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Abstract

Constraint logic programming (CLP) is a combination of two programming paradigms:
constraint programming and logic programming. This combination allows us to write
programs in a concise way and still be executed efficiently. CLP is commonly used for
many domains, such as test data generation. A commonly used technique for doing
this is by performing symbolic analysis on a program, and determine which values will
cause which branches of the program to be executed. The problem however is that these
symbolic execution algorithms normally analyze the program in a depth-first manner
and do not treat non-determinism fairly. We will be investigating how we could improve
this using the free monad and how we can use this in order to perform a breadth-first
search, rather than depth-first. We will give a basic sample interpreter, which we will
convert into a symbolically executable interpreter. The language will be described and
represented as an interpreter written in Scala.

1 Introduction
Constraint logic programming (CLP) is a concept where logic programming is extended with
concepts from the constraint programming paradigm. This allows the possibility to solve
logic equations using constraint satisfaction strategies (Rossi et al., 2006). This makes CLP
attractive, because it allows the user to write concise programs in a declarative way and still
run efficiently. Because of this, CLP is used in many domains, such as program verification
or solving scheduling problems. One specific domain that we are interested in, is test data
generation.

By performing symbolic analysis on a program, we are able to determine which symbolic
values will cause which part of the program to execute. This particular technique is com-
monly known as concolic testing (Sen, 2007). Some examples of concolic testing tools include
DART (Godefroid et al., 2005), KLEE (Cadar et al., 2008), and QuickCheck (Claessen and
Hughes, 2011). These tools are able to obtain good code coverage when run on normal pro-
grams, by using CLP solving methods or SMT solvers. However, these tools face a problem
when encountering non-determinism or infinite recursion. Concolic testing algorithms gen-
erally perform a depth-first search over the tree of possible execution paths (Sen, 2007), and
cannot handle infinite recursion and non-termination fairly. In this paper, our objective is
find out how symbolic analysis of programs can be performed in a breadth-first manner, by
representing these programs using free monads and how we can use CLP solving techniques
in order to generate the actual test data (e.g. for unit tests). We will be exploring the
free monad due to its ability to represent programs in a tree-like structure, without actually
performing the computations.
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2 The Basic Interpreter
In this chapter, we will introduce a simple interpreter for a language with support for pattern
matching. We will discuss the expressions and values that are necessary for achieving this,
as well as the evaluation strategy, followed by an implementation of such an interpreter.

2.1 Definition of Expressions
For our basic interpreter, a program is defined as a single expression. One of the interesting
features that most functional languages include, is pattern matching. In order to achieve
that, we define that an expression that can be represented using the following case classes:

trait Expr

object Expr {

case class Var(name: String) extends Expr

case class Val(value: Any, args: List[Expr]) extends Expr

case class Function(arg: Var, body: Expr) extends Expr

case class Letrec(bindings: List[(Var, Function)], body: Expr) extends Expr

case class Apply(body: Expr, arg: Expr) extends Expr

case class Case(pattern: Pattern, body: Expr) extends Expr

case class Match(arg: Expr, cases: List[Case]) extends Expr

}

A Var expression simply represents a variable with the given name. Values are represented
with Val expressions, which basically acts as a value constructor. Integers in our language
are represented as Val("Int", List(Val(1, Nil))). Using this method of representation,
we could also represent the list [1, 2, 3, 4] using Cons and Empty in the following way:

Val("Cons", List(Val("Int", List(Val(1, Nil))),

Val("Cons", List(Val("Int", List(Val(2, Nil))),

Val("Cons", List(Val("Int", List(Val(3, Nil))),

Val("Cons", List(Val("Int", List(Val(4, Nil))),

Val("Empty", Nil)))

))

))

))

Which roughly translates to Cons(1, Cons(2, Cons(3, Cons(4, Empty)))). For our lan-
guage, we would also need to find a way to define functions. This is done using the Function

expression, which takes only one argument (arg) and a body, which is the body of the func-
tion, where the argument is bound. These functions can then be used to define Letrec

expressions. A Letrec expression takes in a list of a (Var, Function) tuples, where for each
tuple, the function is bound to the corresponding variable. Using these functions can be
done by using Apply expressions, which applies the given argument on the given body.

