
EDATA: Energy
Debugging And
Testing for An-
droid
Erik Blokland

EDATA: Energy
Debugging And

Testing for
Android

by

Erik Blokland
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Tuesday June 20, 2023 at 2:00 PM.

Student number: 4475798
Project duration: November 14, 2022 – June 20, 2023
Thesis committee: Prof. dr. ir. A. van Deursen, TU Delft, supervisor

Dr. L. Cruz, TU Delft, daily supervisor
Dr. R. Hai, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
This thesis was written in during my internship at Adyen as the final project of the Master’s program
in Computer Science at the TU Delft. In my Bachelor’s thesis, I compared the energy consumption of
three Android UI frameworks, and I chose to continue working on the subject of energy consumption
on Android as it is relevant both to Adyen and the greater Android community. In this thesis, I review
the state-of-the-art of energy consumption tools for Android, compare three approaches to attributing
energy consumption to code at a fine-grained level, and implement one of these in a tool that can be
used to analyze release-mode Android apps. I then empirically evaluate this tool, and apply it at Adyen
in a case study in which I cooperate with a developer to solve an energy bug. As part of the empirical
evaluation, I also perform a preliminary comparison of release and debug mode with respect to energy
consumption, using three code smells identified in prior work as having an effect on the energy use of
methods containing them.

The results of the empirical investigation show that statistical sampling can be applied to Android
devices to attribute energy consumption to methods within a reasonable margin of error. It further
shows that this approach can be used to identify differences in energy consumption between different
versions of software. The comparison between release and debug mode showed that the overhead
caused by the use of debug mode is not consistent, and varies between both different code smells and
different devices. This has significant implications for further work measuring energy consumption on
Android, as it implies that results obtained using debug mode cannot be generalized to release mode,
which all apps will use in production environments. Finally, the case study showed that this approach
is able to significantly assist the energy debugging process, and revealed that even today, developers
often lack the information necessary to make informed decisions over the energy consumption of their
software. However, once this information is made available, both developers and stakeholders are
willing to adapt their decision-making to incorporate energy efficiency.

Dr. Luís Cruz has been my daily supervisor at the TU Delft for my thesis, and has helped greatly
with writing and revising of this thesis. He is joined on the thesis committee by Prof. Dr. Arie van
Deursen, my thesis advisor, Dr. Rihan Hai, who is the third and final member of the core committee,
and Dr. Michael Weinmann, the fourth member of my thesis committee.

I would also like to thank everyone from Adyen who helped me during this thesis: Chang-lun Wang,
who volunteered to act as a company supervisor for my thesis, and has helped greatly with ideas
and feedback throughout the whole process. Çağri Uslu, my team lead at Adyen, who mentored me
throughout my internship and made sure I had everything I needed to make this project a reality. Andrei
Petrescu, who I worked with to perform the case study, which formed a substantial part of this thesis.
Lastly, the IPP Mobile team at Adyen, who I worked alongside during my internship, and who were
always willing to help when needed.

Erik Blokland
Delft, June 2023

iii

Contents

Preface iii

List of Figures vi

List of Tables vii

Acronym Definitions xi

1 Introduction 1

2 Prior Work 5
2.1 Background . 5

2.1.1 Measuring Energy Use . 5
2.1.2 Estimating Energy Use . 9
2.1.3 Identifying Energy Bugs . 10
2.1.4 Data Collection / Mining . 10
2.1.5 Code Smells . 11
2.1.6 Energy Efficiency in Software Engineering . 12

2.2 Related Work . 13
2.3 Comparison of Energy Consumption Attribution Approaches 15

2.3.1 Instrumentation Based Tracing . 15
2.3.2 Static Analysis Estimation . 15
2.3.3 Statistical Sampling . 16

3 Tool Design 17
3.1 Our Approach. 17
3.2 Statistical Sampling for Energy Estimation . 17

3.2.1 Simpleperf . 17
3.3 Energy/environment measurements. 19

3.3.1 Measurement approach . 19
3.3.2 Collection App . 19
3.3.3 Perfetto . 21

3.4 Test App. 21
3.5 Data Analysis . 21

3.5.1 Intermediate Trace Representation . 21
3.5.2 Energy Attribution Approach . 22
3.5.3 Our Implementation . 24

3.6 Test Orchestrator . 26
3.6.1 Test Process . 26
3.6.2 Test Loop . 27

3.7 Empirical Evaluation Methodology. 28
3.7.1 Testbench Setup . 28
3.7.2 Pre-Loop . 28
3.7.3 Primary Test Loop . 28
3.7.4 Post-Loop . 29

3.8 Case Study Methodology . 29
3.8.1 Prior Work. 29
3.8.2 Our Approach. 29

4 Evaluation 31
4.1 Test Devices . 31

4.1.1 Device Specific Information and Specifications . 31

v

vi Contents

4.2 RQ1: Energy Testing . 32
4.2.1 Code smells. 32
4.2.2 Hardware-based workloads . 32

4.3 RQ2: Energy Debugging . 33
4.3.1 Execution Time as Proxy for Energy Consumption 34

4.4 RQ3: Adyen POS Case Study . 34

5 Results 35
5.1 RQ1: Can we use information collected from on-device sensors on Android devices to

identify energy bugs through energy regression testing? 35
5.1.1 Code Smell Tests . 35
5.1.2 Hardware-Based Tests . 36
5.1.3 Conclusion . 39

5.2 RQ2: Can we rank methods within Android apps by their energy consumption using a
callstack-sampling approach? . 39
5.2.1 Selection of test parameters . 39
5.2.2 Results . 41
5.2.3 Conclusion . 42

5.3 RQ3: Does providing developers with an ordered list of methods ranked by energy con-
sumption aid in identifying and fixing energy bugs? . 42
5.3.1 Case Study Progression . 42
5.3.2 Bug Resolution . 43
5.3.3 Developer Interview . 43
5.3.4 Conclusion . 44

6 Discussion 47
6.1 Challenges . 47

6.1.1 Android Platform . 47
6.1.2 Sample Timing . 48
6.1.3 Core Scheduling . 48
6.1.4 Baseline for Energy Consumption Estimates . 49

6.2 Empirical Evaluation . 49
6.2.1 Build Mode . 49
6.2.2 Bimodal Distribution of IS Code Smell. 49

6.3 Case Study . 50
6.3.1 Sample Rate . 50
6.3.2 Presentation and Contextualization of Results . 51
6.3.3 Energy Efficiency in the Development Process . 51
6.3.4 Beyond EDATA: The Future of Energy-Aware Development at Adyen 51

6.4 Implications . 52
6.4.1 Measuring Energy Consumption. 52
6.4.2 Test Environment Setup . 52
6.4.3 Developer Awareness . 52

6.5 Limitations . 53
6.6 Future Work. 53

6.6.1 User Experience . 53
6.6.2 Estimation Quality . 53
6.6.3 Clustering . 54
6.6.4 Platform Knowledge . 54

6.7 Threats to Validity . 55
6.7.1 Internal Validity . 55
6.7.2 External Validity. 55

7 Conclusion 57

List of Figures

3.1 Collection App UI . 20
3.2 Worker App UI . 20
3.3 Abstraction Process . 22
3.4 Energy Attribution . 23
3.5 Method Extraction Phase . 25
3.6 Post-Processing Phase . 25
3.7 Test Orchestrator Process . 27
3.8 Test Orchestrator Loop . 27

4.1 Main loop of randomly selected workloads . 33

5.1 Code Smell Results - Google Pixel 6a . 37
5.2 Code Smell Results - Adyen AMS1 . 38
5.3 Accelerometer Test Energy Consumption . 39
5.4 Bluetooth - Pixel 6a . 40
5.5 Bluetooth - AMS1 . 40

6.1 Overhead Incurred by Debug Mode . 50

vii

List of Tables

3.1 Sample data showing the probability of observing a function and the corresponding prob-
ability intervals . 26

3.2 Data provided in output of analysis step . 26

ix

Acronym Definitions
AUT application under test

JIT just in time

JVM java virtual machine

AOT ahead of time

NDK Native Development Kit

ADB Android Debug Bridge

IS internal setter

FOR slow for loop

MIM member ignoring method

ART Android Runtime

POS point of sale

MMRE mean magnitude of relative error

HPC high performance computing

xi

1
Introduction

Traditionally, when investigating the efficiency of software, developers consider execution time as the
most important factor. The performance of a given software is judged based on how quickly it performs
its tasks, and optimizations are made in order to reduce run-time. There are many tools available for
software developers to closely inspect the performance of their code, from high-level suggestions re-
garding operation ordering and data structure selection, to tools that give insight into how compiled
instructions are run on the underlying hardware, enabling developers to tune their code for faster exe-
cution on a given platform.

However, another factor has become increasingly significant: energy efficiency. Energy efficiency
has risen in importance for a number of reasons, one of the most prominent of which being the smart-
phone. In contrast to traditional desktop computing devices, and even laptops, users have high ex-
pectations of their smartphone’s battery, and insufficient battery life will negatively affect their satisfac-
tion [33]. In order to provide a good experience for their users, developers have increasingly concerned
themselves with the energy efficiency of their apps.

While developers have good intentions regarding improving their energy consumption, information
on how to do this has historically lagged behind. In 2014, a study of StackOverflow questions found
that, while there was significant developer interest in energy efficiency, there were few tools available
to assist in profiling apps’ energy use, and questions regarding energy consumption tooling often went
unanswered [41]. In addition, questions over best practices related to battery life were often answered
with ‘folklore’ that was not always correct. Many developers failed to understand the difference between
energy and power, incorrectly assuming that reducing the instantaneous power draw would always
reduce the energy consumed. Similarly, Grosskop and Visser found in 2013 that stakeholders of the
software being developed often are not aware of the effect that software has on the energy consumption
of a system [20], and were thus failing to take software energy efficiency into account when making
design decisions.

As the mobile device ecosystem has grown and matured, there have been many improvements
to developer tooling, documentation, and APIs to assist in writing energy efficient code, as well as
academic research into the different ways that software can affect device energy consumption, and
how to measure and predict these effects. Software can affect the energy consumption of a mobile
device in a variety of ways, not all of which may be immediately obvious to an inexperienced developer.
Code smells applicable outside of the field of energy efficiency have been shown to have an effect on
energy consumption [38], which highlights the importance of adhering to best development practices.
There are also a number of patterns specific to mobile devices that influence the energy consumption
of apps [13], such as the use of WiFi vs cellular networks, or different UI colors on devices with an
OLED display.

A number of different approaches to measuring the energy consumption of software have been
defined, for both mobile and non-mobile settings. These approaches vary in both how they collect their
data, and the goal of the approach. Many approaches use on-device sensors that report data through
a common API, such as Intel’s RAPL1 or Android’s BatteryStats2. Others use external hardware, which
1https://01.org/blogs/2014/running-average-power-limit-%E2%80%93-rapl
2https://developer.android.com/topic/performance/power/setup-battery-historian

1

https://01.org/blogs/2014/running-average-power-limit-%E2%80%93-rapl
https://developer.android.com/topic/performance/power/setup-battery-historian

2 1. Introduction

often reports more precisely and at a higher rate than built-in sensors, at the cost of added expense and
complexity, particularly when used with mobile devices. Some approaches rely on static code analysis
rather than run-time measurements. These approaches use models, often utilizing machine learning,
to estimate the energy consumption of arbitrary code after being trained on a set of apps. This has
the benefit that, once trained, they can be run using only source code as input, without the need to
run a predefined test on a real device. This greatly increases the speed that a developer can receive
feedback on their changes, with the drawback that results are likely to be less accurate, won’t show
differences between devices (unless trained per-device), and may not be consistent between different
apps.

There have also been many improvements and design changes to the Android API over time to help
developers optimize the energy consumption of their code, such as theGoogle Services Location API3,
which allows developers to easily implement energy efficient location tracking and reduce reliance on
energy-expensive GPS hardware. Google has also developed the Android Studio profiler4, which is
one of themost commonmethods for tracking power use on Android. This profiler can be run during app
execution, and shows the developer a time series of approximated energy consumption split between
the CPU and different hardware components. This allows developers to perform actions in their app and
observe the relative power consumption of their test device. The tool also displays some other relevant
information: wakelocks held by the app, accesses to the system’s location API, and any Alarms/Jobs
created by the app. While it provides substantial information to developers working on the energy
efficiency of their app, it lacks granularity in measuring power use – developers must choose which
features to run, but don’t see exactly where energy is consumed, only a ternary value of low, medium,
or high consumption at a given time. This is a significant barrier to developers looking to make energy
efficiency a first-class requirement of their app, as a lack of information on “what, why and how to fix”
provided by analysis tools is known to be a significant barrier in their adoption [25]. Another barrier is
a tool’s ease of use; The Android Studio profiler is designed for active developer use, and needs to be
actively controlled by the user, making it less than ideal from this perspective.

With these barriers in mind, our goal was to measure energy consumption of Android apps at a fine
granularity, without high overhead or complicated set-up processes. The end result of this thesis is
EDATA, Energy Testing And Debugging for Android. EDATA uses statistical sampling, a low-overhead
method of obtaining program execution information, in combination with on-device sensors to provide
detailed, method-level energy consumption estimates. These estimates help guide energy debugging
by showing developers which of their methods consumes themost energy, and by howmuch. They also
help developers contextualize the energy impact of a given method or feature by providing an estimated
cost in Joules over the duration of a test – letting them decide whether the energy saved is worth the
trade-off in functionality or effort. This information is not only important to developers, but can help
stakeholders understand the energy impact of their choices, the importance of which is also mentioned
by Jagroep et al. and Grosskop and Visser [24, 20]. EDATA can be integrated into a continuous
integration pipeline where tests are run on real hardware, and the results used to perform automated
regression testing. By comparing the results of a consistent test suite between different releases of an
app, the total energy of a given test can be evaluated, or split up at the method-level and evaluated
method-by-method. Developers are then proactively alerted to changes in energy consumption, and
determine if differences are significant enough to warrant further investigation.

In this thesis, we present EDATA, a low-overhead release-mode energy profiler for Android that es-
timates the energy consumption of apps at the method level. We also present our evaluation of EDATA,
consisting of an empirical evaluation and a case study of the Adyen point of sale (POS) software. Our
evaluation focuses on the following three research questions:

RQ1: Can we use information collected from on-device sensors on Android devices to identify
energy bugs through energy regression testing?

RQ2: Can we rank methods within Android apps by their energy consumption using a callstack-
sampling approach?

RQ3: Does providing developers with an ordered list of methods ranked by energy consumption
aid in identifying and fixing energy bugs?

3https://developer.android.com/guide/topics/location/battery
4https://developer.android.com/studio/profile/energy-profiler

https://developer.android.com/guide/topics/location/battery
https://developer.android.com/studio/profile/energy-profiler

3

In our empirical evaluation, we test both energy debugging and energy testing scenarios. To eval-
uate energy testing, RQ1, we used three code smells found by Palomba et al. [38] to increase energy
consumption on Android, and two workloads that activate hardware components of the device. We
found that EDATA was able to reliably distinguish between the energy consumption of versions of a
workload, which shows that our approach is capable of performing energy regression testing. Thus,
we answer yes to RQ1.

We evaluated the energy debugging scenario, RQ2, by creating our own baseline using execution
time as a proxy for energy consumption, through randomly selecting a class out of a set of six classes
to run at fixed timesteps. We found that our approach using callstack sampling, based on that of
Mukhanov et al. [34], was able to accurately order the six methods used, with the mean magnitude of
relative error (MMRE) remaining below the 25% considered an upper limit [7]. We therefore answer
yes to RQ2.

During our empirical evaluation, we found that testing apps in debug mode, as in many prior studies,
can lead to inconsistent energy consumption overhead, reducing the applicability of results to real-world
usage scenarios, and showing that certain code patterns may differ drastically between the two build
modes. We consider these findings to have significant implications for the future of Android energy
efficiency research – researchers should take care to note which build mode has been used in their
evaluation, and try to use release mode if possible. Developers profiling their apps should also take
care to test on representative hardware, as some devices, particularly older or lower-spec devices,
may show different characteristics than others.

Finally, we performed a case study on Adyen’s POS software to answer RQ3 and investigate
whether the results of our empirical evaluation transferred to real-world software. In this case study, we
found the root cause of an energy bug present in the POS software on Adyen’s AMS15, using EDATA
in combination with the Android Studio profiler. We worked with a developer assigned to this issue,
and used the method-list output of EDATA to identify ‘hotspots’ in the code. We further used this output
to determine that, given the total energy consumption attributed to the POS software, the root cause
must not be related to code execution, and ultimately identified a wakelock as the source of the bug.
We finally used EDATA to quantify the energy savings from removing this wakelock. We found that,
given our observations and the feedback from the developer we worked with, we are able to answer
yes to RQ3.

During the case study, we were able to see how developers approach energy debugging, and what
capabilities are missing from existing tools. We also observed how the data provided by EDATA influ-
enced the decision-making process, and how both developers and stakeholders were willing to take
energy consumption into account when making architectural decisions. While significant research has
been done in measuring and reporting energy consumption of software on mobile devices, developers
in the real world often do not have sufficient information with which to make informed decisions on how
their code affects the energy consumption of the devices it runs on. Future work should continue to
build on EDATA, and provide developers and stakeholders with detailed, meaningful information that
can be used in the decision-making process to make energy consumption a first-class metric.

5https://www.adyen.com/pos-payments/terminals/ams1

https://www.adyen.com/pos-payments/terminals/ams1

2
Prior Work

There is a significant body of research into the energy consumption of software, on both mobile and
desktop/server platforms. While many concepts and findings can be shared between platforms, it
is important to keep the fundamental differences between them in mind. For example, desktop and
particularly server platforms typically use wired network devices, which are known to consume very
little energy [35], whereas mobile devices expend significant energy to perform network requests and
cannot approach networking optimizations in the same way. There are also fundamental differences in
workload: Apps designed for mobile devices typically perform work in short bursts, and often follow the
“race-to-idle” pattern [13]. Research into energy consumption on non-mobile platforms often focuses
on high performance computing (HPC), where workloads are typically consistent over a long period of
time, and the CPU speed may be fixed. When interpreting prior work, the research context must be
taken into account to ensure that the conclusions drawn from one scenario transfer to the task at hand.

Energy consumption measurements often go hand-in-hand with energy testing - the identification of
energy bugs. Once the energy consumed by a software application is known, be it at the application,
method, or even line-level, different versions of that software can be tested to see whether energy
bugs, causing an increase in energy consumption, have been introduced. Finer grained measurements
can make identification of energy bugs easier, but this often comes at the expense of complexity and
overhead, as most approaches to method-level or finer use instrumentation to collect information on
which methods are called, which is an expensive operation.

Finally, we consider the application of existing software engineering concepts and techniques to
the problem of energy efficiency. Concepts such as code smells are widely used to guide software
development and improve quality, and some work has been done to study both the relevance of existing
code smells in the context of energy efficiency, and to create new smells specific to the field. Work has
also been done to determine the relationship between overall code quality and energy consumption,
and to create a picture of how developers interact with energy in their development process, in order
to guide researchers in creating tools to most effectively help developers.

2.1. Background
2.1.1. Measuring Energy Use
In this section, we consider works that focus primarily on directly measuring the energy use of software
running on some specified hardware. These works measure at varying levels of precision, from a
general overview of the energy consumed during a test case [23] to line-level measurements [28].
Measurements are taken in a variety of ways, including the use of external hardware-based collection
[23] and leveraging internal power monitoring hardware [17, 34], and often combine these methods
with offline analysis of the collected data.

2.1.1.1. Android Devices
Due to their widespread use and open-source nature, Android devices are often targeted by research
into energy consumption of mobile apps.

5

6 2. Prior Work

Di Nucci, et al. created PETrA, a toolkit for Android that leverages tools built into Android devices
since Android version 5 [17]. This tool provides accurate method-level energy estimations for arbitrary
Android apps without the need for any hardware modifications or a ‘rooted’1 device. The authors gen-
erate energy usage estimations by running automated test suites for a given app, while collecting data
using Android’s built-in app tracing tooling, Batterystats, and Systrace. Combined, these data sources
are able to provide information on the energy state of the device at a given time, along with the current
methods being executed by an app. Using the built-in power profile of the device, estimated current
draw is calculated for each energy state, and the power consumption of each method call is calculated
based on the method entry and exit timestamps generated by the tracing tools. The resulting energy
use calculations are shown to be accurate to previous work using a hardware power meter [29], with
95% of methods having an estimation error within 5% compared to the established baseline.

Li et al. developed a technique to find the energy consumption of Android apps running on the
Dalvik virtual machine at the source-line level [28] Their approach consists of two phases: the “Runtime
Measurement Phase” and the “Offline Analysis Phase”. During the runtime measurement phase, their
App Instrumenter instruments the app under test with probes that record precise timestamped path and
API call information. Power samples are simultaneously collected by a hardware Power Measurement
Platform. In order to collect path information efficiently, an extended version of the method used by Ball
and Larus [4] is used. In the offline analysis phase, the collected data is analyzed in order to associate
energy consumption with individual source lines, as well as identify ‘tail energy’ from API invocations
that activate hardware components, leading to heightened energy consumption lasting longer than
their runtime. Before the main stage of analysis, the data is first preprocessed - API invocations have
their energy consumption manually calculated by summing measurements taken during their runtime,
taking into account the potential presence of additional threads. Tail energy is attributed to one or more
invocations depending on their timing and the information contained in the device’s energy model. After
preprocessing, Robust Linear Regression is used to solve 𝐸 = 𝑚𝑋, where 𝐸 represents the adjusted
power measurements and 𝑋 represents the recorded path information, with each row in 𝑋 representing
a frequency vector of bytecodes in the path. They also include inserted instrumentation bytecode in
their analysis, and remove it before displaying the result to the user. If there are insufficient samples
available to solve the system of equations, the tool will notify the user that more samples must be taken,
or optionally group similar bytecode entries together in order to make the system solvable with the
current set of samples. The authors found that their approach was able to calculate energy information
for each tested app within three minutes. They were able to attribute invocation energy consumption
to within 10% of the ground truth, and the produced models fit the data with 𝑅2 of 0.93. Finally, they
detected high energy events, such as garbage collection and thread switching, with 100% accuracy.

Cornet and Gopalan extended the Orka [47] tool to provide source-line information to help develop-
ers understand where in their code API invocations were consuming energy [11]. They also extended
the hardware usage accounting capabilities of the tool, providing detailed accounting of both active and
tail energy consumed by the WiFi module of a device. They use the built-in power profiles included
with Android devices in order to estimate this energy consumption based on the state of the hard-
ware, which was determined using the statistics found in /proc/net/xt_qtaguid/stats, which
was polled through adb every 45ms. They found that their approach was able to correctly identify
methods that activating the WiFi antenna, but needed more complex accounting to handle tail energy
that was consumed outside of the calling method. Orka also depends solely on the energy consumption
of Android API invocations, as it is asserted that the bulk of energy spent in most Android apps is used
by the Android API [47], meaning that energy consumed by non-API code will be ignored. However,
this is likely not a concern for tracking WiFi energy consumption, as network traffic will likely always be
sent through the Android API.

