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Abstract
In the Multi-Agent Pathfinding with Matching
(MAPFM) problem, agents from a team are
matched with and routed towards one of their
team’s goals without colliding with other agents.
The sum of path costs of all agents is minimized. In
prior works, Conflict Based Min-Cost-Flow (CBM)
has been proposed. This algorithm solves a similar
problem that instead minimizes the maximum path
length. In this paper, an extension upon CBM is
presented, called CBMxSOC. It consists of several
changes to CBM that allow it to minimize the sum
of path costs. CBMxSOC is experimentally com-
pared to other MAPFM solvers and is shown to be
able to scale to many agents when there are few
conflicts between different teams.

1 Introduction
Multi-agent Pathfinding (MAPF) deals with finding paths for
agents through a graph. Each agent has a corresponding start
and end location and two agents can never be on the same
vertex at any time step or occupy the same edge in between
two time steps[1]. The Sum of Costs (SoC), the sum of the
path length of each agent, is minimized. The MAPF with
matching (MAPFM) problem is a generalization of MAPF, in
which both agents and goals are assigned a team. Any agent
in a team can end on any goal belonging to that team.

An efficient solution to the MAPFM problem can be bene-
ficial for solving the Train Unit Shunting and Servicing Prob-
lem (TUSS)[2], in which trains are routed through shunting
yards to allow maintenance to be performed. Currently, this
problem is solved using local heuristics. Therefore, solving
instances of the MAPFM problem could help train operators
to optimize how they make use of their shunting infrastruc-
ture by scheduling different types of trains to different types
of shunting yards. Other use-cases include autonomous air-
craft towing [3] and scheduling warehouse robots [4].

The base MAPF problem can be solved in a multitude of
ways, for instance using A*-OD+ID[5], M*[6] and CBS[7].
This paper will focus on Conflict Based Search (CBS) and an
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existing extension upon this, called Conflict Based Min-Cost-
Flow (CBM)[4]. CBM solves the target-assignment and path-
finding problem (TAPF) however, in which the makespan -
the minimum time step at which all agents have reached their
goals - is minimized, instead of the SoC which is required by
our formulation of MAPFM.

This paper presents two separate extensions of and several
improvements on top of CBM which can solve the MAPFM
problem. The first extension uses Integer Linear Program-
ming (ILP) to solve the MAFPM problem. The second exten-
sion uses Goldberg-Tarjan’s successive shortest path (SSP)
algorithm[8] and is called CBMxSOC.

These contributions will be presented by first formally in-
troducing the exact problem statement and prior works. Then,
the aforementioned extensions and improvements upon CBM
are proposed. A theoretical discussion on optimality and
completeness is held and the algorithm is compared to other
algorithms that solve the same problem using a set of exper-
iments. The extensions and several other properties are also
experimentally evaluated, after which the reproducibility of
this study will be discussed and conclusions will be drawn.

2 Problem Description
This section introduces the base MAPF problem and then for-
mally introduces the problem statement.

2.1 MAPF
Multi-agent Pathfinding[1] (MAPF) deals with finding paths
through a graphG = (V,E) for k agents a1 . . . ak ∈ A. Each
agent ai has a start position si and a goal position gi. In a
solution, agent ai has a corresponding path πi consisting of t
discrete time steps where πi(1) = si and πi(t) = gi. At each
time step in a path, an agent either moves to a neighbouring
position or waits at its current position. Both operations have
a cost of 1. Collisions with other agents are forbidden. More
specifically, vertex conflicts, in which πi(t) = πj(t) and edge
conflicts, in which both πi(t) = πj(t + 1) and πi(t + 1) =
πj(t), are not allowed for any t and i 6= j. The total cost of an
agent’s path is the time step at which the agent has reached its
goal and will remain stationary. The objective is to optimize
the Sum of Costs (SoC), which is the sum of all agent’s path
costs:

∑
πi∈π
|πi|. This is also commonly called the Sum of

Individual Costs (SIC).
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2.2 MAPFM
Multi-agent Pathfinding with Matching (MAPFM) is a gener-
alization of the base MAPF problem. Instead of a one-to-one
mapping between an agent ai and goal gi, there are K teams
of agents which consist of kj agents aj = {aj1, . . . , a

j
i} and a

set of kj goals gj = {gj1, . . . , g
j
i } for team j and i = 1 . . . kj .