For the pattern matching feature, we have two different case classes. As we can see, a
Case expression accepts a Pattern class. This class is used to define patterns, such that the
interpreter can match values and variables with the given value. A Pattern class has only
two cases. Namely when the value is known (ValP), and when the value is not known (VarP).
These case classes are defined in the following way, similar to a normal expression:
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sealed trait Pattern

object Pattern {

case class ValP(value: Any, args: List[Pattern]) extends Pattern

case class VarP(name: String) extends Pattern

}

Both case classes act similar to the equivalent Expr variant. When such a pattern can be
matched by the given value, the body expression is then executed. In the body expression,
new variables can be used that were introduced during the pattern matching (bound using
VarP expressions).

These Case expressions are then used to form Match expressions, which matches the
given argument and executes the body of the first Case expression where the argument is
able match the pattern of that Case expressions.

2.2 The Basic Interpreter
Interpretation of expressions is done using a well-known tradition, which is by interpreting
the expressions with an environment, which maps variables to their values (Landin, 1964).
The interpretation method (interp) interprets an expression using lazy evaluation. In order
to do this, we use closures, which stores a function together with an environment (Sussman
and Steele, 1998). These closures are represented using ClosV instances. The interpretation
method simply returns a Value instance, which is defined using the following case classes:

sealed trait Value

object Value {

case class ValV(x: Any, xs: List[Value]) extends Value

case class ClosV(expr: Expr, var env: Environment) extends Value

}

Note that the env variable is a var, since we need to modify this in order to fully support
Letrec expressions with the correct environments (Waddell et al., 2005). This does make the
interpretation function not entirely pure, but this is done to implement Letrec expressions
more easily. It should be noted that the language itself is pure, since a pure interpretation
method can be implemented using Y-combinators (Park, 1976). The Environment class,
which acts as a placeholder for a Map instance. For the sake of simplicity, we define this
Map instance to map variable names to their corresponding values. The map instance would
have the type Map[String, Value]. The Environment class should have a method to get and
set values. This can be achieved by implementing it in the following way:

case class Environment(maps: Map[String, Value]) {

def set(t: (String, Value)): Environment = Environment(maps + t)

def get(name: String): Value = maps(name)

}

At the start of interpreting an expression, we do not have an Environment, so we define
the environment to be standardized to Environment(Map()). Using this as the backbone for
running programs, we can define a simple implementation for a basic interpreter:
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object Interpreter {

def interp(e: Expr, env: Environment = Environment(Map())): Value = e match {

case Var(name) => env.get(name)

case Val(value, args) => ValV(value, args.map(x => force(interp(x, env))))

case Letrec(bindings, body) =>

val env1 =

bindings.foldLeft(env)((e, a) => e.set(a._1.name -> ClosV(a._2, null)))

bindings.foreach(b => env1.get(b._1.name).asInstanceOf[ClosV].env = env1)

interp(body, env1)

case Function(arg, body) => ClosV(Function(arg, body), env)

case Match(arg, cases) =>

val value = force(interp(arg, env))

val result =

cases

.toStream

.map(c => (c.body, doMatch(value, c.pattern, env)))

.find(c => c._2 != null)

.getOrElse(throw new Exception("MatchException"))

interp(result._1, result._2)

case Apply(b, arg) => interp(b, env) match {

case ClosV(Function(param, body), closureEnv) =>

val env1 = closureEnv.set(

param.asInstanceOf[Var].name -> interp(arg, env)

)

interp(body, env1)

}

}

Figure 1: A basic implementation of the interpreter

The force method forces interpretation on ClosV values. Since ClosV values are unevaluated
expressions, where the environment is already given, we only need to force the interpretation
of the delayed result. This is done by recursively evaluating the expression with the stored
environment, until a normal value is returned.

