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Abstract

Generic musculoskeletal models are not reliable predicting inter-individual
variations in muscle forces. Scaling the model parameters is necessary to
represent the muscle characteristics of the subjects and thus to pinpoint the
differences in force capacity. Optimal Fiber (OFL) and Tendon Slack Length
(TSL) have been identified as the two most influential parameters in muscle
force generation. The goal of the current study is adjusting a lower-limb
scaling algorithm for OFL and TSL to the Delft Shoulder and Elbow Model
(DSEM). Furthermore, we evaluate the effect on the preservation of model
consistency and muscle force production. Firstly, we scaled the DSEM geo-
metrically. That drove twenty-two muscles to work out of the physiological
range in the F-L curve up to 41% of the shoulder ROM. Moreover, the con-
sistency of the model dropped by 78%. We tested three approaches to scale
OFL and TSL. The constrained method delivered the best results reducing
these percentages to 8% and 2.9%, respectively. It also increased the muscle
force production of the DSEM 1.2%BW compared to the geometrically scaled
version. The adaptation of the constrained scaling algorithm to the DSEM
provides consistency values in the same range observed in lower-limb models.
Therefore, we state that it is necessary to scale OFL and TSL whenever the
dimensions of the DSEM are modified to obtain reliable muscle force estima-
tions. We recommend further validation of the procedure developed in this
article, for example, against data from instrumented endoprosthesis.

Keywords: Musculoskeletal Model, Delft Shoulder and Elbow Model,
Optimal Fiber Length, Tendon Slack Length, Scaling, Upper-limb,
Muscle-tendon parameters

Preprint submitted to Journal of Applied Biomechanics October 31, 2019



1. Introduction1

Musculoskeletal (MSK) models provide a unique insight into aspects of2

the internal functioning of the locomotive system, such as net joint moments3

and muscle forces. Their initial purpose was raising knowledge about the4

bases of the MSK system. Early studies cover topics such as muscle collabo-5

ration to produce torques around joints [1], and estimation of the differences6

in joint loading during diverse tasks [2, 3]. In recent years, MSK models start7

to be helpful as well in the clinical field. Modern studies use them to predict8

the outcomes of tendon transfer surgeries [4] (”what if” simulations) and to9

explain how neuromuscular pathologies alter motion [5, 6].10

11

Generic models, created from cadaveric data, are suitable for first-time12

investigations because they analyze the loading changes among tasks, not13

individuals. However, generic models are not appropriate for contemporary14

researches. These studies focus on the variations in muscle force capacity15

among subjects (instead of tasks), and models employing cadaveric data do16

not account for those differences [7]. In this landscape, MSK models should17

be capable of reproducing the force capability of the subjects. Hence, the18

set of parameters that determines the generation of force in MSK models19

must be scaled accordingly to the anatomical characteristics of the individ-20

uals [8, 9, 10, 11].21

22

There are three groups of parameters in MSK models: geometrical, iner-23

tial, and muscle. Medical imaging, like MRI and CT-scans, allows measuring24

geometrical (for instance, segment dimensions and musculotendon lengths)25

[12], inertial (segmental mass) [13], and some muscle parameters (Physiolog-26

ical Cross-Section Area) [14] in living subjects. No current techniques allow27

measuring other muscle parameters, such as optimal fiber (OFL) and ten-28

don slack length (TSL), in-vivo and hence, it is troublesome to scale them.29

However, these last two parameters are the most influential of all of them for30

muscle force generation. Therefore the adjustment of OFL and TSL is es-31

sential for the MSK model to match the force capacity of the subject [15, 16].32

33

Geometrical scaling is the first step to modify the cadaveric parameters34

of the model. It involves adjusting the dimensions of the segments and the35

calculation of the joints’ center of rotation. The length of the musculoten-36

don units (MTU) is scaled proportionally to preserve the direction of their37
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force vectors. Then, the segment mass is scaled accordingly to the whole38

body mass of the subject [17]. Several studies demonstrate that adjusting39

these parameters improves joint loading estimations [7, 18]. However, others40

shows that this level of scaling is not enough for a MSK model to represent41

the muscle force capacity of a subject [19, 11, 20]. Even though the next42

step seems to be modifying the muscle parameters of the model, it is not a43

common practice, given the reasons in the previous paragraph. The alterna-44

tive is not adjusting OFL and TSL to the new MTUs length, which causes a45

shift in their working area in the Force-Length curve.46

47

Figure 1: The coloured areas (yellow and red) shows the shift in the working area of
an upper-limb muscle caused by modifying its length without accordingly adjusting its
muscle parameters. The green area represents the length excursion of the muscle in the
reference model (GM). Fmax1 and Fmax2 illustrate the decrease in muscle force production
(both values are below the Fmax = 1). Furthermore, the behavior of the muscle is altered
since Fmax1 and Fmax2 do not take place at the optimal fiber length (Lm

norm = 1) but
at lm,norm1 and lm,norm2. The degrees marked along each of the three zones illustrate
the humeral elevation angle. It also shows how the altered muscle behavior affects the
force production since for a certain angle (e.g., 120o) the force generated in each situation
varies. The X-axis indicates the normalized fiber length, which is the ratio between the
length of the muscle and its optimal fiber length (Eq. 9).
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The F-L curve defines the maximum force a muscle can generate depend-48

ing on its length. Figure 1 illustrates the F-L relation of a generic upper-limb49