Each agent aji must move towards one of the goals in gj with-
out colliding with any other agent. This introduces the con-
cept of finding matchings between agents and goals. Similar
to the MAPF formulation, the Sum of Costs is minimized,
and an agent does not disappear once it has reached its goal.
This means that an agent can be part of a vertex conflict while
standing on its goal.

3 Existing MAPF solvers
Multiple algorithms are able to solve MAPF problems. These
algorithms can generally be assigned to one of two cate-
gories[9]:

• Search-based solvers are often made to optimize the
Sum of Costs objective. Some A∗ variants use heuris-
tics to search a global search space in which each state
represents a placement of agents on vertices [5, 6]. Other
search-based solvers use different types of search trees
to reduce the search space[7, 10].

• Reduction-based solvers are often made to optimize the
makespan objective. They reduce the MAPF problem
into problems that have been readily solved[4, 9]. This
reduction is generally done in polynomial time.

3.1 Conflict Based Search
Conflict Based Search (CBS) [7] solves MAPF instances in
two layers: a high-level solver which searches through a
search space of solutions and a low-level solver in which each
agent solves an underlying pathfinding problem in a decou-
pled fashion.

The high-level solver consists of a Constraint Tree (CT),
which is a binary tree in which each node N contains the
following information:

• A set of constraints. These are either vertex constraints
in the form 〈v, ai, t〉, or edge constraints in the form
〈va, vb, ai, t〉, where t is the time step at which agent
ai is not allowed to be on vertex v or cross the edge
(va, vb) respectively. The root has an empty set of con-
straints, and each child inherits all its parent’s constraints
and adds one new constraint.

• A solution. This solution contains paths for each agent.
These paths conform to all constraints of N . They may
however have conflicts that will have to be resolved in
further iterations.

• The total cost. In the MAPFM formulation, this cost is
the sum of individual path costs.

For each high-level node, low-level paths are found that
are consistent with (i.e. do not violate) the given constraints.
When either a vertex conflict 〈ai, aj , v, t〉 or edge conflict
〈ai, aj , va, vb, t〉 is detected, two new CT child nodes are cre-
ated representing newly added constraints for agent ai and

u(t+1)u(t ) 0

v(t+1)v(t ) 0

Figure 1: The gadget that denotes the edges (ut, vt+1) and
(vt, ut+1)[13]. This gadgets prevents edge-conflicts between the u
and v vertices by only allowing a single unit flow in both directions
combined.

agent aj . This newly added constraint prevents the conflict
by preventing one of the agents from visiting the vertex or
edge such that the specific conflict cannot occur anymore. In
the next iteration, the currently found solution with the low-
est cost is picked to iterate on. This process continues until
no further conflicts are detected.

In the low-level solver, any pathfinding algorithm can be
used. In the original description of CBS[7], A* was used for
this purpose. This low-level solver must abide by the con-
straints of the high-level solver.

3.2 Conflict Based Min-Cost Flow
The Conflict Based Min-Cost Flow (CBM) [4] algorithm
solves a variant of MAPFM in which the makespan is min-
imized. In the high-level solver, it modifies CBS by grouping
the agents from one team into a single meta-agent [11]. This
means that the low-level search is executed per team instead
of per agent. High-level conflicts subsequently only happen
between teams, given that conflict resolution for agents within
teams happens in the low-level solver.

In the low-level solver, the problem is now modeled as a T
step time-expanded network-flow problem N = (V, E)[12],
also called a time-expanded graph (TEG):

• Each vertex v ∈ V is translated to the vertices voutt ∈ V
for t = 0 . . . T and vint ∈ V for t = 1 . . . T , both having
zero demand/supply. The (si)

out
0 and (gi)

out
T nodes for

i = 1 . . . k have unit supply and demand respectively,
representing the start and end locations of the agents and
thus forcing a matching to be found.

