦+
𝑐

Δ𝑦+
𝑤

𝐴𝑅 SGS Re𝜏 𝐶𝑓 𝜖𝑓 #ETT
192 × 128 × 128 36.2 20.4 21.5 0.59 1.8 SM 568.4 0.00646 ± 0.14% 9.38% 32.6
288 × 192 × 192 24.2 13.6 14.3 0.39 1.8 SM 567.3 0.00644 ± 0.17% 8.95% 32.6
384 × 256 × 256 18.1 10.2 10.8 0.29 1.8 SM 556.8 0.00620 ± 0.16% 4.95% 32.6
576 × 384 × 384 12.1 6.8 7.2 0.19 1.8 SM 544.8 0.00594 ± 0.10% 0.50% 32.6
192 × 128 × 128 36.2 20.4 21.5 0.59 1.8 DSM 537.3 0.00577 ± 0.13% -2.25% 32.6
288 × 192 × 192 24.2 13.6 14.3 0.39 1.8 DSM 541.6 0.00587 ± 0.13% -0.69% 32.6
384 × 256 × 256 18.1 10.2 10.8 0.29 1.8 DSM 539.4 0.00582 ± 0.16% -1.49% 32.6
576 × 384 × 384 12.1 6.8 7.2 0.19 1.8 DSM 534.7 0.00572 ± 0.17% -3.22% 32.6

Fig. 6. Turbulent channel flow: visualization of streamwise velocity obtained with WRLES using the SM model on a mesh with Δ+
𝑧
= 6.8 (a) and profiles of mean

total (solid), resolved and modeled turbulent (dashed), resolved turbulent (dash-dotted), modeled turbulent (dotted), and viscous (solid) shear stress obtained with
WRLES using the SM and DSM models on a grid with Δ+

𝑧
= 20.4 (b). In (a), the wall-parallel plane located at 𝑦+ ≈ 15. In (b), normalization is based on the wall units

of each simulation.

notes the grid spacing at the channel centerline, and Δ𝑦𝑤 is the height
of the first off-wall layer. The superscript “+ ” indicates normalization
by DNS wall units, whereas superscript “*” used below indicates nor-

malization by the wall units of the simulation. The symbols “SM” and
“DSM” denote use of the classical Smagorinsky model with the van
Driest damping function and of the dynamic Smagorinsky model, respec-

tively. #ETT denotes the time-averaging interval, expressed in terms of
the eddy turnover time ℎ∕𝑢𝜏,𝐷𝑁𝑆 . Four sets of grids are used to assess
grid convergence, with Δ𝑥+ decreasing from approximately 40 to 10
while maintaining an aspect ratio of 𝐴𝑅 = Δ𝑥∕Δ𝑧 = 1.8. At the chan-

nel centerline, the wall-normal grid spacing is approximately equal to
the spanwise spacing. Table 3 also includes the skin friction coefficient,
with its standard uncertainty estimated using a modified batch means
method [47]. Its relative error is determined as

𝜖𝑓 =
𝐶𝑓 −𝐶𝑓,𝐷𝑁𝑆
𝐶𝑓,𝐷𝑁𝑆

. (23)

The results show that the SM model becomes increasingly accurate as
the grid is refined, although it shows approximately 10% error on the
coarsest grid. In contrast, the DSM model consistently exhibits errors of
less than approximately 3% across all the grid resolutions.

Fig. 6(a) shows a visualization of the flow computed on the finest
grid, where the near-wall low- and high-speed streaks are clearly ob-

served. To verify the LES implementation, Fig. 6(b) presents the profiles
of the various contributions to the total shear stress for the grid with
Δ𝑧+ = 20.4. Achievement of a linear distribution of the total shear
stress provides evidence of general reliability of the LES implementa-

tion. Overall, the DSM model generates higher levels of modeled stress
along with a lower peak of the resolved shear stress, as compared to
the SM model with the van Driest damping function, because the DSM
yields higher eddy viscosity levels.

Fig. 7 presents the mean streamwise velocity profiles obtained with
the SM and DSM models. The velocity profiles normalized by the wall

units of each simulation exhibit sensitivity to grid refinement, particu-

larly with the SM model. However, although not shown, when normal-

ized by the wall units of DNS, the velocity profiles show little depen-

dence on grid refinement, with all four grid resolutions closely matching
the DNS data. Consequently, the grid sensitivity of the velocity profiles,
when normalized by the wall units of each simulation, primarily stems
from the grid dependence of the skin friction, particularly when the SM
model is applied (see Table 3). Fig. 8 shows the turbulent normal and
shear stresses, normalized by the DNS wall units, disregarding the mod-

eled stress. When the SM model is applied, the resolved shear stress is
over-predicted, whereas it is under-predicted with the DSM model. This
behavior aligns with the corresponding over- and under-estimation of
the friction coefficient by the two models. As for the normal stress, the
peak of the streamwise component is over-estimated, as also observed
in other studies [48]. Overall, grid refinement leads to convergence of
all the profiles towards the DNS data.

4.3. Wall-modeled turbulent plane channel flow

The computational setup is identical to that of the previous WRLES
case, except that the bulk Reynolds number is 250,000 and that wall-

model boundary conditions are imposed on the walls. The reference
data [46] have Re𝜏,DNS = 5185.9 and 𝐶𝑓,DNS = 0.00344. Table 4 provides
the computational parameters for the WMLES cases. The parameter def-

initions are the same as in Table 3, but the cell spacings are given in
terms of the half-channel height. We use aspect ratios of 𝐴𝑅 = 1.0 and
𝐴𝑅 = 2.0, with thirteen grids generated through uniform refinement in
all three directions for the grid convergence study. The finest grid has
approximately Δ𝑧+ = 10, which qualifies it as a WRLES case. For all the
cases, the wall-modeled layer thickness is ℎ𝑤𝑚 = 0.1ℎ. Fig. 9(a) visu-

alizes the turbulent channel flow obtained with WMLES using the SM
model on a mesh with Δ𝑧∕ℎ = 0.012. The low- and high-speed streaks
are clearly visible on the plane at 𝑦∕ℎ = 0.1. Fig. 9(b) presents the pro-

Computer Physics Communications 310 (2025) 109546

8

M. Xiao, A. Ceci, P. Costa et al.

Table 4
Computational parameters for WMLES of turbulent channel flow.