muscle (in blue). In a generic model, all the muscles work within the physi-50

ological range (in green). However, the shift in the operating area caused by51

not adjusting the muscle parameters to the new MTUs length brings them52

to work out of the physiological area (red and yellow regions). In that sit-53

uation, the force generation of the muscles decreases, and their force peak54

happens at a different angle of humeral elevation. Winby describes this event55

as a loss of consistency in the scaled model. He establishes that the aim of56

any scaling technique should be not altering the F-L working region of the57

MTUs of the model [21]. In other words, the goal must be preserving the58

consistency of the model. Otherwise, the scaling process provokes a loss in59

the force capacity of the muscles due to the shift in its working region which,60

ultimately, alters their behavior.61

62

The literature on scaling muscle parameters for lower-limb models is quite63

extensive. A significant number of articles with different approaches have64

been published, which are classified on anthropometric or functional. The65

former rely solely on anatomical data [22, 21], while the later also employ66

dynamometry [23] or EMG [24, 10, 25]. Further studies have evaluated the67

influence of muscle parameters on the MTU moments in gait analyses [26, 16].68

Nevertheless, all these experiments (as well as Winby’s research) have only69

been conducted with lower-limb models, and literature on the topic for upper-70

limb models is very limited [27, 14, 28].71

72

In conclusion, scaling the parameters of MSK models is essential to match73

the force capacity of a subject. The most common scaling approaches (ge-74

ometrical techniques), however, provoke a loss of consistency in the scaled75

models. Consequently, these models do not match the force capability of76

the subjects. Studies involving lower-limb models have demonstrated that77

the loss of consistency is due to not scaling OFL and TSL [15, 16, 26]. Re-78

garding upper-limb models however, no study has examined that, despite79

some articles having reported that geometrically scaled upper-limb models80

also underestimate muscle forces.[19]81

82

The aim of this paper is studying the effect of scaling optimal fiber and83

tendon slack length on the consistency of geometrically scaled upper-limb84

models. We choose to adjust these two parameters following the recom-85
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mendations identified in the literature: maintain the model consistency and86

establish a non-linear relation between muscle length and OFL and TSL87

[15, 16, 8, 29]. For that purpose, we find the optimization algorithm devel-88

oped by Modenese the best option available [22]. The first condition is that89

the optimization algorithm scales OFL and TSL at least. Secondly, it should90

be not need dynamometer or EMG measurements since these methods are91

computationally expensive and require extremely large quantities of data.92

As far as we know, the only approach with those characteristics and which is93

suitable for upper-limb models is Modenese’s algorithm, although he did not94

prove it. Furthermore, his method outperforms the techniques reviewed by95

Winby in terms of preserving consistency, and contains a non-linear approach.96

97

We hypothesized that adjusting OFL and TSL in geometrically scaled98

upper-limb models would enhance their consistency. Furthermore, we ex-99

pected that improving the model’s consistency would cause an increase in its100

muscle force production.101

102

2. Materials and Methods103

2.1. Musculoskeletal Model. The Delft Shoulder and Elbow Model.104

The Delft Shoulder and Elbow Model (DSEM) is a finite element model105

created by Van der Helm [30]. It depicts the upper-limb with six rigid bodies106

and thirty-one muscles, which divided in 139 contractile elements operate107

seventeen Degrees of Freedom (DOF). We named this version of the model108

the Generic Model (GM) [19].109

110

We also employed the geometrically scaled models from Bolsterlee’s in-111

vestigation [14]. These are versions of the DSEM whose segments’ length112

and mass were adjusted linearly according to the dimensions of five partici-113

pants. The length of the contractile elements in these models also changed114

proportionally with the new segments’ measures. The position of the gleno-115

humeral center of rotation was calculated using instantaneous helical axes116

(IHA) [31]. Nevertheless, out of the five scaled subjects, only two of them117

completed the Inverse Kinematic (IK) analysis. In the other three, the simu-118

lation crashed due to a collision between the scapular and thoracic segments.119

Since the scapula, clavicle and thorax were modeled as a closed kinematic120
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chain, not every combination of joint angles is feasible, and that leads to121

collisions among these segments [30]. For the current study, the two models122

that completed the IK analysis were named scaled-generic model 3 (SGM3)123

and scaled-generic model 5 (SGM5). They are also mentioned as geometri-124

cally scaled models.125

126

2.2. Scaling procedure: Modenese’s algorithm for scaling optimal127

fiber and tendon slack length in geometrically scaled models.128

The scaling approach developed by Modenese exploited the insight pro-129

vided by Zajac of the dimensionless Hill’s muscle model [32]. We calculated130

the length of the MTUs (Lmt) using the definition of muscle length by Hill131

(Eq. 1, [33]), which depends on its tendon (lt) and muscle fiber length (lm),132

and its pennation angle (α):133

Lmt
m = lm ∗ cosα + lt (1)

134

Introducing normalized variables (lm,norm and lt,norm), Zajac (Eq. 2, [32])135

showed the dependence between the Lmt
m and its OFL (lmo ) and TSL (lts,m).136

We employed the following equation (in vector notation) to estimate (lmo )137

and (lts,m) for the SGMs:138

Lmt
m = (lm,norm ∗ cosα) ∗ lmo + lt,norm ∗ lts,m (2)