• Each vertex v ∈ V is translated to the edges (voutt , vint+1)
for t = 0 . . . T − 1 (representing a ”wait” action, cost 1)
and (vint , v

out
t ) for t = 0 . . . T (representing ”being” on

vertex v at time t, and subsequently preventing vertex
conflicts, cost 0). Both have a unit capacity.

• Each edge (u, v) ∈ E is translated to a gadget
of vertices and edges. First off, the two vertices
wt, w

′
t ∈ V are created. Then, the five edges

(uoutt , wt), (v
out
t , wt), (wt, w

′
t), (w

′
t, u

in
t+1), (w′t, v

in
t+1) ∈

E are created. All edges have a unit capacity, and only
(wt, w

′
t) has a unit cost. This gadget prevents edge

conflicts between nodes u and v at time t, since (wt, w
′
t)

is traversed for both directions of the (u, v) edge, while
having only a unit capacity. This is illustrated by Figure
1.



The resulting network flow problem can be solved using
Integer Linear Programming (ILP)[12, 13]. However, CBM
proposes a more elaborate way to solve the problem. To start,
CBM tries to avoid conflicts on the low level by increasing
the edge costs for edges that are visited by other teams. It also
uses Goldberg-Tarjan’s successive shortest path algorithm[8].
The combination of adjusting edge weights and using a ded-
icated network flow solver yields significant speed improve-
ments over the basic ILP method.

4 Extensions upon CBM
In this section, changes to CBM are presented that allow it to
minimize the Sum of Costs. First, two high-level techniques
are discussed which determine the maximum time step T for
which a SoC can be found. Then, two ways in which the
time-expanded graph (TEG) can be adapted to optimize the
SoC are described. Lastly, a change that improves the runtime
performance of CBMxSOC is introduced.

A term that will be used throughout this and the following
sections is stay-on-goal-edge. It denotes an edge (voutt , vint+1)
where v ∈ g (i.e. an edge which represents an agent waiting
on goal v between time step t and t + 1). This term is used
since in the MAPFM formulation, an agent remains on its
goal until all other agents have also reached their goals.

4.1 Time step with optimal SoC
To build the TEG, it is important to know the maximum time
step T for which to construct the TEG. This needs to be as
low as possible since larger TEGs require more CPU time and
memory to build. First off, it is important to note that an op-
timal makespan solution in time T does not mean an optimal
SoC solution exists for a T -step time-expanded graph[14, 15],
as is illustrated in Figure 2. There are two approaches that can
be used in order to find a T for which there is guaranteed to
be an optimal SoC solution.

The approach as described by [14] uses the fact that given
a SoC solution of LB(SoC) + δ cost, one is guaranteed to
find this solution in a time-expanded graph of LB(Mks) + δ
layers. Here, LB(SoC) is a lower bound on the sum of
costs, which can be computed by computing a sum of short-
est paths to any goal belonging to the agent’s team without
taking conflicts and constraints into account. LB(Mks) is
a lower bound on the makespan, which can be computed by
computing the longest shortest path to any goal belonging to
the agent’s team.

This can aid in finding an optimal SoC solution: when
a makespan-optimal solution has been found with a SoC of
SoC, we define δ = SoC−LB(SoC) to determine the layer
at which an optimal SoC can definitely be found. An adapted
version of this algorithm for this instance of the problem is
described in Algorithm 1. In this algorithm, SOC low level
denotes the low-level solver which optimizes the SoC metric
for a given team.