Mesh (𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧) Δ𝑥∕ℎ Δ𝑧∕ℎ Δ𝑦𝑐∕ℎ Δ𝑦𝑤∕ℎ 𝐴𝑅 SGS Re𝜏 𝐶𝑓 𝜖𝑓 #ETT
128 × 32 × 48 0.100 0.100 0.100 0.0252 1.0 SM 5165.0 0.00341 ± 0.10% -0.81% 20.7
192 × 48 × 72 0.067 0.067 0.067 0.0167 1.0 SM 5155.4 0.00340 ± 0.16% -1.17% 20.7
256 × 64 × 96 0.050 0.050 0.050 0.0125 1.0 SM 5178.9 0.00343 ± 0.17% -0.27% 20.7
384 × 96 × 144 0.033 0.033 0.033 0.0083 1.0 SM 5147.3 0.00339 ± 0.19% -1.48% 20.7
512 × 128 × 192 0.025 0.025 0.025 0.0063 1.0 SM 5115.7 0.00335 ± 0.06% -2.69% 20.7
640 × 160 × 240 0.020 0.020 0.020 0.0050 1.0 SM 5101.7 0.00333 ± 0.27% -3.22% 20.7
768 × 192 × 288 0.017 0.017 0.017 0.0042 1.0 SM 5097.0 0.00333 ± 0.22% -3.40% 20.7
896 × 224 × 336 0.014 0.014 0.014 0.0036 1.0 SM 5109.9 0.00334 ± 0.23% -2.91% 20.7
1024 × 256 × 384 0.013 0.012 0.012 0.0031 1.0 SM 5121.6 0.00336 ± 0.24% -2.46% 20.7
1536 × 256 × 576 0.008 0.008 0.012 0.0031 1.0 SM 5181.7 0.00344 ± 0.45% -0.16% 20.7
2048 × 512 × 768 0.006 0.006 0.006 0.0016 1.0 SM 5248.3 0.00353 ± 0.64% 2.42% 20.7
4096 × 1024 × 1536 0.003 0.003 0.003 0.0008 1.0 SM 5249.3 0.00353 ± 0.60% 2.46% 20.7
6144 × 1536 × 2304 0.002 0.002 0.002 0.0005 1.0 SM 5248.4 0.00353 ± 0.56% 2.43% 20.7
128 × 32 × 48 0.100 0.100 0.100 0.0252 1.0 DSM 5229.5 0.00350 ± 0.27% 1.69% 20.7
192 × 48 × 72 0.067 0.067 0.067 0.0167 1.0 DSM 5235.3 0.00351 ± 0.26% 1.91% 20.7
256 × 64 × 96 0.050 0.050 0.050 0.0125 1.0 DSM 5243.1 0.00352 ± 0.08% 2.22% 20.7
384 × 96 × 144 0.033 0.033 0.033 0.0083 1.0 DSM 5217.6 0.00348 ± 0.20% 1.23% 20.7
512 × 128 × 192 0.025 0.025 0.025 0.0063 1.0 DSM 5181.1 0.00344 ± 0.09% -0.19% 20.7
640 × 160 × 240 0.020 0.020 0.020 0.0050 1.0 DSM 5163.1 0.00341 ± 0.15% -0.88% 20.7
768 × 192 × 288 0.017 0.017 0.017 0.0042 1.0 DSM 5151.3 0.00340 ± 0.31% -1.33% 20.7
896 × 224 × 336 0.014 0.014 0.014 0.0036 1.0 DSM 5150.5 0.00340 ± 0.16% -1.36% 20.7
1024 × 256 × 384 0.013 0.012 0.012 0.0031 1.0 DSM 5161.8 0.00341 ± 0.29% -0.93% 20.7
1536 × 256 × 576 0.008 0.008 0.012 0.0031 1.0 DSM 5179.5 0.00343 ± 0.15% -0.25% 20.7
2048 × 512 × 768 0.006 0.006 0.006 0.0016 1.0 DSM 5207.5 0.00347 ± 0.73% 0.83% 20.7
4096 × 1024 × 1536 0.003 0.003 0.003 0.0008 1.0 DSM 5236.4 0.00351 ± 0.25% 1.96% 20.7
6144 × 1536 × 2304 0.002 0.002 0.002 0.0005 1.0 DSM 5197.2 0.00346 ± 0.43% 0.44% 20.7
64 × 32 × 48 0.200 0.100 0.100 0.0252 2.0 SM 5227.3 0.00350 ± 0.22% 1.60% 20.7
96 × 48 × 72 0.133 0.067 0.067 0.0167 2.0 SM 5335.4 0.00364 ± 0.09% 5.85% 20.7
128 × 64 × 96 0.100 0.050 0.050 0.0125 2.0 SM 5346.2 0.00366 ± 0.09% 6.28% 20.7
192 × 96 × 144 0.067 0.033 0.033 0.0083 2.0 SM 5325.2 0.00363 ± 0.12% 5.44% 20.7
256 × 128 × 192 0.050 0.025 0.025 0.0063 2.0 SM 5264.4 0.00355 ± 0.09% 3.05% 20.7
320 × 160 × 240 0.040 0.020 0.020 0.0050 2.0 SM 5208.7 0.00347 ± 0.06% 0.88% 20.7
384 × 192 × 288 0.033 0.017 0.017 0.0042 2.0 SM 5153.5 0.00340 ± 0.16% -1.24% 20.7
448 × 224 × 336 0.029 0.014 0.014 0.0036 2.0 SM 5113.3 0.00335 ± 0.18% -2.78% 20.7
512 × 256 × 384 0.025 0.012 0.012 0.0031 2.0 SM 5075.8 0.00330 ± 0.18% -4.20% 20.7
768 × 384 × 576 0.017 0.008 0.008 0.0021 2.0 SM 5057.8 0.00327 ± 0.37% -4.88% 20.7
1024 × 512 × 768 0.013 0.006 0.006 0.0016 2.0 SM 5165.5 0.00342 ± 2.07% -0.79% 20.7
2048 × 1024 × 1536 0.006 0.003 0.003 0.0008 2.0 SM 5196.9 0.00346 ± 1.12% 0.42% 20.7
3072 × 1536 × 2304 0.004 0.002 0.002 0.0005 2.0 SM 5192.6 0.00345 ± 0.53% 0.26% 20.7
64 × 32 × 48 0.200 0.100 0.100 0.0252 2.0 DSM 5360.1 0.00368 ± 0.12% 6.83% 20.7
96 × 48 × 72 0.133 0.067 0.067 0.0167 2.0 DSM 5356.5 0.00367 ± 0.08% 6.69% 20.7
128 × 64 × 96 0.100 0.050 0.050 0.0125 2.0 DSM 5355.5 0.00367 ± 0.07% 6.65% 20.7
192 × 96 × 144 0.067 0.033 0.033 0.0083 2.0 DSM 5338.3 0.00365 ± 0.08% 5.96% 20.7
256 × 128 × 192 0.050 0.025 0.025 0.0063 2.0 DSM 5294.1 0.00359 ± 0.09% 4.22% 20.7
320 × 160 × 240 0.040 0.020 0.020 0.0050 2.0 DSM 5244.4 0.00352 ± 0.04% 2.27% 20.7
384 × 192 × 288 0.033 0.017 0.017 0.0042 2.0 DSM 5192.8 0.00345 ± 0.10% 0.27% 20.7
448 × 224 × 336 0.029 0.014 0.014 0.0036 2.0 DSM 5142.5 0.00339 ± 0.13% -1.67% 20.7
512 × 256 × 384 0.025 0.012 0.012 0.0031 2.0 DSM 5111.4 0.00334 ± 0.21% -2.85% 20.7
768 × 384 × 576 0.017 0.008 0.008 0.0021 2.0 DSM 5066.6 0.00329 ± 0.69% -4.55% 20.7
1024 × 512 × 768 0.013 0.006 0.006 0.0016 2.0 DSM 5141.1 0.00338 ± 0.90% -1.72% 20.7
2048 × 1024 × 1536 0.006 0.003 0.003 0.0008 2.0 DSM 5205.0 0.00347 ± 0.72% 0.74% 20.7
3072 × 1536 × 2304 0.004 0.002 0.002 0.0005 2.0 DSM 5219.5 0.00349 ± 0.53% 1.30% 20.7