139

Based on the principles of the model by Hill, the lm,norm and lt,norm re-140

main the same for a specific muscle in any individual. Then, the operating141

behavior of the muscles in a generic model (whose parameters, extracted from142

a cadaver, are phyisiologically valid) must be preserved when this model is143

geometrically scaled [22, 21]. Consequently, Modenese developed an opti-144

mization algorithm which solved Eq. 2, finding the values for OFL and TSL145

(for the new Lmt
m ) to better preserve lm,norm and lt,norm as in the generic146

model (GM).147

148

Modenese’s algorithm contained three approaches that we modified so149

that they could be applied to every MTU ’m’ in the DSEM. The collection150
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of the N samples of the variables in Eq. 4, 5, and 6 is addressed in the com-151

ing section (2.3 Scaling Procotol for the DSEM ). N is the optimal number of152

sampling points (being ’n’ each of those sampling point) that maximized the153

accuracy of the three scaling approaches (Eq. 3, [22]). N depends logaritmi-154

cally on the Degrees of Freedom (DOF) operated by the muscle (or MTU)155

being analyzed.156

N = 10DOF (3)

• Linear approach: We employed MATLAB to find a solution to the157

least square problem of calculating lmo and lts,m in Eq. 2. MATLAB158

did so while minimizing the error introduced by the pseudoinverse of a159

matrix (Eq. 4). If any of the new OFL or TSL are negative, they kept160

their original values from the GM.161

[
lm,subj
o

lt,subjs,m

]
=

l
m,ref
1,norm ∗ cosαref

m,1 lt,refm,1,norm
...

...
lm,ref
n,norm ∗ cosαref

m,n lt,refm,n,norm


−1

∗

L
mt,subj
m,1

...
Lmt,subj
m,n

+ e (4)

162

• Constrained approach: In this case, we used MATLAB’s function163

’lsqnonneg’ to find a solution to the least square problem of calculating164

lmo and lts,m in Eq. 2. The algorithm minimizes the error introduced by165

the pseudoinvserse while taking into account the restriction that the166

solution should be greater than zero. The constrained method showed167

a higher residue than the linear one due to the constraint introduced.168

• 2-step approach: This time OFL and TSL were calculated separately169

to ensure both were greater than zero.170

1. We scaled the TSL in the SGMs proportionally (lt,props,m ) to the171

new MTU length (Lmt,subj
m ). This adjustment kept the fraction of172

length represented by the TSL as in the GM (Eq. 5).173

lt,props,m =
lt,refs,m

Lmt,ref
m

∗ Lmt,subj
m (5)

174
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2. Calculation of the OFL using the linear approach and the propor-175

tional TSL (lt,props,m , Eq. 6).176

lm,subj
o =

l
m,ref
1,norm ∗ cosαref

m,1
...

lm,ref
n,norm ∗ cosαref

m,n


−1

∗

L
mt,subj
m,1 − lt,propm,1

...
Lmt,subj
m,n − lt,propm,n

+ e (6)

177

3. Recalculation of the final value for TSL using the new value for178

OFL.179

2.3. Scaling Protocol for the DSEM.180

Preserving the lm,norm, and lt,norm of every muscle as in the GM required181

mapping these variables in the first place. For that purpose, we needed to182

explore the complete length excursion of all the MTUs in the DSEM. The183

length of a MTU only changes with the motion of the joints actuated by184

that specific MTU. Therefore, a complete mapping of the length’s excursion185

of the biceps, for instance, implied exploring the whole ROM of the joints186

crossed by this muscle.187

1. Identification of joints actuated by a certain MTU: Firstly, we calcu-188

lated the muscle path (Eq. 7). We did so by computing the Eculidean189

distance from the origin of the MTU to its insertion in the initial step190

of the simulation ’n = 1’. The joints actuated by a MTU were those191

crossed by its muscle path and θ is the joint angle in each step (’n’ ) of192

the simulation:193

Lmt
m,n(θ) = dist (insertion Nodem,n(θ) , origin Nodem,n(θ)) (7)

194

We also employed this formula (Eq. 7) to map the length of the MTUs195

in both, the GM (Lmt,ref
m,n ) and the SGMs (Lmt,subj

m,n ). For MTUs wrap-196

ping around bony contours, we followed the recommendations issued197

by [30] for ’Curved-Truss’ elements. From these measurements of Lmt
m198

we derived lm and lt using Eq. 1.199
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2. Several simulations were run with the GM to explore the ROM of the200

crossed joints. For every sampling point ’n’, we calculated αref
m,n (Eq. 8),201

lrefm,n,norm (Eq. 9), and lreft,n,norm (Eq. 10). We needed these parameters202

in order to solve Equation 2. In Eq. 8, αref
m,1 stands for the pennation203

angle in the initial step of the simulation n = 1 :204

αref
m,n = arcsin

(
lm,ref
o ∗ sinαref

m,0

lrefm,n

)
(8)

lrefm,n,norm =
lrefm,n

lm,ref
o

(9)

lreft,n,norm =
lreft,n

lt,refs

(10)