The interpretation of Letrec expressions is a bit tricky, since the functions should
be able to call themselves. In order to solve this, we set the value of the function as
ClosV(..., null), indicating that the environment is uninitialized. We collect all these
mappings and store them in a new environment, and eventually initialize the environment
of each of these ClosVs to this new environment. Interpretation of Functions results in a
ClosV constructed with the current environment.

Application of these functions, using Apply, is interpreted by interpreting the body of the
Apply expression. Since it is only possible to interpret Function expressions, the interpreta-
tion of the body should always result in a ClosV(Function(param, body), closureEnv). We
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can then interpret the body of the function using the resulting closureEnv.
Lastly, the implementation of the pattern matching feature is done with the Match ex-

pression. Matching is done using the doMatch, which is implemented in the following way:

def doMatch(left: Value, right: Pattern, env: Environment): Environment = {

// When the environment equals null, this indicates that a match is

// not possible, and therefore we immediately return null.

if (env == null)

return null

(left, right) match {

case (ValV(l, ls), ValP(r, rs)) if l.equals(r) =>

ls.zip(rs).foldLeft(env)((e, t) => doMatch(t._1, t._2, e))

case (v @ ValV(_, _), VarP(name)) => env.set(name -> v)

case _ => null

}

}

Figure 2: The matching algorithm for the basic interpreter

All this together gives us a basic interpreter that handles pattern matching. The full code
can be found at Appendix A. Using this interpreter, we can interpret programs using the
pattern matching feature. An example of a program that implements the append function
can be found at Appendix B or here for the full version.

2.3 Abstract Interpretation
Symbolic analysis refers to the analysis of programs and determines what symbolic values will
cause which part of the program to execute. Rather than actually executing the interpreter,
it assumes symbolic values for variables and follows the path that will be executed. This
technique is also known as abstract interpretation (Cousot and Cousot, 1977). In order to
generate test data, we would need to perform such abstract interpretation of a program.
Running such an interpreter on a program would need to result in some kind of abstract
representation of the sequence of computations. A way of doing this is possible by using
free monads (Trnková et al., 1975). This allows us to transform a normal interpreter into
multiple different interpreters, by redefining the meaning of the commands of the interpreter.

This makes it possible to transform a simple deterministic interpreter into an abstract
interpreter, allowing us to gain information about its semantics, without actually perform-
ing the computations. In the next section, we will explain how we can redefine regular
interpreters using free monads and what strategies we can use in order to handle non-
determinism.
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3 Transformation into a Symbolic Executor
In this section, we will discuss how we can transform a regular interpreter into an abstract
interpreter that performs symbolic execution, using free monads. The first subsection will
give an introduction to what free monads are and why we need them for symbolic execution.
Furthermore, we will explain how a program represented as a free monad can be executed and
what execution strategies we can use, in order to get the concrete values of the interpretation.

3.1 Free Monads
A monad is a design pattern that has two functions, bind and return. The return function
simply turns a value into a monadic value, while the bind function maps takes a function
and maps the function on the monad. This makes it possible to chain computations in some
specific and useful way.

The free monad (Trnková et al., 1975) is a design pattern that obeys the laws of a monad,
and therefore has a bind and return function. The difference between the free monad and
other monads is that it does not actually perform the computations. Chaining operations
just builds up a nested series of commands, resulting in a command tree. This provides a
flexible way of defining the actual meaning of such a composition and how to handle a free
monads. In this paper, we implement the free monad using the following classic inductive
definition:

sealed trait Free[F[_], A] {

def bind[B](f: A => Free[F, B]): Free[F, B] = Bind(this, f)

}

case class Pure[F[_], A](a: A) extends Free[F, A]

case class Bind[F[_], X, A](x: Free[F, X], f: X => Free[F, A]) extends Free[F, A]

The Pure case class represents the return method of the monad, which accepts a pure value
and wraps it into a free monad. Computation of Pure instances returns a value of type A.
The Bind case class represent the bind method (also known as flatMap), which takes a free
monad and a continuation function. All this together creates the basic foundation of the
free monad.