files of various contributions to the total shear stress for the grid with
Δ𝑧∕ℎ = 0.050. The linear distribution of total shear stress is predicted
accurately, demonstrating the correct implementation of WMLES. Over-

all, DSM yields higher levels of modeled stress, with a lower peak in the
resolved shear stress, compared to the SM model. This aligns with the
WRLES results (Fig. 6(b)).

Fig. 10 presents the computed velocity results on the grids with
𝐴𝑅 = 1.0 and 𝐴𝑅 = 2.0 and Fig. 11 shows the resolved turbulent nor-

mal and shear stresses for 𝐴𝑅 = 1.0. Profiles on four different grids are
displayed to demonstrate grid convergence. For 𝐴𝑅 = 1.0, the profiles
agree well with the DNS data, although the resolved turbulent stress
profiles show noticeable variations with grid refinement. Notably, the
streamwise velocity fluctuations are over-predicted, and the resolved
turbulent shear stress generally increases as the grid resolution im-

proves. The LES-computed velocity profile in the wall-modeled layer
should not be taken seriously, as it is expected to be replaced by the

wall model, i.e., the logarithmic law in equation (10). In contrast, the
computed velocity profiles for 𝐴𝑅 = 2.0 become more sensitive to grid
refinement, although the results on the fine grids exhibit good accu-

racy.

For grid convergence study, Fig. 12 plots the variations of prediction
errors with Δ𝑧∕ℎ for different quantities, including 𝐶𝑓 , 𝑈 , ⟨𝑢𝑢⟩, ⟨𝑣𝑣⟩, ⟨𝑤𝑤⟩, and ⟨𝑢𝑣⟩. For 𝐶𝑓 , the relative error is defined in the same way
as in equation (23), and for the other quantities, the relative error is
defined as

𝜖𝜙 =

[∫ 𝑦∕ℎ=1.0
𝑦∕ℎ=0.1

(
𝜙− 𝜙𝑟𝑒𝑓

)2
𝑑 (𝑦∕ℎ)

]1∕2
|||∫ 𝑦∕ℎ=1.0𝑦∕ℎ=0.1 𝜙𝑟𝑒𝑓 𝑑 (𝑦∕ℎ)

||| , (24)

where 𝜙 denotes outer-scaled quantities. Notably, the integration is
performed from 𝑦 = 0.1ℎ to 𝑦 = ℎ, excluding the wall-modeled layer,
since this layer is contaminated by significant numerical errors and is

Computer Physics Communications 310 (2025) 109546

9

M. Xiao, A. Ceci, P. Costa et al.

Fig. 7. Turbulent channel flow: profiles of mean streamwise velocity obtained with WRLES using the SM (a) and DSM (b) models. Normalization is based on wall
units of each simulation. The DNS data is from [46].

Fig. 8. Turbulent channel flow: profiles of resolved turbulent normal stress (a,b) and shear stress (c,d) obtained with WRLES using the SM (a,c) and DSM (b,d)
models. Normalization is based on the DNS wall units. The DNS data is from [46]. Line codes: ⟨𝑢𝑢⟩ (solid), ⟨𝑣𝑣⟩ (dashed), ⟨𝑤𝑤⟩ (dash-dotted).

expected to be replaced by the velocity profile yielded from the wall
model. Fig. 12 pinpoints non-monotonic grid convergence, for both the
SGS models on grids with the two aspect ratios, as also noted by Meyers
and Sagaut [49] for WRLES. In our results, the streamwise component
of the turbulent normal stress exhibits the most marked non-monotonic
convergence. Non-monotonic convergence is also observed in the skin
friction and turbulent shear stress. On the finest grid with 𝐴𝑅 = 1.0, the
error in wall friction is 2.43% for the SM model and 0.44% for the DSM
model. The errors for the finest grid with 𝐴𝑅 = 2.0 are 0.26% and 1.30%,
respectively. Notably, the sign of the error on the finest grids is always

positive. We have also conducted WMLES for cases with Re𝑏 = 20,000.
Although the results are not shown here, the signs of the errors for very
fine grids are also positive. This is consistent with the fact that mean wall
shear stress obtained with WMLES is biased toward larger values when
the instantaneous velocity is used as input for the wall model. Addition-

ally, we note that grids with 𝐴𝑅 = 1.0 exhibit better grid convergence
compared to those with 𝐴𝑅 = 2.0, as variations with grid refinement be-

come smaller in the errors of wall shear stress and mean velocity profile,
and therefore the non-monotonic grid convergence behavior becomes
less pronounced.

Computer Physics Communications 310 (2025) 109546

10

M. Xiao, A. Ceci, P. Costa et al.

Fig. 9. Turbulent channel flow: visualization of streamwise velocity obtained with WMLES using the SM model on a mesh with Δ𝑧∕ℎ = 0.012 (a) and profiles of mean
total (solid), resolved and modeled turbulent (dashed), resolved turbulent (dash-dotted), modeled turbulent (dotted) and viscous (solid) shear stress computed with
WMLES using the SM and DSM models, for the grid with Δ𝑧∕ℎ = 0.050 and 𝐴𝑅 = 1.0 (b). In (a), the wall-parallel plane is located at 𝑦∕ℎ = 0.1. In (b), the dashed
line denotes 𝑦∕ℎ = 0.1. Normalization is based on the wall units of each simulation.