A similar approach is used by [15], but it instead tries to
find an optimal SoC solution directly, by iteratively asking
its underlying SAT solver, which also uses a TEG, to find a
SoC solution of LB(SoC) + ∆, and incrementing ∆ each
iteration until such a solution is found. An adapted version of
this algorithm is described in Algorithm 2.

g2s1 g1 s2

Mks = 7
SoC = 7 + 4 = 11 

s1 g2 g1 s2

Mks = 6
SoC = 6 + 6 = 12 

Figure 2: Illustration of a MAPF instance with a blue agent and a
green agent which shows the difference between optimizing for the
SoC (top) and the makespan (bottom). Even though a makespan-
optimal solution is found after maximum time step T = 5, a SoC
optimal solution can only be found in a TEG with T = 6. Image
adapted from [14].

Algorithm 1: Approach 1 for finding the optimal SoC
∀ai ∈ A : SPi = shortest path(si, gi);
LB(Mks) = maxi∈ASPi;
LB(SoC) =

∑
i∈A SPi;

γ ← 0;
while No solution found do

SoC ← CBM low level(T = LB(Mks) + γ);
γ ← γ + 1;

end
δ ← SoC − LB(SoC);
SoC low level(T = LB(Mks) + δ);

Both algorithms provide an optimal SoC solution, however,
Algorithm 1 only requires a single SoC pass, whereas Algo-
rithm 2 requires multiple. Therefore, determining which to
use depends on the runtime performance of CBM compared
to the SoC low-level algorithm. In the case of CBMxSOC,
the first approach is used.

4.2 Adapting ILP for SoC
The Integer Linear Programming (ILP) model as described
by [4] is solved using standard ILP network flow techniques
[13]. The standard cost function that is optimized for the
ILP approach is the sum of edge costs for edges with flow.
Given a T -step time-expanded network, this would mean the
makespan is optimized. However, to optimize the SoC, the
path cost should stop increasing when an agent has reached
its goal and remains stationary.

This can be done by changing the objective of the model
by subtracting the number of time steps for which an agent



Algorithm 2: Approach 2 for finding the optimal SoC
∀ai ∈ A : SPi = shortest path(si, gi);
LB(Mks) = maxi∈ASPi;
LB(SoC) =

∑
i∈A SPi;

∆← 0;
while No solution found do

µ← LB(Mks) + ∆;
SoC ← SoC low level(T = µ);
if No solution found or SoC > LB(SoC) + ∆

then
∆← ∆ + 1;

end
end

remains on its goal after reaching it. Upon transforming our
program into a Mixed-Integer Linear Program this is achieved
by adding binary indicator variables ivt for v ∈ g and t =
0 . . . T − 1 which is 1 when the following properties are true:

• The agent stays on its goal at current time t
• The agent stays on its goal for the time steps t+ 1 . . . T .

In other words, the indicator variables for t+ 1 . . . T are
also 1

Formally speaking, we assign
ivt = ivt+1 ∧ (f((voutt , vint+1)) = 1)

for t = 0 . . . T − 1 and ivT = 1 where f(e) is the flow of edge
e.

The first part of this statement is to check whether the agent
does not leave its goal in the future, thus not subtracting any
cost for this t. The second part of this statement is to check
whether the agent has flow on the stay-on-goal-edge, thus re-
maining on its goal. This is illustrated in Figure 3.

The objective of the low-level ILP model will now change
from

∑
e∈E

c2(e) · f(e) to
∑
e∈E

c2(e) · f(e) −
∑
v∈g

∑
t∈0...T−1

ivt

where c2(e) is the cost and f(e) is the flow of edge e. Since
the network flow cost of this new objective is equal to the
SoC that we want to minimize, this technique finds an optimal
solution for the MAPFM problem.

4.3 Adapting SSP for SoC
The actual low-level algorithm used by CBM is the successive
shortest path algorithm[8, 16], with adjusted edge weights to
try to avoid high-level conflicts in the low-level solver. This
has been shown to be faster than the ILP algorithm[4].