In addition to these case classes, we also need to have some kind of way to represent
multiple Free[F[_], A] instances, as we need to be able to represent branches contain all
possible choices in a traversable way. Therefore, we extend the free monad to have a Fork

case class:

case class Fork[F[_], A](fa: () => Stream[Free[F, A]]) extends Free[F, A]

This addition turns the free monad into a free MonadPlus, which we need for the search of
solution of non-deterministic computations (Reck and Fischer, 2009). In this case, the fa

property is a nullary lambda rather than regular Stream, as the head of the stream is strict,
while we do not want to compute this value immediately.
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The free monad has a bind method, which binds a continuation function to the free monad,
using the Bind case class. In order to create symbolic executors, we need to create an
interface for these executors, commonly referred as the natural transformation function. In
Scala, these free monads are typically used for programs in the form of for-comprehensions,
but since our programs are expressions, our natural transformation interface is a bit different.
The pipeline of how programs are transformed and executed is as following:

F[A] --transform--> Free[F, A] --handleFree--> G[A]

Using this pipeline, we can create the actual interface that we will need to implement:

object Free {

trait ~>[F[_], G[_]] {

def monad: MonadPlus[G]

def transform[A](fa: F[A]): Free[F, A]

def handle[A](fa: F[A]): G[A] = handleFree(transform(fa))

def handleFree[A](free: Free[F, A]): G[A] = free match {

case Pure(x) => monad.pure(x)

case Bind(x, f) =>

monad.bind(handleFree(x),

(a: Any) => handleFree(f.asInstanceOf[Any => Free[F, A]](a)))

case Fork(fa) =>

fa.apply()

.foldLeft(monad.mzero: G[A])((b, f) => monad.mplus(b, handleFree(f)))

}

}

Figure 3: The natural transformation interface

As we can see, we only need to implement the transform method and define the operations
for the MonadPlus. The MonadPlus is an extension of the Monad, and are both defined in the
following way:

trait Monad[M[_]] {

def pure[A](x: A): M[A]

def bind[A, B](ma: M[A], f: A => M[B]): M[B]

}

trait MonadPlus[M[_]] extends Monad[M] {

def mzero[A]: M[A]

def mplus[A](m1: M[A], m2: M[A]): M[A]

}

Figure 4: The interfaces for the Monad and the MonadPlus

Using these interfaces, we can implement a symbolic executor for a language, such that the
interpreter is able to handle non-deterministic choices and logic variables. We can even
extend our language with new commands, which we will do in order to generate test data.
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3.2 Introducing Logic Expressions
In order to make our basic interpreter an interpreter that handles functional programming,
we need to add logic expressions and values, which we then can use to solve logical equa-
tions. We can use these logic expression to define methods that define the domain of a
variable. This particular operator is called the amb operator, short for the ambiguity op-
erator (McCarthy, 1959). The amb-operator is an operator that expresses non-determinism.
The amb-operator basically defines a domain for a certain variable. In our language, if we
allow logic variables without any value assigned to them, we can implement the amb-operator
as follows:

(Var("amb"),

Function(Var("left"),

Function(Var("right"), Match(Var("dummy"), List(

Case(ValP("dummy1", Nil), Var("left")),

Case(ValP("dummy2", Nil), Var("right"))

)))

)

)

Figure 5: A hypothetical implementation of the ambiguity operator

Assuming that Var("dummy") is not set, the function can either return Var("left") or
Var("right"), since the dummy variable is able to be matched with both values, and makes
the result of the function ambiguous. Interpreting this with the basic interpreter does not
work, since Var("dummy") is a free variable. Therefore, we need to find a way to allow free
variables. This is done by adding MetaV as a Value case class, which represent meta variables
or logic variables. In order to define these logic variables, we add a new expression WithFree.
This binds the name of the variable to the meta value. Such an expression is defined as:

case class WithFree(v: Var, body: Expr[Value]) extends Expr[Value]

For example, using this expression as WithFree(Var("x"), <expr>) is equivalent in the Curry
language to <expr> where x free.