Fig. 10. Turbulent channel flow: profiles of mean streamwise velocity obtained with WMLES using the SM (a,c) and DSM (b,d) models on the grids with 𝐴𝑅= 1.0
(a,b) and 𝐴𝑅= 2.0 (c,d). The dashed line denotes 𝑦∕ℎ= 0.1. Normalization is based on the wall units of each simulation. The DNS data is from [46].

4.4. Wall-modeled turbulent square duct flow

Fully developed turbulent duct flow is simulated using WMLES, fol-

lowing the setup in Fig. 13(a). The computational domain is (𝐿𝑥,𝐿𝑦,𝐿𝑧)
= (12.8ℎ,2.0ℎ,2.0ℎ), where ℎ is half of the duct side length. Wall-

modeled boundary conditions are applied in the 𝑦 and 𝑧 directions,
whereas periodic boundary conditions are enforced in the streamwise

𝑥 direction. The simulation maintains the bulk velocity constant by ap-

plying a time-varying, spatially uniform body force. The bulk Reynolds
number (Re𝑏 = 2𝑢𝑏ℎ∕𝜈) is 40,000. DNS at the same Reynolds num-

ber was conducted in [50], which yielded Re𝜏,𝐷𝑁𝑆 = 1055, 𝐶𝑓,𝐷𝑁𝑆 =
0.00557. In our simulations, the wall-modeled layer thickness is set
to ℎ𝑤𝑚 = 0.1ℎ. Table 5 provides the computational parameters, where
Re𝜏 = 𝑢𝜏ℎ∕𝜈 represents the perimeter-averaged friction Reynolds num-

Computer Physics Communications 310 (2025) 109546

11

M. Xiao, A. Ceci, P. Costa et al.

Fig. 11. Turbulent channel flow: profiles of resolved turbulent normal stress (a,b) and shear stress (c,d) obtained with WMLES using the SM (a,c) and DSM (b,d)
models on the grids with 𝐴𝑅= 1.0. The dashed line denotes 𝑦∕ℎ= 0.1. Normalization is based on the wall units of the DNS (a,b) and the wall units of each simulation
(c,d). Normalization is based on the DNS wall units. The DNS data is from [46]. Line codes: ⟨𝑢𝑢⟩ (solid), ⟨𝑣𝑣⟩ (dashed), ⟨𝑤𝑤⟩ (dash-dotted).

Table 5
Parameters for the WMLES of turbulent square duct flow.

Mesh (𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧) Δ𝑥∕ℎ Δ𝑦∕ℎ Δ𝑧∕ℎ 𝐴𝑅 SGS Re𝜏 𝐶𝑓 𝜖𝑓 #ETT 𝐾 𝜖𝐾

128 × 80 × 80 0.100 0.025 0.025 4.0 SM 1065.9 0.00568 ± 0.08% 2.08% 52.8 2.17 × 10−5 -33.63%
256 × 80 × 80 0.050 0.025 0.025 2.0 SM 1044.5 0.00546 ± 0.09% -1.97% 52.8 2.85 × 10−5 -12.77%
512 × 80 × 80 0.025 0.025 0.025 1.0 SM 1038.6 0.00539 ± 0.11% -3.08% 52.8 4.05 × 10−5 24.05%
768 × 120 × 120 0.017 0.017 0.017 1.0 SM 1041.4 0.00542 ± 0.17% -2.55% 52.8 4.03 × 10−5 23.58%
1024 × 160 × 160 0.013 0.013 0.013 1.0 SM 1040.9 0.00542 ± 0.11% -2.66% 52.8 3.67 × 10−5 12.41%
2048 × 320 × 320 0.006 0.006 0.006 1.0 SM 1044.3 0.00545 ± 0.17% -2.03% 52.8 3.99 × 10−5 22.21%
128 × 80 × 80 0.100 0.025 0.025 4.0 DSM 1066.3 0.00569 ± 0.10% 2.16% 52.8 2.35 × 10−5 -27.83%
256 × 80 × 80 0.050 0.025 0.025 2.0 DSM 1051.0 0.00552 ± 0.10% -0.76% 52.8 3.15 × 10−5 -3.53%
512 × 80 × 80 0.025 0.025 0.025 1.0 DSM 1046.3 0.00547 ± 0.10% -1.65% 52.8 3.54 × 10−5 8.37%
768 × 120 × 120 0.017 0.017 0.017 1.0 DSM 1047.0 0.00548 ± 0.11% -1.51% 52.8 3.69 × 10−5 13.08%
1024 × 160 × 160 0.013 0.013 0.013 1.0 DSM 1045.7 0.00547 ± 0.09% -1.76% 52.8 3.64 × 10−5 11.41%
2048 × 320 × 320 0.006 0.006 0.006 1.0 DSM 1044.9 0.00546 ± 0.13% -1.91% 52.8 4.09 × 10−5 25.29%

ber, and 𝐶𝑓 = 𝜏𝑤∕(𝜌𝑢2𝑏∕2) is the perimeter-averaged skin friction coeffi-

cient. Six meshes with uniform grid spacings in all three directions are
used for the grid convergence study, with the finest having Δ+

𝑧 = 6.3.
Fig. 13(b) visualizes the turbulent flow on the finest grid obtained with
WMLES using the SM model with the van Driest damping function. This
visualization clearly captures the low- and high-speed streaks, as well as
the coherent structures responsible for the secondary flow. Table 5 lists
the relative error in the skin friction coefficient, with absolute values
within approximately 3% for all the cases. This supports the general
applicability of the logarithmic law as a wall model to predict fric-

tion in flows with moderate geometrical complexity. We also report the
secondary-flow kinetic energy, defined as [51]

𝐾 =

0

∫
𝑦∕ℎ=−1

0

∫
𝑧∕ℎ=−1

1
2

((
𝑉

𝑢𝑏

)2
+
(
𝑊

𝑢𝑏

)2
)
𝑑 (𝑦∕ℎ)𝑑 (𝑧∕ℎ) , (25)

where 𝑉 and 𝑊 are the mean velocity components in the 𝑦 and 𝑧 di-

rections, respectively. The DNS result from [50] gives a reference value
of 3.26 × 10−5. The relative errors on the finest grid are approximately
22% for the WMLES simulation with the SM model and 25% for the DSM
model. Notably, the convergence behavior of both the skin friction coef-

ficient and the cross-flow kinetic energy is non-monotonic for both SGS
models.