Farooq et al. developed MELTA [18], a tool for Android that combines the method tracing method-
ology of PETrA [17] with the Constant Power Model and Variation Power Model power models from
ALEA [34] to deliver method-level energy consumption estimates using data collected dmtracedump2,
BatteryHistorian3, and method-tracing instrumentation. They evaluate their approach by defining test
1‘Rooting’ an Android device refers to allowing user access to the ‘root’ superuser account, which is not subject to the same
access and security restrictions as a regular user. Consumer Android devices do not allow access to the superuser account by
default, and rooting the device typically requires either installing a third-party build of Android, patching the provided Android
version to enable root access, or exploiting security vulnerabilities.

2https://developer.android.com/tools/dmtracedump
3https://github.com/google/battery-historian

https://developer.android.com/tools/dmtracedump
https://github.com/google/battery-historian

2.1. Background 7

cases for fifteen open-source Android applications, and run each test case ten times. Some of the
methods considered by their test suite make use of network and location services, in addition to per-
forming work on the CPU. They use the Qualcomm Trepn profiler to generate a ground truth for each
of their test cases. They found that the average mean magnitude of relative error (MMRE) of MELTA’s
results compared to Trepn was lower than 0.15, implying that their results are accurate enough to be
used for energy profiling.

2.1.1.2. Desktop and Server devices
In their 1999 paper, Flinn and Satyanarayanan developed PowerScope, a tool using statistical sampling
to attribute the energy consumption of a laptop running NetBSD to functions within software, and likely
the first tool developed to do so. Their approachworks only with a single-core CPU, as laptop computers
of the time generally did not have multiple CPUs available, making the added complexity of an algorithm
to handle multiple CPUs unnecessary.

Their approach consists of three components: The System Monitor, which ran on the computer
being profiled, and sampled the PC and PID of the process running on the CPU. The Energy Moni-
tor, which ran on a separate data collection computer, and received current/voltage samples from a
hardware multimeder connected to the power supply of the device being profiled. Lastly, the Energy
Analyzer, which performed an offline analysis on the collected data. For their power sampling, they
observed that the voltage provided was consistent enough such that the differences were negligible
in practice, so their implementation assumed a constant voltage for the duration of each profile. To
synchronize their two sets of samples, they connected the multimeter’s external trigger input/output
to pins on the laptop’s parallel port, allowing the multimeter to trigger the System Monitor to collect a
sample, and the System Monitor in turn to notify the multimeter when the sampling process had been
completed. In order to control PowerScope, they modified the NetBSD kernel to collect additional in-
formation on the path of executing processes, when shared libraries are loaded, and to provide a set
of system calls with which to start/stop profiling and read profiled data from a buffer. Once data has
been recorded, they first attribute each sample to a “bucket”, which is either related to the PID of the
currently executing process, the kernel, or a general “interrupt handler” bucket. They then perform a
similar analysis to attribute energy consumption to functions, by first reconstructing function memory
address information using stored symbol tables and the information recorded by the System Monitor,
and then comparing this to the PC recorded in each sample.

Their evaluation focused on a case study in which they optimize the energy consumption of a video
player. They begin by measuring the effects of video compression and display size (in pixels), and find
that while both higher compression and a smaller display size reduce energy consumption, the bulk
of the remaining energy is used by idling hardware. They then finish their evaluation by modifying the
network driver and their video player software to power down networking components and the hard
disk, respectively, and find that this also significantly reduces energy consumption.

Pereira et al. developed SPELL, a tool for Java applications that combines energy consumption
measurements collected from test cases with spectrum-based fault localization to rank methods based
on their energy consumption [40]. In contrast to many prior works, SPELL does not attempt to show
developers the precise amount of energy used by their code, but provides a ranked list of ‘source code
components’, such as methods, based on the likelihood of those components being responsible for
unusual or excessive energy consumption. SPELL uses spectrum-based fault localization, or SFL,
a technique that works by tracking which program components are executed for each test case, and
whether an error was detected during that test (an error vector). This information is then used to
determine the probability of a component being faulty. SPELL modifies this technique by collecting, for
each time a component is present within a test case, the energy consumption in joules of the various
hardware components during the time that the component was executing, the number of times it was
executed, and the amount of time the component was actively executing. Unlike standard SFL, there
is no prior knowledge available to construct an error vector, the SPELL tool must create its own. The
authors have defined an algorithm for the construction of this error vector based on prior work to assign
responsibility for greenhouse gas emissions between countries. This algorithm sums the values of each
component per test case, and uses these sums as the error vector. To determine which components in
a test case are responsible for its energy use, the Jaccard similarity coefficient is calculated. A global
‘error vector’ is also calculated to allow comparison of components beyond a single test case, by taking
into account the energy used by different hardware modules of the test system, the frequency of use,

8 2. Prior Work

and the runtime of the component. This ‘global similarity’ score is intended to provide developers with
more accurate guidance on where optimization efforts should be spent, without relying solely on the
energy use of particular test cases.

To determine the effectiveness of their solution, the authors performed an empirical evaluation. In
their experiment, 15 experienced Java programmers were asked to optimize the energy consumption
of a project written by a student for an object-oriented programming course. These programmers were
divided into five groups of three, with each group being assigned a single project. Notably, SPELL was
used as part of the selection process to determine which projects would be included in the evaluation,
with each project being considered as a “component”, and those with the highest global similarity,
corresponding to the highest likelihood of an energy leak, being selected for analysis. Each participant
was then given 30 minutes to analyze the project, and randomly assigned either the SPELL tool, the
NetBeans profiler, or no tools. They were then given up to two hours to modify the project, and specify
any further changes that they would make.

The authors found that SPELL enabled programmers to reduce the energy consumption of their
assigned projects more effectively than using either no tool or the NetBeans profiler. They found that
while SPELL did not greatly change the effectiveness of modifications, the modifications made more
accurately targeted the most energy consuming components. Participants with access to SPELL also
took less time on average, and were more confident in their improvements. However, in calculating
the energy improvements for each project, the same test cases are used that were used both to select
projects for analysis and to generate SPELL rankings. The authors do not specify if extra test cases
were used to determine whether the results found hold for test cases outside of the input dataset.

Mukhanov et al. developed ALEA, a tool used to measure the energy consumption of software at a
basic-block level [34]. A basic block is a ‘block’ of code with no jump instructions - that is, it will always
execute sequentially from entry to exit. This property means that the energy consumption of a basic
block will be relatively consistent when compared to a method, as the same operations will always be
performed. ALEA uses a probabilistic sampling model, where the program under test is systematically
sampled during execution. Each sample collects the value of the program counter and the instanta-
neous energy consumption of the system. Each basic block is assumed to have a fixed probability of
being sampled at any point in execution, and an estimate of this probability is generated based on the
observed samples. The total execution time of a basic block is estimated from this probability estimate
combined with the total execution time of the program. The average power consumption of a basic
block is calculated by averaging its associated instantaneous measurements, using the simplifying as-
sumption that the power consumption is only associated to the basic block executing at the time of
sampling. Multithreaded programs are modeled similarly, but use a combination of basic blocks across
all sampled threads instead of a single basic block. ALEA was tested on two platforms: an Intel Sandy
Bridge based server using two Xeon E5-2650 CPUs, and an ODROID-XU+E board with one Exynos
5 Octa CPU. On the Sandy Bridge platform, the authors found that ALEA was able to estimate execu-
tion time and energy with an average error of 1.1% and 1.4%, respectively, though error was higher
when only considering parallel benchmarks, with 3.1% and 2.6% respectively. On the Exynos-based
platform, higher errors were observed due to a difference in how the hardware handled sampling, but
errors remained below 4% in all cases. In a follow-up to their original work, the authors improved ALEA
with an additional measurement technique allowing basic blocks with a runtime down to 10 𝜇𝑠 to be
accurately estimated.

Noureddine et al. developed E-SURGEON [35], a power monitoring tool composed of two distinct
subsystems: PowerAPI, a modular system that collects platform-dependent resource utilization infor-
mation, and Jalen, which profiles running (Java) applications and estimates their energy consumption.
The authors define these as both a generic architecture that can be implemented in different ways de-
pending on the needs of the platform. Along with an architecture design, the authors defined a set of
power models for both Jalen and PowerAPI, which define how the system attributes consumed energy
between different hardware components, and to units of source code.

In addition to defining generic architectures, they have also concretely implemented both PowerAPI
and Jalen, with PowerAPI modules being implemented for the CPU and NIC of a Linux system, and
Jalen implemented for Java applications using bytecode instrumentation and delegator classes to log
use of sockets.

They found that their tool was able to estimate energy consumption with a margin of error between
0.5-3%, depending on the test load. Using Jetty as a case study, they found an overhead of between

2.1. Background 9

43-57%, depending on the workload being executed. While this overhead is considerable, it is less
than that of the Java Interactive Profiler, and they consider it to be reasonable.

Finally, they investigate the energy consumption of a Jetty benchmark, and find that only 10methods
consume about half of the total power used during the benchmark, with most energy consumed by
classes reading and writing HTTP requests. They conclude that their results are reasonable, taking
into account the contents of the benchmark, and that the information provided by E-Surgeon would be
effective in helping developers optimize the energy consumption of their software.

2.1.2. Estimating Energy Use
In addition to using direct measurements, efforts have been made to estimate energy consumption
based purely on static analysis of source code. There are multiple benefits to the use of static analysis
instead of runtime measurements. One such benefit is that estimations can be made independently
of any test cases or test devices. This reduces the amount of effort needed to integrate an energy
testing solution into a project, as developers would not need to manually create test cases in order to
generate energy consumption data, as with many measurement-based solutions. Developers could
also easily integrate such a solution into a continuous integration pipeline, as no physical test device
would be required. Another benefit is the speed and ease of testing - changes made to software can
be analyzed on the spot, without the need to compile and deploy code to a test device, and without the
need to maintain an energy testing environment.

2.1.2.1. Machine Learning Approaches
Alvi et al. defined a machine-learning-based approach to estimating application energy consumption
on the method level [3] Their approach uses source code metrics as features in a machine learning
model, and energy consumption of individual methods as training data. They first collect the energy
consumption of different methods using the Qualcomm Trepn profiler4 to record real-time energy con-
sumption, and dmtracedump to obtain method traces. Test cases are manually defined by the authors,
and recorded using Espresso.5 As Trepn updates every 100ms, they cannot directly measure the en-
ergy consumption of a method with a shorter execution time. To overcome this limitation, the sliding
window approach is used. After collecting energy consumption information, the authors then collect
method-level metrics, using the Metrics Reloaded plugin 6. The authors found that some of their se-
lected metrics had a high level of correlation with method-level energy consumption, though many of
thesemetrics were either directly or indirectly related to the overall number of instructions in themethod,
so it is unclear whether these different metrics contribute to the overall strength of the model. They also
found that their model was able to accurately predict the energy consumption of arbitrary methods, with
about 94% precision, recall, f1, and accuracy scores. Notably, they also found that different devices
did not differ significantly in energy consumption per-method.

Chowdhury, et al. proposed a software energy model, GreenScaler, built on random tests using
CPU utilization as a heuristic for selecting tests, in place of the more commonly used code coverage
heuristic. The authors usedGreenOracle [9] as a baseline for their model, aiming to alleviate one of the
key difficulties identified in this work: the need to write an extensive test suite. By using automatically
generated tests, the training dataset for their model can be vastly increased with minimal manual work.
The authors used the ‘Leave-one-out’ method to train 472 different models, using features such as CPU
time, page faults, and UI colors as input, as well as system calls as a proxy for energy consumption from
other components. As thesemodels were found to be nearly identical, onewas selected at random to be
evaluated. Using this test generationmethod, they were able to significantly improve the performance of
GreenScaler compared toGreenOracle, with the most significant improvements found on the randomly
generated test suite, but improvements also noticeable in manually written tests used in the original
GreenOracle evaluation. They also found that while accuracy varied among different apps, the error
distribution remained closely similar between versions of a single app, allowing the tool to be used
to find differences, such as energy efficiency regressions, between versions of an app. Finally, the
authors conclude that increasing the number of apps used in their training set has a dramatic effect on
the accuracy of the model, with the most notable gains occurring until about 300 apps are added to the
4https://web.archive.org/web/20150716000746/https://developer.qualcomm.com/software/
trepn-power-profiler

5https://developer.android.com/training/testing/espresso
6https://plugins.jetbrains.com/plugin/93

https://web.archive.org/web/20150716000746/https://developer.qualcomm.com/software/trepn-power-profiler
https://web.archive.org/web/20150716000746/https://developer.qualcomm.com/software/trepn-power-profiler
https://developer.android.com/training/testing/espresso
https://plugins.jetbrains.com/plugin/93

10 2. Prior Work

dataset. They also conclude that the use of CPU-utilization as a test selection heuristic is sufficient,
with the alternative energy model based heuristic offering little benefit.

In his 2020 Master’s thesis, Stephen Romansky trains a selection of machine learning models to
predict the ‘time series’ of energy consumption of Android apps [42]. The time series of energy con-
sumption is a set of energy consumption figures over time (essentially, the data that would be collected
when periodically sampling the power use of a device), and can be associated with software features,
such as system calls, that occurred at a given time. Applications were selected from the GreenOracle
dataset, and were open source with at least 30 unique revisions. The features used to train the model
were all system calls made by the software, as well as the device resource utilization, collected using
strace and procfs files located in /proc/. Each of these features was collected as a time series, so
that they can be associated with the time series energy consumption measurements for training. After
evaluation, the author found that timeseries models peformed slightly better at predicting total energy
consumption than models built for the sole purpose of predicting total energy consumption. He also
found that stateful models performed better at predicting time series of energy consumption than state-
less models, and that the shape of the predictions better fit the shape of observed energy consumption.
MLP models were found to perform worse than linear models. Finally, using a combination of CPU and
procfs features performed better than using one or the other. In general, when given access to real
hardware, a model that only estimates a time series of energy consumption measurements has limited
use, as the features required as input require running a test case - in which case most hardware will be
able to provide real energy measurements. However, one potential use case could be for estimating
energy consumption when using an emulator to run test cases, reducing the need for testing on real
hardware, and allowing energy tests to be run solely from a host machine.

2.1.3. Identifying Energy Bugs
2.1.3.1. Identifying bugs between software versions
Jagroep et al. defined a methodology to compare different revisions of the same software product, and
developed a tool to attribute energy use to its different components [24]. They tested their approach
empirically by performing a case study on two revisions of the Document Generator software, before
and after an encryption function was added for GDPR compliance. This software consists of several
components, running in separate processes, across two different servers - an ‘application’ server and
a ‘database’ server. They compare JouleMeter, a tool published by Microsoft, to their own model, built
using penalized linear regression. They found that their model outperformed JouleMeter at machine
level prediction, with MAPE scores of 0.004 and 0.005, respectively, when compared with a hardware
power meter. They also found that process level energy consumption prediction was overestimated,
and conclude this is likely caused by external factors that are not detected as separate processes by
their tool. Nevertheless, they are able to collect consistent and comparable data using their defined
methodology, and identify both an overall increase in energy consumption between the two versions, as
well as an unexpected increase in energy consumption in one of the components that was not affected
by the addition of encryption.

2.1.4. Data Collection / Mining
Cruz and Abreu compiled a list of 22 design patterns used by mobile app developers when considering
energy efficiency [13]. To create this list, they first defined a dataset of open source apps on both
iOS and Android. They then automatically selected commits with messages containing energy-related
terms, and further refined their selection by manually filtering out false positive matches. After defining
their dataset, they use a defined process in order to categorize each commit depending on the code
changes it contains, with the resulting energy patterns including UI changes (e.g. Dark UI colors used
on OLED displays), hardware utilization changes (e.g. preferring to wait for WiFi instead of using mobile
data), allowing users to take control of energy expensive activities, and others. In addition to compiling
a list of patterns, they also investigate whether energy efficiency is addressed differently by iOS and
Android developers. They found that there is a difference in the way developers implement energy
patterns depending on platform, and suggest that it may be related to both hardware features (such as
the prevalence of OLED displays on Android devices) and differences in developer documentation.

Hindle et al. created a framework to automatically run tests on different versions of Android apps,
and collect energy data through hardware instrumentation [23]. Their tool does not attempt to associate
energy consumption with any specific source code feature, but instead provides energy consumption

2.1. Background 11

measurements during the runtime of a predefined test, with the goal of accurately and repeatably mea-
suring the energy consumed by an app, with sufficient precision to compare measurements between
different versions. In addition, the authors normalize measurements taken from different phones of the
same model to one ‘gold standard’ phone, in order to account for differences in energy consumption
caused by manufacturing tolerances. The authors test their framework using Firefox Fennec as a case
study, loading a sample website using 685 different versions of the app. The versions tested were
selected based on GUI changes - any change that might affect the UI being displayed, and thus the
power consumption of an OLED display, was selected.

2.1.5. Code Smells
Code smells are a widely studied area of software engineering, with a broad range of applications.
While there is far toomuch literature on the topic of code smells to list here, we are particularly interested
in those applicable to Android, and their effect on the energy consumption of the app they are found
in. Habchi et al. [21] studied the life cycle of Android code-smells in real-world open-source apps, and
found that while some code smells can remain in a code base for years at a time, 75% are removed
within 34 commits. They also found that larger projects tend to remove smells more quickly, and that
smells detected and prioritized by Android Lint were removed more quickly than those that weren’t,
indicating the importance of automated detection.

2.1.5.1. Effect of code smells on energy consumption
Palomba et al. used their prior works, PETrA [17] and ADOCTOR [37], to investigate the energy con-
sumption impact of 9 different method-level code smells on Android applications [38]. In order to as-
sociate these code smells with energy consumption, they first analyzed the apps involved in the study
with ADOCTOR to identify instances of code smells, and analyze their distribution and co-occurrence.
They found that four code smells were most common in their dataset, and that 62% of methods affected
by a code smell were affected by more than one. They also found that high diffuseness, or the number
of times a smell was detected, did not necessarily imply high co-occurrence, as the common Transmis-
sion without Compression smell generally did not co-occur with other smells. After determining which
methods contained code smells, they then used the PETrA tool to estimate the energy consumed by
a single call to each method in the app under test. Using this information, they were able to deter-
mine that 94% of the most consuming methods in their dataset were affected by at least one code
smell. They also found that by refactoring four code smells, Internal Setter, Leaking Thread, Member
Ignoring Method, and Slow Loop, they were able to significantly reduce the energy consumption of the
associated methods, with the largest difference being 87 times.

Cruz and Abreu investigated the energy consumption impact of eight code smells from Google’s
list of best development practices for Android [15], to answer whether programming best practices
for improving app performance can be blindly applied to improve energy consumption. They con-
sidered eight code smells found in the lint tool of the Android SDK, including both Java-based and
XML-based smells. These smells are: DrawAllocation, where object allocations are made within UI
drawing code. WakeLock, where wakelocks are used unnecessarily or held for too long. Recycle,
where collections using singleton resources are not correctly de-allocated (missing recycle() call).
ObsoleteLayoutParam, where UI views contain unused parameters. ViewHolder, a technique where
data from previously drawn items is used to improve the efficiency of list views, reducing the number
of calls to findViewById. Overdraw, where a single pixel on the display is drawn to multiple times.
Unused Resources, where resources compiled into the APK are not used. Useless Parent, where a
parent layout in UI is not used. To evaluate the effect of their chosen code smells, they performed an
empirical evaluation in which they randomly selected six open-source apps, filtering out those which
made heavy use of network operations or did not contain any of the selected code smells (as deter-
mined by lint). For each of the chosen apps, they wrote a selection of UI tests using a Python library
that allowed programmatic manipulation of UI elements, allowing tests to be used across different de-
vices. During each test, they collect energy consumption data through on-board power sensors, and
integrate the sampled energy consumption over time to obtain the consumed energy. They found that,
of their eight code smells, six of them had an effect on energy consumption when fixed, with one of
the six increasing energy consumption rather than decreasing it. The unexpected increase in energy
consumption was caused by the removal of the ‘overdraw’ code smell, where automated fixes typically
require run-time checks. These checks sometimes cost more to execute than drawing the unnecessary

12 2. Prior Work

pixels, leading to an increase in energy consumption. They found that, with exception of the ‘overdraw’
pattern, it was safe to apply automated fixes for each of their chosen code smells, as the rest showed
either a decrease in energy consumption or no effect. From this result, they concluded, in this scenario,
performance best practices generally have a positive effect on energy consumption, but further work
is necessary to explore different scenarios, as results may differ. Finally, they concluded that, as they
were able to measurably improve the energy consumption of three of their six tested apps, the best
practices tested can improve the energy efficiency of real-world apps.

2.1.6. Energy Efficiency in Software Engineering
Moura et al. mined 2,189 commits from GitHub, and identified 371 “energy-aware” commits [32]. They
selected commits from ‘non-trivial’ applications in order to obtain an accurate representation of how
experienced developers interact with the energy efficiency of their code in the real world. They found
that the majority of commits in their collection, 49.66%, targeted low-level code, such as kernel and
driver code. These changes generally used hardware-based approaches, such as more effectively
using sleep states or frequency scaling. Only about 16% of commits used techniques such as switching
to more efficient data structures or libraries, and the authors suspect that there is significant room for
improvement in this area.

They also observe that developers are not always certain that their changes save energy, even in
commits made solely for the purpose of energy efficiency, and use “hesitating” language implying that
they have not been able to definitively test their changes. In some cases, developers even reverted their
energy saving commits. No definitive answer was given for these reversions, but many of the reverted
commits had implemented the same feature, a work queue that traded performance for energy savings.
The authors suggest that decisions regarding energy efficiency and performance must be made with
care, and that the trade-off between them is often unclear. Finally, they found that energy bugs are
commonplace in real-world software, with 11% of their studied commits fixing an energy bug.

Cruz et al. investigated the effect of commits intended to improve the energy consumption of Android
applications on the maintainability of those applications [16]. To measure maintainability, they used
BetterCodeHub, a tool by the Software Improvement Group7, in combination with their own formula
designed to make the output of BetterCodeHub comparable between different projects. Their formula
ensures that the size of a project does not affect its maintainability, and weights the number of code
lines violating guidelines by the severity level of the violation.

The authors evaluated a total of 539 commits over 306 separate apps. They split these commits
into a number of categories, depending on the type of change being implemented. In all categories,
they found that the majority (over 50%) of commits had a negative effect on maintainability, compared
to a baseline of 33%. There was, however, an improvement in maintainability observed in about 30% of
commits, with the rest having no change. The authors conclude that the bulk of maintainability issues
are attributable to a lack of attention to maintainability by developers and ‘insufficient support of energy-
efficiency patterns bymobile platforms’. They find that mobile frameworksmust improve support for “out
of the box” energy-efficient programming, and providemore information to developers on best practices.
Programming languages should also take energy patterns into account when designing features, and
ensure that developers can easily implement these patterns without harming maintainability.

2.1.6.1. Refactoring
Ournani et al. investigated the opposite question as Cruz et al.: What is the impact of refactoring
on energy consumption? [36] They focus exclusively on Java projects, and select well-established
projects that have been hosted on GitHub since at least 2015, seven years prior to the publishing of
their work. To find commits with significant refactorings, they use the RefactoringMiner tool to identify
and summarize code refactoring commits for each project. They then manually select commits to be
included in their analysis, and compile a version of the JAR for each commit to be tested. As a projects
test cases may not be stable between commits, they define their own test suite using JMH8 for each
project to ensure that results are comparable between commits, and use Intel’s RAPL to measure the
power consumed by their test suite.

