
 
 

Delft University of Technology

How can LLMs transform the robotic design process?

Stella, Francesco; Della Santina, Cosimo; Hughes, Josie

DOI
10.1038/s42256-023-00669-7
Publication date
2023
Document Version
Final published version
Published in
Nature Machine Intelligence

Citation (APA)
Stella, F., Della Santina, C., & Hughes, J. (2023). How can LLMs transform the robotic design process?
Nature Machine Intelligence, 5(6), 561-564. https://doi.org/10.1038/s42256-023-00669-7

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1038/s42256-023-00669-7
https://doi.org/10.1038/s42256-023-00669-7


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



nature machine intelligence Volume 5 | June 2023 | 561–564 | 561

https://doi.org/10.1038/s42256-023-00669-7

Comment

How can LLMs transform the robotic design  
process?

Francesco Stella, Cosimo Della Santina & Josie Hughes

We show that large language models (LLMs), 
such as ChatGPT, can guide the robot design 
process, on both the conceptual and technical 
level, and we propose new human–AI co-design 
strategies and their societal implications.

Large language models (LLMs)1 will fundamentally change the robotics 
landscape by providing robots with the unprecedented capability to 
understand and analyse natural language. The key advantage of LLMs 
is their ability to process and internalize large amounts of text data 
such as instructions, technical manuals and academic articles, and 
to factually and coherently respond to questions using this implicit 
knowledge. The potential of utilizing these powerful AI tools within 
robotics has already been shown through their ability to synthesize 

code from text prompts2 and to translate natural-language instructions 
into actions executable by robots3,4. However, recent improvements in 
the availability and capabilities of LLMs opens new opportunities, and 
they may now contribute to another bottleneck of robotics, design. 
Leveraging their emerging capabilities5,6, LLMs can deliver a dialogue 
that educates, stimulates and guides humans in building robots. These 
capabilities could fundamentally change the methodology by which 
we design robots, changing the role of humans and enriching and  
simplifying the design process. So, how can LLMs transform the robotic 
design process, and what are the associated opportunities and risks?

To explore this question, we consider the case study of a human 
driven by a desire to “help the world with robotics,” and we present a 
robot designed with ChatGPT-3. We approach the task in two steps. In 
the first, high-level phase, the computer and human collaborate at a 
conceptual level, discussing ideas and outlining the specifications for 
the robot design, while in the second phase the physical realization 
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Fig. 1 | Design pipeline. A pictorial overview of the discussion between the human designer and the LLM, with the questions prompted by the human above and the 
options provided by the LLM below. The green colour highlights the decision tree of the human, who gradually focuses the problem to match their goal.

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-023-00669-7
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-023-00669-7&domain=pdf


nature machine intelligence Volume 5 | June 2023 | 561–564 | 562

Comment

this second phase, Fig. 2 displays the main outputs generated by the 
LLM and the real-world deployment of the AI-designed robotic gripper 
for crop harvesting.

This case study demonstrates the potential for LLMs to transform 
the design process and how the human–AI relationship may need to 
vary depending on the expertise of the individual, the stage of the 
design process and the final goal. By appropriately combining multiple 
methodologies of human–AI collaboration, the design process can be 
enhanced and simplified.

At one extreme of human–AI interaction, LLMs could provide all 
the input required for robot design, which the human follows blindly. 
The AI is then the inventor, addressing human questions and providing 
‘creativity’, technical knowledge and expertise, whereas the human 
deals with the technical implementation. This could foster the trans-
fer and democratization of knowledge by enabling nonspecialists to 
realize robotic systems. For the first time in a computational design 
framework, the AI agent does not merely solve technical problems 
specified by the human, but rather proposes conceptual options to 
the human. In this sense, the LLM acts as the researcher, leveraging 
knowledge and finding interdisciplinary connections, while the human 
acts as a manager, providing direction to the design.

A more moderate, yet powerful, approach is a collaborative explo-
ration between the LLM and the human, augmenting the human’s 
expertise by leveraging the ability of the LLM to provide interdiscipli-
nary, wide-ranging knowledge. In this second modality, the role of the 
LLM is to support the human in efficiently gathering knowledge from 
fields outside their personal experience, enriching the conception pro-
cess. For an inherently interdisciplinary research area such as robotics, 
this has significant potential. By augmenting human knowledge, this 
methodology removes the limits imposed by a human’s education and 

takes place. The full conversation with ChatGPT supporting this case 
study is provided in the Supplementary Information.

In the ideation phase, the human starts by asking the LLM what the 
future challenges are for humanity and promptly gets an overview of 
the main hazards, as shown in Fig. 1. Next, the human selects the most 
interesting and promising direction, and through further dialogue 
narrows down the design space. This interaction can span multiple 
fields of knowledge and levels of abstraction, ranging from concepts 
to technical implementation. In this process the human is relying on 
the AI partner to access knowledge outside the human’s personal 
expertise. The AI model helps the human explore intersections between 
research fields, such as agriculture and robotics, and consider factors 
that are not part of an engineer’s typical training, such as which crop 
is economically most valuable to automate. Through conversation, 
the application is selected, and the LLM and the human converge to 
the technical design specifications, including the software, materials 
section, mechanism design and manufacturing methods.