Fig. 14 presents contours obtained with the SM model for the
mean velocity components (𝑈+, 𝑉 +), turbulent normal stresses (⟨𝑢𝑢⟩+,

Computer Physics Communications 310 (2025) 109546

12

M. Xiao, A. Ceci, P. Costa et al.

Fig. 12. Turbulent channel flow: prediction error as a function of Δ𝑧∕ℎ or Δ𝑧+ for various statistical properties, as obtained from WMLES with SM (a,c) and DSM
(b,d) models for grids with 𝐴𝑅= 1.0 (a,b) and 𝐴𝑅= 2.0 (c,d).

Fig. 13. Computational setup for the square duct flow (a) and visualization of turbulent flow obtained with WMLES using the SM model on a mesh with Δ𝑧∕ℎ = 0.006
(b). The planes display contours of the streamwise velocity, with the wall-parallel plane located at 𝑦∕ℎ= 0.1.

Computer Physics Communications 310 (2025) 109546

13

M. Xiao, A. Ceci, P. Costa et al.

Fig. 14. Turbulent square duct flow: cross-stream contours of mean velocity 𝑈+ (row 1) and 𝑉 + (row 2), turbulent normal stresses ⟨𝑢𝑢⟩+ (row 3) and ⟨𝑣𝑣⟩+ (row 4),
and shear stress ⟨𝑢𝑣⟩+ (row 5), computed on different grids using WMLES with the SM model. Normalization is based on the DNS wall units. Only a quarter of the full
domain is presented. The horizontal axis is 𝑧 and the vertical axis is 𝑦. Δ𝑧∕ℎ = 0.025 (column 1), Δ𝑧∕ℎ = 0.017 (column 2), Δ𝑧∕ℎ = 0.013 (column 3), Δ𝑧∕ℎ = 0.006
(column 4) and DNS [50] (column 5).

⟨𝑣𝑣⟩+), and turbulent shear stress (⟨𝑢𝑣⟩+). Only one quarter of the full
domain is presented. The contours of 𝑊 +, ⟨𝑤𝑤⟩+, and ⟨𝑢𝑤⟩+ are not
displayed, as they are symmetric with respect to the diagonal, to those
of 𝑉 +, ⟨𝑣𝑣⟩+, and ⟨𝑢𝑣⟩+, respectively. The distributions obtained for
various grids show little variations in the core region and agree rea-

sonably well with the reference DNS data. The primary benefit of grid
refinement is an increase in the overall accuracy in the near-wall region.

We further extract the profiles of these quantities along the wall and
corner bisectors (see Fig. 13(a)). Fig. 15 displays the profiles of mean
streamwise velocity along both the wall bisector and the corner bisector.
Consistent with the contours in Fig. 14, the mean streamwise velocity
profiles show minor variations with grid refinement, indicating satis-

factory grid convergence properties. In contrast, the most significant
variations are observed in the turbulent normal stress ⟨𝑢𝑢⟩ (Fig. 16).
Unlike the results for channel flow, the predicted peak in ⟨𝑢𝑢⟩ along the

wall bisector increases with grid refinement, leading to improved ac-

curacy. Small oscillations are observed near the turbulent stress peak
for the coarser grids, which we attribute to the absence of grid clus-

tering near the wall; these oscillations gradually disappear with grid
refinement. Notably, the variations in shear stress exhibit a clearly non-

monotonic pattern as the grid is refined.

5. Conclusion

We have introduced CaLES, a GPU-accelerated solver designed for
large-eddy simulation of incompressible wall-bounded flows. Based on
the GPU-accelerated DNS solver CaNS, CaLES demonstrates significant
computational efficiency improvements through GPU parallelization us-

ing a combination of CUDA Fortran and OpenACC directives, and good
scalability on massively parallel architectures. The incorporation of SGS

Computer Physics Communications 310 (2025) 109546

14

M. Xiao, A. Ceci, P. Costa et al.

Fig. 15. Turbulent square duct flow: profiles of mean streamwise velocity along the wall bisector (a,b) and corner bisector (c,d) obtained from WMLES with the SM
(a,c) and DSM (b,d) models. The dashed line denotes 𝑦∕ℎ= 0.1. Normalization is based on the wall units of each simulation. The DNS data is from [50].

models, including static and dynamic Smagorinsky models, along with a
wall model, extends the solver’s applicability to wall-resolved and wall-

modeled LES.

Performance evaluation conducted on state-of-the-art high-perfor-

mance computing clusters, shows that CaLES achieves substantial speed-

ups using GPU acceleration compared to its CPU-only counterparts. The
solver efficiently scales across multiple GPUs, achieving approximately
15× speed-up on a single GPU compared to a full CPU node, making
it highly effective for high-fidelity simulations on large computational
grids. Validation cases—such as decaying isotropic turbulence, turbu-

lent channel flow, and turbulent duct flow—confirm the solver’s accu-

racy for LES, with the dynamic Smagorinsky model exhibiting somewhat
superior performance in grid convergence and turbulence prediction.

CaLES has also been applied for wall-modeled LES of turbulent chan-

nel and duct flows. Its high computational efficiency enables WMLES
for channels with Re𝜏 = 5200 on progressively refined grids, meeting
the grid requirements for wall-resolved LES. A key observation is the
non-monotonic grid convergence in WMLES for channel and duct flows,
particularly in wall friction, streamwise velocity fluctuations, and tur-

bulent shear stresses. These results underscore the complexities inherent
in WMLES and emphasize the need for continued research into SGS and
wall models.

In summary, CaLES offers the computational efficiency and flexibil-

ity needed to investigate turbulent flows with moderate complexity at
high Reynolds numbers. Its open-source availability makes it a valu-

able tool for fast simulations, which is particularly important in the

application of machine learning to develop robust SGS and wall models,
including data-driven approaches and reinforcement learning.

Finally, we should emphasize that the purpose of this work is not to
carry out a physical investigation of the performance of SGS models and
wall models. Instead, our aim is to incorporate well-established models
into a baseline solver that can easily incorporate other models, such
as the Vreman subgrid-scale model [48] and the ordinary differential
equation-based wall model [36].