The authors found that, in general, structural refactorings do not significantly change the energy
consumption of code. This implies that these refactorings are safe to perform, and increases in energy
7https://www.softwareimprovementgroup.com/
8https://github.com/openjdk/jmh

https://www.softwareimprovementgroup.com/
https://github.com/openjdk/jmh

2.2. Related Work 13

consumption are generally insignificant when compared with the total energy consumed by the pro-
gram. They also found that the energy consumption of most studied projects steadily decreased over
time. In contrast to structural changes, refactorings that change the work performed by code has a sig-
nificant impact on energy consumption, both increasing and decreasing. This type of change should be
made in combination with energy testing so that developers can make an informed choice on whether
the tradeoff between their changes and the energy consumption of their program is reasonable.

Continuing their 2017 work [15], Cruz and Abreu developed a refactoring tool, Leafactor to auto-
matically fix five ‘energy smells’ they had previously identified as impacting the energy consumption of
Android apps [14]. Of these five smells, four are Java-based, and one is XML-based. They analyzed
140 apps from the open-source app store F-Droid, prioritizing recently released apps, and filtering to
those written in Java. Of those 140, they found that 45, or 32%, contained at least one of their five
energy smells, and generated 222 total refactorings. The XML-based energy smell, ‘ObsoleteLayout-
Param’, where unused parameters are found in a UI view, occured 156 times in 30 projects, an average
of about 5 times per project. The ‘Recycle’ energy smell, in which a collection using singleton resources
is not properly disposed of, occurred in 58 times over 23 projects. The other three smells, ‘DrawAlloca-
tion’, ‘ViewHolder’ and ‘Wakelock’, showed only marginal improvements, with no fixable occurences of
‘DrawAllocation’ being detected. From their 222 refactorings, they created 59 pull requests across 45
apps, splitting different smells into different pull requests where necessary. Of these, 18 apps merged
their pull requests before writing. They found that, in most cases, developers are open to suggestions
from automatic refactoring tools, and were often unaware of the impact that their code can have on
energy consumption. However, they note that a potential downside of their automated refactorings:
in many cases, the refactored code is more verbose and harder to understand than the less efficient
code, which can hinder the adoption of these automated refactorings by developers.

Morales et al. implemented EARMO [31], a tool that refactors anti-patterns common to mobile
apps while taking energy consumption into account. Their work is split into two parts: The first of
these is a preliminary study that considers a set of software anti-patterns split between generic OOP
patterns and Android specific patterns. In this study, they investigate whether anti-patterns influence
energy consumption and if different types of anti-pattern influence energy consumption differently. They
found that, out of 24 manually corrected anti-patterns, 7 produced a statistically significant decrease
in energy consumption, with the rest producing non-significant changes. Two patterns in particular
actually reduced energy consumption, though not significantly: Long parameter list, and Speculative
Generality.

With the results of their preliminary study, the authors developed EARMO, or Energy Aware Refac-
toring approach for MObile apps. EARMO uses an estimate of energy consumption as a separate
objective in a multi-objective search, intended to minimize energy consumption as well as different
structural metrics relating to the quality of the software. EARMO provides multiple options to develop-
ers, so that they may choose which of the objectives they prefer, or a “middle ground”. THey found that,
based on their metrics, EARMO is able to improve the design quality of mobile apps by both correcting
anti-patterns and improving extensibility and effictiveness. In order to test their refactorings in the real
world, they submitted pull requests to several apps containing their refactorings. The acceptance rate
of their pull requests varied by app and refactoring type, but most were accepted, and those that were
rejected, outside of one app, were generally considered to be correct, but not desired for out of scope
reasons.

2.2. Related Work
In this section, we summarize works from Section 2.1 that are closely related to EDATA, and highlight
the differences between them.

ALEA, developed by Mukhanov et al. [34], was our primary inspiration for the methodology used
in EDATA. ALEA uses statistical sampling to estimate the energy consumption of C/C++ programs
at the basic block level, and was tested on both x86_64 and ARM to have average errors of around
4% or less in both single and multi-threaded benchmarks. ALEA focuses on analyzing CPU energy
consumption on Linux, and uses benchmarks typical to HPCwhere a steady CPU load is maintained for
the duration of the benchmark. In contrast, EDATA has been developed for use with Android devices,
and is intended for use with Android apps, which generally have a variable CPU load depending on
user interaction. Additionally, Android devices typically use wireless network connections, either WiFi

14 2. Prior Work

or cellular, and may draw data from a variety of different sensors, meaning that whole device energy
consumption – not just the CPU – needs to be taken into account.

DiNucci et al. developed PETrA, a tool for Android capable of estimating the energy cost of individ-
ual methods in an app [17]. PETrA uses method instrumentation to collect a trace of each method that
is executed by an app, with precise timestamps. This data is combined with hardware state information
collected by Batterystats, and power profile information from the included power_profile.xml to
generate method-level energy estimates. They then compared their estimates to a ground truth iden-
tified by prior work [29], and found that 95% of methods had an estimation error within 5%. PETrA is
notable in that, in contrast to most works, energy consumption of the device is not directly measured,
instead being calculated based on the power_profile.xml file, which contains values measured
and reported by the device manufacturer, and must be included in all Android devices. This method-
ology has several benefits: First, as power profiles contain power use information on individual com-
ponents, it is possible to separate the energy used by each component of the device, although they
do not implement this. Second, this methodology is independent of device sensors, and thus is not
affected by differences in measurement quality when switching between different devices. However,
there are some important drawbacks to this approach: Method instrumentation can cause significant
overhead, which will likely affect the estimates generated. In addition, as the power values reported
in the power profile are estimates, software that causes above average energy consumption in a par-
ticular component will not be detected. EDATA performs a similar function to PETrA, but with several
key differences. In place of the power profile, we directly measure current using on-device sensors.
This allows EDATA to determine the energy consumption of the full device without the need to track
the state of the hardware components. To collect information on which methods are executed, EDATA
uses statistical sampling instead of method instrumentation. This both lowers the overhead of the data
collection, and allows native code to be analyzed in addition to Java and Kotlin code, as native code
cannot be instrumented automatically9.

Palomba et al. used PETrA to evaluate the energy consumption of a number of code smells, per-
forming an empirical evaluation on 60 Android apps[38]. They select nine code smells from a catalog of
30 Android code smells, filtering those that did not appear to be directly related to energy consumption
as well as those that were not related to the source code (such as the XML-based code smells men-
tioned by Cruz and Abreu [15]). The goal of their study was twofold: they first investigated the extent
to which the nine code smells were ‘diffused’ within the source code of the 60 apps, and to examine
the effect of the code smells on the energy consumption of their containing methods. They found that
some code smells more commonly co-occurred in methods than other smells, and that some code
smells could significantly increase the energy consumption of a method. They found that refactoring
methods affected by the Internal Setter, Leaking Thread,Member Ignoring Method, and Slow For Loop
code smells significantly decreased energy consumption. In this thesis, we make use of three of the
code smells investigated by Palomba et al. [38]: Internal Setter, Member Ignoring Method, and Slow
For Loop. We chose these specific smells as they are fully contained in source code, making them easy
to measure with EDATA, and due to the significant differences in energy consumption that were shown.
Our empirical evaluation differs from that of Palomba et al. [38] in that we have designed specific test
cases for each of these code smells, instead of finding real-world apps containing them. We also do
not attempt to measure the energy consumption of one execution of a method, instead estimating the
total energy consumption of the method during a fixed workload. Finally, due to the time and numerous
improvements to the Android Runtime (ART) between their work and this thesis, we cannot be certain
that the effects of code smells observed in their work are still applicable.

Jagroep et al. defined a methodology to compare revisions of a software product, and used their
methodology to compare two revisions of Document Generator, a commercial product consisting of
multiple distinct components [24]. They implemented their methodology into a tool capable of attributing
energy consumption at the process level, a level which provides relatively little detailed information on
the location of potential energy bugs. However, in this use case, their choice makes sense: Document
Generator is split across multiple processes on multiple servers, so unlike some software (such as
Android apps), there is still some information available on the location of a bug, and not all of the
components had changed between their compared releases. Their work also shows the importance
of providing energy consumption information to stakeholders during the development process – some
components of the tested software showed an increase in energy consumption, but new (mandatory)
9https://developer.android.com/studio/profile/record-traces#configurations

https://developer.android.com/studio/profile/record-traces#configurations

2.3. Comparison of Energy Consumption Attribution Approaches 15

features had been implemented that made this increase in energy consumption justifiable. We largely
adopt the methodology described by Jagroep et al. [24] in our empirical evaluation and case study,
and we also consider the importance of providing energy consumption information to stakeholders in
our case study. EDATA differs from their approach by providing more specific attribution of energy
consumption to source code, which helps developers determine whether or not an increase in energy
consumption is reasonable for a change, and assists in the debugging process should an increase in
energy consumption be deemed unacceptable.

2.3. Comparison of Energy Consumption Attribution Approaches
In this section, we present a comparison of three approaches to energy consumption attribution found
in our literature review. We additionally motivate our choice to use statistical sampling in EDATA, and
the benefits and drawbacks to each of these approaches, and in which use cases they may be a more
appropriate choice.

2.3.1. Instrumentation Based Tracing
Prior to EDATA, nearly all state-of-the-art tools for estimation energy consumption on Android at a
fine-grained level used some form of instrumentation, such as bytecode instrumentation, to collect
information on exactly when methods are executed by an app. Some tools, such as PETrA [17] and
MELTA [18] report energy consumption at the method-level, and instrument the beginning and end
of each method to obtain complete data on when methods are executed. vLens [28] uses a similar
instrumentation methodology, but uses a more complex path analysis to determine where to place
execution probes, and further analyzes their collected data to estimate energy consumed at the line
level. Implementation based approaches have several benefits: First, as the exact number of method
calls is known, the energy consumed per-call can be accurately estimated, either by estimating the
total consumption and dividing this by the number of calls, or by attempting to precisely measure the
amount of energy consumed for an individual call. Second, instrumenting function calls ensures that
no function, regardless of duration, will be missed, which can make the resulting estimations more
accurate.

While there are several compelling benefits to the use of instrumentation-based tracing, there are
a number of drawbacks. First, Android’s built in tracing10 has several limitations, most notably that
it is unable to trace C/C++ code. If an app makes significant use of native libraries, this could entail
an unacceptable loss of information. Trace-based collection also imposes a level of overhead, though
apart from vLens, where the authors estimate their overhead at an average of about 4% [28], few
works report this overhead, as it is a minor concern in testing environments compared to the overall
accuracy of the results. However, if low overhead is desired, such as in a use-case where an analysis
is performed on end-user devices, trace-based approaches may be unacceptable.

In spite of these drawbacks, instrumentation-based tracing may still be relevant, particularly com-
bined with the use of Android’s release-mode profiling11, which allows the use of Android’s built-in
tracing, as used in works mentioned above, with release-mode apps. Though the overhead involved
with release-mode tracing must still be investigated, the increased information available may be worth
the cost, particularly if an app makes limited or no use of native code.

2.3.2. Static Analysis Estimation
In order to lower the barrier to entry for developers to analyze the energy consumption of their app, some
approaches use static analysis of source code to estimate energy consumption, removing the need for
a physical test device entirely. This approach has several key benefits: Since static analysis tools can
be run at any time, developers do not have to wait to get feedback on their changes. Such a tool
could also easily be integrated into a continuous integration system, providing feedback per commit or
release. As these benefits are most apparent in the context of mobile devices, where development and
use are done on completely different systems, it should come as no surprise that much of the literature
around this approach focuses on mobile devices. eLens [22], the predecessor to vLens [28], builds on
this by allowing use of collected execution traces in combination with a pre-defined energy model to
provide energy consumption estimates of dynamic behavior. Aside from eLens, most code-analysis-
10https://developer.android.com/studio/profile/record-traces#configurations
11https://developer.android.com/guide/topics/manifest/profileable-element

https://developer.android.com/studio/profile/record-traces#configurations
https://developer.android.com/guide/topics/manifest/profileable-element

16 2. Prior Work

based approaches make use of machine learning models, such asMLEE [3], GreenScaler [8], and the
work done by Romansky [42]. In general, static analysis based approaches have been shown to be
effective, and a good trade-off between ease of use and accuracy of estimations when compared with
on-device measurements. In light of our results in Sections 5.1.1.3 and 6.2.1 which highlight differences
between devices, it is possible that estimates generated by a machine learning model trained on one
device may not transfer to the actual performance of another device. Without knowledge of particular
device characteristics, such as CPU capabilities and runtime optimizations performed by the just in
time (JIT) compiler, variations in accuracy between devices are inevitable. However, this does not
necessarily detract from the usefulness of this methodology. Developers can, at the expense of some
time, train a model on each device that they are interested in testing. Additionally, trained models can
be shared, allowing a single developer to ”test” on many more devices than would be the case when
requiring a physical test device.

2.3.3. Statistical Sampling
Statistical sampling-based energy consumption estimation is used by EDATA, ALEA [34], the Android
Profiler (in certain modes)12, and is a known technique in the context of HPC performance profiling to
provide controllable overhead [46]. Instead of instrumenting function calls or paths to determine the
exact time when each function or path was entered and exited, statistical sampling collects samples of
program execution at some defined interval, and attempts to determine the probability, and thus total
runtime, of each observed function. A more detailed explanation of a specific methodology employing
statistical sampling can be found in Section 3.5.2.1, where we explain the approach used by EDATA.
Statistical sampling has one primary weakness: it is reliant on the debug information provided in the
executable being sampled, and on the output of the stack unwinder [46]. On Android, both missing
debug information13 and the output of the stack unwinder14 are known limitations, and simpleperf al-
ready includes tools with which to mitigate their effects. While statistical sampling is limited in terms of
call-chain completeness and detection of executed methods, its low overhead is particularly interesting
in the context of mobile devices. As the overhead is decoupled from function calls, code areas with a
large number of calls will not be disproportionately affected, and long-term battery life tests will be less
impacted. Finally, a statistical sampling based approach could potentially see use in production envi-
ronments, with the low overhead and lack of instrumentation are essential to use on end-user devices.
In addition to low overhead, sampling on Android using simpleperf allows analysis of JIT compiled code
in addition to pre-compiled native and java virtual machine (JVM) code.

12https://developer.android.com/studio/profile/record-traces#configurations
13https://android.googlesource.com/platform/system/extras/\+/master/simpleperf/doc/README.md#
Fix-broken-callchain-stopped-at-C-functions

14https://android.googlesource.com/platform/system/extras/\+/master/simpleperf/doc/README.md#
Fix-broken-DWARF-based-call-graph

https://developer.android.com/studio/profile/record-traces#configurations
https://android.googlesource.com/platform/system/extras/\+/master/simpleperf/doc/README.md#Fix-broken-callchain-stopped-at-C-functions
https://android.googlesource.com/platform/system/extras/\+/master/simpleperf/doc/README.md#Fix-broken-callchain-stopped-at-C-functions
https://android.googlesource.com/platform/system/extras/\+/master/simpleperf/doc/README.md#Fix-broken-DWARF-based-call-graph
https://android.googlesource.com/platform/system/extras/\+/master/simpleperf/doc/README.md#Fix-broken-DWARF-based-call-graph

3
Tool Design

3.1. Our Approach
The primary goal of our approach is to estimate the energy consumption of Android applications at a
method-level granularity, leveraging the built-in energy monitoring hardware/software found on virtually
every modern mobile device. One of the primary goals of our approach is to reduce the measurement
overhead to a sufficiently low level to be used in a production setting. As such, we will also take
advantage of the profileable flag, added in Android 10, which allows us to measure apps compiled
in release mode. We also will use statistical sampling, using simpleperf to collect samples, instead of
the more common instrumentation based methods. The overhead of statistical sampling is consistent
and can be reduced as desired by lowering the sampling frequency, which is desirable for our use case,
as sampling overhead can influence the recorded energy consumption. Our approach consists of three
main components, as well as a set of test scripts designed to automate the process of gathering test
data. These components have been designed in a modular fashion, and can be replaced as desired if,
for example, new capabilities are released in a future version of Android. We have further implemented
an app containing each of the test cases outlined in chapter 4.

3.2. Statistical Sampling for Energy Estimation
In order to reduce the measurement overhead of our approach, we have opted to use statistical sam-
pling to gather information on the runtime behavior of the application under test (AUT). As described
in Section 2.3.3, statistical sampling has been used in the past as a low-overhead approach to per-
formance profiling [46], and has been known to be effective in the context of energy consumption for
many years, being used by Flinn and Satyanarayanan in their PowerScope tool, from their 1999 work
[19]. Our approach is based on a more recent work by Mukhanov et al. [34], who implemented a
probabilistic sampling model (ALEA) to estimate the energy usage of native programs on Linux at a
basic-block level1. This entails that the instructions will always be executed in exactly the same order,
and none can be skipped. In contrast to the programs analyzed by ALEA, Android apps run not only
ahead of time (AOT) compiled C++ code, but also a mixture of AOT and just in time (JIT) compiled and
interpreted code on the java virtual machine (JVM). These different compilation methods make deriving
the source line related to a given instruction more difficult as the necessary information is not always
available, particularly in release mode on a non-rooted device. In light of these restrictions, we chose
to focus on providing energy attribution at the method level, as Android stack traces contain sufficient
information to derive the method containing a particular instruction.

3.2.1. Simpleperf
Our approach makes use of the simpleperf [44] tool, a fork of perf 2 developed by Google for use with
Android. Simpleperf provides a number of useful features - most notably the ability to record call-graphs
1A basic block is a unit of (compiled) code which contains no jump instructions, except at the beginning and end (such that the
beginning may be jumped to, and the final instruction may be a jump).

2https://perf.wiki.kernel.org/index.php/Main_Page

17

https://perf.wiki.kernel.org/index.php/Main_Page

18 3. Tool Design

of JIT compiled and interpreted JVM code in addition to AOT compiled JVM and native code.
Simpleperf is a tool developed by Google for use with Android, and is distributed both on Android

devices and as part of the Native Development Kit (NDK). The NDK version can be sideloaded, allowing
use of newer versions than were distributed with a device. Simpleperf is a fork of the Unix perf tool,
with many of the same capabilities, though it does not implement all of the features found in perf. It
has been modified for use with Android, adding the ability to use platform capabilities (such as the
profileable flag) to profile apps without the need for root, and is capable of profiling not only native
C++ software, but any software using the JVM (such as Java and Kotlin), and since Android 9 does
not require JVM code to be AOT compiled. One of simpleperf ’s primary functions is to perform event-
based sampling – it can track a number of events, many of which are triggered by hardware, such as
cpu-cycles, which is incremented per CPU clock cycle. For use in EDATA, we chose to use the
task-clock event, which triggers at a given time interval and is tracked per-thread.

We invoke simpleperf as follows, using a configuration intended to emulate the sampling approach
of ALEA [34].

simpleperf record -e task-clock -f {sample_Hz} --call-graph dwarf --
clockid monotonic_raw --app {AUT}

The reasoning for our configuration is as follows:

3.2.1.1. DWARF callchain unwinding
DWARF3 is a standard format for debugging information used by compilers to map information about
the source code to the compiled binary4. Simpleperf supports both DWARF-based callchain unwinding
and stack-frame-based unwinding. We selectedDWARF-based unwinding as it is more portable across
architectures (particularly 32-bit ARM), and works better with Java/Kotlin code. The primary drawbacks
of DWARF unwinding is an increase in CPU usage and limited callchain size. In practice, we have not
observed either of these to be a limitation, as we generally sample at well under the recommended
maximum of 4000Hz [45], and simpleperf is capable of re-building lost callchain information based
on callchains from different samples. We have observed that a high sample rate in combination with
trace-offcpu can lead to “lost” samples due to simpleperf ’s sample buffer being too small, but our
current approach does not use this option. Passing the --call-graph dwarf flag to simpleperf
enables DWARF-based unwinding, and is used in our evaluation. As suggested by Google [1], if
profiling native code on 64-bit ARM, using stack-frame-based unwinding may be preferred. As most
Android apps primarily use Java/Kotlin, we do not use it in our evaluation.

3.2.1.2. ClockID
Simpleperf allows selection from a set of different standard Linux system clocks5 to timestamp sam-
ples. The clocks supported are: realtime, monotonic, monotonic_raw, boottime, and perf. We chose
the monotonic_raw system clock as it is also available through the Android API, allowing our envi-
ronment sampling utility to use the same clock for timestamps as simpleperf, removing the need for
synchronization of the different records after the fact. Additionally, this clock is guaranteed not to jump
backwards or ahead, and is not subject to NTP adjustments [10], which guarantees that we will be
able to accurately measure the time between samples, and that there will be no overlaps in sample
timestamps caused by clock adjustments.

3.2.1.3. Event selection
Ideally, we would sample the AUT using exactly the same approach as ALEA: systematic sampling,
where samples are taken at a fixed rate, using the slight inaccuracies inherent to timers as “randomiza-
tion” [34]. ALEA uses CPU clock cycles as a unit of time, which is a sufficient metric in their application,
as it is common for servers and high performance computing (HPC) systems to have their clock rate
fixed, at least under load. However, mobile devices do not have this property, and further cannot guar-
antee that a given workload will be run exclusively one on type of CPU core. We have therefore chosen
to use the task-clock software event, which triggers based the runtime of each individual thread.
3https://dwarfstd.org/
4https://dwarfstd.org/doc/Debugging%20using%20DWARF-2012.pdf
5https://man7.org/linux/man-pages/man2/clock_gettime.2.html

https://dwarfstd.org/
https://dwarfstd.org/doc/Debugging%20using%20DWARF-2012.pdf
https://man7.org/linux/man-pages/man2/clock_gettime.2.html

3.3. Energy/environment measurements 19

While there is no support for adding random offsets to the sampling time, we expect similar variation
in the system clock as observed by Mukhanov et al [34]. As currently implemented in simpleperf, this
method comes with the following drawback:

The task-clock timer is kept per-thread, and will trigger after exactly n nanoseconds on-cpu have
elapsed. This means that, in the worst case, if a thread runs for n-1 nanoseconds before exiting, it will
never be sampled. Methods executed at thread start, running for less than the sample period, will
similarly not be sampled. The thread-specific nature of the task-clock timer limit the ability of our
tool to perform multi-threaded sampling, as each thread will be sampled individually at the moment
its timer reaches the defined count. This prevents us from implementing the multi-threaded analysis
method from Mukhanov et al. [34], and lead us to make the simplifying assumption where we model
the AUT as single-threaded.

3.2.1.4. App targeting
Simpleperf is capable of automatically targeting an app’s process when given its package name. To
collect stack traces from running apps under the Android security model, it is necessary to first switch
its user privileges to that of the app, using run-as. A side effect of this is that, without root access, a
single simpleperf process is only capable of profiling a single app at a time. For the purposes of our
approach, this is sufficient. Future work attempting to profile more than one application, or the whole
system, would need to use a rooted device in order to overcome this limitation.