In order to make the cost of the network flow equal to the
SoC to solve the MAPFM problem, however, edges should
have a zero cost when an agent has reached its goal and
remains stationary. This decision problem cannot be mod-
eled with the standard network flow definition. Therefore this
needs to be done differently: ‘push‘ agents towards a goal as
soon as possible, without increasing the path costs for other
agents. For this to solve the problem, the following condi-
tions need to hold:

• The cost of stay-on-goal-edges should be lower than
other edges. This causes agents to prefer to go to goal
nodes at the lowest t possible.

goal0igoal
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goal1igoal
1 = 0

· · ·

goal2igoal
2 = 0

· · ·

goal3igoal
3 = 1

goal4igoal
4 = 1
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5 = 1

∑
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∑
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ivt = 3
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∑
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Figure 3: An illustration of the values of binary indicator variables
for different time steps at which the goal is reached. In the left il-
lustration, an agent starts on a goal but moves away from this goal
at t = 1, thus the binary indicators for t = [0, 1, 2] are 0. After
after t = 3, however, the agent remains on its goal and thus these
binary indicators will have a value of 1, yielding a binary indica-
tor sum of 2 (note that the sum of binary indicators is computed for
t = 0 . . . T − 1). In the right illustration, an agent remains on the
goal until t = 3, and only returns to the goal at t = 5 which thus
yields a binary indicator sum of 0.

• The cost of stay-on-goal-edges should decrease over
time, up until the maximum time T of the TEG. This
causes agents to prefer to go to their final goal node
sooner instead of waiting on another goal node and mov-
ing at a later moment (and subsequently increasing the
SoC).

• The cost of a non stay-on-goal-edge should be higher
than (kj − 1) ·

∑
t∈0...T−1

C((goalt, goalt+1)) for team j

and edge cost C(e). In other words, the cost of a non
stay-on-goal-edge should be higher than the combined
stay-on-goal-edge costs of the other agents within team
j. This high cost for non stay-on-goal-edges is required
so that agents do not collectively leave their goals to help
one other agent obtain a smaller cost, while collectively
adding more path length.

Given that kj denotes the number of agents in team j, a
distribution of edge-costs for which this holds is as follows:

• Stay-on-goal-edge at time t: T − t− 1

• Non stay-on-goal-edges: kj ·
T−1∑
t=0

t

This is illustrated in Figure 4.
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Figure 4: Example path costs for the path of a single agent, with
T = 3 and two agents in the team of this agent. The first edge at
t = 0 is a non stay-on-goal-edge, and thus incurs the high cost. The
subsequent two edges at t = 1 and t = 2 are stay-on-goal-edges and
thus their cost is reduced.

Since agents are pushed to their goals as fast as possible
and incurring extra path costs is penalized, the NF cost of
larger sums of paths is likely always higher than the NF cost
of smaller sums of paths. Thus, the SSP technique is likely
optimal. It is complete given that only the costs in the NF
graph have been changed with respect to CBM [4], which is
proven complete.

4.4 Reusing TEG
In both Algorithm 1 and Algorithm 2, new T -step time-
expanded graphs are used for each T and for each conflict
solved. Given the fact that both the number of network flow
vertices |V| and edges |E| grow with respect to both T and the
size of the grid, building this network from scratch each time
it is used is very computationally expensive.

Instead, this TEG can be reused by temporarily updating
edge capacities and costs and resetting these the next time
the graph is used. The following cases need to be taken into
account:

• Smaller T : it could be the case that a TEG graph has
been used for a higher t than for which is currently being
solved. This means the edge capacity of vout nodes for
t = T should be assigned a 0.

• Constraints: in order to conform to the constraints from
the high-level, edge capacities of edges that denote ille-
gal movements should be equal to 0.

• CBM edge weights: when searching for a makespan-
optimal solution, some edge costs are also zeroed in or-
der to reduce the number of conflicts.

Keeping track of and reverting these updated edge capac-
ities and costs is not very expensive and can thus reduce the
runtime significantly, as is described by Section 5.2.

5 Experimental Setup and Results
In this section, multiple experimental results are presented.
The first experiment is a comparison between ILP and SSP.
The second experiment consists of a comparison between
reusing the TEG and creating one from scratch each time.
Then, some limitations and strengths of CBMxSOC are
shown and to conclude, a comparison to other MAPFM

solvers is made. All generated maps can be found in the
repository as described by Section 6.