CRediT authorship contribution statement

Maochao Xiao: Writing – review & editing, Writing – original draft,
Visualization, Validation, Supervision, Software, Resources, Project ad-

ministration, Methodology, Investigation, Funding acquisition, Formal
analysis, Data curation, Conceptualization. Alessandro Ceci: Writing
– review & editing, Software. Pedro Costa: Writing – review & edit-

ing, Software. Johan Larsson: Writing – review & editing, Software,
Methodology, Conceptualization. Sergio Pirozzoli: Writing – review &
editing, Writing – original draft, Visualization, Validation, Supervision,
Software, Resources, Project administration, Methodology, Investiga-

tion, Funding acquisition, Formal analysis, Data curation, Conceptual-

ization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Computer Physics Communications 310 (2025) 109546

15

M. Xiao, A. Ceci, P. Costa et al.

Fig. 16. Turbulent square duct flow: profiles of resolved turbulent normal stress (a,b) and shear stress (c,d) along the wall bisector as obtained from WMLES with
the SM (a,c) and DSM (b,d) models. The dashed line denotes 𝑦∕ℎ= 0.1. Normalization is based on the DNS wall units. The DNS data is from [50]. Line codes: ⟨𝑢𝑢⟩
(solid), ⟨𝑣𝑣⟩ (dashed), ⟨𝑤𝑤⟩ (dash-dotted).

Acknowledgements

The simulations were performed using the EuroHPC Research Infras-

tructure resource LEONARDO, based at CINECA, Casalecchio di Reno,
Italy, under a LEAP grant. Maochao Xiao would like to acknowledge
the financial support provided by the China Scholarship Council, grant
no. 202008610198. Special thanks are given to Di Zhou for carefully re-

viewing the manuscript. Additional thanks are extended to Jane H. Bae,
Yufei Zhang and Xiao He for their helpful discussions.

Data availability

Data will be made available on request.

References

[1] D.C. Wilcox, Turbulence Modeling for CFD, DCW Industries, 2006.

[2] K.A. Goc, O. Lehmkuhl, G.I. Park, S.T. Bose, P. Moin, Large eddy simulation of air-

craft at affordable cost: a milestone in computational fluid dynamics, Flow 1 (2021)
E14.

[3] M. Xiao, Y. Zhang, F. Zhou, Numerical investigation of the unsteady flow past an
iced multi-element airfoil, AIAA J. 58 (2020) 3848–3862.

[4] C.P. Arroyo, J. Dombard, F. Duchaine, L. Gicquel, B. Martin, N. Odier, G. Staffelbach,
Towards the large-eddy simulation of a full engine: integration of a 360 azimuthal
degrees fan, compressor and combustion chamber. Part I: methodology and initiali-

sation, J. Global Power Propul. Soc. (2021) 133115.

[5] T. Mauery, J. Alonso, A. Cary, V. Lee, R. Malecki, D. Mavriplis, G. Medic, J. Schaefer,
J. Slotnick, A guide for aircraft certification by analysis, Technical Report, 2021.

[6] J. Larsson, S. Kawai, J. Bodart, I. Bermejo-Moreno, Large eddy simulation with mod-

eled wall-stress: recent progress and future directions, Mech. Eng. Rev. 3 (2016)
15–00418.

[7] D. Dupuy, N. Odier, C. Lapeyre, Data-driven wall modeling for turbulent separated
flows, J. Comput. Phys. 487 (2023) 112173.

[8] R. Agrawal, M.P. Whitmore, K.P. Griffin, S.T. Bose, P. Moin, Non-Boussinesq subgrid-

scale model with dynamic tensorial coefficients, Phys. Rev. Fluids 7 (2022) 074602.

[9] M. Gamahara, Y. Hattori, Searching for turbulence models by artificial neural net-

work, Phys. Rev. Fluids 2 (2017) 054604.

[10] M. Kang, Y. Jeon, D. You, Neural-network-based mixed subgrid-scale model for tur-

bulent flow, J. Fluid Mech. 962 (2023) A38.

[11] H.J. Bae, A. Lozano-Duran, Numerical and modeling error assessment of large-eddy
simulation using direct-numerical-simulation-aided large-eddy simulation, arXiv
preprint, arXiv:2208.02354, 2022.

[12] A. Lozano-Durán, H.J. Bae, Machine learning building-block-flow wall model for
large-eddy simulation, J. Fluid Mech. 963 (2023) A35.

[13] G. Novati, H.L. de Laroussilhe, P. Koumoutsakos, Automating turbulence modelling
by multi-agent reinforcement learning, Nat. Mach. Intell. 3 (2021) 87–96.

[14] H.J. Bae, P. Koumoutsakos, Scientific multi-agent reinforcement learning for wall-

models of turbulent flows, Nat. Commun. 13 (2022) 1443.

[15] K. Duraisamy, Perspectives on machine learning-augmented Reynolds-averaged and
large eddy simulation models of turbulence, Phys. Rev. Fluids 6 (2021) 050504.

[16] D. Zhou, H.J. Bae, Sensitivity analysis of wall-modeled large-eddy simulation for
separated turbulent flow, J. Comput. Phys. 506 (2024) 112948.

[17] X.I. Yang, M. Abkar, G. Park, Grid convergence properties of wall-modeled large
eddy simulations in the asymptotic regime, J. Fluids Eng. 146 (2024).

[18] M. Bernardini, D. Modesti, F. Salvadore, S. Sathyanarayana, G. Della Posta, S. Piroz-

zoli, STREAmS-2.0: supersonic turbulent accelerated Navier-Stokes solver version
2.0, Comput. Phys. Commun. 285 (2023) 108644.

[19] F. De Vanna, G. Baldan, URANOS-2.0: improved performance, enhanced portability,
and model extension towards exascale computing of high-speed engineering flows,
Comput. Phys. Commun. (2024) 109285.

[20] X. Zhu, E. Phillips, V. Spandan, J. Donners, G. Ruetsch, J. Romero, R. Ostilla-Mónico,
Y. Yang, D. Lohse, R. Verzicco, et al., AFiD-GPU: a versatile Navier–Stokes solver for
wall-bounded turbulent flows on GPU clusters, Comput. Phys. Commun. 229 (2018)
199–210.

[21] LESGO: a parallel pseudo-spectral large-eddy simulation code, https://lesgo.me.jhu.

edu, 2024.