3.3. Energy/environment measurements
3.3.1. Measurement approach
To measure the energy consumption of an app, we need to obtain the instantaneous power usage
of the device under test. There are a number of ways to do this, among which are external hardware
instrumentation [27, 23, 24], use of built-in sensors [17, 34], and static-analysis-based estimation, often
utilizing machine learning [42, 3] . To keep our tool simple, and not require any initial setup (e.g. pre-
training a model), we chose to use Android’s BatteryManager6 API for retrieving real-time power
measurements. While Android does not provide instantaneous power information, this can be derived
by combining current and battery voltage. The update rate of the instantaneous current drawn from
the battery varies by device; on our two devices, we observed update rates of 1Hz and 5Hz. This is
in stark contrast to external hardware based power measurements, which can provide update rates in
the KHz range7.

3.3.2. Collection App
Unlike prior solutions, such as DiNucci et al. [17], we collect environmental data using a dedicated
sampler app. This app records changes in energy consumption using the BatteryManager API, but
also changes in the state of the phone: Display state and brightness, WiFi strength, and cellular signal
strength. These states can be used to cluster energy consumption based on environmental factors,
but is not currently used by our approach Our collection app also includes a UI, which can be used for
debugging purposes to display the current value of each supported sensor. This UI is shown in Figure
3.1, as displayed on a Pixel 6a. The cellular and WiFi signal strengths are not shown, as airplane mode
is active and a change in WiFi strength must occur before the strength is reported.
We chose to use a separate collection app for two reasons: The first reason is to ease collection and
formatting of data, as all of our desired data can be acquired through a single tool. Secondly, unlike
DiNucci et al. [17], we obtain current measurements through the BATTERY_PROPERTY_CURRENT_NOW
property instead of calculating it using the hardware states reported by dumpsys batterystats. We
were unable to find a record of battery current measurements within the logs provided by the various
Android subsystems, and believe that the battery current is not recorded due to the relatively high
update rate of current measurements.

6https://developer.android.com/reference/android/os/BatteryManager
7https://www.msoon.com/specifications

https://developer.android.com/reference/android/os/BatteryManager
https://www.msoon.com/specifications

20 3. Tool Design

Figure 3.1: Collection App UI Figure 3.2: Worker App UI

3.4. Test App 21

3.3.3. Perfetto
Beginning in Android 14, the prior two methods of data collection will be made obsolete due to improve-
ments made to the Perfetto8 tool. These improvements will allow Perfetto to collect atoms exposed by
statsd9, which include each of the power and environmental data points that we currently collect. As
Perfetto also offers integration with Simpleperf, using these new capabilities would simplify our tool,
and allow it to run with less overhead by removing the need for a companion app. Perfetto comes with
one primary drawback: due to its integration with the native Android Runtime (ART), newer versions
cannot be sideloaded onto older versions of Android, unlike simpleperf. Once Android 14 is widely
adopted, we expect Perfetto to replace our companion app.

3.4. Test App
In order to implement our tests defined in chapter 4, we developed a separate app. This app is controlled
in a similar way to the data collection app in Section 3.3.2. Its primary method of control is through
intents10, which can be sent either manually using the am utility available in the Android Debug Bridge
(ADB) shell, or automatically as part of a test script. There is also a basic UI, shown in Figure 3.2,
that contains controls for two of its workloads: a “busywork” workload that performs busy work on one
or more threads, and the random test defined in Section 4.3. We used this UI during early stages
of development, but exclusively used intents in our evaluation. The app is designed such that new
workloads can be added with minimal changes, and can be extended with new tests in the future.

3.5. Data Analysis
Once our collected data has been moved from the device under test to the host system, it is analyzed
in a two-step process.

3.5.1. Intermediate Trace Representation
The first step in our data analysis is to convert the collected data to an intermediate representation.
The purpose of this is to abstract the specifics of the collected data away from the further stages of our
analysis pipeline, so that changes in the data collection do not necessitate changes to the rest of the
process.

We abstract the collected data in the process shown in Figure 3.3 as a series of ‘app states’ – each
of which contains the state of the AUT and device at the time of a callchain sample. Each entry in the
series contains callchains of one or more actively executing threads from the AUT, the instantaneous
power draw of the whole device, the time until the following sample (or, its ‘period’), and the entry’s
timestamp. We note that while we assume in our implementation that the timestamps of our different
data sources match precisely, this is not a hard requirement. The exact method of matching times-
tamps between data sources can be considered an implementation detail handled by the process of
converting collected data to the intermediate trace representation. This stage of the process is respon-
sible for calculating the instantaneous power draw at the precise time of each callchain sample. As with
matching timestamps, the precise method with which this is done can be considered an implementation
detail, while keeping in mind that this is a very important step. A more precise measurement of instan-
taneous power will result in the end result – energy consumption attributed to methods – being more
precise. We chose to implement this by creating a time-series of instantaneous power draw, updated
each time either the voltage or current reported by the device changes. When determining the power
draw at the time of a callchain sample, we find the most recent measurement in the series prior to the
sample.

3.5.1.1. Our Implementation
We concretely implement this process shown in Figure 3.3 as follows: We collect callchain samples
using simpleperf as explained in Section 3.2.1, and current/voltage measurements as described in
Section 3.3.2. To implement steps 1 and 2, we walk through our sampler app’s logs in sequence,
creating a list of Python objects representing the logged data. We then sort the list by time, to ensure
that any out-of-order entries in the log are fixed. We then create a new list of Power objects by iterating
8https://perfetto.dev/
9https://source.android.com/docs/core/ota/modular-system/statsd
10https://developer.android.com/reference/android/content/Intent

https://perfetto.dev/
https://source.android.com/docs/core/ota/modular-system/statsd
https://developer.android.com/reference/android/content/Intent

22 3. Tool Design

Extract
current/voltage from

environment log

Create log of
calculated

instantaneous power

Extract callchains,
timestamps, and

sample periods from
simpleperf log Determine

instantaneous power
consumption during

each sample

Output intermediate
trace representation

1 2

3

5 6

Combine thread
samples

(if applicable)

4

Figure 3.3: Abstraction Process

over the voltage and current measurements, creating a new Power object by multiplying the most
recent current and voltage measurements each time either is updated. Step 3 is implemented using
the simpleperf tools provided as part of the Android NDK. The perf.data log output by simpleperf is
iterated over, and the callchain, timestamp, and period of each sample are copied to a Python object,
named AppState. We do not implement step 4, and explain this decision in Section 3.5.1.2. We then
combine the two lists of objects in step 5: for each AppState, we find the Power object with the closest
preceding timestamp, and add it to the AppState. This allows us to keep track of which AppState
samples were taken between Power measurements. Finally, for step 6, we output the AppState list,
along with a list of Power objects associated with one or more AppState objects.

3.5.1.2. Representation of Apps as Single-Threaded Programs
In our implementation, we have chosen to simplify the attribution process as follows: we assume that
the AUT uses no more than one thread at a time, allowing us to assume that each sample reported
by simpleperf was the only thread executing on the device CPU at the time of sampling. While this
assumption reduces the accuracy of our approach when multiple threads are executing simultaneously,
we were unable to find a reliable way to collect samples from multiple threads simultaneously. The
simpleperf --trace-offcpu flag records when a thread is scheduled on and off the CPU, and this
information could be used to determine which threads were running at the time of a sample. However,
we were unable to find a method with which to synchronize samples across all active threads, and thus
decided not to use it. Through manual analysis of app samples, we found that, outside of use-cases
involving heavy background processing, Android apps do not typically actively run multiple threads for
extended periods of time, which we believe reduces the impact of this assumption. We also purposefully
ignore other processes running on the system, as we cannot collect information over processes external
to the AUT without root access. We have also chosen to use the sample period reported by simpleperf
directly, instead of computing the true time between two samples. In our configuration, simpleperf
reports the period between samples on a single thread, with respect to that thread’s CPU time, rather
than app-global wall-clock time. This can cause two sequential samples to be closer or farther apart in
wall-clock time than the given period would imply. We justify this choice for two reasons: First, using
the provided period greatly simplifies our data collection, as – since Android apps frequently idle – we
would need to account for idle time when calculating sample periods otherwise. Second, the given
sample period guarantees that the sampled thread has run for the amount of time in the sample period,
allowing us to correctly account for the total CPU time of each thread, which we assert will limit the
impact of this decision.

3.5.2. Energy Attribution Approach
When attributing energy consumption to methods, we categorize it as either local and non-local. Lo-
cal energy consumption is defined as energy consumed while code ‘local’ to the method was being
executed – that is, code which is part of the method itself. Non-local energy consumption is defined

3.5. Data Analysis 23

Determine sample
count

Determine average
power draw

Calculate probability
of observation

Estimate total runtime Estimate energy
consumption

Calculate 95%
confidence intervals

1 2 3

4 5 6

Figure 3.4: Energy Attribution

as energy consumed while the method was present in the sampled callchain, excluding local energy
consumption.

A diagram of our energy attribution approach is shown in Figure 3.4. The steps shown in this figure
are performed twice per method – once each for local and non-local energy. In step 1, the total number
of either local or non-local samples is found from the intermediate trace representation. In step 2, the
average power draw for the method is calculated by averaging instantaneous power measurements
associated with it, as shown in Equation 3.7. Steps 3 and 4 are performed similarly to the method
used by ALEA [34], but with some modifications, and are further explained in Section 3.5.2.1. With the
estimated total runtime, we then estimate the energy consumption of the method, step 5, in Section
3.5.2.2. Finally, for each of the values calculated in steps 3 through 5, in step 6 we calculate 95%
confidence intervals as defined in Section 3.5.3.3.

3.5.2.1. Probability calculation
We use the method defined by Mukhanov et al. [34] to estimate the probability of each method being
sampled while actively executing, as well as 95% confidence intervals. We reproduce their methodol-
ogy here, explaining differences where appropriate. The primary change made in our version is that
we replace basic blocks with methods, as our approach only uses method-level granularity. We begin
by defining the random variable 𝑋𝑚𝑒𝑡ℎ𝑜𝑑 :

𝑋𝑚𝑒𝑡ℎ𝑜𝑑 = {
1 method is the sampled method
0 otherwise

(3.1)

In their probabilistic model, Mukhanov et al. define CPU ticks as units of a finite population (U),
and instantiate 𝑋𝑚𝑒𝑡ℎ𝑜𝑑 by sampling during a particular clock cycle. We instead use nanoseconds as
our units, to avoid the difficulties associated with variable clock speed, where CPU ticks do not have a
definite time period associated with them. The probability that method is sampled is thus:

𝑝𝑚𝑒𝑡ℎ𝑜𝑑 = 𝑃(𝑋𝑚𝑒𝑡ℎ𝑜𝑑 = 1) =
𝐶1𝑡𝑚𝑒𝑡ℎ𝑜𝑑
𝐶1𝑡𝑒𝑥𝑒𝑐

=
∑𝑘𝑗=1 𝑙𝑎𝑡𝑒𝑛𝑐𝑦

𝑗
𝑚𝑒𝑡ℎ𝑜𝑑

𝑡𝑒𝑥𝑒𝑐
(3.2)

∑𝑘𝑗=1 𝑙𝑎𝑡𝑒𝑛𝑐𝑦
𝑗
𝑚𝑒𝑡ℎ𝑜𝑑

𝑡𝑒𝑥𝑒𝑐
= 𝑡𝑚𝑒𝑡ℎ𝑜𝑑

𝑡𝑒𝑥𝑒𝑐
(3.3)

We define 𝑡𝑚𝑒𝑡ℎ𝑜𝑑 as the total CPU time of a given method. Approaches utilizing method/function
tracing generally record 𝑡𝑚𝑒𝑡ℎ𝑜𝑑 directly, by recording timestamps at method entry and exit. When
using a sampling-based approach, the total run-time of the method must be approximated based on
the recorded samples and the total run-time of the app under test. To calculate 𝑡𝑚𝑒𝑡ℎ𝑜𝑑, we multiply
the probability of the method being observed, 𝑝𝑚𝑒𝑡ℎ𝑜𝑑, by the total CPU time of the app, as in Equation
3.4.

In contrast to Mukhanov et al [34], we define 𝑡𝑒𝑥𝑒𝑐 as the sum total of the periods of each sample.
We do not sample using wall-clock time or a global metric such as cpu-cycles, and this change is
necessary to ensure that 𝑡𝑒𝑥𝑒𝑐 keeps the same relationship to the callchain samples.

24 3. Tool Design

Equation 3.2 thus represents the probability of sampling a method equaling the ratio of its CPU time
to the total CPU time of the app.

𝑡𝑚𝑒𝑡ℎ𝑜𝑑 = 𝑝𝑚𝑒𝑡ℎ𝑜𝑑 ⋅ 𝑡𝑒𝑥𝑒𝑐 (3.4)

In order to calculate the true runtime of a method, we need the true probability of it being observed in
a sample. However, the true probability is not known, and we must estimate it based on the collected
samples. Using the same process as Mukhanov et al. we find the maximum likelihood estimator
�̂�𝑚𝑒𝑡ℎ𝑜𝑑 for 𝑋𝑚𝑒𝑡ℎ𝑜𝑑 = 1 in Equation 3.5, where 𝑛 is the total number of samples collected, and 𝑛𝑚𝑒𝑡ℎ𝑜𝑑
is the number of samples where method was sampled.

�̂�𝑚𝑒𝑡ℎ𝑜𝑑 =
𝑛𝑚𝑒𝑡ℎ𝑜𝑑
𝑛 (3.5)

With �̂�𝑚𝑒𝑡ℎ𝑜𝑑, we are able to estimate the method’s total runtime, �̂�𝑚𝑒𝑡ℎ𝑜𝑑, in Equation 3.6.

�̂�𝑚𝑒𝑡ℎ𝑜𝑑 = �̂�𝑚𝑒𝑡ℎ𝑜𝑑 ⋅ 𝑡𝑒𝑥𝑒𝑐 =
𝑛𝑚𝑒𝑡ℎ𝑜𝑑 ⋅ 𝑡𝑒𝑥𝑒𝑐

𝑛 (3.6)

3.5.2.2. Energy model
We faced two major difficulties implementing Mukhanov et al.’s energy model [34]. First, while we used
simpleperf to collect the callchain, it is not capable of sampling energy consumption. This prevents us
from collecting energy samples in sync with callchain samples. Secondly, the update rate of energy
sensors found on typical Android devices is far lower than the devices used in their validation. However,
the low update rate enables us to use a different collection approach: we record every value reported
by the on-device sensors, and assign each callchain sample to one of these values. We chose to
assign each callchain the closest sample at an equal or earlier timestamp, however, other strategies
are also possible, such as interpolating between samples, or assigning to future samples.

While we use a different method for energy collection, the rest of the energy model remains the
same. Equation 3.7 shows the calculation of the maximum likelihood estimator of the mean power
draw of method, and Equation 3.8 shows the calculation of the maximum likelihood estimator of the
total energy consumed by method over the course of the test.

̂𝑝𝑜𝑤𝑚𝑒𝑡ℎ𝑜𝑑 =
1

𝑛𝑚𝑒𝑡ℎ𝑜𝑑
⋅∑𝑛𝑚𝑒𝑡ℎ𝑜𝑑𝑖 = 1𝑝𝑜𝑤𝑖𝑚𝑒𝑡ℎ𝑜𝑑 (3.7)

�̂�𝑚𝑒𝑡ℎ𝑜𝑑 = ̂𝑝𝑜𝑤𝑚𝑒𝑡ℎ𝑜𝑑 ⋅ �̂�𝑚𝑒𝑡ℎ𝑜𝑑 (3.8)

3.5.3. Our Implementation
Our implementation of the approach described in 3.5.2 consists of two phases: method extraction, and
post-processing. The method extraction phase is responsible for collecting information on each method
observed in the list of app states output by the process described in Section 3.5.1. This phase corre-
sponds with steps 1 and 2 in Figure 3.4. Once this phase is complete, we have sufficient information
for each method with which to perform steps 3 through 6.

3.5.3.1. Method Extraction
The first step of our implementation is responsible for extracting information on each observed method
from the sampled callchains. Our implementation follows the process shown in Figure 3.5a, which
is performed once per sampled app state. During this process, we maintain two global variables:
a dictionary mapping Function objects, which are our representation of methods, to their memory
address, as well as a sum of the periods of each app state.

First, step 1 is performed using the symbol address of the method containing the current instruction
at sample-time. Using this address, we check if a matching Function is present in our dictionary, and
if so, retrieve it. If not, we create a new Function and add it to the dictionary.

Step 2 and 3 are performed by incrementing counters in the Function object with the appropriate
values.

In step 4, we analyze the callchain of the sampled app state. For each unique entry in the callchain,
we perform the process shown in Figure 3.5b. This process is identical to the ‘local’ process described

3.5. Data Analysis 25

Look up method by
symbol address

Add sampled
instantaneous power

to local power
Analyze callchainIncrement local

sample count

1 2 3 4

(a) App State Analysis

Look up method by
symbol address

Increment non-local
sample count

Add sampled
instantaneous power
to non-local power

1 2 3

(b) Callchain Analysis

Figure 3.5: Method Extraction Phase

above, but increments different counters that track ‘non-local’ values. We filter duplicate callchain
entries to ensure that methods that appear multiple times in the callchain do have non-local run-time
attributed to them more than once per sample,.

Once this process has been performed for each sampled app state, each method observed during
sampling has been entered into our dictionary, and its average instantaneous power draw and sample
count, both local and non-local, are known.

3.5.3.2. Post-Processing
The second step of our implementation is the ‘post-processing’ phase shown in Figure 3.6, which
implements steps 3 through 6 of the process shown in Figure 3.4.

To perform this phase, we iterate over each method in the dictionary, and perform each of the four
steps in sequence for local and non-local samples. In step 1, we generate the maximum likelihood
estimator for the probability of observing the method as shown in Equation 3.5. In step 2, we use
this probability to estimate the total run-time of the method, as defined in Equation 3.6. In step 3, we
generate the estimated energy consumption of the method, as in Equation 3.8. As these generated
values, �̂�𝑚𝑒𝑡ℎ𝑜𝑑, �̂�𝑚𝑒𝑡ℎ𝑜𝑑, and �̂�𝑚𝑒𝑡ℎ𝑜𝑑 are maximum likelihood estimations, we are able to generate
confidence intervals, and EDATA provides 95% confidence intervals for all three.

Calculate probability Calculate estimated
runtime

Calculate energy
consumption

Calculate probability
intervals

1 2 3 4

Figure 3.6: Post-Processing Phase

3.5.3.3. Confidence intervals
We calculate confidence intervals, step 4 of our post-processing phase in Figure 3.6, using the same
method as Mukhanov et al. [34]. As we have not made modifications to their approach, we do not
reproduce it here. We generate 95% confidence intervals for each of the three maximum likelihood
estimators generated during post-processing. An example of the output for the observation probability,
�̂�𝑚𝑒𝑡ℎ𝑜𝑑, is shown in table 3.1.

In order to calculate the confidence intervals for instantaneous power, and thus energy, we filter the
samples to discard those with duplicate power samples, where the callchain samples were taken in
between updates from the device’s current sensor. This approach means that the confidence intervals
for energy consumption and power may not be centered on their displayed means, depending on the

26 3. Tool Design

update rate of the sensor and the chosen sample rate. We have chosen this approach as we observed
that not filtering duplicates could result in very small confidence intervals in some conditions, such as a
short test run with a high sample rate. Since these confidence intervals are provided for use by users
of EDATA, and our evaluation does not use them, we chose to discard duplicate power samples as we
consider this to be a more accurate representation of the “true” confidence of our measurements. We
note, however, that we have not fully validated this choice.

Local Probability Non-local Probability Local Probability Interval Nonlocal Probability Interval
0.25 0.00 [0.16, 0.33] [-1, -1]

Table 3.1: Sample data showing the probability of observing a function and the corresponding probability intervals

3.5.3.4. Interpretation of results
After completing this process, EDATA produces a list of methods, and reports the information provided
in table 3.2 for each method. “Local” metrics are calculated based on code executed within the body
of the listed method, excluding any function calls – in this case, the method listed was at the end of the
callchain. “Non-local” metrics are calculated based on code executed when the listed method appeared
in the callchain, but not at the end.

Output Data
Data Local Non-local Confidence Interval
Sample Count X X
Probability X X X
Runtime X X
Energy X X X
Average Power X X X

Table 3.2: Data provided in output of analysis step

3.6. Test Orchestrator
The final component of EDATA is the test orchestrator, which controls simpleperf as described in Sec-
tion 3.2, our data collection app as described in Section 3.3, and a test workload that can be defined
by the user. The test orchestrator handles all parts of the testing process, with the exception of any
one-time setup actions that are difficult or impossible to automate (such as performing a factory reset).

The test orchestrator splits the test process into a series of phases, which enables us to use a
modular design in which components implementing desired phases can be easily added to the test
process. Central to the test orchestrator is the primary test workload, which controls the app under
test, or AUT. This workload implements a separate interface to the rest of the components, as it has
a different set of responsibilities. There is also a sleep workload, which can be used for manually
performed tests, or for exploratory testing where no automated tests are available.

3.6.1. Test Process
The test process performed by the test orchestrator consists of four phases, including the primary test
loop. The primary test loop itself consists of five phases, and will be described in depth in 3.6.2. The
four phases are executed in the order shown in Figure 3.7, and each component may optionally define
a function to be executed in each phase. In this section, we will describe each of the phases carried
out by the test orchestrator and their general purpose. Section 3.7 will describe the specific actions we
implemented for each of these phases, if any.

3.6.1.1. Pre-test setup
This phase is performed before executing a ‘test loop’ which is a loop where a single test, with a single
configuration, is executed a fixed number of times. This step contains actions that need to be performed
between different tests in order to ensure a consistent test environment, but are not executed between
runs of the same test.

3.6. Test Orchestrator 27

Pre-test Warmup Test Loop Post-test

While iterations
remaining

Figure 3.7: Test Orchestrator Process

Startup Test Shutdown Loop Post-testLoop Pre-test

While iterations
remaining

Figure 3.8: Test Orchestrator Loop

3.6.1.2. Warmup
This phase performs a shortened version of the primary test workload to allow the ART to perform
profile-guided JIT compilation. We have observed that the stack traces generated by EDATA can vary
over the first minutes of execution, thus a separate warm-up phase is crucial to obtaining accurate data.

3.6.1.3. Post-test teardown
This phase is performed after the test loop has finished, and is the last phase in the test process. It is
primarily used for uninstalling the AUT from the device under test, but can be used for any actions that
should be performed after the test loop.

3.6.2. Test Loop
The test loop consists of five phases, and each phase is executed once for each iteration of a test,
as shown in Figure 3.8. As with each phase described in 3.6.1, components may optionally provide a
function to execute per-phase, with exception of the ‘test’ phase, which is exclusively managed by the
test workload.

3.6.2.1. Loop Pre-Test
The loop pre-test phase is intended for setup actions that may potentially run for long periods of time,
such as deletion of files or pre-processing of data.

3.6.2.2. Startup
The startup phase is intended for short-running actions that take place immediately prior to the primary
test workload. This phase is the final phase accessible to test components prior to the test workload,
so any components that must be activated on-device are started in this phase.