205

• Values of lrefm,n,norm over 1.5 or under 0.5 were filtered out since206

they are considered to be out of physiological conditions.207

• Values for αref
m,n over 0.84 rad were filtered out since they are con-208

sidered to be out of physiological conditions.209

3. We repeated step number 1 of this protocol, this time using the SGMs210

to map the lengths of the scaled MTU (Lmt,subj
m,n ) in the same joint con-211

figurations.212

213

4. Finally, we introduced the Lmt,subj
m , αref

m , lrefm,norm, and lreft,norm, vectors214

into Eq. 2. Then, we applied the three solving techniques to find three215

sets of solutions (OFL and TSL) for every MTU ’m’.216

The new scaled models whose muscle parameters had been estimated by217

each of the three approaches proposed by Modenese were grouped under the218

names: scaled model 3 (SM3) and scaled model 5 (SM5). For example, the219

’constrained SM3’ refers to the SM3 whose muscle parameters have been220

modified using the constrained approach.221

222
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2.4. Motion Data.223

We used Range Of Motion (ROM) trials [2] in order to map the length224

excursion of every MTU in the DSEM, apart from other variables, as we225

introduced in the protocol introduced in the previous section.226

227

Then, we conducted two sets of trials to evaluate the effects on consis-228

tency of adjusting OFL and TSL in the DSEM. We selected two movements229

from Bolsterlee’s dynamic tests [14]. The two dynamic tests chosen were:230

forward shoulder flexion and scaption. We considered the first one to be an231

uncomplicated movement since it simply involved the motion of the shoulder232

on a single plane. However, the scapular retraction (scaption) included mul-233

tiple and simultaneous rotations plus the scapula covering the extremes of234

its ROM, which is usually troublesome. Secondly, the force trials selected to235

examine the variation in muscle force production included: shoulder forward236

flexion (we called it anteflexion to distinguish this one from the dynamic237

test) and abduction. We decided to carry these two test to reproduce the238

conditions of Wu’s investigation [28], since we employed his results for the239

validation of muscle forces.240

241

2.5. Evaluation of the scaling protocol and each of the three scal-242

ing approaches consequences on consistency and muscle force243

production.244

For the evaluation of the consistency of the models, we followed the guide-245

lines established by Winby [21]. He recommended calculating the MMSE of246

the lm,norm between the reference (GM) and each of the scaled models (SGMs247

and SMs). The MMSE is the average RMSE of the lm,norm of all the mus-248

cles in the scaled models throughout the two dynamic tests. The lower the249

MMSE of a certain model is, the higher its consistency. Therefore, the scal-250

ing approach providing the most substantial improvement in the consistency251

compared with the SGMs (which we hypothesized that would be the least252

consistent models), would be that one yielding the lowest MMSE. Besides253

that, we also checked whether if the scaling approaches improved the working254

region of the muscles in the SGMs. In doing so, we compared the propor-255

tion of the total humeral elevation ROM that out-of-range muscles operated256

under physiological conditions before and after muscle parameter scaling.257

Out-of-range muscles are those muscles which spent more than one step of258
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the simulation working out of the physiological area in the F-L curve (Fig.259

1). If a particular MTU worked within bounds throughout the entire ROM,260

it received a value of 1.261

262

Improving the working region of the muscles had consequences into their263

muscle force generation ability. We compared the difference in force pro-264

duction of four rotator cuff muscles in the SGMs and the SMs. In his in-265

vestigation, Wu [28] also scaled an upper-limb model [17] in Opensim using266

Modenese’s algorithm. Therefore, we expected to obtain similar variations267

in muscle forces.268

269

3. Results270

The protocol employed in the current research to scale OFL and TSL271

delivered physiologically feasible values [34, 28]. Table 1 contains the dif-272

ferences in the length of the segments (clavicle, humerus, and radius) and273

muscle parameters in the SMs compared to the GM. Values over or below274

one means that the segment or parameter is longer or shorter than in the275

GM, respectively.276

277

Subject 3 Subject 5
Length of clavicle 0.89 1.05
Length of humerus 0.93 0.97
Length of radius 0.95 1.02

Total 0.92 1.013
Optimal Fiber Length (avg) 0.9502 1.085
Tendon Slack Length (avg) 1.0491 1.035

Table 1: Variations in length of the model segments (due to geometrical scaling) and of
muscle parameters (constrained approach). These values are expressed as ratios between

the length in the SM and the GM. (e.g., lsubjclav /l
ref
clav). Therefore, if the length of the clavicle

in SM3 is 0.89, lsubjclav = 0.89 ∗ lrefclav. The row named ”Total” contains the averaged value of
the three segments. For the OFLs and TSLs, the ratios are the average of the 31 muscles
in the DSEM.

The constrained approach delivered muscle parameters which did not fol-278

low the variation in the segments’ length of either of the two SMs. For subject279
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5 (S5), scaling increased the length of both, muscle parameters and model280

segments, although not in the same proportion. While OFLs and TSLs were281

elongated 8’5% and 3.5%, the bones of SM5 were just 1.3% longer than in282

the GM. Furthermore, in subject 3 (S3), not only did the muscle parameters283

not decrease proportionally to the segments, but the TSLs increased 4.91%284

on average.285

286

3.1. Consistency of the Scaled models.287

Figure 2 shows the normalized length excursions of the scapular section288

of the deltoid during the scaption trial. This muscle operated out of range289

(below 0.5 lm,norm, Fig 2) from 30o in SGM3 (dashed red line) and 60o in290

SGM5 (dashed green line) until the end of the trial and 70o respectively.291

292

Figure 2: Variations in the length excursion of the scapular section of the deltoid
(one of the muscles working out of range in the SGMs) throughout the scaption
trial of Subject 3. In blue, the normalized length excursion of the muscle in the GM
(reference model). The dashed lines depict the deviation in SGM3 (red) and SGM5 (green)
due to geometrical scaling. The circles represent the length excursion in SM3 (red) and
SM5 (green) after having their parameters scaled with the constrained approach. The
linear technique delivered identical results (star marks) in SM3 (red) and SM5 (green).
Finally, the solid lines in magenta (SM3) and cyan (SM5) illustrate the excursion of the
fibers after scaling the muscle parameters using the 2-step approach.
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The constrained (circles mark) and linear (stars mark) adjustment of293