Computer Physics Communications 310 (2025) 109546

16

http://refhub.elsevier.com/S0010-4655(25)00049-9/bibA723D9B745D53E6ED87300964D8C4450s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibEB69E28ED1D6CD2C1D5BCCFBAFA68A02s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibEB69E28ED1D6CD2C1D5BCCFBAFA68A02s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibEB69E28ED1D6CD2C1D5BCCFBAFA68A02s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibA078517540039A938496A724A48BCEC8s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibA078517540039A938496A724A48BCEC8s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibC361DCE827BB35C8083DFAD531E3D9A4s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibC361DCE827BB35C8083DFAD531E3D9A4s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibC361DCE827BB35C8083DFAD531E3D9A4s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibC361DCE827BB35C8083DFAD531E3D9A4s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib531D7CEBCAF46DAD48B38D26B977144Cs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib531D7CEBCAF46DAD48B38D26B977144Cs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibEE070D1F2BF846110AD978E74DDE4D10s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibEE070D1F2BF846110AD978E74DDE4D10s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibEE070D1F2BF846110AD978E74DDE4D10s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib1D7D424A586E09CCD78CF914510FEA42s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib1D7D424A586E09CCD78CF914510FEA42s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib4B6DA67547AACF0ECDDFFCC76ABB216Es1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib4B6DA67547AACF0ECDDFFCC76ABB216Es1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib43A9F48C34639D276CE6C2545E537CCAs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib43A9F48C34639D276CE6C2545E537CCAs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib8BCEEECFD5E08E94140750FEACDA4ADBs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib8BCEEECFD5E08E94140750FEACDA4ADBs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibF77D3627352AC019039E0940B02B8E82s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibF77D3627352AC019039E0940B02B8E82s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibF77D3627352AC019039E0940B02B8E82s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib672139D1212B4034909BF29B5B695902s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib672139D1212B4034909BF29B5B695902s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib6D19F2241AA0141DD78A28C16E38901Es1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib6D19F2241AA0141DD78A28C16E38901Es1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibEEDCA00C0B7670C6C6A926F422B252AFs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibEEDCA00C0B7670C6C6A926F422B252AFs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibDCE07CBF8DE7A6F7FEE9E89305E21217s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibDCE07CBF8DE7A6F7FEE9E89305E21217s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib71BCF4FA4EF0A4D6400DE0A3FB2B20FBs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib71BCF4FA4EF0A4D6400DE0A3FB2B20FBs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib113DA41BA41367475D6AB8F270074A84s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib113DA41BA41367475D6AB8F270074A84s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib753F501CE4D40B7B33C3308122F7DDEDs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib753F501CE4D40B7B33C3308122F7DDEDs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib753F501CE4D40B7B33C3308122F7DDEDs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib2CF93B88881D8937DD2D480303F9380Fs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib2CF93B88881D8937DD2D480303F9380Fs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib2CF93B88881D8937DD2D480303F9380Fs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib8FFC50F9A3E0825A96263545251BDC19s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib8FFC50F9A3E0825A96263545251BDC19s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib8FFC50F9A3E0825A96263545251BDC19s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib8FFC50F9A3E0825A96263545251BDC19s1
https://lesgo.me.jhu.edu
https://lesgo.me.jhu.edu

M. Xiao, A. Ceci, P. Costa et al.

[22] P. Costa, E. Phillips, L. Brandt, M. Fatica, GPU acceleration of CaNS for massively-

parallel direct numerical simulations of canonical fluid flows, Comput. Math. Appl.
81 (2021) 502–511.

[23] P. Costa, A FFT-based finite-difference solver for massively-parallel direct numerical
simulations of turbulent flows, Comput. Math. Appl. 76 (2018) 1853–1862.

[24] J. Kim, P. Moin, Application of a fractional-step method to incompressible Navier-

Stokes equations, J. Comput. Phys. 59 (1985) 308–323.

[25] A.A. Wray, Minimal-storage time advancement schemes for spectral methods, Tech-

nical Report MS 202, NASA Ames Research Center, 1990.

[26] F.H. Harlow, J.E. Welch, et al., Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface, Phys. Fluids 8 (1965) 2182.

[27] R. Verstappen, A. Veldman, Symmetry-preserving discretization of turbulent flow,
J. Comput. Phys. 187 (2003) 343–368.

[28] U. Schumann, R.A. Sweet, Fast Fourier transforms for direct solution of Poisson’s
equation with staggered boundary conditions, J. Comput. Phys. 75 (1988) 123–137.

[29] J. Smagorinsky, General circulation experiments with the primitive equations: I. the
basic experiment, Mon. Weather Rev. 91 (1963) 99–164.

[30] E.R. Van Driest, On turbulent flow near a wall, J. Aeronaut. Sci. 23 (1956)
1007–1011.

[31] M. Germano, U. Piomelli, P. Moin, W.H. Cabot, A dynamic subgrid-scale eddy vis-

cosity model, Phys. Fluids A, Fluid Dyn. 3 (1991) 1760–1765.

[32] D. Lilly, A proposed modification of the Germano subgrid-scale closure method,
Phys. Fluids A, Fluid Dyn. 4 (1992) 633–635.

[33] D.K. Lilly, The representation of small-scale turbulence in numerical simulation
experiments, in: Proc. IBM Sci. Comput. Symp. on Environmental Science, 1967,
pp. 195–210.

[34] J.W. Deardorff, A numerical study of three-dimensional turbulent channel flow at
large Reynolds numbers, J. Fluid Mech. 41 (1970) 453–480.

[35] N. Nikitin, F. Nicoud, B. Wasistho, K. Squires, P.R. Spalart, An approach to wall
modeling in large-eddy simulations, Phys. Fluids 12 (2000) 1629–1632.

[36] S. Kawai, J. Larsson, Wall-modeling in large eddy simulation: length scales, grid
resolution, and accuracy, Phys. Fluids 24 (2012) 015105.

[37] I. Bermejo-Moreno, L. Campo, J. Larsson, J. Bodart, D. Helmer, J.K. Eaton, Con-

finement effects in shock wave/turbulent boundary layer interactions through wall-

modelled large-eddy simulations, J. Fluid Mech. 758 (2014) 5–62.

[38] A.A. Amsden, The SMAC method: a numerical technique for calculating incompress-

ible fluid flows, Los Alamos Sci. Lab. Rep., 1970.

[39] OpenACC programming and best practices guide, https://www.openacc.org/sites/

default/files/inline-files/OpenACC_Programming_Guide_0.pdf, 2021. (Accessed 14
October 2024).

[40] J. Romero, P. Costa, M. Fatica, Distributed-memory simulations of turbulent flows on
modern GPU systems using an adaptive pencil decomposition library, in: Proceedings
of the Platform for Advanced Scientific Computing Conference, 2022.

[41] G. Comte-Bellot, S. Corrsin, Simple Eulerian time correlation of full- and narrow-

band velocity signals in grid-generated, ‘isotropic’ turbulence, J. Fluid Mech. 48
(1971) 273–337.

[42] T. Saad, D. Cline, R. Stoll, J.C. Sutherland, Scalable tools for generating synthetic
isotropic turbulence with arbitrary spectra, AIAA J. 55 (2017) 327–331.