3.3 Evaluation into a Command Tree
In order to implement a symbolic executor, we need to implement the trait F ~> R (see
Figure 3), where F is a functor and R is a type container indicating the result from running
the transformed programs. For example, the type container can be:

• Id[A], which is the Id monad. This indicates that the execution of a program will
result in just A.

• Future[A] is used for asynchronous computations.

• Stream[A] is used for gathering multiple results.

• Option[A] can be used for optional results.

• etc.
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In this case, we want to define an interpreter that generates a (possibly infinite) stream of
values. The functor in this case is Expr and the type container is a Stream. We define a
symbolic executor by extending this trait:

object SymbolicInterp extends (Expr ~> Stream) {

implicit def value2free[F[_], A](value: Value): Free[F, A] =

Pure[F, A](value.asInstanceOf[A])

override def monad: MonadPlus[Stream] = new MonadPlus[Stream] {

override def mzero[A]: Stream[A] = Stream()

override def mplus[A](m1: Stream[A], m2: Stream[A]): Stream[A] = m1 ++ m2

override def pure[A](x: A): Stream[A] = Stream(x)

override def bind[A, B](ma: Stream[A], f: A => Stream[B]): Stream[B] =

ma.flatMap(f)

}

override def transform[A](expr: Expr[A]): Free[Expr, A] = interp(expr)

def interp[A](expr: Expr[A]): Free[Expr, A] = interp(expr, Environment(Map()))

def interp[A](expr: Expr[A], env: Environment): Free[Expr, A] = expr match {

case Var(name) => env.get(name)

case Val(v, vs) => ValV(v, vs.map(x => handleFree(interp(x, env)).head))

case Function(arg, body) => ClosV(Function(arg, body), env)

case Letrec(bindings, body) =>

val env1 =

bindings.foldLeft(env)((e, a) => e.set(a._1.name -> ClosV(a._2, null)))

bindings.foreach(b => env1.get(b._1.name).asInstanceOf[ClosV].env = env1)

interp(body, env1).asInstanceOf[Free[Expr, A]]

case Exists(v, cond) =>

val env1 = env.set(v.name -> MetaV(v.name))

cond match {

case Equals(left, right) =>

interp(left, env1).bind(r1 =>

interp(right, env1).bind(r2 =>

Pure(directUnify(r1, r2, env1)))).bind(e => e.get(v.name))

}

case WithFree(Var(name), body) =>

interp(body, env.set(name -> MetaV(name))).asInstanceOf[Free[Expr, A]]

case Match(arg, cases) =>

interp(arg, env).bind(r1 => Fork(() =>

cases

.toStream

.map(c => (c.body, doMatch(r1, c.pattern, env)))

.filter(c => c._2 != null)

.map(c => interp(c._1, c._2).asInstanceOf[Free[Expr, A]])

))
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case Apply(e, arg) => interp(e, env).bind {

case ClosV(Function(param, body), closureEnv) =>

interp(arg, env).bind(r1 => {

val env1 = closureEnv.set(param.name -> r1)

interp(body, env1)

}.asInstanceOf[Free[Expr, A]])

}

}

Figure 6: An implementation of the symbolic executor

As we can see, we implemented the monad method, which implements the MonadPlus interface
for a Stream. The mzero method returns an empty instance, while mplus concatenates two
instances. The pure method takes an instance of A and returns a Stream[A] which contains
only one item, and the bind method is the same as the flatMap method, which is trivial to
implement for streams.

We have added an implicit value2free method, which implicitly converts Value instances
into instances of Free[F, A], which is simply done by using the Pure constructor. The
transform method is performed using the interp function, which results in a free monad
tree. As we can see, we need to make some slight changes compared to the basic interpreter.
Some of the expressions are interpreted in the same way, like Var, Function and Letrec.
Expressions that are interpreted with inner interpretations use the bind method to use the
resulting values (such as the Apply expression).