muscle parameters provided the best fit with the GM (solid blue line). The294

same remark holds for all the muscles that actuated out of bounds in the295

SGMs, like the deltoid.296

297

The median of the out-of-range muscles in SGM3 was 0.26 (Fig 3). The298

constrained estimation of lmo and lts, brought that number down to 0.027. The299

other two approaches also achieved substantial reductions in MMSE for out-300

of-range muscles. The 2-step scaling lowered the MMSE from 0.21 in SGM3301

and 0.23 in SGM5 to 0.034 and 0.096, respectively. The linear approach302

decreased those values to 0.08 and 0.068. The most considerable reduction303

was achieved by the constrained technique, which yielded a 0.028 and 0.046304

MMSE for SM3 and SM5 (in red in Table 2).305

306

Figure 3: Level of consistency delivered by geometrical scaling (SGM3) and muscle pa-
rameter scaling (Linear, Constrained and 2-step). The lowest the MMSE, the highest the
consistency. The MMSE is the averaged RMSE of all the muscles out of range (Appendix
A) during the dynamic trials of Subject 3. The red line in the boxplots indicates the
median, meaning that half of the muscles in the DSEM showed MMSEs lower than this
value. The upper and lower sides of the boxplots represent the 25th and 75th percentile.
These percentiles indicate that one quarter and three quarters, respectively, of the muscles
in the DSEM showed lower MMSEs. The cross markers illustrate the outliers.
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Subject 3 Subject 5
lin cns 2stp SGM lin cns 2stp SGM

OR Musc 0.038 0.028 0.034 0.21 0.068 0.046 0.096 0.23
WR Musc 0.03 0.029 0.03 0.11 0.038 0.031 0.044 0.112
All Musc 0.03 0.029 0.03 0.127 0.043 0.03 0.053 0.14

Table 2: MMSE of the thirty-one muscles in the DSEM throughout the two dynamic trials
(’All Musc’). For more information about the relation between MMSE and consistency
refer to Fig. 3. Each column correspond to each of the three scaling approaches (lin =
linear, cns = constrained, 2stp = 2-step). The column labelled ‘SGM’ contains the MMSE
of the geometrically scaled models (SGM). In red (’OR Musc’), the averaged results taking
into account only muscles operating out of range (Appendix A). In green (’WR Musc’),
the results from muscles operating within physiological range.

Figure 4 displays the pectoralis major’s length excursions throughout the307

flexion trial. For muscles that operated under physiological conditions (pec-308

toralis major among them), the reductions delivered by the three approaches309

were not as remarkable as for muscles out of range (Fig. 3 and Fig. 5). The310

median of the MMSE of fibers actuating within bounds was 0.085 already311

for the SGM5 (SGM5 in Fig 5). However, the constrained method managed312

to lower that value to 0.019. This technique achieved the most significant313

reductions again, decreasing the MMSE from 0.11 and 0.112 to 0.029 and314

0.028 for SM3 and SM5, respectively (in green in Table 2).315

316
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Figure 4: Variations in the length excursion of the pectoralis major (one of the
muscles working under physiological conditions in the SGMs) throughout the
forward flexion trial of Subject 5. For more information about the lines and markers
in the figure, refer to Fig. 2
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Figure 5: Level of consistency delivered by geometrical scaling (SGM5) and muscle pa-
rameter scaling (Linear, Constrained, 2-step). The lowest the MMSE, the highest the
consistency. The MMSE is the averaged RMSE of all the muscles within range during the
dynamic trials of Subject 5. For more information about the figure, refer to Fig. 3

Figures 6 and 7 illustrate the working range of the muscles actuating317

out of bounds in the SGMs throughout the dynamic trials. The Y-axis318

incorporates the twenty-two muscles operating out of range in SGM3 (Fig.319

6) and SGM5 (Fig. 7). The dark blue regions depict the working area of these320

muscles in the SGMs. The green zones represent the improvements delivered321

by the constrained approach. Constrained scaling of lmo and lts brought every322

muscle to work under physiological conditions but for the serratus anterior in323

Figure 6. It even achieved that out-of-range muscles operated within bounds324

for a higher percentage of the humeral ROM in the SMs than in the GM (in325

green in Table 3).326
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Figure 6: Shifts in the working region of out-of-range muscles in S3 caused by scaling OFL
and TSL (constrained approach). The blue area depicts the operating range of muscles
out of range (outside of the zone defined by the red dashed lines) in SGM3 due to geomet-
rical scaling (e.g., teres minor and triceps). The yellow lines show the operating region
of the same set of muscles in the GM (reference model), which should be preserved after
geometrical modifications according to Winby [21]. The green regions represent the im-
provement in the working area after scaling OFL and TSL with the constrained approach.
Therefore, muscles in which the green and yellow regions overlap, are appropriately scaled
(e.g., scapular and clavicular part of the deltoides). The name of the twenty-two muscles
displayed on the Y-axis are specified in Appendix A, table A.6.
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Figure 7: Shifts in the working region of out-of-range muscles in S5 caused by scaling OFL
and TSL (constrained approach). Muscles in which the green and yellow regions overlap,
are appropriately scaled (e.g., pectoralis minor and serratus anterior). The name of the
twenty-two muscles displayed on the Y-axis are specified in Appendix A, table A.7. For
more information about the figure and the consequences of muscle parameter scaling on
their working area, refer to Fig. 6.