[43] R. Cocle, L. Bricteux, G. Winckelmans, Scale dependence and asymptotic very high
Reynolds number spectral behavior of multiscale subgrid models, Phys. Fluids 21
(2009).

[44] C. Meneveau, T.S. Lund, The dynamic Smagorinsky model and scale-dependent co-

efficients in the viscous range of turbulence, Phys. Fluids 9 (1997) 3932–3934.

[45] F. Nicoud, H.B. Toda, O. Cabrit, S. Bose, J. Lee, Using singular values to build a
subgrid-scale model for large eddy simulations, Phys. Fluids 23 (2011) 085106.

[46] M. Lee, R.D. Moser, Direct numerical simulation of turbulent channel flow up to
𝑅𝑒𝜏 ≈ 5200, J. Fluid Mech. 774 (2015) 395–415.

[47] S. Russo, P. Luchini, A fast algorithm for the estimation of statistical error in DNS
(or experimental) time averages, J. Comput. Phys. 347 (2017) 328–340.

[48] A. Vreman, An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic
theory and applications, Phys. Fluids 16 (2004) 3670–3681.

[49] J. Meyers, P. Sagaut, Is plane-channel flow a friendly case for the testing of large-

eddy simulation subgrid-scale models?, Phys. Fluids 19 (2007) 048105.

[50] S. Pirozzoli, D. Modesti, P. Orlandi, F. Grasso, Turbulence and secondary motions in
square duct flow, J. Fluid Mech. 840 (2018) 631–655.

[51] R. Vinuesa, P. Schlatter, H. Nagib, Secondary flow in turbulent ducts with increasing
aspect ratio, Phys. Rev. Fluids 3 (2018) 054606.

Computer Physics Communications 310 (2025) 109546

17

http://refhub.elsevier.com/S0010-4655(25)00049-9/bib9B112B88D6D9259D0B24CFE805FE16CBs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib9B112B88D6D9259D0B24CFE805FE16CBs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib9B112B88D6D9259D0B24CFE805FE16CBs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib06C7868D1E2DC0F7B375C59CB79154F0s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib06C7868D1E2DC0F7B375C59CB79154F0s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib4BF3B7AC0F35D74AEE693C90FA771172s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib4BF3B7AC0F35D74AEE693C90FA771172s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib9EC03CA6060CF47202C99295FF5019A5s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib9EC03CA6060CF47202C99295FF5019A5s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibA67838C35E2E97E3A8BB081157A981A3s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibA67838C35E2E97E3A8BB081157A981A3s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib6FD2B790CA5C5BC01E44A996FE6F6F3As1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib6FD2B790CA5C5BC01E44A996FE6F6F3As1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib15F2DCD15E590C9745C35C82C09A0E3Cs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib15F2DCD15E590C9745C35C82C09A0E3Cs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibFD84024AB6EB6A47FF992505374DC6DCs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibFD84024AB6EB6A47FF992505374DC6DCs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibB3DBA869472D1DAAFE45B06F9B0DC843s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibB3DBA869472D1DAAFE45B06F9B0DC843s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib0A312656E3488A94A12D333F7254D6DEs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib0A312656E3488A94A12D333F7254D6DEs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibEF521B8F226D9804C9398FE584E19186s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibEF521B8F226D9804C9398FE584E19186s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibA56EF283678DB93DA1107AC3EA75D4F4s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibA56EF283678DB93DA1107AC3EA75D4F4s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibA56EF283678DB93DA1107AC3EA75D4F4s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib4F8018D70F5A0F33F38214A1AEAFD1C5s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib4F8018D70F5A0F33F38214A1AEAFD1C5s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib392DB836F2437B05D888DB51511DB409s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib392DB836F2437B05D888DB51511DB409s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib4A298C48DAB72202A71BF95334C34A56s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib4A298C48DAB72202A71BF95334C34A56s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib0D1C90F83D6469BDCEB83FE561EA7AFDs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib0D1C90F83D6469BDCEB83FE561EA7AFDs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib0D1C90F83D6469BDCEB83FE561EA7AFDs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib7767457C0A2FFCC8F697AC3FA13B23CBs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib7767457C0A2FFCC8F697AC3FA13B23CBs1
https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0.pdf
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibFBE066B93368819F3A10A9D0A651D10Cs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibFBE066B93368819F3A10A9D0A651D10Cs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibFBE066B93368819F3A10A9D0A651D10Cs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibFB37F31A10387EE46659B3AF2EE941B1s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibFB37F31A10387EE46659B3AF2EE941B1s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibFB37F31A10387EE46659B3AF2EE941B1s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibA22C81A3F558BDCB5B3865D5CCB13948s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibA22C81A3F558BDCB5B3865D5CCB13948s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib054439A158853D9E41E158F8D7E4AB48s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib054439A158853D9E41E158F8D7E4AB48s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib054439A158853D9E41E158F8D7E4AB48s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib54053A8AFD50C7EB14FDE556D882F6C0s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib54053A8AFD50C7EB14FDE556D882F6C0s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib4BC0E4F683F39C17A389D3F05D71ECF5s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib4BC0E4F683F39C17A389D3F05D71ECF5s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib77CEAA2D48D915E330320F01E75025BDs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib77CEAA2D48D915E330320F01E75025BDs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibA6BFBCE9C35FC697F076F7CED81E00F7s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibA6BFBCE9C35FC697F076F7CED81E00F7s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib204C73E6B2543F847428C4736036F800s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib204C73E6B2543F847428C4736036F800s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib8694EC599791B29C861A0D13EF8BEBD9s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib8694EC599791B29C861A0D13EF8BEBD9s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibF326DF498DC4C872185BB3A876064CF4s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bibF326DF498DC4C872185BB3A876064CF4s1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib6B84B73B472561C1180C2B5C459A5ADAs1
http://refhub.elsevier.com/S0010-4655(25)00049-9/bib6B84B73B472561C1180C2B5C459A5ADAs1

	CaLES: A GPU-accelerated solver for large-eddy simulation of wall-bounded flows
	1 Introduction
	2 Methodology
	2.1 Governing equations and subgrid-scale models
	2.2 Numerical methods

	3 Implementation and performance
	3.1 Overall implementation strategy
	3.2 Performance analysis

	4 Validation
	4.1 Decaying isotropic turbulence
	4.2 Wall-resolved turbulent plane channel flow
	4.3 Wall-modeled turbulent plane channel flow
	4.4 Wall-modeled turbulent square duct flow

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References