The WithFree expression is interpreted by mapping the name of the given variable to a
meta variable, indicating that this is a logic variable in the scope of the body. Using this
expression, we can now define a working implementation of the ambiguity operator (shown
in Figure 5):

(Var("amb"),

Function(Var("left"), Function(Var("right"),

WithFree(Var("dummy"), Match(Var("dummy"), List(

Case(ValP("dummy1", Nil), Var("left")),

Case(ValP("dummy2", Nil), Var("right"))

))))))

Figure 7: An implementation of the ambiguity operator with a free variable

This function allows us to specify non-deterministic choices. However, one of the big changes
from the basic interpreter to the symbolic executor is the Match expression. Since meta
variables are now valid Value instances, we need to change the doMatch method (see Figure
2), such that it can handle MetaV instances as well. Therefore, we need to add the following
case to the doMatch method:

case (MetaV(name), ValP(r, rs)) =>

val rm = rs.map(_ => fresh())

val env1 = rm.foldLeft(env)((e, r) => e.set(r.name -> r))

rm.zip(rs)

.foldLeft(env1.set(name -> ValV(r, rm)))((e, t) => doMatch(t._1, t._2, e))
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This returns an environment where the meta variable is replaced by a (meta) value, where the
list of remaining arguments (rm) are fresh variables (instantiated using the fresh method).
The fresh method simply returns a MetaV instance with a name that has not been used
before.

The Match expression is also different compared to the other expressions, as this is the
only expression where non-deterministic choices can happen. Therefore, the Match expression
is the only expression that returns a Fork instance, containing all the interpretations of the
cases where the value was able to be matched to the pattern. Currently, this will be searched
through (with the handleFree method) in a depth-first manner, but is easily adjustable by
overriding the handleFree method.

The last thing that we also need in order to generate test data is to add an existential
quantifier which can accept logical expressions (expressions that represent boolean con-
straints). This allows us to write queries in a declarative manner, which will result in
solutions that we can use as test data. We do this by extending the Expr[R] trait as follows:

sealed trait LogicExpr[R] extends Expr[R]

object LogicExpr {

case class Exists(arg: Var, cond: LogicExpr[Value]) extends LogicExpr[Value]

case class Equals(l: Expr[Value], r: Expr[Value]) extends LogicExpr[Value]

}

As we can see at the interpretation of the Exists expression (at Figure 6), we intepret
both values of the Equals constraint and perform direct unification. This is done using the
directUnify method, which acts similarly to the doMatch method, but matches two Values
rather than a Value and a Pattern. A trivial implementation of this is done as follows:

def directUnify(left: Value, right: Value, env: Environment): Environment = {

if (env == null)

return null

(left, right) match {

case (ValV(l, ls), ValV(r, rs)) if l.equals(r) =>

ls.zip(rs).foldLeft(env)((e, t) => directUnify(t._1, t._2, e))

case (MetaV(name), ValV(r, rs)) => env.set(name -> ValV(r, rs))

case (MetaV(n1), MetaV(n2)) if n1.equals(n2) => env

case (MetaV(n1), MetaV(n2)) => env.set(n1 -> MetaV(n2)).set(n2 -> MetaV(n1))

case _ => null

}

}

With this implementation, we are able to write declarative queries which will give us the
solution. For example:

Letrec(

List(

(Var("append"), Function(Var("x"), Function(Var("ys"),

Match(Var("x"), List(

Case(ValP("Empty", Nil),

Var("ys")),

Case(ValP("Cons", List(VarP("a"), VarP("as"))),
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Val("Cons", List(

Var("a"),

Apply(Apply(Var("append"), Var("as")), Var("ys")))

))

))))),

),

Exists(Var("x"),

Equals(

Apply(Apply(

Var("append"), Val("Cons", List(

Val("Num", List(Val(1, Nil))),

Val("Empty", Nil))

)

), Var("x")),

Apply(Apply(Var("append"), list1), list2)))

)