OR Musc All Musc
lin cns 2stp SGM lin cns 2stp SGM

S3 0.9 0.92 0.88 0.59 0.97 0.98 0.98 0.91

S5 0.93 0.94 0.9 0.66 0.96 0.98 0.98 0.93

GM 0.9 0.9805

Table 3: Averaged proportion (out of 1, being 1 the whole ROM) of the humeral elevation
ROM that muscles spent working within the physiological conditions. In ’Musc. OR’, the
values for muscles working out of range for longer than one step of the simulation. In ’All
musc’, the results taking into account the thirty-one MTUs in the DSEM. The color code
is the same as in Fig. 6 and 7. The information contained in the colored rows and columns
together with the mentioned figures illustrate the improvement in the working area of the
muscles delivered by muscle parameter scaling. For more information about the columns
and rows’ labels, refer to Table 2.

18



The 2-step approach outperformed the constrained method for muscles327

whose TSL is zero in the SGM (Appendix B and Fig. 8). In this case, both328

linear and constrained scaling delivered higher MMSE values than geomet-329

rical scaling. The 2-step technique was the only one reducing the MMSE330

compared to the SGM (Fig 9 and highlighted in green in Table 4).331

Figure 8: Variations in the length excursion of the serratus anterior (one of the
muscles whose original tendon slack length is zero) throughout the forward
flexion trial of Subject 5. For more information about the graphic, refer to Fig. 2
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Figure 9: Level of consistency delivered by geometrical scaling (SGM3) and muscle pa-
rameter scaling (Linear, Constrained, 2-step). The lowest the MMSE, the highest the
consistency. Only muscles whose original TSL was zero (Appendix B) in the GM are
considered for this graphic. For more information about the boxplots, refer to Fig. 3.

Linear Constrained 2-step SGM

S3 0.175 0.145 0.06 0.105

S5 0.155 0.109 0.077 0.079

Table 4: MMSE of the muscles whose original TSL is zero (Appendix B) throughout the
two dynamic trials for both subjects 3 and 5. In green, the only values lower than the
MMSEs in the SGMs, corresponding to the 2-step approach. For more information about
the relation between MMSE and consistency refer to Fig.3.

3.2. Consequences on muscle force production.332

The averaged forces of five of the rotator cuff muscles (clavicular and333

scapular deltoid, supraspinatus, infraspinatus, subscapularis, and teres mi-334

nor) are shown in Table 5. There were three muscles whose variation in335

the force generation did not match the results from Wu’s research: the336

supraspinatus, and subscapularis in SM3 and the infraspinatus in SM5 (in337

red in Table 5). The teres minor was the muscle that experienced the most338

substantial increase in force production due to constrained scaling.339
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Subject 3 Subject 5 Reference [28]

Deltoid -3.17 %BW -3.88 %BW -1.75 %BW

Infraspinatus -0.36 %BW 3.61 %BW - 4.21 %BW

Supraspinatus 27.73 %BW -2.8 %BW -1.27 %BW

Subscapularis 7.12 %BW -4.29 %BW -4.19 %BW

Teres Minor -19.78 %BW -15.75 %BW -

Total Musc Force -1.1 %BW -1.2 %BW - 1.9 %BW

Table 5: Differences in force production (expressed as the percentage of the Body Weight
of the subject) before and after scaling OFL and TSL using the constrained approach in
five rotator cuff muscles. A positive value means that the force generated by a muscle is
larger in the SGM than in the SM. Conversely, a negative value implies that the force in
the SGM is smaller than in the SM. The reference column shows the difference in muscle
force production from a study using the same scaling technique [28]. In red, the muscle
forces that did not follow the variation (after muscle parameter scaling) observed in Wu’s
publication. Although the reference study did not consider the Teres Minor, we included it
on this table because it is the muscle experiencing the largest increase in force production.
The last row indicates the averaged variation in force generation of the thirty-one MTUs
in the SMs.

4. Discussion340

We hypothesized that adjusting OFL and TSL in geometrically scaled341

models will improve their consistency. Our results have shown that the three342

scaling approaches broadly achieve that. Constrained, linear, and 2-step scal-343

ing of muscle parameters, in that specific order, deliver the lowest MMSE344

values (Fig. 3 and 5). That means, they provide the highest consistencies345

compared to geometrically scaled models.346

347

The constrained approach yields MMSEs as low as 0.029 for SM3 (Table348

2). That indicates that the muscles in SM3 show a behavior 97.1% similar349

to the GM, despite the geometrical modifications. Therefore, a particular350

muscle reaches its maximal force at the same humeral elevation angle with a351

2.9% error in the SM3 as in the GM (Figure 1). For that reason, there is only352

a 2.9% loss in consistency in SM3 with respect to GM3. Furthermore, muscle353

parameter constrained adjustment preserves the extent of the humeral eleva-354

tion ROM in which muscles work under physiological conditions in the SMs355

(0.98) in the same level as in the GM (0.9805, Table 3). Avoiding the reduc-356

tion of this ratio implies that the force generation capability of the model357
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does not diminish, regardless of geometrically scaling.358