3.6.2.3. Test
This phase is exclusively accessible to the primary test workload. Three functions are provided as part
of the workload interface: start_test(), wait_for_test(), and stop_test(). These functions
are intended to perform last-second setup, block the test process until the workload has completed, and
immediate tear-down, respectively. As test workloads have access to each of the other test phases,
and data collection will be started prior to start_test() and ended after stop_test(), only short-
running, essential actions should be performed in this phase.

3.6.2.4. Shutdown
The shutdown phase is intended for short-running actions to be performed immediately following the
primary test workload, such as shutdown of each data collection component. As data collection com-
ponents will still be running in this phase until their shutdown function has been called, long-running
operations should not be placed in this phase.

28 3. Tool Design

3.6.2.5. Loop post-test
This is the final phase in the test loop, and contains potentially long-running operations such as copying
data to the host machine.

3.7. Empirical Evaluation Methodology
3.7.1. Testbench Setup
This step is taken prior to beginning a test or series of tests, and contains actions that do not need to
be repeated once completed. As these steps generally consist of manual actions, they are not part of
the scripts included in the test orchestrator.

Previous work highlights the importance of reducing the impact of environmental factors when mea-
suring energy consumption, and provide a number of guidelines on how to do this. Linares-vasquez, et
al. defined a methodology in which these factors are mitigated by enabling airplane mode, disabling all
other processes and services to the extent possible, and preventing the phone from moving to reduce
sensor power draw. Similar strategies are used by diNucci et al. [17] and Bouaffar et al. [6]. Jagroep
et al. identify similar concerns when measuring the energy use of applications running on a dedicated
server, and in addition to disabling unnecessary services, recommend allowing the system to enter a
’steady-state’ after rebooting to avoid interference from background operating system services. [24]

Following the examples laid out above, the test devices used for evaluation will be set up as follows:
We will remove all third party apps to the extent possible, either through regular uninstallation or by
performing a factory reset. The cellular modem will be disabled by use of airplane mode. Bluetooth
will be disabled through the system toggle, with the exception of test cases that make use of Bluetooth
hardware. The device’s display will be off, except for tests involving Bluetooth scanning, as the display
must be switched on to scan for devices.11

3.7.2. Pre-Loop
To prepare for a test loop, we first install the app under test using the command:
adb install -g /path/to/package.apk
The installed app is then AOT compiled using the command:
adb shell cmd package compile -m speed -f name.of.package

By performing AOT compilation on the installed app prior to testing, we intend to reduce the vari-
ation in energy consumption caused by execution of unoptimized code, as well as simulate a more
’production-accurate’ profiling environment, as some devices will automatically perform AOT compila-
tion during downtime.12

While the AOT compilation process will optimize the app, Android versions later than 7 also include
a JIT compiler that performs optimizations in cooperation with the AOT compiler.13 To reduce the
confounding effects of this compiler, we then run a shortened version of the current experiment for one
minute, followed by a two minute wait period to allow the system to enter a steady-state. As all of the
test cases used in validation contain little code, we expect this relatively short warmup period to be
sufficient for the JIT compiler to profile and compile the hot code in the test cases.

3.7.3. Primary Test Loop
The primary test loop is responsible for running a single iteration of a test. This loop consists of three
primary steps: setup, execution, and teardown. The setup and teardown steps are further split into
two, with each containing an ”immediate” and ”non-immediate” phase, such that short-running time-
sensitive actions can be performed immediately prior to or following the execution step. For brevity, we
do not explicitly describe these sub-phases.

First, in the setup step, the testing environment is set up. This includes preparatory steps taken
on both the test device and the host machine, and may differ between workloads. For example, the
Bluetooth test must ensure that the device display is active, and will perform this check in the loop setup
step.

11https://developer.android.com/reference/android/bluetooth/le/BluetoothLeScanner#
startScan(android.bluetooth.le.ScanCallback)

12https://source.android.com/docs/core/runtime/configure
13https://source.android.com/docs/core/runtime/jit-compiler

https://developer.android.com/reference/android/bluetooth/le/BluetoothLeScanner#startScan(android.bluetooth.le.ScanCallback)
https://developer.android.com/reference/android/bluetooth/le/BluetoothLeScanner#startScan(android.bluetooth.le.ScanCallback)
https://source.android.com/docs/core/runtime/configure
https://source.android.com/docs/core/runtime/jit-compiler

3.8. Case Study Methodology 29

Next, the execution step begins. In this step, simpleperf and the sampler service are both started,
followed by the test workload. Then, if desired, the test orchestrator will disconnect from wireless ADB,
to reduce the effect of ADB on the test results. The test workload component of the test orchestrator
uses a slightly different mechanism than the other components - it will sleep for the duration of the
execution phase, blocking the thread until the test is complete. It will then ensure that the on-device
test workload has exited before allowing the orchestrator to continue, which will exit the execution
phase.

Finally, in the teardown step, simpleperf and the sampler service will be shut down, and their
recorded data will be copied from the device to the host machine. Test workloads may also imple-
ment functionality for this step, such as the random workload, which retrieves test information from the
device’s logcat.

3.7.4. Post-Loop
This step is performed after a test loop has been completed, and is the last step taken by the test
orchestrator. In this step, we remove the AUT from the device, clearing its data and JIT cache. This
ensures that the environment will remain the same between different tests, making our process more
consistent.

3.8. Case Study Methodology
3.8.1. Prior Work
Pereira et al. [40] evaluate their SPELL toolkit by providing developers with a simple programs known
to contain energy bugs, and assigning them to use either the SPELL toolkit, an existing profiler, or
neither of the two to modify them to reduce energy consumption. They then evaluated the modified
programs to ensure no bugs were introduced, and measured their energy consumption and execution
time. They then evaluated the behavior of the test participants, observing which methods they chose
to modify and how long they took to make their modifications.

3.8.2. Our Approach
Our case study focuses on the use case where a developer uses our tool to identify energy “hot spots”
in their code. To perform this case study, we identified a use case known to cause excessive battery
drain in cooperation with developers responsible for maintaining a particular app. Once these use cases
were identified, we manually performed test scenarios while running our tool, and provided the results
to the developers in CSV form. Due to restrictions regarding the app build process, it was necessary
to perform these tests with the app compiled in debug mode, instead of release mode.

4
Evaluation

The goal of EDATA is twofold; We want to provide information on the relative energy consumption of
individual methods for a given program trace, as well as compare two traces to each other to determine
whether there is a meaningful difference between them. In order to validate our approach, we have
defined the following research questions:
RQ1: Can we use information collected from on-device sensors on Android devices to identify
energy bugs through energy regression testing?
RQ2: Can we rank methods within Android apps by their energy consumption using a callstack-
sampling approach?
RQ3: Does providing developers with an ordered list of methods ranked by energy consump-
tion aid in identifying and fixing energy bugs?

This chapter introduces each of these research question, relates them to the energy debugging and
energy testing use cases of EDATA, and defines the methodology with which we will answer each of
these questions.

4.1. Test Devices
We performed our evaluation on two test devices, an Adyen AMS1 and a Google Pixel 6a. These
devices significantly differ in both hardware and software, which gives us some insight into how energy
consumption characteristics can differ based on the device being used. We performed our empirical
evaluation using 20 iterations per test on the AMS1, and 30 on the Pixel 6a. Our case study was per-
formed exclusively on the AMS1, as it involved purpose-built Adyen software. Though we originally
targeted EDATA to the AMS1, we chose to include the Pixel 6a as it is commodity hardware publicly
available, and can be used by others to reproduce our results. It also allows us to compare our re-
sults across different devices, as the AMS1 and Pixel 6a have very different hardware and software
characteristics.

4.1.1. Device Specific Information and Specifications
AMS1

The AMS1 contains some background services which cannot be disabled. It is possible, and likely,
that these services affect the energy consumption of the device, and therefore disturb the measure-
ments taken. As the AMS1 specifications are not public knowledge, we have intentionally not provided
them here.

Pixel 6a The Pixel 6a test device was factory reset prior to testing, and was not signed into a Google
account. Airplane mode was enabled, and no SIM card or eSIM was present in the device. The relevant
specifications of the Pixel 6a are as follows:

• CPU: Google Tensor – 2x Cortex X1, 2x Cortex A76, 4x Cortex A55

• RAM: 6GB LPDDR5

31

32 4. Evaluation

• Display: 1080 x 2400 OLED

• WiFi: WiFi 6e

• Bluetooth standard: 5.2

• Battery: Li-Po 4410 mAh

4.2. RQ1: Energy Testing
The goal of energy testing is to identify differences in energy consumption between versions of the
same software, which may indicate the presence of an “energy bug”. Energy testing can be performed
in a number of settings. For example, a developer might want to locally test a set of changes they made
to determine whether or not they will negatively affect battery life. Energy testing may also be made part
of a continuous integration pipeline, so that an organization can test release candidates automatically
to find energy bugs.

In order to validate our approach with respect to energy testing, and answer RQ1, we need to
compare two or more versions of an app with known differences in energy consumption. We have
chosen to create our own test cases, identifying five scenarios in which we expect to see a measurable
difference in energy consumption. The first three of these are a set of code smells, which we have
chosen due to prior work which found that methods containing these smells consume more energy
than when those smells are removed [38]. The second type of workload does not change its behavior
on the CPU between versions, but instead activates various hardware modules commonly found and
used on mobile devices.

4.2.1. Code smells
We chose to compare differences between “code smells” that are known to cause an increase in en-
ergy consumption, as these are well-defined and can be easily implemented in isolation. For ease of
implementation and portability, we restricted our selection of code smells as follows: Firstly, due to
limitations of our tool, increased energy consumption at times when no thread of the app under test is
being executed will not be detected. Energy bugs such as forgotten wakelocks will, therefore, not be
detected. To avoid this scenario, we limit our selection of code smells to those involving active execu-
tion of code. Secondly, we want to avoid having our validation process depend on something outside
of the device under test, such as fetching data from the internet. We therefore exclude code smells
that involve accessing a network. With this restrictions in mind, we identified the following three code
smells from Palomba et al. [38] as being suitable to our validation process: internal setter (IS), slow
for loop (FOR), and member ignoring method (MIM). Each of these code smells has been observed
to (drastically) increase the energy consumption of their containing method [38]. In the case of MIM,
at least part of the energy consumption increase is caused by the use of dynamic binding instead of
static binding1, which increases the overhead involved in each function call. As this is a core feature of
the Java language, we do not expect the differences between fixed and “smelly” versions of this code
smell to have been optimized since it was observed.

In addition to validating our approach based on these code smells, we will investigate whether or
not these code smells are still relevant on newer versions of Android. As Palomba et al. [38] used
Android 5.1.1, some features of the Android Runtime (ART), such as just in time (JIT) compilation,
were not yet implemented, and may have an effect on the energy consumption of code smells. We
also want to compare the difference between debug and release builds, as the ability to run profilers
on release-mode builds was not yet available in this Android version, and may also affect the energy
efficiency of code, due to the reduced optimizations applied in debug mode.

4.2.2. Hardware-based workloads
In order to validate the effectiveness of our approach at detecting changes in the energy consumption
of hardware aside from the CPU, we have added two workloads that are designed to induce energy
consumption changes in other hardware modules.

The first of these workloads activates a Bluetooth low energy scan at defined intervals. By altering
the duration and frequency of the scan, we expect to observe differences in the energy consumption of
1https://www.geeksforgeeks.org/static-vs-dynamic-binding-in-java/

https://www.geeksforgeeks.org/static-vs-dynamic-binding-in-java/

4.3. RQ2: Energy Debugging 33

the device over a period of time. In order to make these differences visible to our tool, which requires
actively running threads in order to measure energy consumption, we will run a basic cpu-based work-
load at regular intervals. Since this workload will be consistent across all configurations of the test, we
do not expect it to influence our results.

The second of these workloads activates the accelerometer sensor on the device, registering a
SensorEventListener2 with the SensorManager to request updates from the sensor at a given
frequency. To ensure that the values from the sensor are used, and that our tool is able to measure
differences in energy consumption, we store the values received from the sensor in a volatile variable,
and perform a number of addition operations using this data at a fixed rate. Aside from updating the
stored values, no computation is done in the SensorEventListener callbacks, to avoid significantly
increasing the amount of work done by our test when the update rate of the sensor is increased.

4.3. RQ2: Energy Debugging
Our approach to energy debugging provides the user with a list of methods, ranked by the total energy
consumed during the recording. In order to test this, we first need a ground truth with which to compare
our estimated ordering. As we were unable to find any recent works which performed a similar analysis,
we chose to create our own ground truth using execution time as a proxy for energy consumption.

We generate our ground truth using random selection of six workload classes, each of which uses
the same workload inlined from a common function, containing the loop shown in Figure 4.1.

Figure 4.1: Main loop of randomly selected workloads

At the beginning of the test, the random workload randomly generates a probability for each of the
six classes to be chosen during each time step. This ensures that there will be measurable differences
between the different classes. During execution of the workload, in steps of the chosen time interval,
a selection is made between actively working, or sleeping. If active work is selected, then a function is
called to randomly select one of the classes using the generated probabilities. Algorithm 1 shows this
selection methodology.

Algorithm 1 Random Test
procedure RandomTest(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒, 𝑠𝑙𝑒𝑒𝑝_𝑝𝑟𝑜𝑏)

while 𝑒𝑙𝑎𝑝𝑠𝑒𝑑_𝑡𝑖𝑚𝑒 < 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 do
if randomFloat(0, 1) < 𝑠𝑙𝑒𝑒𝑝_𝑝𝑟𝑜𝑏 then

Sleep(interval)
else

𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 ← getWorkload()
workload.workFor(interval)

end if
end while

end procedure

Each time a workload is executed, timestamps at the beginning and end of each timestep are taken
and added to a total execution time log that is tracked for each workload, as well as for sleep. After
the test has ended, these timestamps are printed to the system logcat, and collected by the test
orchestrator. The test orchestrator then calculates and records the proportion of runtime taken by
each of the classes, both with and without including time spent sleeping.

2https://developer.android.com/reference/android/hardware/SensorEventListener

https://developer.android.com/reference/android/hardware/SensorEventListener

34 4. Evaluation

4.3.1. Execution Time as Proxy for Energy Consumption
Relating execution time to energy consumption is controversial, and prior work can be found which
both agrees [12] and disagrees [22, 8] with this relation. Corral et al. [12] used a set of CPU and
RAM intensive benchmarks on an Android device, and concluded that for these cases, execution time
was directly correlated with energy consumption. Hao et al. [22] investigate the energy consumption
of real-world apps, which have different execution characteristics than synthetic benchmarks. For ex-
ample, real-world apps generally make network requests, which are a known cause of high energy
consumption [43]. They concluded that there is little to no relation between execution time and energy
consumption in the context of mobile apps. Chowdhury et al. agree with this, and further note that
decreasing the execution time by way of performance optimizations may cause the CPU to be put into
a higher frequency state, increasing its power draw and raising (or failing to lower) energy consumption
[8].

Our validation process most closely resembles that of Corral et al. [12]: We use a simple loop
that performs only a few operations, which are expected to heavily load the CPU and no other system
components. We make one call to System.nanoTime() within this loop, but only make this call every
million loops to reduce its impact on the energy consumption of the benchmark. Further, we have
inlined the same function into each of our test classes, ensuring that the workload is exactly the same
regardless of which class’s work()method is executing. We therefore have ruled out the confounding
effects of network requests, display state, and processor power states, and consider execution time to
be an effective proxy for energy consumption for this scenario.

We also note the difference between execution time – commonly understood as the wall-clock time
of a program or thread’s execution – and CPU time – the time that a program/thread is scheduled on the
CPU. Our test uses execution time as a baseline, as wall-clock timestamps are taken at the beginning
and end of each timestep. The configuration we use with simpleperf, however, uses CPU-time-based
timers, which do not increment if a thread is scheduled off-CPU. Since we are measuring energy con-
sumption, not CPU-time, we do not consider this to be a threat to the validity of our evaluation.

4.4. RQ3: Adyen POS Case Study
In addition to our empirical evaluation, in which we evaluate EDATA’s performance against known
software in a controlled environment, we performed a case study at Adyen, where we used EDATA to
investigate an energy bug on the point of sale (POS) software shipped with our test device, the AMS13.
In addition to answering RQ3, we performed this case study in order to validate EDATA in a real-world
scenario, to complement our empirical evaluation which used synthetic tests. In addition to the primary
focus of RQ3, we will also investigate how our information is used by the developer, to determine what
is most useful to the development process, and what can be improved.

In this case study, we cooperate with a developer tasked with solving an energy bug causing exces-
sive idle battery drain, known to appear only when the Adyen POS software is installed on the device.
We take an iterative approach to our case study: We analyze the Adyen POS software with EDATA,
and deliver the ordered list of methods to the developer. We also assist with interpretation and con-
textualization of the results, if necessary. Once a change has been made, we evaluate the software
and repeat the process. By comparing the debugging progress made before and after the start of our
case study, we will answer RQ3: Does providing developers with an ordered list of methods ranked by
energy consumption aid in identifying and fixing energy bugs?

3https://www.adyen.com/pos-payments/terminals/ams1

https://www.adyen.com/pos-payments/terminals/ams1

5
Results

In the following chapter, we evaluate each of our research questions, with specific focus on the eval-
uation laid out in chapter 4. Findings outside of these will be briefly noted, and discussed further in
chapter 6. We will primarily focus on results gathered from the Google Pixel 6a, as this device is more
relevant to the current state of the art, using a modern CPU and up-to-date Android version – Google’s
Tensor CPU and Android 13, where the AMS1 uses Android 10. Further, our results are mostly con-
sistent between this device and our AMS1 test device. Differences between the two will be noted, and
discussed where relevant.

5.1. RQ1: Can we use information collected from on-device sen-
sors on Android devices to identify energy bugs through en-
ergy regression testing?

In this section, we evaluate the effectiveness of EDATA in energy testing, by running multiple versions
of a workload with changes introduced between the versions that either alter the characteristics of the
workload or the hardware utilization of the device in a way that is known to affect energy consumption.
It is important to note that these workloads are not intended to be directly compared to each other,
as different amounts of work have been performed in each workload in an attempt to roughly align
their release-mode runtimes. We perform similar adjustments between devices, and so cannot directly
compare the energy consumption of the AMS1 to the Pixel 6a, except where noted.

5.1.1. Code Smell Tests
5.1.1.1. Internal Setter
EDATAwas able to identify significant differences between the unfixed internal setter (IS) smell, in which
our test case used getter and setter methods with public visibility, and a fixed version of the workload
in both release and debug modes on both the AMS1 and Pixel 6a, with 𝑝 ≪ 0.01 in all cases. When
using a private visibility setter, we found that, in release mode, there was no significant difference
between a fixed and unfixed version of the workload on either device. In debug mode, however, the
energy consumption of the test was significantly increased, by over 3.5 times on the Pixel, and just
under 3x on the AMS1. This indicates that private setters, at least the trivial setters used by our
workload, are fully optimized away in release mode, but not in debug mode.

5.1.1.2. Member Ignoring Method
As with the IS code smell, EDATA was able to identify differences between the workload containing
a public visibility member ignoring method, and one where this method was declared as static. We
have chosen not to test using a private visibility method, as the results are similar to those of the
IS smell. On both devices, the differences were statistically significant with 𝑝 ≪ 0.01. However, we
note a significant difference in the effect of the unfixed member ignoring method (MIM) smell when
using release mode between the two devices. On the Pixel 6a, we find an increase in median energy
consumption of about 12.6%, shown in Figure 5.1c. On the AMS1, however, we find an increase of

35

36 5. Results

about 94.4%, shown in Figures 5.2c and 5.2d. Additionally, there is little increase in energy consumption
when using debug mode in combination with the unfixed variant, where on the Pixel there is a similar
increase for both variants. This discrepancy could be caused by optimizations present in Android 13
that are not present in Android 10, but conclusively attributing a source to this phenomenon is out of
scope for this thesis.

5.1.1.3. Slow For Loop
Unlike the other two code smells tested, we did not observe a significant difference between fixed and
unfixed variants of the slow for loop (FOR) smell in releasemode on either the Pixel or AMS1 (𝑝 ≫ 0.05).
In debug mode, however, we observed a difference between fixed and unfixed variants on both devices
(𝑝 ≪ 0.01), but this difference was in opposite directions. On the Pixel, we found a median reduction
in energy usage of about 26 Joules when fixing the code smell, or about a 2.6% reduction. On the
AMS1, we observed a 2.2 Joule increase - or 1.39%. We further observed the surprising result that,
on the AMS1, debug mode appears to add no overhead, with the energy consumption median energy
consumption being slightly lower.

When running our first iterations of the FOR test on the Pixel 6a, we noticed that the test finished
much faster than expected when using the same parameters as the AMS1. Where the ’fixed’ test in
release mode ran for about two minutes with 3000 iterations of its outer loop, running for two minutes on
the Pixel 6a required 40000 iterations - over ten times as many. We did not observe a similar speedup
for other code smells, and thus interpret these results to indicate that the AMS1 is bottlenecked by
something other than raw CPU speed, such as memory bandwidth, cache, etc. This could also explain
the lack of overhead observed when using debug mode, as the CPU may be spending enough time
waiting for some operation to complete that the extra overhead generated by debug mode does not
appear in the energy consumption. We therefore are hesitant to draw strong conclusions on our primary
research question from this code smell on the AMS1, but use it as a lesson learned - hardware may
have unexpected effects on the energy consumption of code, and general assumptions may not hold
true on all devices.

5.1.2. Hardware-Based Tests
In contrast to the prior tests, our hardware-based tests use identical parameters on both the AMS1
and Pixel test devices. We will therefore compare the two devices directly in some of these tests, and
show the difference in energy consumption from one device to another. While these differences do
not directly answer any of our research question, they highlight that, given a particular workload, it is
essential to perform energy validation when selecting appropriate hardware.

5.1.2.1. Accelerometer
We chose to compare three different update intervals in our accelerometer test: 2Hz, 20Hz, and 200Hz.
EDATA was able to detect energy consumption differences between each of these tests, on both test
devices, as shown in Figure 5.3. In all cases on both test devices, there was a statistically significant
difference between each of the update intervals, with the closest in both cases being between 2Hz and
20Hz. On the Pixel, the median increased by about 4.4%, with a p-value of 0.0014. On the AMS1, each
of our comparisons was significant with 𝑝 ≪ 0.01, and the difference in median energy consumption
between 2Hz and 20Hz rates was 4.57%, very slightly higher than that of the Pixel, though with a larger
absolute difference due to the overall higher energy consumption. On both test devices, the difference
between 20Hz and 200Hz update rates was much more significant, with p-values ≪ 0.001.

5.1.2.2. Bluetooth
We chose to compare two parameters for our Bluetooth tests: scans lasting 1000ms and 200ms, both
repeating every 10 seconds. Initially, we chose to use the Random workload with a single class active
and a 60% chance to sleep. This was intended to simulate a real-world app, that will not actively use
the CPU 100% of the time.