Experiments one through three were run on a 3.7 GHz
AMD Ryzen 9 5900X PC with 32 GB of RAM. The last ex-
periment was run on a 2 GHz Intel Xeon E5-2683 with 8 GB
of RAM. All experiments were run using a single-threaded
Python 3.9 application. In order to solve the ILP problem,
the ILP solver Gurobi (https://gurobi.com) was used. The
SSP problem was solved using a fork of Google’s OR-tools
(https://developers.google.com/optimization/flow/mincostflow).
This fork simply allows for adjusting edge weights and ca-
pacities, which is required for reusing the TEG.

A general note for each experiment is that the difficulty of
the generated maps, which were generated using the genera-
tor as described by [17], varies from map to map, even with
similar numbers of agents, teams, vertices, and walls. The
distribution of walls and agents has a very large influence on
the runtime performance of CBMxSOC due to the fact that
the number of conflicts is significantly different for each gen-
erated map. This means that many results presented will have
large standard deviations which need to be taken into account
when viewing the graph.

5.1 Experiment one: Comparison between ILP
and SSP

In this test, the approaches described in Section 4.2 and 4.3
are compared to each other in terms of created network flow
nodes and resulting runtime. It is to be expected that the SSP
approach has a better runtime performance due to the usage
of a purpose-built algorithm to solve the min-cost max-flow
problem.

For the experiment, 4000 dense random maps consisting of
two teams with three agents have been generated. In each of
the maps, 75% of the vertices are walls. Because each maze
has a different distribution of walls and agents and differs in
map size, the resulting number of conflicts also differs widely
per map. Each algorithm has been run on each of these maps
with a time limit of 1200 seconds, and the number of vertices
of the map is compared to the runtime performance.

Results from Figure 5 show that SSP outperforms ILP by
a large margin. These results also show that SSP scales very
slowly with the map size. However, the ILP model increases
in size very fast, which results in slower runtimes for larger
maps.

5.2 Experiment two: reusing TEG
This experiment aims to show the effectiveness of reusing and
expanding the TEG instead of rebuilding it each time it is
used. This was tested using the SSP implementation, with a
new random set of 1000 generated mazes with a size of 20x20
and a different number of agents spread over three teams. As
in the previous experiment, 75% of the vertices are walls. The
intent of this test is to show the effect of reusing the TEG on
the number of created network flow nodes and the number of
conflicts and to relate that to the runtime performance.

The results in Figure 6 show a large difference in runtime
performance. This is also evident in the number of maps that
the algorithms were able to solve. However, even though

https://www.gurobi.com/
https://developers.google.com/optimization/flow/mincostflow
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Figure 5: Results comparing the performance of the SSP implemen-
tation with the performance of the ILP implementation. The top
figure plots the percentage of solved maps against the number of
vertices in the given map. The bottom figure plots the runtime of
maps that were solved by the algorithms against the number of cre-
ated network flow nodes.

reusing the TEG does make a significant difference, the dif-
ference in maps that could be solved within the given time
limit is not extremely large, due to the fact that the number of
times the low-level search has to be executed grows signifi-
cantly.

The bottom figure also shows an interesting statistic,
namely that indeed many more nodes are created when not
reusing the TEG. However, the runtime can still be equal
when there a difference in the number of nodes created. This
is due to the fact that the amount of conflicts that were en-
countered affects the runtime performance more significantly.
Besides, the only data points that are shown in the bottom
figure are the ones in which the map was solved within the
600-second timeout. Therefore, a survivorship bias needs to
be taken into account when interpreting this graph.

5.3 Experiment three: Agent and map size limit
As seen in previous experiments, the map size does not expo-
nentially affect the runtime performance of CBMxSOC. The
same goes for the number of agents when there is only one
team since there will be no conflicts in the high-level solver.
This experiment will test the limits of these values, to emulate
conflict-free maps.