Where list1 is equal to [1, 2] and list2 is equal to [3, 4, 5] (written in the same notation
as discussed at Section 2.1). The program is roughly equivalent to the following Prolog-like
pseudocode:

append [] ys = ys

append [a | as] ys = [a | append as ys]

exists x ~> append [1] x == append [1, 2] [3, 4, 5]

When running, this program, the result turns out to be a stream containing a single element,
which is:

ValV("Cons",

List(ValV("Num", List(ValV(2, List()))),

ValV("Cons", List(ValV("Num", List(ValV(3, List()))),

ValV("Cons", List(ValV("Num", List(ValV(4, List()))),

ValV("Cons", List(ValV("Num", List(ValV(5, List()))),

ValV("Empty", List())))))))))

Which roughly translates that x == [2, 3, 4, 5] is the only solution possible for the pro-
gram. Using this, we can define our own abstract data types and functions, on which we
run these kinds of queries to generate test cases.
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3.4 Handling the Free monad
Using the basic definition of the natural transformation interface, we are able to write
existential queries, but the symbolic analysis is still done in a depth-first way. Luckily, the
free monad provides us the flexibility to do the analysis in any way we want, for example
breadth-first rather than depth-first search. This way, we would not end up stuck in some
infinite recurion. For example, the following program given by Tolmach and Antoy (2003),
shows that a depth-first search would never terminate, while a breadth-first search will end
up in an infinite stream of 1s:

Letrec(

List(

(Var("f"),

Function(Var("x"),

WithFree(Var("dummy"), Match(Var("dummy"), List(

Case(ValP("dummy1", Nil), Apply(Var("f"), Var("x"))),

Case(ValP("dummy2", Nil), Var("x"))

))))),

),

Apply(Var("f"), Num(1))

)

Running this program with the interpreter we currently have, will end up in an infinite
recursion. In order to solve this problem, we manually override the handleFree method,
such that it will perform a breadth-first search on the free monad:

override def handleFree[A](free: Free[Expr, A]): Stream[A] = bfs(Stream(free))

def bfs[A](free: Stream[Free[Expr, A]]): Stream[A] = {

free match {

case Pure(x) #:: xs => x #:: bfs(xs)

case Bind(x, f) #:: xs => bfs(xs) #:::

monad.bind(handleFree(x),

(a: Any) => handleFree(f.asInstanceOf[Any => Free[Expr, A]](a)))

case Fork(fa) #:: xs => bfs(xs #::: fa.apply())

case Empty => Stream()

}

}

We can now access the stream by running SymbolicInterp.handle(code).head, which will
indeed result in ValV("Num", List(ValV(1, List()))). This proves that we are actually able
to perform different search strategies on the free monad, due to its flexibility and structure.
This could be improved even further by performing some kind of search with optimization
heuristics.
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4 Conclusion and Future Work
We have shown how to turn a basic interpreter for a language that supports pattern-matching
into a symbolically executable interpreter. This shows that the depth-first search that
symbolic execution algorithms commonly use can be replaced by other search strategies,
such as breadth-first search. Furthermore, we have seen how to create a custom language
based upon the basic interpreter, such that it can handle non-deterministic choices.

The usage of free monads for constructing these abstract command trees allows us to
alter the ’meaning’ of the command tree in a flexible way. In Section 3.4, we have seen
that traversing the free monad can be adjusted if a different kind of traversal method is
preferred. Furthermore, the free monad gives us many flexible options for how programs
will be interpreted and how commands or expressions can be changed.

One thing that might be improved is the refactoring the Fork case class as a command,
rather than a constructor for the free monad. The addition of the Fork makes the free
monad not an actual free monad, but more like a hybrid between the free monad and the
tree monad. Such a refactor would make the definition of the free monad more conceptually
cleaner, and makes implementing symbolic executors better understandable.