We found that, using 60% sleep, we were unable to detect the difference between the two scan
lengths with statistical significance. On the Pixel, the medians of the two sets of tests differed by
about two Joules, but this difference was not statistically significant (p-value: 0.455). The AMS1’s
results were similar, with a difference in median consumption of 2.76J, also not statistically significant
(p-value: 0.337). In light of this, we decided to re-run our tests with a sleep probability of 0 to rule out

5.1. RQ1: Can we use information collected from on-device sensors on Android devices to identify
energy bugs through energy regression testing? 37

Private Public Fixed
0

25

50

75

100

125

150

175

200

Jo
ul

es
 C

on
su

m
ed

Release
Debug

(a) Internal Setter

Fixed Unfixed
0

200

400

600

800

1000

1200

Jo
ul

es
 C

on
su

m
ed

Release
Debug

(b) Slow For Loop

Fixed Unfixed
0

50

100

150

200

250

Jo
ul

es
 C

on
su

m
ed

Release
Debug

(c) Member Ignoring Method

Figure 5.1: Code Smell Results - Google Pixel 6a

38 5. Results

Fixed Unfixed
0

25

50

75

100

125

150

175

Jo
ul

es
 C

on
su

m
ed

(a) Slow For Loop - Release Mode

Fixed Unfixed
0

25

50

75

100

125

150

175

Jo
ul

es
 C

on
su

m
ed

(b) Slow For Loop - Debug Mode

Fixed Unfixed
0

50

100

150

200

250

300

350

Jo
ul

es
 C

on
su

m
ed

(c) Member Ignoring Method - Release Mode

Fixed Unfixed
0

50

100

150

200

250

300

350

Jo
ul

es
 C

on
su

m
ed

(d) Member Ignoring Method - Debug Mode

Private Public Fixed
0

100

200

300

400

500

Jo
ul

es
 C

on
su

m
ed

Release
Debug

(e) Internal Setter

Figure 5.2: Code Smell Results - Adyen AMS1

5.2. RQ2: Can we rank methods within Android apps by their energy consumption using a
callstack-sampling approach? 39

2Hz 20Hz 200Hz
Accelerometer Update Rate

0

2

4

6

8

10

12

Jo
ul

es
 C

on
su

m
ed

(a) Pixel 6a

2Hz 20Hz 200Hz
Accelerometer Update Rate

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Jo
ul

es
 C

on
su

m
ed

(b) AMS1

Figure 5.3: Accelerometer Test Energy Consumption

the possibility that the results were influenced by the device randomly sleeping during Bluetooth scans,
and thus not recording the extra energy consumption. In these tests, we found that the median energy
consumption of the test decreased by nearly 8 Joules when using a longer scan period on the Pixel,
with noticeably smaller IQR and range. The result was also statistically significant, with a p-value of
0.001. The cause of this result is unclear, but could be attributed to optimizations performed by the
Android system or differences in the environment, particularly in the number of Bluetooth LE devices
being detected during the scans. On the AMS1, we did not repeat this result. The median energy
consumption increased by 4.7J, with a p-value of 0.047. Plots of our Pixel results are shown in Figure
5.4, and our AMS1 results are shown in Figure 5.5

5.1.3. Conclusion
In the majority of our tests, EDATA is able to clearly distinguish between the energy consumption of
different workloads, showing trends that align with our expectations. While the results of our evaluation
of the FOR code smell and Bluetooth LE scan do not (fully) show the expected increase in energy con-
sumption, we do not believe that these provide evidence against the efficacy of EDATA, and accurately
represent the true energy consumption of our tests. We therefore conclude that the answer to RQ1
is yes: It is possible to use the information collected from on-device sensors on Android devices to
identify energy bugs.

5.2. RQ2: Can we rank methods within Android apps by their en-
ergy consumption using a callstack-sampling approach?

In this section, we evaluate RQ2 using the methods described in Section 4.3. While we are primarily
concerned with the ordering of the methods, and less with the precise energy consumption estimates,
we use the mean magnitude of relative error (MMRE) as our metric, as a low MMRE implies that the
ranked ordering of results is accurate. MMRE is used by similar works [17, 18, 34], and is considered
to be a standard metric for effort estimation models, with an accepted upper threshold of 0.25 [7].

5.2.1. Selection of test parameters
We evaluate the effect of the following parameters on EDATA: Runtime, sample rate, and workload
selection interval.

In order to evaluate the effect of test runtime on the accuracy of our estimates and method ordering,
we selected two test lengths: two minutes and ten minutes. Due to time constraints, we chose not to
evaluate all of our parameters at the ten minute length, leaving out 100ms workload selection intervals

40 5. Results

(a) 60% Sleep Chance (b) 0% Sleep Chance

Figure 5.4: Bluetooth - Pixel 6a

200ms 1000ms
Period of active scanning

45

50

55

60

65

70

75

80

Jo
ul

es
 C

on
su

m
ed

(a) 60% Sleep Chance

200ms 1000ms
Period of active scanning

165

170

175

180

185

190

195

Jo
ul

es
 C

on
su

m
ed

(b) 0% Sleep Chance

Figure 5.5: Bluetooth - AMS1

5.2. RQ2: Can we rank methods within Android apps by their energy consumption using a
callstack-sampling approach? 41

for all sample rates except 2Hz. We do not consider this to weaken our results, as due to the high accu-
racy observed when using 100ms intervals with sample rates above 10Hz, there is little improvement
to be found when extending the test duration.

We selected three sample rates for our evaluation: 2Hz, 10Hz, and 100Hz. We selected these
sample rates for two reasons: Firstly, higher sample rates increase the amount of data collected and
the overhead of collection. As EDATA is designed to be used in a production or near-production envi-
ronment, we want to use sample rates that we expect would have low enough overhead to be usable in
such an environment. Additionally, while increasing sample rate will make our probablistic estimates of
method runtime more accurate, they will not increase the granularity of our power draw measurements.
As the maximum update rate we observed on our test devices is 5Hz, even the ”middle” sample rate
of 10Hz will exceed the update rate of power draw. Thus, we expect diminishing returns by further
increasing the sample rate. Finally, as our test uses fixed workload selection intervals, increasing the
sample rate such that multiple samples occur during a single selection will have little to no effect on
the results. We therefore chose to limit our test to three sample rates, all of which are relevant to the
workload selection intervals chosen.

We selected two workload selection intervals: 10ms and 100ms. The workload selection intervals
determine how long each workload class will run before being stopped and a new class (or sleep) is
selected. We chose these two intervals as they allow us to test the following scenarios:

• Selection interval much faster than sample rate, with varied runtime (10ms, 2Hz)

• Selection interval matching sample rate vs selection interval shorter than sample rate, with varied
runtime (100ms, 10Hz vs 10ms, 10Hz)

• Selection interval always equal or slower than sample rate, with varied runtime (100Hz sample
rate)

We consider these cases to be sufficient to evaluate the effectiveness of EDATA in ordering meth-
ods.

5.2.2. Results
With the Pixel test device, we found that EDATA was able to effectively order the six methods. In
all of our test cases, the MMRE was low, with the highest observed difference (corresponding to the
worst-case scenario tested) being about 0.203 on the Pixel test device. This remains below the upper
threshold of 0.25, and as such can be considered to be sufficiently accurate. As shown in Figure 5.6a,
the MMRE is highest when using a 2Hz sample rate. This is an expected result, as the lower sample
rate limits the ability of EDATA to estimate the likelihood of a method being executed, and thus the
energy consumption. Unexpectedly, we see that using a 100Hz sample rate with a 100ms selection
interval increases the MMRE slightly compared to 10Hz. We believe this to be caused by random
error, such as interference from background tasks, and in both cases the difference is small enough
as to be irrelevant for practical use. By comparing the 10ms selection interval between two and ten
minute runtimes, we see that the increased run-time greatly improves the performance of our method
orderings, with the 2Hz sample rate over ten minutes outperforming a 10Hz sample rate over two
minutes. As the total number of samples should remain (roughly) the same, with some variance due
to the random chance of sleeping, these results indicate, but do not conclusively prove, that increasing
test duration may be more effective than increasing sample rate, but that both options perform well.

On our AMS1 test device, our tests produced similar results to those on the Pixel, and are shown
in Figure 5.6b. We note two surprising differences to our Pixel results: First, the maximum MMRE
observed is 0.1796, on the 10ms-2m test. This is a reduction of about 0.02 from the MMRE observed
on the same test on the Pixel device, which we expected to have a lower or equal MMRE due to its
shorter current sampling interval. In addition to this, the MMRE of the 10Hz and 100Hz sample rate
tests on the 100ms-2m test were significantly lower on the AMS1 than on the Pixel, with the largest
difference being observed on the 100Hz sample rate, with the MMRE being only a quarter of that on
the Pixel. This effect could be caused by the lower current reporting rate on the AMS1 reducing the
effect of random variations in energy consumption on our measurements compared to that of the Pixel.
Since we use run-time as a proxy for energy consumption in this test, random variations in power draw
will likely result in an increase in error, and the lower current sample rate of the AMS1 means that a

42 5. Results

100ms - 2m 10ms - 2m 10ms - 10m
0.00

0.05

0.10

0.15

0.20

M
ea

n
M

ag
ni

tu
de

 R
el

at
iv

e
Er

ro
r

0.213075
0.200553

0.10477

0.0617736

0.10368

0.0459357

0.0627434

0.0194368
0.009341

2hz 10hz 100hz

(a) Pixel 6a MMRE

100ms - 2m 10ms - 2m 10ms - 10m
0.00

0.05

0.10

0.15

0.20

M
ea

n
M

ag
ni

tu
de

 R
el

at
iv

e
Er

ro
r

0.17316
0.179601

0.0751807

0.038538

0.0687337

0.0315405

0.0152685 0.00977036 0.00405277

2hz 10hz 100hz

(b) AMS1 MMRE

random spike in energy consumption will probably be attributed to multiple methods in our test, reducing
its effect.

5.2.3. Conclusion
Our results show that, even when using a low sample rate combined with a short run-time, the MMRE of
our estimations remains under a maximum threshold of 0.25, commonly considered to be an adequate
upper bound for estimation accuracy [17, 7]. We therefore answer yes to RQ2, and conclude that
we are able to rank methods within Android apps by energy consumption using a callstack-sampling
approach. However, in light of our decision to use the run-time as a proxy for energy consumption,
and the differences we found between the AMS1 and Pixel test devices, future work should investigate
whether our results transfer to more complex, real-world apps in which run-time may not be directly
associated with energy consumption.

5.3. RQ3: Does providing developers with an ordered list of meth-
ods ranked by energy consumption aid in identifying and fix-
ing energy bugs?

5.3.1. Case Study Progression
Our case study focused on solving an issue identified in the Adyen software bundled with the AMS1:
excessive idle energy drain causing the device to deplete its battery in under 24 hours without being
used. The developer responsible for solving this issue, henceforth ‘Developer A’, had confirmed that the
bug was caused by the Adyen software by uninstalling the app, which caused an immediate increase in
battery life. Developer A had, before our case study, attempted to use Android Studio’s built-in energy
profiling tools, but was not able to get any meaningful data from them.

We first evaluated the Adyen software using EDATA by defining a suitable test case - in this case
to leave the device idle with the display off - and performing a single hour-long energy analysis, using
a 100Hz sample rate. We then filtered this list to methods in an adyen package to reduce our search
space to those that were part of the Adyen codebase. Finally, we identified one method whose callchain
consumed over 20% of the recorded energy consumption. We noted that the energy consumption
recorded seemed extremely small for the amount of battery being used, at slightly over 22 Joules, where
the energy consumption over an hour should have exceeded 2000 Joules. We gave this information to
Developer A, who agreed that this method should not be consuming much energy during idle states,
and investigated further.

After some time, we received a new build of the software from Developer A, who had removed the
functionality we identified. We performed a new test using EDATA, using both a 10 minute and 1 hour
runtime with a 10Hz sample rate instead of 100Hz. We found that very few samples were collected,
even over the course of an hour, which indicated that the energy bug had been fixed. However, Devel-

5.3. RQ3: Does providing developers with an ordered list of methods ranked by energy consumption
aid in identifying and fixing energy bugs? 43

oper A stated that this was not the case, and that, by observing the battery level over time, they found
only a small improvement in battery life. After some investigation, we were able to identify the problem:
using a slow sample rate caused EDATA to miss nearly all of the Adyen app’s energy consumption.
After performing another test using a 500Hz sample rate, we found that the energy consumption over
10 minutes was more than 100 Joules, which is much more in line with our expectations. While this
does not fully account for the battery drain we observed, we expected this to be the case as EDATA will
not record energy consumed by any software outside of the application under test (AUT). We further
ran 10 tests of 10 minutes each at 500Hz, and found that the median energy consumption attributable
to the Adyen software was 126 Joules, or approximately 756 Joules per hour. Since this is less than
a third of the device’s total energy consumption, and it is unlikely that we would be able to reduce this
to a level that would resolve the energy bug without compromising the function of the software, we
concluded that, while there were opportunities for energy efficiency improvements within the code of
the Adyen software, we should focus on potential causes aside from code execution.

Our first step was to investigate the Adyen software using the Android Studio debugger. We found
that, due to poor UX design in combination with several UI bugs, it was not clear how to activate the full
set of energy debugging tools, and some of these tools had been missed during Developer A’s initial
investigation. Once activated, we found that a partial wakelock was being constantly held by the Adyen
software while the device’s display was off. Partial wakelocks prevent the system from entering deep
sleep states, and thus have a large effect on the battery life of the device. We tested a build of the Adyen
software with this wakelock disabled, and found that the energy consumption was dramatically reduced
compared to our prior fix, with a median energy consumption of 12.4 Joules over 10 minutes, a 90%
reduction. Due to the limitations of EDATA, we’re unable to verify a reduction in energy consumed by
sources outside of the Adyen software, so we added an additional test: we collected the battery charge
level in percent from Android Debug Bridge (ADB) at the beginning and end of each test. This allows
us to compare the overall battery life of the device in a controlled test. We tested all three versions of
the Adyen software; the current master branch, our first fix, and our wakelock removal, and found that
the mean percentage decrease over ten minutes was 1.4%, 1.3%, and 0.3 respectively. We further
observed that the device was capable of lasting much longer, over 24 hours, before the battery would
be fully depleted. We thus concluded that our second fix successfully resolved the energy bug.

5.3.2. Bug Resolution
Developer A informed us that the root cause we identified was not unintended behavior, but rather in-
herent to the design of the Adyen software. The fixed version of the software we tested could therefore
not be used as-is, and functional changes would need to be made to remove the wakelock. During dis-
cussion of the necessary changes, we spoke with Developer B, who had been advocating for changes
to this behavior for some time, but was unable to find support for their proposed changes due to a lack of
quantifiable evidence of the impact the current architecture had on battery life. Once our findings were
presented by Developer A, the team responsible immediately supported changing their architecture
such that a permanent wakelock would no longer be necessary. The shift in dynamic was immediate,
in spite of the effort required to implement the change.

5.3.3. Developer Interview
After concluding our case study, we conducted an interview with Developer A. In this interview, we
asked them about how they approached the debugging process before the beginning of our case study,
and what difficulties they faced when using existing tools. We then asked which features of EDATA
contributed to solving the energy bug, and how they used them in the debugging process. Finally, we
asked if they would use method-level energy consumption data in their development process in the
future, if it were provided (for example) as part of a continuous integration pipeline.

5.3.3.1. Challenges of existing tools
Developer A was not experienced in energy debugging, and was unsure of both how to profile the
energy consumption of the Adyen software, and what to look for. As the software consists of both
native and java virtual machine (JVM) code, it was mandatory that an energy profiler support both, or
the information collected would be incomplete. Another added complexity is networking - since the
primary function of the software is to act as a point of sale (POS) device, any active use of the software
would involve network communication, which can have a significant effect on energy consumption.

44 5. Results

Therefore, in a scenario where, for example, battery life was insufficient during active use, an energy
debugger would need to correctly account for energy consumed by networking. In their initial investiga-
tion, Developer A used the Android Studio profiler to collect energy data. they found the output of the
profiler to have insufficient detail to assist in debugging. While they observed some spikes in the time
graph of energy consumption, they lacked the context to determine whether or not these spikes were
contributing to the energy bug they were attempting to fix, or if they were reasonable for the work being
performed. While the Android Studio profiler, when used with debug mode, is able to obtain sampled
traces from simpleperf similarly to EDATA, it does not use these to estimate energy consumption, pro-
viding only a time-series of abstract estimates – either ‘low’, ‘medium’, or ‘high’ energy consumption.
In addition, while Developer A was aware of the two available profiling modes - full and limited - they
were not aware of the exact differences between the two, such as the ability to monitor wakelocks in
‘full’ mode. Furthermore, while they attempted to activate ‘full’ mode in their investigation, a bug which
occurs when attaching the debugger to a running process prevented this, causing the profiler to run in
‘limited’ mode, even though they had enabled ‘full’ mode.

5.3.3.2. Our Contribution
Our contribution to the resolution of the energy bug can be split into two categories: the first is contri-
bution of EDATA; that is, the output generated from running tests on the Adyen software. The second
is the contribution of the authors’ knowledge in energy debugging, consisting of background knowl-
edge on analyzing the energy consumption of Android devices and help in contextualizing the results
of EDATA. In this thesis, we primarily focus on EDATA’s contributions, but also reflect on our own direct
contributions in order to gain insight into ways that EDATA can be improved such that developers of all
experience levels can more effectively use its output.

We askedDeveloper A a number of questions regarding the usefulness of EDATA’s output compared
to the Android Studio profiler, as well as which components of the output were most useful. they found
the ranked list of methods to be very helpful, as it allowed them to see immediately which parts of the
software were responsible for the most energy consumption. they also found the amount of Joules
consumed by each method useful, as it allowed them to gain a more thorough understanding of the
software’s energy consumption. However, they mentioned that the interpretation of the results we
provided was more helpful than the raw results output by EDATA. One of the primary reasons for this is
the lack of context included with the output: while it is straightforward to compare the Joules consumed
between different methods, they did not know what this meant in terms of battery capacity, which is a
less precise, but more relatable method. Since a conversion from Joules to battery percentage is easy
to calculate given the total capacity of the battery, future versions of EDATA will include the ability to
show the percent of the battery consumed in its results, so that developers do not need to perform this
conversion themselves. they also mentioned that while the ranked list of methods did not solve this
particular energy bug, it highlighted some areas for improvement in the Adyen software, which will be
investigated further in the future.

While the root cause of the energy bug - the permanent wakelock - was not something that fell under
the scope of EDATA’s output, the information provided by EDATA in combination with our interpretation
significantly accelerated the debugging process, and allowed them to find the cause much faster than
would have otherwise been the case. Further, the results provided by EDATA gave them quantitative
metrics that could be used in making a business case for the required changes to the Adyen software,
something that was not possible with the existing output of the Android Studio profiler.

Finally, we asked Developer A if they would use the results of EDATA if it were implemented in an
automated testing system, such as the existing robots used to test Adyen software on physical devices.
They thought that this would be useful in general, but also thought that there was room for improvement,
particularly regarding the tracking of energy consumed by hardware aside from the CPU. This would
better align with the current efforts at Adyen to improve energy efficiency focus on WiFi and Cellular
energy consumption, which are not fully captured by EDATA’s measurements.

5.3.4. Conclusion
While the energy bug identified in our case study was not covered by the scope of EDATA, EDATA
substantially contributed to its identification by ruling out code execution within the Adyen software
as the primary cause. In addition to this, several opportunities for energy efficiency improvement have
been identified, and have been put on a roadmap for future investigation. We have also gained valuable

5.3. RQ3: Does providing developers with an ordered list of methods ranked by energy consumption
aid in identifying and fixing energy bugs? 45

insight into the importance of detailed energy consumption data to the software development process,
and how stakeholders are willing to incorporate such data into their decision-making. We therefore
answer yes to RQ3, concluding that providing developers with an ordered list of methods ranked by
energy consumption significantly assists in identifying and fixing energy bugs. Our findings also provide
support for the generality of our assessment of RQ2, as the Adyen POS software is a real-world app,
with many features depending on hardware other than the CPU, such as networking and card reader
hardware.

6
Discussion

In the following section, we compare the benefits and drawbacks of three commonly used methods of
attributing energy consumption to source code, the rationale behind our choice, and what it means for
the future development of EDATA. We also discuss challenges we faced during this thesis, findings
that are not directly related to our research questions, and their relevance to future work. Finally, we
suggest future work to be done in the field of Android energy consumption estimation, and discuss the
limitations of EDATA and threats to the validity of our results.

6.1. Challenges
6.1.1. Android Platform
One of the primary challenges inherent to the Android platform is its complex runtime. Many existing
energy profilers for desktop and server environments are designed for use with pre-compiled code of
one language, such as Java or C++. Android apps are more complex, and may contain both java
virtual machine (JVM) and native code, and JVM code is typically just in time (JIT) compiled on-device.
Energy consumption tooling targeting Android must therefore take these characteristics into account,
as significant changes to the runtime environment such as disabling JIT or requiring debug mode may
cause unexpected changes in the energy consumption of the application under test (AUT), and thus
reduce the accuracy of the tool in ways that are difficult to quantify.

We were able to leverage the existing Android platform tool simpleperf, which already has the ability
to obtain stack traces from native and JVM code, and in the case of JVM code, can handle pre-compiled,
interpreted, and JIT compiled code. This significantly eased development of EDATA by allowing us to
obtain stack samples “automatically”, instead of requiring us tomanually implement techniques for sam-
pling each type of code. However, there are still some limitations involved with the use of simpleperf :
We observed that, depending on the test being run, the function or method name would sometimes be
mangled in EDATA ’s output, due to, for example, the need to merge callchains from JIT compiled and
interpreted code together. While simpleperf is able to handle this, the output needs to be improved.
JIT compiled code also does not contain debug information mapping instructions to lines, which was
a factor in our decision to estimate energy at the method-level instead of line-level. Simpleperf also
does not support line-level estimations of JVM code regardless of compilation method, although it does
support this for native code.

Another challenge posed by the Android platform is the strict permissions model imposed by the
system. As we developed EDATA to be usable by developers without the need to significantly change
their development process, we wanted to avoid requiring root access, as few developers will have
rooted devices available. This entails the following limitations:

• Android versions 10 and up are able to profile apps in release mode using the profileable
flag1, but versions <10 must use debug mode or root.

1https://developer.android.com/guide/topics/manifest/profileable-element

47

https://developer.android.com/guide/topics/manifest/profileable-element

48 6. Discussion

• Only one app at a time may be profiled by a single simpleperf process, even when all apps are
profileable. This limitation is due to the way in which simpleperf profiles apps, using the
run-as capability to run as the user account associated with an app, granting it the ability to
profile the app’s process. Since it cannot run as multiple users at once, it is thus unable to profile
more than one app per instance, requiring the use of multiple simpleperf instances, which may
bottleneck the profiling.

The strict permissions imposed by Android also affect our data collection. Initially, we wanted to
control simpleperf by issuing commands from a companion app; This app could then be controlled re-
motely, removing the dependency on Android Debug Bridge (ADB). However, we found that even apps
installed as ‘system’ apps, running under the system user, are unable to invoke simpleperf on other
apps, even if the other app is considered profileable. Avoiding this limitation would require changes to
the Android system image to grant this access to the system (or other) user, or a rooted device. Apps
are able to invoke simpleperf on themselves, but only when previously enabled through ADB2. Faced
with this, we chose to make our companion app solely collect environmental data. We investigated the
logs produced by Android’s bugreport and batterystats, but were unable to find a way to record
the battery current, with only the voltage and capacity (if available) appearing in the logs.