First, the map size limit was tested by creating maps con-
sisting of eight agents, one team, and increasing the map size
from 10x10 to continuously larger maps to check at which
point CBMxSOC cannot create the network flow graph within
the given time limit of 120 seconds. The results in Figure 7
show that the runtime performance does indeed decrease as
the map size becomes larger, and this linear scaling suggests
that solving maps with tens of thousands of nodes will take
a significant amount of time to solve, especially when many
conflicts are involved.

Next, the agent limit was tested by increasing the number
of agents on an open 20x20 map, again with one team. This
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Figure 6: Results comparing the performance of the reusing the
Time Expanded Graph versus not reusing it. The top two figures
show the percentage of maps that could be solved and their average
runtime relative to the number of agents. The bottom figure (note
the logarithmic x-axis) shows the number of created network flow
nodes with respect to the runtime of the program.

tests whether the runtime of the algorithm increases if the
number of agents grows when there are no high-level con-
flicts. Similarly, a time limit of 120 seconds was in place.
The results in Figure 8 show that an increasing number of
agents in one team does increase the runtime of the algorithm
but in very low amounts. This is due to the fact that the SSP
algorithm runs in polynomial time.

5.4 Experiment four: Comparison with other
MAPFM solvers

In this experiment, CBMxSOC is compared to other algo-
rithms that can solve the MAPFM problem. These algo-
rithms [17–20] were simultaneously developed by peers and
thus follow the same problem definition. These algorithms
are compared by the runtime performance and the number of
solved maps as a function of the number of agents.

It is important to note that even though all algorithms are
implemented in single-threaded Python 3.9 code, some im-
plementations may contain more optimizations in the form
of caching for example. Given the fact that CBMxSOC uses
Google’s OR-tools and thus C++, it will likely have a perfor-
mance advantage over a native Python implementation of an
SSP solver.

The results as presented in Figure 9 are based on experi-
ments on two types of maps: a dense maze of which 75% of
the vertices consist of walls and a map in 25% of the vertices
are walls. On the maps, an increasing number of uniformly
distributed agents are placed, in either one or three teams.
The graphs are generated using the data gathered by [19] and
show interesting characteristics of CBMxSOC with respect to
the other algorithms.

However, it is important to note that some of these results
have a large standard deviation, as shown by the confidence
interval on the graphs. There are two main reasons for this.
First off, if few maps can be solved within the given time
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Figure 7: Results showing the runtime performance of CBMxSOC
as the map size increases. A 95% confidence interval is also drawn.
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Figure 8: Results showing the runtime performance of CBMxSOC
as the number of agents increases. A 95% confidence interval is also
drawn.

limit, there are fewer data points that are used to determine
the runtime. Fewer data points result in larger deviations and
survivorship bias, i.e. only the data points of agents that fin-
ished within 120 seconds are shown. Another reason for this
large deviation is the fact that the number of agents is not
a perfect indicator for the runtime performance of the algo-
rithm. The position of agents and the structure of the map
determine this. However, the number of agents is a metric
that can easily be influenced when generating maps. Besides,
it does show a general increase in runtime for all algorithms
when the number of agents increases.

The first finding is that CBMxSOC has a start-up time that
is irrespective of the number of conflicts. This time is needed
to build the time-expanded graph. The result of this is that
CBMxSOC is slower on simple-to-solve maps with fewer
conflicts than the other algorithms.

Another finding is that there is a clear difference in runtime
between maps with one and three teams for CBMxSOC. CB-
MxSOC performs well when few conflicts occur. With only

one team and thus no conflicts to be solved by the high-level
solver, CBMxSOC clearly performs best since it can solve
this specific case in polynomial time due to the use of the
SSP algorithm. The other algorithms have a steep drop at a
certain number of agents, simply due to the fact that the num-
ber of possible matchings between agents and goals becomes
too large.