Also, support for other constraints, such as Or and And could perhaps be added, to create
more directed and specific queries. Perhaps some kind of SMT solver could be used for this,
such as Z3 (De Moura and Bjørner, 2008). This would also add the possibility to extend
the symbolic executor to solve more intricate queries, e.g. supporting linear arithmetic.
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Appendices
A Basic Interpreter for Pattern Matching

import Expr._

import Pattern._

import Value._

trait Expr

object Expr {

case class Var(name: String) extends Expr

case class Val(value: Any, args: List[Expr]) extends Expr

case class Function(arg: Var, body: Expr) extends Expr

case class Letrec(bindings: List[(Var, Function)], body: Expr) extends Expr

case class Apply(body: Expr, arg: Expr) extends Expr

case class Case(pattern: Pattern, body: Expr) extends Expr

case class Match(arg: Expr, cases: List[Case]) extends Expr

}

sealed trait Pattern

object Pattern {

case class ValP(value: Any, args: List[Pattern]) extends Pattern

case class VarP(name: String) extends Pattern

}

sealed trait Value

object Value {

case class ValV(x: Any, xs: List[Value]) extends Value

case class ClosV(expr: Expr, var env: Environment) extends Value

}

case class Environment(maps: Map[String, Value]) {

def set(t: (String, Value)): Environment = Environment(maps + t)

def get(name: String): Value = maps(name)

}

object Interpreter {

def interp(e: Expr, env: Environment = Environment(Map())): Value = e match {

case Var(name) => env.get(name)

case Val(value, args) => ValV(value, args.map(x => force(interp(x, env))))

case Letrec(bindings, body) =>
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val env1 =

bindings.foldLeft(env)((e, a) => e.set(a._1.name -> ClosV(a._2, null)))

bindings.foreach(b => env1.get(b._1.name).asInstanceOf[ClosV].env = env1)

interp(body, env1)

case Function(arg, body) => ClosV(Function(arg, body), env)

case Match(arg, cases) =>

val value = force(interp(arg, env))

val result =

cases

.toStream

.map(c => (c.body, doMatch(value, c.pattern, env)))

.find(c => c._2 != null)

.getOrElse(throw new Exception("MatchException"))

interp(result._1, result._2)

case Apply(b, arg) => interp(b, env) match {

case ClosV(Function(param, body), closureEnv) =>

val env1 = closureEnv.set(

param.asInstanceOf[Var].name -> interp(arg, env)

)

interp(body, env1)

}

}

def force(value: Value): Value = value match {

case ClosV(expr, env) => force(interp(expr, env))

case v => v

}

def doMatch(left: Value, right: Pattern, env: Environment): Environment = {

if (env == null)

return null

(left, right) match {

case (ValV(l, ls), ValP(r, rs)) if l.equals(r) =>

ls.zip(rs).foldLeft(env)((e, t) => doMatch(t._1, t._2, e))

case (v @ ValV(_, _), VarP(name)) => env.set(name -> v)

case _ => null

}

}

}
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B Basic Program Example

object App {

def main(args: Array[String]): Unit = {

val list1 =

Val("Cons", List(Val("Num", List(Val(1, List()))),

Val("Cons", List(Val("Num", List(Val(2, List()))),

Val("Empty", List())))))

val list2 =

Val("Cons", List(Val("Num", List(Val(3, List()))),

Val("Cons", List(Val("Num", List(Val(4, List()))),

Val("Cons", List(Val("Num", List(Val(5, List()))),

Val("Empty", List())))))))

val code = Letrec(

List(

(Var("append"),

Function(Var("x"), Function(Var("ys"), Match(Var("x"), List(

Case(ValP("Empty", Nil),

Var("ys")),

Case(ValP("Cons", List(VarP("a"), VarP("as"))),

Val("Cons", List(Var("a"),

Apply(Apply(Var("append"), Var("as")), Var("ys")))))

)))))

),

Apply(Apply(Var("append"), list1), list2)

)

println(formalized(Interpreter.interp(code)))

}

def formalized(value: Value): String = value match {

case ValV(x, Nil) => x.toString

case ValV(x, xs) => s"$x(${xs.map(formalized).mkString(", ")})"

case x => x.toString

}

}
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