Finally, we also observed that many devices do not correctly implement the BatteryManager API,
returning current values that do not meet the specification. The specification requires that current be
reported in 𝜇A, with a positive value indicating current flowing into the battery and a negative value
indicating current flowing out of the battery [5]. Out of our tested devices, including several devices
not included in the evaluation of EDATA, only the Google Pixel 6a correctly implemented this API, with
each other device either reporting current using the wrong unit, flipping the sign, or a combination of
the two. Due to these mistakes, it is critical that any tool making use of the BatteryManager API to
obtain current measurements correct these values, using either an automatically detected or manually
entered multiplier. We did not find any device that required a more complex multiplier than a positive or
negative power of 10, but as our investigation was by no means exhaustive, a given device’s current
outputs should be verified before use. EDATA solved this problem by collecting data from the device
as reported, and allows use of a divider during data analysis to convert the reported value into amps.

6.1.2. Sample Timing
Ideally, EDATA would be able to sample each active thread of the AUT simultaneously, using a fixed
wall-clock time as the sample interval. We were unable to implement this behavior using simpleperf,
due to limitations of the events available. While the cpu-clock event should perform as expected, we
found that it does not function correctly, instead behaving nearly identically to task-clock [30]. As
hardware-based events such as cpu-cycles do not have a 1:1 relationship with wall-clock time, we
opted instead to use task-clock. This has the effect of preventing simultaneous samples of threads,
as each thread’s timer is tracked independently. Additionally, threads with runtime shorter than the
sample interval over a given test will not be sampled at all, causing their consumed energy to be lost.

6.1.3. Core Scheduling
A challenge mostly specific to mobile platforms, but with the introduction of Intel’s Alder Lake3 also
relevant on desktop and laptop computers, is the use of heterogeneous CPUs. Commonly referred to
as big.LITTLE, though this is a specific architecture developed by ARM, heterogeneous CPUs in the
context of consumer systems contain multiple types of cores, with the “big” cores typically having higher
performance at the cost of higher energy consumption, with the “little” cores the opposite. Some CPUs,
as is the case with the Pixel 6a’s Tensor, contain more than two types of core, with the Tensor having
three different types. On Android devices, apps typically do not control which CPU core they’re placed
on, but this can have significant effects on their energy consumption, and the most efficient core may
vary by workload characteristics [26]. As discussed in Section 6.2.2, we observed effects potentially
caused by the use of different CPU cores between tests, where running our evaluation on a core with a
higher power draw led to a decrease in total energy consumption. We consider solving this problem to

2https://android.googlesource.com/platform/systecm/extras/+/master/simpleperf/doc/android_
application_profiling.md#Control-recording-in-application-code

3https://en.wikipedia.org/wiki/Alder_Lake

https://android.googlesource.com/platform/systecm/extras/+/master/simpleperf/doc/android_application_profiling.md#Control-recording-in-application-code
https://android.googlesource.com/platform/systecm/extras/+/master/simpleperf/doc/android_application_profiling.md#Control-recording-in-application-code
https://en.wikipedia.org/wiki/Alder_Lake

6.2. Empirical Evaluation 49

be out of scope for this thesis, but future work should take into account the potential for core selections
made by the CPU scheduler to affect energy consumption.

6.1.4. Baseline for Energy Consumption Estimates
During our evaluation, we were faced with the lack of a baseline with which to compare our method-level
estimates to. While we were able to work around this, our workaround came at the cost of generality,
as it depends on the use of run-time as a proxy for energy consumption, and may not transfer to
different workloads. While there are some existing approaches capable of producing accurate method-
level energy consumption estimates on Android, these approaches require expensive hardware power
meters, are outdated, require the use of debug mode, or have been discontinued (in the case of Trepn).
There is a clear need for a baseline with which researchers can evaluate novel approaches, and given
our findings in 6.4, the process used to generate the baseline would ideally be easily repeatable on any
Android device, such that researchers can generate a new baseline for their specific hardware/software
configuration.

6.2. Empirical Evaluation
In addition to answering our primary research questions, we compared our two test devices, a Google
Pixel 6a and an Adyen AMS1, as well as debug and release mode.

6.2.1. Build Mode
We observed that the overhead incurred by using debugmode is inconsistent not only between different
code smells, but also between our two test devices. Figure 6.1a shows the relative energy consumption
for each of our fixed and unfixed code smells when run on debug mode instead of release mode. The
slow for loop (FOR) code smell incurs an overhead of about 2.3x for both fixed and unfixed, though with
slightly higher overhead for unfixed. We observe similar results for the member ignoring method (MIM)
smell, though in this case, the unfixed version has a slightly lower overhead. The most notable results
are those of the internal setter (IS) smell, where we tested a version with a private getter/setter in
addition to a fixed and unfixed (public visibility) version. We found that there was no difference in
energy consumption for the fixed version, and a moderate increase for the public version. The largest
difference is seen in the private version, where the energy consumption is increased by over 3.5
times. This is attributable to the same effect discussed in Section 5.1.1, which we attribute to a class
of optimization being entirely disabled in debug mode.

On the AMS1, however, we found that the overhead was, in most cases, much different to the
overhead on the Pixel. As shown in Figure 6.1b we observed similar overhead in the private IS and
fixed MIM code smells, but the rest of the smells had little to no overhead, with the unfixed FOR code
smell showing a very small reduction in median energy consumption.

Identifying the root cause of these differences is out of the scope of this thesis, and these results
should be considered to be strictly preliminary. Comparing our test devices was not the primary focus
of this thesis, and as such, we have not designed our experiment with a comparison in mind. We further
note that there are significant differences between the devices which we are unable to separate. One
of the most apparent differences is the Android version, with the AMS1 running Android 10 and the
Pixel running Android 13. Improvements to the Android Runtime (ART) between the versions could
lead to, for example, improved release mode optimizations that are not carried over to debug mode.
Another difference is the CPU found in each of the devices, as differences in hardware, such as cache
size, memory, and lithography can alter the energy characteristics of the device.

6.2.2. Bimodal Distribution of IS Code Smell
In the IS tests performed on the Pixel 6a, we observed that the release mode test using a public
internal setter had a bimodal distribution of energy consumption as shown in Figure 5.1a. While this
can be caused by a number of factors, such as accidentally leaving the display on or poor WiFi strength,
we also observed a significant decrease in run-time in the set of tests with a lower energy consumption,
even using the same test parameters. Our initial assumption was that we had performed the wrong test
by mistake, but the resulting list of functions showed that the correct test had indeed been performed.
In addition, we could see that the average power draw over the course of the test had increased by
about 0.4W, from approximately 0.8W to 1.2W. We believe that these differences were caused by

50 6. Discussion

(a) Pixel 6a (b) AMS1

Figure 6.1: Overhead Incurred by Debug Mode

Android’s CPU scheduler using a different CPU core from one test to the next - trading increased
power draw for performance. In our test, this resulted in reduced energy consumption, as the extra
performance significantly outweighed the extra power draw. Unfortunately, we did not collect CPU core
affinity information in our tests, so we are unable to say conclusively that CPU core selection caused
this result. However, we believe that this is the case, and that this result shows one of the pitfalls of
performing energy consumption tests on mobile devices: a lack of control over CPU core affinity.

6.3. Case Study
As discussed in Section 5.3, EDATA was able to significantly ease the process of finding and fixing
an energy bug in the Adyen point of sale (POS) software. This can be attributed in large part to the
detailed information provided, which allowed us and the developer to immediately see which parts of
the app consumed the most energy in our test scenario. A lack of specific information is a known barrier
to adoption of developer assistance tools [25], and the information provided by EDATA gives it a key
advantage over commonly used tools, such as the Android Studio profiler.

6.3.1. Sample Rate
We performed the initial exploratory tests in our case study using a sample rate of 100Hz –meaning that
each thread would be sampled after every 10ms. The results we obtained from these tests showed a
lower total energy consumption than expected, given the total battery usage, but were still reasonable.
After the first fix had been created, we reduced our sample rate to 10Hz, or a period of 100ms, as 10Hz
was used in most of the tests in our empirical evaluation. With this sample rate, we found that very few,
if any, samples were taken during our test scenario. To verify this, we tested on an “unfixed” version
of the app, which yielded the same result. We suspected that the cause of this was a too-low sample
rate, and repeated the test with a rate of 500Hz. This appeared to solve the problem, and our output
was similar to that found when using a 100Hz sample rate. As we use a per-thread CPU-time timer to
trigger samples, we did not expect to see this effect when reducing our sample rate, as many methods
had a total run-time (when combining local and non-local run-time) of multiple seconds, much more
than the 100ms minimum time to be sampled when using a 10Hz sample rate.

One potential cause is that real-world apps generally interact with threads in a more complex way
than the test workloads we created for our empirical evaluation. If, for example, a task is switched
between many threads in a thread pool, no one thread may exceed the sample threshold if it is set
too high. Alternatively, if an app frequently creates threads for a single short-lived task that are then
destroyed, theymay also not be sampled. This limitation is inherent to the task-clock event we chose
to use with EDATA. Since this event is tracked separately for each thread, each new thread must run for

6.3. Case Study 51

a full sample period before being sampled, which can lead to threads being ignored entirely and reduce
the randomness of our sampling approach. The use of an event tracked globally, and not per-thread,
may alleviate this problem. Future work should investigate the suitability of other events, or whether
modifications must be made to allow sampling on a wall-clock timer.

When using our methodology, care must be taken to ensure that the sample rate is high enough
to capture sufficient data, particularly in scenarios where many short-lived threads are used. A given
sample rate can be verified by comparing the measured total run-time of the same test scenario using
different sample rates. If the lower sample rate has a significantly smaller run-time, it is likely that the
sample rate was too low.

6.3.2. Presentation and Contextualization of Results
It is critical for developers to be able to contextualize the output of EDATA in order to understand the
impact that a particular method or functionality has on the overall energy consumption of their app.
While, from the perspective of an energy expert, listing the Joules consumed by a method is clear,
a mobile developer will likely be unable to (without significant practice) be able to relate this to the
percentage of battery consumed by that method. In our case study, we contextualized our results in this
manner for Developer A to more easily understand them, but such a calculation is trivial to implement
automatically as long as the capacity of the test device’s battery is known. Contextualizing energy
consumption to the battery of a device allows it to be compared with known battery drain, and can
help developers make informed choices on whether changes to their software are worth the potential
impact.

Another weakness identified by our case study is the lack of call-chain information presented in our
output. While this did not significantly impact our case study, developers analyzing a function called in
different locations will not be able to distinguish energy characteristics between those locations, and
thus will lack information on which call-chain consumes the most energy. One method of displaying
this information is the flame graph4, which is commonly used, including in Google’s simpleperf tooling,
to display information relating to call-chains. Presenting our data in a flame graph would be familiar to
many developers, and further help contextualize the energy consumption of their app.

6.3.3. Energy Efficiency in the Development Process
One of the common threads between our interview with Developer A and informal conversations with
other mobile developers at Adyen was that, while energy efficiency (and thus battery life) is a concern
among developers, there is a lack of knowledge available on how architectural decisions affect energy
consumption. Thus, energy consumption, while important, is not considered as a first-class citizen in
the decision-making process. Once made aware of the effect of their software on the energy consump-
tion of their hardware, immediate action was taken to correct problems, even at the cost of making
non-trivial architectural changes. Notably, the data we provided succeeded in convincing stakeholders
that these changes were worth the effort, something Developer B was unable to do. Grosskop and
Visser wrote in 2013 that many stakeholders have a low level of awareness of the importance of soft-
ware to energy consumption [20]. Despite improvements in the field of energy profiling since then, we
conclude that the tools currently used by Android developers do not provide sufficient information to
elevate energy consumption to be a first-class concern in the software development process. However,
we are encouraged by the willingness of stakeholders to adopt energy consumption information into
their decision making process, which shows that a lack of information is a primary factor preventing the
wider adoption of energy efficiency into the development process.

6.3.4. Beyond EDATA: The Future of Energy-Aware Development at Adyen
While our case study has lead to an immediate boost in developer awareness of effects of their code
on the energy consumption of the devices it runs on, it is only the first step towards creating a culture of
energy-aware development. Developers’ receptiveness to incorporating energy consumption into their
decision-making, given sufficient information and context, a potential next step could be to establish
an internal energy advocate, responsible for making developers aware of the energy consumption of
their code and how it effects the products they create. By doing so, energy efficiency is elevated to the
same level as other code quality metrics, many of which are established in industry as critical to the

4https://www.brendangregg.com/flamegraphs.html

https://www.brendangregg.com/flamegraphs.html

52 6. Discussion

development process.

6.4. Implications
6.4.1. Measuring Energy Consumption
The results of our empirical evaluation and the difficulties we faced during development of EDATA have
a number of implications for future work concerning the energy consumption of Android devices. To
our knowledge, no prior work has explored the energy overhead caused by debug mode on Android,
partially owing to the past requirement that apps be set to debug mode in order to be profiled. Our
findings in Section 6.2.1 show that this overhead is inconsistent between both different code smells and
different test devices. This implies that the relative energy consumption of different methods in debug
mode may not be equal to release mode, and in the some cases could lead to wasted development
time, as developers would be misled by the results of a tool using debug mode. Some tools, such as the
Android Studio profiler, already warn users that timing information found using debug mode should not
be trusted. Now that release-mode profiling is supported by Android, we argue that it should become
the standard for energy consumption profiling, and tools should only use debug mode if absolutely
necessary.

These findings also show that results from one device cannot be assumed to transfer to another
device. We do not attempt to conclusively assign a cause to the differences observed between our
two test devices, and the differences between them would make this a difficult task. Even so, the clear
differences in the results of our code smell tests show the need for up-to-date information on energy
consumption, to keep up with both advances in hardware and software. Developers and researchers
profiling energy consumption should also be aware of the potential for unexpected differences between
hardware, and in cases where hardware specifications are known at development time, it is essential
to test on that hardware.

6.4.2. Test Environment Setup
Our findings have additional implications with regard to methodology used in preparation of the test
environment, both in a research setting and in real-world use. In Section 6.2.2, we observed that one
of our tests appears to be affected by differing CPU scheduling strategies, where the energy consump-
tion of the test strongly depends on the CPU core it is executed on. In addition, with the introduction of
heterogeneous CPUs to laptop and desktop platforms, the potential confounding effect of CPU schedul-
ing is no longer exclusively a concern of mobile devices. Allowing the CPU scheduler to function as
intended can lead to inconsistent results, yet is necessary to obtain a complete image of how the ap-
plication under test will behave in a production environment. We suggest that future work should take
into account the presence of heterogeneous CPUs, and make a conscious decision on whether or not
to allow the system to determine which cores are used to execute an AUT. If the system is allowed
control, data on which cores were used at which times should be recorded in order to understand the
influence that different scheduling choices have on the energy consumption of the test. We further
suggest that experiments intended to measure typical energy use of software, such as a developer
profiling their app or an energy regression test, should allow the regular behavior of the system. Exper-
iments designed to be repeatable and consistent, such as our validation process, may want to restrict
this behavior.

6.4.3. Developer Awareness
Our case study has shown that, while there is a willingness among developers to incorporate energy
consumption data into their development process, including for larger architectural decisions, there
have been few breakthroughs over the last decade in providing this information. While the academic
space has seen significant research into fine-grained energy profiling on mobile devices, tools used in
practice are still restricted to coarse grained output, which is of limited use to developers. Future work
should take developers’ needs into account, recognizing that a trade-off between precision and ease
of use may be beneficial. Approaches using static analysis or machine learning to provide immediate
energy consumption estimates without the need for time consuming tests on real hardware may prove
useful in this regard, although care must be taken to ensure that the output is valid between different
operating system versions and devices. Our results indicate that energy characteristics of softwaremay
vary greatly between devices, and failing to take this into account may lead to inaccurate estimations.

6.5. Limitations 53

6.5. Limitations
While there are many ways in which EDATA can be improved, there are some essential limitations of
our chosen approach that must be kept in mind. At its core, EDATA requires the use of a physical
device, and some form of workload to test. Though the specifics of the workload can be left to devel-
opers, there will always be non-trivial time and expense involved in using EDATA. In cases where this
limitation is unacceptable, use of a static analysis based approach as discussed in Section 2.3.2 may
be appropriate, as such an approach typically only requires access to source code, given access to a
pre-trained model.

EDATA also does not make any attempt to determine whether or not a change in energy consump-
tion is acceptable for a given code change, leaving this determination up to the user. In many cases,
trade-offs must be made between code quality, performance, and efficiency, and determining whether
or not a trade-off is acceptable is out of the scope of EDATA. In Sections 2.1.5 and 2.1.6, we dis-
cuss existing work to catalog energy patterns and tools created to automatically identify and fix energy
anti-patterns. The use of these tools, and knowledge of energy patterns, can help developers deter-
mine whether their energy consumption for some functionality is optimal, or whether there is room for
improvement.

6.6. Future Work
Our comparison in Section 2.3 highlights some of the strengths and weaknesses of EDATA, and our
decision to use callstack-sampling through simpleperf instead of the more common approach using
instrumentation. We had two primary motivations for the use of statistical sampling: The first of these
is to limit overhead to be both predictable and low, thereby reducing the influence of data collection on
the energy consumption of the device. Second, one of our initial design goals when creating EDATA
was to create a tool with sufficiently low overhead as to run on production devices, so that real-world
usage data could be obtained. Statistical sampling is the best choice for this use-case, as the sampling
rate can be lowered until both the overhead and size of collected data is sufficiently reduced. This goal
also led us not to pursue a static analysis based approach, as collecting data from end-user devices
would allow developers to have automatically up-to-date information on a large range of devices without
requiring pre-training a model, and would be less likely to miss changes in energy consumption caused
by outside influences, such as changes to the Android Runtime.

In light of these choices and design goals, we have identified several areas where future work could
improve the user experience and energy consumption attribution quality of EDATA, and move it further
towards becoming an SDK that could be integrated into production builds of Android apps, similarly to
analytics services such as Google Analytics5.

6.6.1. User Experience
There are several areas for improvement in the user experience of EDATA, involving both the testing
process and the analysis and display of results.

First, moving away from the current command line + settings file configuration system towards a
GUI, either standalone or IDE-integrated, would significantly increase the usability of EDATA and reduce
the chance of incorrect test configurations. Data analysis can also be improved through the addition
of data visualization methods, such as flame graphs. Simpleperf in the Android Native Development
Kit (NDK) is bundled with tools to create flame graphs from its output, although these flame graphs
do not include energy consumption estimations. Integration of such a visualization into EDATA could,
for example, allow the visualization of the energy consumption of specific callchains, even if there is
overlap between them. The current output format does not allow this, as metrics are reported only
per-method, even though the necessary data is collected during the measurement phase.

6.6.2. Estimation Quality
6.6.2.1. Hardware Energy Accounting
In our case study, one of the points of feedback we received was that the energy consumption of
hardware is also a target for improvement, in addition to software. While EDATA does not implement
any specific accounting methodology for hardware components, such as WiFi, cellular modem, etc,
5https://firebase.google.com/docs/analytics

https://firebase.google.com/docs/analytics

54 6. Discussion

prior work has been done to attribute energy consumption to hardware [11]. Further, since the Pixel 6,
Google’s Pixel devices ship with sensors that report the power draw of individual hardware components
[2], entirely removing the need for estimation The ability to account for energy spent on different hard-
ware components would also allow EDATA to normalize its output based on the status of the hardware,
improving the generality of results. Android devices are required to ship with a power_profile.xml
file6 containing estimations of the amount of current consumed by different hardware components at
various states, which can be combined with state information obtained during recording to approximate
the energy consumption of different components on devices that do not support individual power rail
measurements.

While accounting for energy spent on hardware is an important improvement, attributing this energy
at the method level is critical to informing developers of how their choices impact the energy consump-
tion of their app. Attribution of hardware energy consumption is not trivial, as ‘tail energy’ must be taken
into account – the extra energy consumed by powering on a component after its primary task has been
completed. As mentioned by Li et al. [28], this energy is often consumed long after the method which
powered on the component has finished, and naively attributing this energy to the actively running
method – as EDATA currently does – may be incorrect. Li et al [28], Cornet and Gopalan [11], and
Pathak et al. [39] attribute hardware energy consumption to methods, though their approaches require
high-overhead method tracing. Future work should develop an approach to perform this attribution
without the high overhead costs of instrumentation, and make use of the new ‘power rails’ available on
some devices. Hardware manufacturers should provide profileable power rails, so that developers can
make use of these features regardless of the device they choose to test on.

6.6.2.2. Simpleperf Events
Simpleperf supports a number of different events that can be monitored to trigger a sample. We chose
to use task-clock, but this event has several limitations, which we discuss in Sections 6.1.2 and
6.7.1. Future work should further investigate the suitability of this event, and whether another event,
such as cpu-cycles, would be more effective in this use-case.

6.6.3. Clustering
Initially, we planned to implement a “clustering” technique, where EDATA would take the runtime en-
vironment, such as the signal strength, display brightness, and other energy-influencing factors into
account when displaying data. This would allow data collected in uncontrolled scenarios, such as
from end-user devices, to be more accurately compared so that differences in energy consumption
can be identified. Such a technique could be used in combination with attribution of energy consump-
tion to hardware components, but this is not necessarily required, as clustering would make individual
traces more directly comparable, reducing the need for separating the energy consumption of hard-
ware components. Clustering may also improve the reliability of energy consumption regression tests
by detecting changes in the environment, such as WiFi signal strength or background tasks, that cause
an increase in energy consumption. By reducing false positives, automated energy testing as part of a
continuous integration pipeline will be more attractive to development teams.

6.6.4. Platform Knowledge
Our results show that there are significant, measurable differences between the effects of debug mode
on different code smells, and across different devices. Much of the existing literature on the energy
consumption of code smells on Android analyzes apps that have been compiled in debug mode, or
does not define which mode was used. Our observations imply that the results found when using debug
mode are not guaranteed to transfer to modern devices running apps in release mode, and reporting
the build of the app under test is critical to the interpretation of results. Additional research is needed to
confirm our observations, understand where these differences originate from, and determine whether
the current understanding of how software metrics such as code smells relate to energy consumption
transfers to release mode builds.

6https://source.android.com/docs/core/power/values

https://source.android.com/docs/core/power/values

6.7. Threats to Validity 55

6.7. Threats to Validity
6.7.1. Internal Validity
We identified several potential threats to the internal validity of EDATA’s results, as well as our evalua-
tion.

The first of these is the potential confounding effects of software other than the AUT running on our
test devices. While we attempted to reduce this influence on the Pixel test device by resetting it, there
is no way to fully remove the possibility of outside influence on our results. We combat this effect by
performing each test at least 20 times, so that we can identify outliers and take these into account.

Another potential threat is the sampling method we chose to use, with which we have identified two
issues. First, as discussed in Sections 3.2.1.3 and 6.3.1, it requires a minimum threshold of run-time
before a thread’s activity is sampled. Threads with short lifespans or methods called at thread start
may fall completely out of view. We observed something similar to the first of these problems in our
case study, where a low sample rate resulted in very few samples being made during our tests, which
we resolved by greatly increasing the sample rate. We do not expect this to influence our empirical
evaluation, as we do not use short-lived threads, and the methods tested run for the full duration of the
test. Future work should investigate further, and evaluate which of simpleperf ’s events provides the
most accurate results.