In the second, low-level phase of the design process, these direc-
tions need to be translated into a physical and functioning robot. 
Although LLMs cannot currently generate entire CAD models, evaluate 
code or automatically fabricate a robot, recent advances have shown 
that AI algorithms can support the technical implementation of soft-
ware7, mathematical reasoning8 or even shape generation9. Although 
we expect that AI approaches will be able to generate these in the future, 
currently, the technical implementation remains a collaborative effort 
between AI models and humans. The human takes on a ‘technician’ 
role, optimizing the code proposed by the LLM, finalizing the CAD 
and fabricating the robot. This robot can then be tested in real-world 
scenarios, and further conversation with the LLM can be used to iterate 
on the design in the light of experimental evidence. As an example of 
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Fig. 2 | An AI model designed this robotic gripper. a, Some of the technical suggestions generated by the LLM, including shape indications, code, component and 
material selection, and mechanism design. b, Guided by these inputs, a gripper was built and tested on real-world tasks, such as tomato picking, as shown at right.
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supports a human in finding relevant connections between fields, mak-
ing interdisciplinary research more accessible. However, the knowledge 
presented by LLMs may be narrow in scope and subject to errors. For 
fields far from the engineer’s expertise, they may not have the ability to 
fact check the validity of the AI-generated answers. This risk is pictori-
ally represented in Fig. 3. By providing only a small insight or window 
into vast and complex topics, interactions with LLMs could lead to 
misinterpretation and oversimplification, ultimately creating errors 
in the design and biases in the field.

Finally, we can consider a third approach in which the LLM 
acts as a funnel, helping to refine the design process and providing 
technical input while the human remains the inventor or scientist 
involved in the process. The AI can assist with debugging, trou-
bleshooting and the selection of methods, accelerating tedious 
and time-consuming processes. In this AI–human relationship, the 
knowledge and intuition of the human moderates the discussion, 
and the human is working within their scope of expertise so as to be 
critical of answers and suggestions.

Robotic design is a creative, interdisciplinary and intellectual prop-
erty (IP)-creating process that currently relies on highly skilled profes-
sionals. We believe that a careful combination of these approaches 
could revolutionize this process. However, introducing LLMs into the 
design of robots introduces questions regarding potential negative 

effects. LLMs must be regarded as an evolution of search engines, 
generating the “most probable” answer to a given prompt10. These 
answers can be incorrect, and when not appropriately fact checked 
or validated, the LLM output could be misleading or, in the worst case, 
dangerous. However, unlike search engines, LLMs can propose ways to 
integrate ‘knowledge’ and apply it to unseen problems, thus potentially 
giving a false impression that new knowledge is being generated. This 
could prevent humans from taking responsibility for the solutions 
developed11, which could prohibit and stagnate the advancement of 
new robotic technologies and designs. Another issue with the wide-
spread use of LLMs in robotic design is the bias toward solutions that 
the model statistically prefers, which may hinder the exploration of 
new technological solutions.

Finally, there are key issues related to plagiarism, traceability and 
IP12. Can a design created via LLM be considered to be novel, given that it 
builds only on prior knowledge13, and how can this previous knowledge 
be referenced? As this technology matures, there are also longer-term 
considerations including data privacy, the frequency of retraining and 
how new knowledge should be integrated to maintain the usability and 
relevancy of this tool. There are also significant societal and ethical 
implications resulting from human–AI interactions for robot design. 
If LLMs are used to automate high-level cognitive design tasks, humans 
may instead take on more technical jobs. This could redefine the set 
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Fig. 3 | Opportunities and risks of human–LLM design collaboration. Left, 
the two phases of the design process: first the human and LLM discuss the 
specifics application and of the design, and later the human implements them. 
Right, a pictorial representation of the knowledge spanned during the high-
level discussion. Thanks to the LLM, the human designer can efficiently access 
zones of knowledge outside their personal expertise and link different of these 

areas through questions. This, however, comes at the cost of risking accepting 
wrong inputs for fields too distant from the designer’s knowledge. Whereas in 
a traditional learning process the designer expands their personal experience 
radially, with LLM-based explorations the designer can access only limited zones 
of knowledge, thus risking misinterpretation.
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of skills that are required by an engineer and their role in the economy 
and society.

To conclude, the robotics community must identify how to lever-
age these powerful tools to accelerate the advancement of robots in an  
ethical, sustainable and socially empowering way. We must develop 
means of acknowledging the use of LLMs14 and also of being able to 
trace the lineage of LLM-aided designs. Looking forward, we strongly 
believe that LLMs will open up many exciting possibilities and that, if 
opportunely managed, they will be a force for good. The design process 
could be fully automated by combining collaborating LLMs to ask and 
answer questions, with one helping to refine the other. This approach 
could also be augmented with automated fabrication to allow a fully 
autonomous pipeline for the creation of bespoke and optimized robotic 
systems15. Ultimately, there is an open question for the future of this field 
of how these tools can be leveraged to assist robot developers without 
limiting the creativity, innovation and scientific endeavours required 
for robotics to rise to the challenges of the twenty-first century.
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