359

The consistency analysis of the SGMs (whose muscle parameters are not360

adjusted) provides very different results. Firstly, the MMSE values in the361

SGMs are 78% higher than in the SMs (Table 2). That implies that SGMs362

are 78% less consistent than SMs. In other words, not adjusting OFL and363

TSL after geometrically scaling the DSEM causes a significant loss on consis-364

tency. Secondly, geometrical scaling brought twenty-two muscles to operate365

outside the physiological fiber length range (Fig. 6 and 7, and Appendix A).366

They work as much as 41% of the humeral elevation ROM out of range (Ta-367

ble 3, SGM3). During that extent, their force production capacity is limited368

to 1% of their maximum force [30], restricting the force production of the369

whole model. Consequently, the load sharing algorithm of the DSEM may370

fail to find a solution for the distribution of muscle forces [19]. Nevertheless,371

adjusting their OFLs and TSLs to the new MTU lengths reduces the MMSEs372

as much as 84% (in red in Table 2). Moreover, the adjustment brings these373

muscles back to work within range for at least 92% of the humeral elevation374

(in green in Table 3).375

376

Therefore, geometrically-scaled models are inconsistent, and inconsistent377

models are unreliable since the behavior of their muscles is altered compared378

with the reference model, the GM (in which they exhibit their theoretically379

correct behavior). This is due to differences in its operating region and fiber380

length excursion caused by geometrical scaling. We have demonstrated that381

such inconsistencies are fixed by adjusting OFL and TSL to the scaled MTUs382

length. In consequence, we acknowledge that the results endorse our383

first hypothesis. Adjusting OFL and TSL in geometrically scaled384

upper-limb models improves their consistency.385

386

Scaling OFL and TSL provokes an increase in the muscle force capacity387

of the models as well. Muscles such as the Teres Minor, whose three con-388

tractile elements were out of range in the SGMs (elements from eighteen to389

twenty in Figures 6 and 7), experience the most considerable increase in force390

generation (Table 5). Tuning the OFLs and TSLs of those three elements391

allows them to work under physiological conditions. Therefore, the 1% re-392

striction on their maximal force ceases, and their force production increases.393

The same reasoning applies for any of the muscles that were working out of394

range in the SGMs and that, thanks to scaling their muscle parameters, are395
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back to operating under physiological conditions. Scaling OFL and TSL396

produces an increase in muscle force production. Not only mus-397

cle parameters must be adjusted to preserve consistency, but also398

to avoid the reduction in the force generation due to geometrical399

scaling. Accordingly, SGMs show lower force generation capacity than SMs400

(Table 5). Although producing consistent scaled models is an important step401

in the quest to represent the muscle capacity of a subject, further research is402

needed to evaluate the influence of other muscle parameters in the generation403

of force, such as the PCSA.404

405

To the best of our knowledge, this is the first study evaluating the effect406

of scaling OFL and TSL on consistency in upper-limb models. Validating407

the presented results is thus a challenging task. The only solution plausible408

is comparing our MMSEs to those from an article employing a lower-limb409

model [22]. Even though our MMSEs are slightly higher, they are consistent410

in magnitude (0.029 and 0.03, Table 2) with the values shown in Modenese’s411

study (maximal MMSE of 0.019). Likewise, our correlations are not as high412

(0.99), but they are above 0.95 (Appendix C, Tables C.8 and C.9). Con-413

sequently, we can ratify that the consistency levels reached in our study are414

almost identical to those in Modenese’s paper [35].415

416

The new values for OFLs and TSLs fall within range with data from417

corpses of similar dimensions to S3 and S5 [28, 34]. Hence, we guarantee418

that the muscle parameters delivered by the constrained approach are phys-419

iologically valid. The literature on the topic suggests that bone dimensions420

and muscle parameter scaling hold a non-linear relation [29, 8]. The results421

presented in this study support that statement as well (Table 1).422

423

The constrained approach struggles, however, with muscles whose original424

TSL is zero. It even weakens their consistency and those fibers show lower425

MMSEs in the SGMs than in the constrained SMs. The 2-step technique,426

by contrast, delivers the smallest MMSEs in this situation (Figure 9 and in427

green in Table 4) and thus, the highest consistency. The non-varying tendons428

in our model may be the reason for the poor performance of the linear and429

constrained approaches. Modenese has stated that his algorithm struggles430

to estimate the OFL and TSL in muscles ”...whose tendon length does not431

stretch significantly” [22]. Tendons in the DSEM are stiff elements, meaning432

they do not stretch at all [30]. Additionally, for muscles whose original TSL433
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is zero (Appendix B), the linear and constrained techniques find solving Eq.434

4 truly challenging. Probably, our MMSEs and correlations values are not435

as ideal as in Modenese’s article due to the stiff tendons in the DSEM as well.436

437

Wu’s investigation [28] allows us to validate the muscle force variation.438

We have compared the differences in forces of four rotator cuff muscles be-439

fore and after scaling OFL and TSL. Although most of those muscles show a440

similar increase in force generation, three of them do not follow that fashion441