6.7.2. External Validity
Our empirical evaluation consists of a set of isolated tests, where each test evaluates either a single
change which has been isolated in a test case, or in the case of our method ordering test, a small
known set of methods that are each executed in a controlled manner. We consider these tests to be
an effective first step in validating EDATA, particularly in combination with our real-world case study.
Nevertheless, due to the extensive potential combinations of app behaviors and devices, we cannot
conclusively show that EDATA performs with the same level of accuracy in all scenarios. Future work
should perform more real-world evaluations of EDATA, such that its effectiveness over a variety of apps
and devices can be evaluated.

Our case study was performed in cooperation with a single team, on one particular app (the Adyen
POS app). We consider this to be a good representation of a real-world development environment
– Adyen’s POS software is mature, and the developers and stakeholders involved in our case study
all have industry experience. Nevertheless, there are limitations to generalizing a single case study,
and differing experience levels in development teams and software use-cases could influence their
perception of EDATA, and what information they find most useful. An example of this is Developer
A’s relative inexperience with energy debugging. A developer with significant experience may find the
output of EDATA less useful in comparison, as they may have existing workflows that provide similar
information, and domain knowledge with which to interpret and contextualize it.

7
Conclusion

Energy consumption on mobile devices is an important to users and developers alike, and significant
research has been done into measuring the energy consumption of mobile software, as well as inves-
tigating how code can affect energy consumption. While there exist a number of tools for Android to
analyze apps’ energy consumption, much prior work was performed on older Android versions where
use of debug mode was mandatory, and many used high-overhead methods of obtaining program trace
information, such as method instrumentation. With this in mind, our goal was to find an approach with
low enough overhead that it could be used on end-user devices, or as part of a continuous integration
pipeline with little impact to existing tests.

To achieve this goal, we developed EDATA, or Energy Testing And Debugging for Android. EDATA
uses statistical sampling to analyze the an Android app and provide method-level estimations of its
energy consumption. In contrast to high-overhead methods such as method instrumentation, sampling
can be performed on Android devices with low overhead, and does not require any modifications to
an app’s compilation process, working with native code, as well as interpreted, ahead of time (AOT)-
compiled, and just in time (JIT)-compiled Java/Kotlin code. This allows developers to easily use EDATA
as part of their development process, as only a flag must be set in the Android manifest of their app to
allow analysis.

We validated our approach both empirically and with a case study on real-world Adyen point of sale
(POS) software. In our empirical analysis, we found that by using statistical sampling in combination
with the on-device current and voltage sensors, we were able to both accurately estimate the energy
consumption of individual methods, and distinguish between different versions of a test case where
changes had been made to alter its energy consumption.

As part of our validation process, we investigated several code smells known to increase energy
consumption on Android: internal setter (IS), slow for loop (FOR), and member ignoring method (MIM).
[38]. We compared their fixed and unfixed versions in both release and debug mode, as a preliminary
investigation into the effect of debug mode on the energy consumption of code smells. We found that
each of these code smells caused a statistically significant increase in energy consumption in debug
mode, with IS and MIM similarly increasing energy consumption in release mode. Notably, we found
that the overhead of debug mode is not consistent between code smells or devices, with different code
smells showing different increases in energy consumption between debug and release mode, as well
as private visibility member ignoring methods showing no energy consumption difference to “fixed”
MIM code in release mode, but a large difference in debug mode. Additionally, some smells had no
additional overhead when using debug mode on the AMS1, but did on the Pixel. These inconsistencies
show a need for change in how energy profiling is approached on Android. Where virtually all prior
work analyzes apps in debug mode, our preliminary results indicate that energy overhead caused by
debug mode is inconsistent between different code smells and devices. These inconsistencies limit the
generality of measurements performed in debug mode, and research investigating the energy cost of
particular code structures, such as design patterns and code smells, must be performed using release
mode to ensure that the optimizations used by modern Android devices are fully applied. Developers
measuring the energy consumption of their apps, particularly in a debugging scenario, must also use
release mode to ensure that their results are correct.

57

58 7. Conclusion

Finally, we performed a case study on real-world Adyen software, and found that EDATA had a
significant influence on the speed with which a developer was able to identify and fix an energy bug.
By providing detailed, contextualized information on the energy consumed per-method, we were able to
quickly rule out suspected causes of the energy bug, and quantify the effects of the final fix once found.
Further, we found that the information obtained through use of EDATA significantly eased the decision-
making process, leading to a change that had previously been advocated for, but was considered not
to be worth the effort. The results of our case study show the need to make energy consumption data
available so that developers and stakeholders can make informed decisions on the energy efficiency
of their software.

EDATA is a first step towards an energy consumption monitoring framework for Android, and our
results thus far indicate that the information available on Android devices can be used to accurately
order methods within an app by their energy consumption, as well as to detect changes between two
versions of an app. We have also shown that EDATA fulfills a currently unmet need within the software
development industry for detailed energy consumption metrics usable by software developers in their
efforts to find and fix energy bugs, as well as stakeholders to make decisions on how to guide the further
development of energy-efficient software. We have also identified difficulties faced by developers in
our case study that are not yet addressed by EDATA, and provide suggestions on how this can be
improved.

In the future, we hope to improve EDATA’s user interface, to allow developers with less experi-
ence to easily use it as part of their development process. We also hope to improve the precision of
its energy estimations through the addition of multi-thread-aware estimation and by further refining our
sampling techniques. Finally, by adding accounting of hardware (tail-)energy consumption, we will pro-
vide developers with ability to measure the energy consumed by their apps’ use of different hardware
components. With these improvements, we hope to realize the goal of creating a simple to use frame-
work with which developers can easily write energy efficient Android apps, thereby improving both the
development and end-user experience and raising awareness in both developers and stakeholders of
the importance of energy efficiency in modern software development.

Bibliography
[1] Accessed: 2023-06-06. url: https://android.googlesource.com/platform/system/

extras/+/master/simpleperf/doc/README.md#comparing-dwarf-based-and-
stack-frame-based-call-graphs.

[2] url: https://developer.android.com/studio/profile/power- profiler%5C#
examples.

[3] Hamza Mustafa Alvi et al. MLEE: Method Level Energy Estimation — A machine learning ap-
proach. en. Dec. 2021. doi: 10.1016/j.suscom.2021.100594. url: http://dx.doi.org/
10.1016/j.suscom.2021.100594.

[4] Thomas Ball and James R Larus. “Efficient path profiling”. In: Proceedings of the 29th Annual
IEEE/ACM International Symposium on Microarchitecture. MICRO 29. IEEE. 1996, pp. 46–57.

[5] BatteryManager | Android Developers. url: https://developer.android.com/reference/
android/os/BatteryManager%5C#BATTERY_PROPERTY_CURRENT_NOW.

[6] Fares Bouaffar, Olivier Le Goaer, and Adel Noureddine. PowDroid: Energy Profiling of Android
Applications. Nov. 2021. doi: 10.1109/asew52652.2021.00055. url: http://dx.doi.
org/10.1109/ASEW52652.2021.00055.

[7] Lionel C. Briand and Isabella Wieczorek. Resource Estimation in Software Engineering. Jan.
2002. doi: 10 . 1002 / 0471028959 . sof282. url: http : / / dx . doi . org / 10 . 1002 /
0471028959.sof282.

[8] Shaiful Chowdhury et al. GreenScaler: training software energy models with automatic test gen-
eration. en. July 2018. doi: 10.1007/s10664-018-9640-7. url: http://dx.doi.org/10.
1007/s10664-018-9640-7.

[9] Shaiful Alam Chowdhury and Abram Hindle. GreenOracle. May 2016. doi: 10.1145/2901739.
2901763. url: http://dx.doi.org/10.1145/2901739.2901763.

[10] clock_gettime(2). url: https://linux.die.net/man/2/clock_gettime.
[11] Alexandre Cornet and Anandha Gopalan. “A Software-based Approach for Source-line Level

Energy Estimates and Hardware Usage Accounting on Android”. In: The Eighth International
Conference on Smart Grids, Green Communications and IT Energy-aware Technologies, Nice,
France,(32-37). 2018.

[12] Luis Corral et al. “Can execution time describe accurately the energy consumption of mobile
apps? An experiment in Android”. In: Proceedings of the 3rd International Workshop on Green
and Sustainable Software. 2014, pp. 31–37.

[13] Luis Cruz and Rui Abreu. “Catalog of energy patterns for mobile applications”. In: Empirical Soft-
ware Engineering 24 (2019), pp. 2209–2235.

[14] Luis Cruz and Rui Abreu. Improving Energy Efficiency Through Automatic Refactoring. Aug.
2019. doi: 10.5753/jserd.2019.17. url: http://dx.doi.org/10.5753/jserd.
2019.17.

[15] Luis Cruz and Rui Abreu. Performance-Based Guidelines for Energy Efficient Mobile Applica-
tions. May 2017. doi: 10.1109/mobilesoft.2017.19. url: http://dx.doi.org/10.
1109/MOBILESoft.2017.19.

[16] Luis Cruz et al. “Do energy-oriented changes hinder maintainability?” In: 2019 IEEE International
conference on software maintenance and evolution (ICSME). IEEE. 2019, pp. 29–40.

[17] Dario Di Nucci et al. “Software-based energy profiling of android apps: Simple, efficient and re-
liable?” In: 2017 IEEE 24th international conference on software analysis, evolution and reengi-
neering (SANER). IEEE. 2017, pp. 103–114.

59

https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/README.md#comparing-dwarf-based-and-stack-frame-based-call-graphs
https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/README.md#comparing-dwarf-based-and-stack-frame-based-call-graphs
https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/README.md#comparing-dwarf-based-and-stack-frame-based-call-graphs
https://developer.android.com/studio/profile/power-profiler%5C#examples
https://developer.android.com/studio/profile/power-profiler%5C#examples
https://doi.org/10.1016/j.suscom.2021.100594
http://dx.doi.org/10.1016/j.suscom.2021.100594
http://dx.doi.org/10.1016/j.suscom.2021.100594
https://developer.android.com/reference/android/os/BatteryManager%5C#BATTERY_PROPERTY_CURRENT_NOW
https://developer.android.com/reference/android/os/BatteryManager%5C#BATTERY_PROPERTY_CURRENT_NOW
https://doi.org/10.1109/asew52652.2021.00055
http://dx.doi.org/10.1109/ASEW52652.2021.00055
http://dx.doi.org/10.1109/ASEW52652.2021.00055
https://doi.org/10.1002/0471028959.sof282
http://dx.doi.org/10.1002/0471028959.sof282
http://dx.doi.org/10.1002/0471028959.sof282
https://doi.org/10.1007/s10664-018-9640-7
http://dx.doi.org/10.1007/s10664-018-9640-7
http://dx.doi.org/10.1007/s10664-018-9640-7
https://doi.org/10.1145/2901739.2901763
https://doi.org/10.1145/2901739.2901763
http://dx.doi.org/10.1145/2901739.2901763
https://linux.die.net/man/2/clock_gettime
https://doi.org/10.5753/jserd.2019.17
http://dx.doi.org/10.5753/jserd.2019.17
http://dx.doi.org/10.5753/jserd.2019.17
https://doi.org/10.1109/mobilesoft.2017.19
http://dx.doi.org/10.1109/MOBILESoft.2017.19
http://dx.doi.org/10.1109/MOBILESoft.2017.19

60 Bibliography

[18] Muhammad Umer Farooq, Saif Ur Rehman Khan, and Mirza Omer Beg.MELTA: A Method Level
Energy Estimation Technique for Android Development. Nov. 2019. doi: 10.1109/icic48496.
2019.8966712. url: http://dx.doi.org/10.1109/ICIC48496.2019.8966712.

[19] Jason Flinn and Mahadev Satyanarayanan. “Powerscope: A tool for profiling the energy usage of
mobile applications”. In: ProceedingsWMCSA’99. Second IEEEWorkshop on Mobile Computing
Systems and Applications. IEEE. 1999, pp. 2–10.

[20] Kay Grosskop and Joost Visser. “Identification of application-level energy optimizations”. In: Pro-
ceeding of ICT for Sustainability (ICT4S) 4 (2013), pp. 101–107.

[21] Sarra Habchi, Romain Rouvoy, and Naouel Moha. On the Survival of Android Code Smells in the
Wild. May 2019. doi: 10.1109/mobilesoft.2019.00022. url: http://dx.doi.org/10.
1109/MOBILESoft.2019.00022.

[22] Shuai Hao et al. “Estimating mobile application energy consumption using program analysis”. In:
2013 35th international conference on software engineering (ICSE). IEEE. 2013, pp. 92–101.

[23] AbramHindle et al. “GreenMiner: a hardware basedmining software repositories software energy
consumption framework”. In: Proceedings of the 11th Working Conference on Mining Software
Repositories. ACM, May 2014. doi: 10.1145/2597073.2597097. url: https://doi.org/
10.1145/2597073.2597097.

[24] Erik A. Jagroep et al. Software energy profiling. May 2016. doi: 10.1145/2889160.2889216.
url: http://dx.doi.org/10.1145/2889160.2889216.

[25] Brittany Johnson et al.Why don’t software developers use static analysis tools to find bugs?May
2013. doi: 10.1109/icse.2013.6606613. url: http://dx.doi.org/10.1109/ICSE.
2013.6606613.

[26] Junha Kim, Yeomin Nam, and Moonju Park. “Energy-aware core switching for mobile devices
with a heterogeneous multicore processor”. In: IEEE Consumer Electronics Magazine 8.6 (2019),
pp. 68–75.

[27] Ding Li et al. “An empirical study of the energy consumption of android applications”. In: 2014
IEEE International Conference on Software Maintenance and Evolution. IEEE. 2014, pp. 121–
130.

[28] Ding Li et al. “Calculating source line level energy information for Android applications”. In: Pro-
ceedings of the 2013 International Symposium on Software Testing and Analysis. ACM, July
2013. doi: 10.1145/2483760.2483780. url: https://doi.org/10.1145/2483760.
2483780.

[29] Mario Linares-Vásquez et al. “Mining energy-greedy api usage patterns in android apps: an em-
pirical study”. In: Proceedings of the 11th working conference on mining software repositories.
2014, pp. 2–11.

[30] Linux perf events: CPU-clock and task-clock - what is the difference. July 2019. url: https:
//stackoverflow.com/questions/23965363/linux-perf-events-cpu-clock-
and-task-clock-what-is-the-difference.

[31] Rodrigo Morales et al. EARMO: An Energy-Aware Refactoring Approach for Mobile Apps. Dec.
2018. doi: 10.1109/tse.2017.2757486. url: http://dx.doi.org/10.1109/TSE.2017.
2757486.

[32] IrineuMoura et al. “Mining energy-aware commits”. In: 2015 IEEE/ACM12thWorking Conference
on Mining Software Repositories. IEEE. 2015, pp. 56–67.

[33] Rui Mu et al. Research on Customer Satisfaction Based on Multidimensional Analysis. en. 2021.
doi: 10.2991/ijcis.d.210114.001. url: http://dx.doi.org/10.2991/ijcis.d.
210114.001.

[34] Lev Mukhanov, Dimitrios S Nikolopoulos, and Bronis R De Supinski. “Alea: Fine-grain energy
profiling with basic block sampling”. In: 2015 International Conference on Parallel Architecture
and Compilation (PACT). IEEE. 2015, pp. 87–98.

https://doi.org/10.1109/icic48496.2019.8966712
https://doi.org/10.1109/icic48496.2019.8966712
http://dx.doi.org/10.1109/ICIC48496.2019.8966712
https://doi.org/10.1109/mobilesoft.2019.00022
http://dx.doi.org/10.1109/MOBILESoft.2019.00022
http://dx.doi.org/10.1109/MOBILESoft.2019.00022
https://doi.org/10.1145/2597073.2597097
https://doi.org/10.1145/2597073.2597097
https://doi.org/10.1145/2597073.2597097
https://doi.org/10.1145/2889160.2889216
http://dx.doi.org/10.1145/2889160.2889216
https://doi.org/10.1109/icse.2013.6606613
http://dx.doi.org/10.1109/ICSE.2013.6606613
http://dx.doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1145/2483760.2483780
https://doi.org/10.1145/2483760.2483780
https://doi.org/10.1145/2483760.2483780
https://stackoverflow.com/questions/23965363/linux-perf-events-cpu-clock-and-task-clock-what-is-the-difference
https://stackoverflow.com/questions/23965363/linux-perf-events-cpu-clock-and-task-clock-what-is-the-difference
https://stackoverflow.com/questions/23965363/linux-perf-events-cpu-clock-and-task-clock-what-is-the-difference
https://doi.org/10.1109/tse.2017.2757486
http://dx.doi.org/10.1109/TSE.2017.2757486
http://dx.doi.org/10.1109/TSE.2017.2757486
https://doi.org/10.2991/ijcis.d.210114.001
http://dx.doi.org/10.2991/ijcis.d.210114.001
http://dx.doi.org/10.2991/ijcis.d.210114.001

Bibliography 61

[35] Adel Noureddine et al. “Runtime monitoring of software energy hotspots”. In: Proceedings of the
27th IEEE/ACM International Conference on Automated Software Engineering. 2012, pp. 160–
169.

[36] Zakaria Ournani et al. “Tales from the Code# 2: A Detailed Assessment of Code Refactoring’s
Impact on Energy Consumption”. In: Software Technologies: 16th International Conference, IC-
SOFT 2021, Virtual Event, July 6–8, 2021, Revised Selected Papers. Springer. 2022, pp. 94–
116.

[37] Fabio Palomba et al. Lightweight detection of Android-specific code smells: The aDoctor project.
Feb. 2017. doi: 10.1109/saner.2017.7884659. url: http://dx.doi.org/10.1109/
SANER.2017.7884659.

[38] Fabio Palomba et al. On the impact of code smells on the energy consumption of mobile appli-
cations. en. Jan. 2019. doi: 10.1016/j.infsof.2018.08.004. url: http://dx.doi.org/
10.1016/j.infsof.2018.08.004.

[39] Abhinav Pathak, Y Charlie Hu, and Ming Zhang. “Where is the energy spent inside my app?
Fine Grained Energy Accounting on Smartphones with Eprof”. In: Proceedings of the 7th ACM
european conference on Computer Systems. 2012, pp. 29–42.

[40] Rui Pereira et al. SPELLing out energy leaks: Aiding developers locate energy inefficient code.
en. Mar. 2020. doi: 10.1016/j.jss.2019.110463. url: http://dx.doi.org/10.1016/
j.jss.2019.110463.

[41] Gustavo Pinto, Fernando Castor, and Yu David Liu. Mining questions about software energy
consumption. May 2014. doi: 10.1145/2597073.2597110. url: http://dx.doi.org/10.
1145/2597073.2597110.

[42] Stephen Romansky. “Estimating Fine-Grained Mobile Application Energy Use based on Run-
Time Software Measured Features”. In: (2020).

[43] Sanae Rosen et al. Revisiting Network Energy Efficiency of Mobile Apps. Oct. 2015. doi: 10.
1145/2815675.2815713. url: http://dx.doi.org/10.1145/2815675.2815713.

[44] Simpleperf - Android NDK - Android developers. url: https://developer.android.com/
ndk/guides/simpleperf.

[45] Simpleperf README. url: https://android.googlesource.com/platform/system/
extras/+/master/simpleperf/doc/README.md.

[46] Nathan R Tallent, John M Mellor-Crummey, and Michael W Fagan. “Binary analysis for measure-
ment and attribution of program performance”. In: ACM Sigplan Notices 44.6 (2009), pp. 441–
452.

[47] Benjamin Westfield and Anandha Gopalan. “Orka: A new technique to profile the energy usage
of Android applications”. In: 2016 5th International Conference on Smart Cities and Green ICT
Systems (SMARTGREENS). IEEE. 2016, pp. 1–12.

https://doi.org/10.1109/saner.2017.7884659
http://dx.doi.org/10.1109/SANER.2017.7884659
http://dx.doi.org/10.1109/SANER.2017.7884659
https://doi.org/10.1016/j.infsof.2018.08.004
http://dx.doi.org/10.1016/j.infsof.2018.08.004
http://dx.doi.org/10.1016/j.infsof.2018.08.004
https://doi.org/10.1016/j.jss.2019.110463
http://dx.doi.org/10.1016/j.jss.2019.110463
http://dx.doi.org/10.1016/j.jss.2019.110463
https://doi.org/10.1145/2597073.2597110
http://dx.doi.org/10.1145/2597073.2597110
http://dx.doi.org/10.1145/2597073.2597110
https://doi.org/10.1145/2815675.2815713
https://doi.org/10.1145/2815675.2815713
http://dx.doi.org/10.1145/2815675.2815713
https://developer.android.com/ndk/guides/simpleperf
https://developer.android.com/ndk/guides/simpleperf
https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/README.md
https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/README.md

	Preface
	List of Figures
	List of Tables
	Acronym Definitions
	Introduction
	Prior Work
	Background
	Measuring Energy Use
	Estimating Energy Use
	Identifying Energy Bugs
	Data Collection / Mining
	Code Smells
	Energy Efficiency in Software Engineering

	Related Work
	Comparison of Energy Consumption Attribution Approaches
	Instrumentation Based Tracing
	Static Analysis Estimation
	Statistical Sampling

	Tool Design
	Our Approach
	Statistical Sampling for Energy Estimation
	Simpleperf

	Energy/environment measurements
	Measurement approach
	Collection App
	Perfetto

	Test App
	Data Analysis
	Intermediate Trace Representation
	Energy Attribution Approach
	Our Implementation

	Test Orchestrator
	Test Process
	Test Loop

	Empirical Evaluation Methodology
	Testbench Setup
	Pre-Loop
	Primary Test Loop
	Post-Loop

	Case Study Methodology
	Prior Work
	Our Approach

	Evaluation
	Test Devices
	Device Specific Information and Specifications

	RQ1: Energy Testing
	Code smells
	Hardware-based workloads

	RQ2: Energy Debugging
	Execution Time as Proxy for Energy Consumption

	RQ3: Adyen POS Case Study

	Results
	RQ1: Can we use information collected from on-device sensors on Android devices to identify energy bugs through energy regression testing?
	Code Smell Tests
	Hardware-Based Tests
	Conclusion

	RQ2: Can we rank methods within Android apps by their energy consumption using a callstack-sampling approach?
	Selection of test parameters
	Results
	Conclusion

	RQ3: Does providing developers with an ordered list of methods ranked by energy consumption aid in identifying and fixing energy bugs?
	Case Study Progression
	Bug Resolution
	Developer Interview
	Conclusion

	Discussion
	Challenges
	Android Platform
	Sample Timing
	Core Scheduling
	Baseline for Energy Consumption Estimates

	Empirical Evaluation
	Build Mode
	Bimodal Distribution of IS Code Smell

	Case Study
	Sample Rate
	Presentation and Contextualization of Results
	Energy Efficiency in the Development Process
	Beyond EDATA: The Future of Energy-Aware Development at Adyen

	Implications
	Measuring Energy Consumption
	Test Environment Setup
	Developer Awareness

	Limitations
	Future Work
	User Experience
	Estimation Quality
	Clustering
	Platform Knowledge

	Threats to Validity
	Internal Validity
	External Validity

	Conclusion