The performance of CBMxSOC is similar compared to the
other algorithms when there are many conflicts. However,
CBMxSOC does not actively try to avoid paths that have al-
ready been taken by agents in other teams. In other words,
CBMxSOC has no conflict avoidance in its low-level solver.
Adding this could reduce the number of high-level conflicts
that occur and subsequently reduce the runtime of CBMx-
SOC.

A caveat here not shown by the graphs is the fact that CB-
MxSOC is not able to run on very large maps in a reasonable
amount of time, as shown in Section 5.3. Other algorithms are
able to do solve large maps, since their runtime performance
does not scale with map size in the same way that CBMxSOC
does.

6 Reproducibility
Special attention has been paid to the reproducibil-
ity of this work. In order to achieve this, all the
source code of CBMxSOC and the benchmarks used
to experimentally evaluate it are publicly available on
Github at https://github.com/RobbinBaauw/CBMxSOC. The
source code to experimentally compare CBMxSOC to
other MAPFM solvers is publicly available on Github at
https://github.com/jonay2000/research-project.

7 Conclusions
In this paper, a generalization of the Multi-Agent Pathfind-
ing (MAPF) was introduced, named Multi-Agent Pathfinding
with Matching (MAPFM). Two extensions of CBM are pre-
sented that can solve this problem, using Integer Linear Pro-
gramming (ILP) and the Successive Shortest Path (SSP) al-
gorithm. These two extensions are experimentally compared
to each other. A performance improvement regarding reusing
the time-expanded graph is also presented and compared with
not reusing this graph.

Experimental results show that the SSP extension, called
CBMxSOC, has a better runtime performance than the ILP
extension. The SSP extension adjusts edge weights such that
the Sum of Costs is optimized instead of the makespan. Be-
sides this, reusing the time-expanded graph has also been ex-
perimentally shown to make it possible to solve more maps
and solve them faster than not reusing this graph. CBMxSOC
is also compared to other MAPFM solvers and is shown to
outperform them when there are few conflicts between teams
and perform similarly when there are many conflicts.

8 Future work
This work answers several questions regarding using CBS
and CBM to solve the MAPFM problem. It shows that us-
ing a TEG to solve the problem is very promising and opens

https://github.com/RobbinBaauw/CBMxSOC
https://github.com/jonay2000/research-project
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Figure 9: Results comparing the performance of the different algorithms that can solve the MAPFM problem. For each subfigure, the numbers
of agents are compared to the percentage of solved maps and the runtime in seconds which is plotted with a 95% confidence interval.

up possibilities for future work. This section aims to describe
some future questions and propose possible answers to these
questions.

8.1 Reducing conflicts
As described in Section 5.4, CBMxSOC is slow when it
comes to handling many conflicts between teams, since the
low-level SoC search of CBMxSOC does not actively avoid
paths that have already been taken by agents in other teams.
In future works, a suitable extension to provide low-level con-
flict avoidance can be found, for example by increasing edge
weights for edges that have already been visited by other
teams.

8.2 Adapting MDD-SAT
As shown by the changes to the ILP technique compared
to the changes in the SSP technique, an ILP solver is sig-
nificantly more flexible. Therefore, a direct SAT-based ap-
proach as used by [9] may make more sense than combining

a search-based solver and a reduction-based solver. Match-
ing can likely be added relatively easily to this approach by
making a TEG for each team instead of each agent, and in-
cluding all goals in Vj for team j instead of just one goal in
Vi for agent i. This looks like a promising approach in terms
of runtime performance.

8.3 Disappearing agents
If the problem statement were slightly adapted to make agents
disappear once they have reached their goal, a simpler adap-
tation of CBM can be used, similar to the solution described
by [12]. Solving this adapted problem can simply be done
by adding extra goal sinks and connecting goal nodes at each
t to this node. Proving optimality of this algorithm is likely
trivial since the network flow cost is equal to the SoC met-
ric. A proof-of-concept version of this algorithm is already
implemented in the Github repository mentioned by Section
6. Initial testing shows that some maps can be solved much
faster, as fewer conflicts have to be taken into account.
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