(in red in Table 5). The subscapularis, supraspinatus (S3) and infraspinatus442

(S5) produce larger forces in the SGMs than in the SMs. This discrepancy443

may be due to different load-sharing algorithms. Wu’s model distributes the444

net joint moments ”...proportionally among synergistic muscles” [17]. Con-445

versely, the DSEM load-sharing algorithm distributes the muscle forces to446

minimize the energy expenditure [19]. The difference in this criterion may447

be the cause of the discrepancy in the force difference in the rotator cuff448

muscles. Nevertheless, both studies agree on the increase in the total muscle449

force production in SMs with respect to SGMs (Table 5).450

451

The scaling algorithm employed in this study introduces two limitations.452

In the first place, it has not been demonstrated that the normalized fiber453

length excursion and the force-angle relation (Figure 1) are the same in dif-454

ferent people. Secondly, Modenese’s algorithm regards the working ranges of455

the muscles in the reference model (GM) as representative of a healthy indi-456

vidual. However, our generic model was created using data from a cadaver.457

In consequence, the scaling protocol in this paper should be used carefully458

with samples such as elite athletes.459

460

The sample (two subjects) of this investigation is too reduced for the461

results to be representative. We therefore recommend repeating the current462

study with a larger sample. Furthermore, a future study could include Max-463

imal Voluntary Contraction (MVC) tests. We have assessed the effects of464

muscle parameter scaling in the muscle force production for dynamic tests,465

but the impact on MVCs is still unknown.466

467

Lastly, the validation performed is limited. We only found three articles468

about scaling muscle parameters in upper-limb models [27, 28, 14], and none469

of them evaluated the effects on consistency. Since the literature on the topic470

is scarce, alternative validation techniques should be considered. Applying471
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the scaling protocol contained in this article to Nikooyan geometrically scaled472

models represents a reliable option [19]. In this way, the estimated contact473

forces could be compared with experimental data from instrumented endo-474

prostheses.475

5. Conclusion476

• Any research which intends to modify the geometrical parameters of477

the DSEM (or any other upper-limb MSK model) must adjust the OFL478

and TSL accordingly, in order to preserve the consistency and muscles479

behavior in the scaled version. Inconsistent models are unreliable and480

not capable of representing the muscle force capacity of the scaled sub-481

ject.482

• Scaled versions of the DSEM whose OFLs and TSLs have been adjusted483

are 78% more consistent and their MTUs produce up to 1.2 %BW larger484

forces than geometrically scaled versions.485

• The scaling protocol contained in this paper delivers losses in consis-486

tency lower than 5%. Furthermore, it does not require other experimen-487

tal data than ROM recordings and it is computationally inexpensive.488

Appendix A. List of muscles working out of range.489

The following tables contain the names of the muscles actuating out of490

range displayed on Figure 6 for Subject 3 and Figure 7 for Subject 5. These491

are also the muscles labeled as ’OR Musc’ or out-of-range muscles in Tables492

2 and 3.493
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Nr. in Fig. 6 Name of the muscle
1, 2, 3 Trapezius Scapular Part

4 Pectoralis Minor
5, 6, 7, 8 Serratus Anterior

9, 10, 11, 12, 13 Deltoides Scapular Part
14 Deltoides Clavicular Part
15 Infraspinatus

16,17 Subscapularis
18, 19, 20 Teres Minor

21, 22 Triceps lateral part

Table A.6: Name of the muscles corresponding to the numbers shown on the Y-axis in
Figure 6.

Nr. in Fig. 7 Name of the muscle
1, 2, 3 Trapezius Scapular Part
4, 5 Pectoralis Minor
6, 7 Serratus Anterior

8, 9, 10, 11 Deltoides Scapular Part
12, 13 Deltoides Clavicular Part

14 Infraspinatus
15, 16, 17 Subscapularis
18, 19, 20 Teres Minor

21, 22 Triceps lateral part

Table A.7: Name of the muscles corresponding to the numbers shown on the Y-axis in
Figure 7.

Appendix B. List of muscles whose original Tendon Slack Length494

is zero in the DSEM.495

The muscle fibers whose Tendon Slack Length (TSL) is zero in the refer-496

ence model (generic version of the DSEM) are: four elements of the Serratus497

Anterior and one element of the Subscapularis.498

Appendix C. Correlation values.499

We calculated the correlation coefficients between the fiber length ex-500

cursion in the scaled models and the GM (reference model) to evaluate the501
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similarity of their curves (such as the curves displayed on Fig 2, 4, and 8).502

We compared these values to the correlation coefficients from Modenese’s503

publication [22].504

Max Min Mean

SM3 1 0.3 0.97

SM5 1 0.15 0.95

Table C.8: Correlation coefficients of the scaption test for SM3 and SM5. Several muscles
show a correlation of 1 (maximal value) but the minimal correlation corresponds to the
brachioradialis and the serratus anterior in SM3 and SM5 respectively. The mean value is
the averaged correlation coefficient of all the muscles in the DSEM.

Max Min Mean

S3 1 0.45 0.98

S5 1 0.14 0.97

Table C.9: Correlation coefficients of the flexion test for SM3 and SM5. Several muscles
show a correlation of 1 (maximal value) but the minimal correlation corresponds to the
serratus anterior and the subscapularis in SM3 and SM5 respectively. The mean value is
the averaged correlation coefficient of all the muscles in the DSEM.
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