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Abstract
In recent years, there has been a growing interest in lunar missions, particularly with the growing role of small satellites
facilitated by piggyback launch opportunities. Typically, ground-based radiometric tracking is the workhorse to estab-
lish the necessary navigation in these missions. However, this could be expensive, while small satellites development is
expected to be at low cost. To address this challenge, autonomous navigation presents a potential solution. This study
explores a satellite-to-satellite tracking-based on-board orbit determination method for a satellite formation in cislunar
space. Several factors affect the performance of orbit determination, and one critical aspect is the timing of tracking
windows. Basically, it is crucial to determine when to collect the most useful observations to optimize the outcome
of the navigation filter. In some cases, there might be operational constraints such as inter-satellite distance due to the
limited onboard power for ranging. This study investigates the optimization of satellite-to-satellite tracking windows
by using particle swarm optimization. The findings of this work demonstrate that particle swarm optimization offers an
accurate solution for tracking windows, taking into account constraints arising from the spacecraft itself or from other
design choices. In summary, particle swarm optimization provides near-optimal tracking windows by minimizing the
overall orbit determination error. The results presented have the potential to enhance the design of satellite formations
performing autonomous on-board orbit determination and contribute to cost-effective mission planning solutions.
Keywords: Orbit determination, Navigation, Particle swarm optimization, Satellite-to-satellite tracking, Cislunar

1. Introduction

In recent years, there has been a growing interest in
small satellites, particularly for lunar missions. This trend
can be attributed to significant advancements in satellite
technology, which have led to smaller and more cost-
effective satellite designs. Furthermore, the increasing
availability of piggyback launch opportunities has opened
up more frequent access to lunar missions. In particu-
lar, almost 40% of all planned deep-space small satellite
missions, proposed by universities, companies, and space
agencies, fall into this category [1].

Typically, these missions are based on ground-based
radiometric tracking for Orbit Determination (OD). How-
ever, this approach can be costly, which contrasts with the
goal of cost-effective small satellite development. Au-
tonomous on-board Orbit Determination (AOD), on the
other hand, offers the potential for cost reduction, im-
proved performance, and increased reliability. Moreover,
there are specific mission scenarios, such as rendezvous,
where autonomy becomes essential. In addition, not only
navigation but also operations can benefit from autonomy,
as the associated costs are not mission-dependent [2].

Until now, various AOD techniques have been ex-

plored and put into practice: among these, the Linked
Autonomous Interplanetary Satellite Orbit Navigation (Li-
AISON) relies exclusively on satellite-to-satellite observa-
tions to estimate not only relative but also absolute space-
craft states when at least one of the satellites follows an or-
bit characterized by distinct parameters, including its size,
shape, and orientation [3]. Previous research studies have
demonstrated LiAISON capabilities over the years in lu-
nar missions. The OD performance of the method depends
on various factors: observation type, accuracy, precision,
and, most importantly, relative geometry between space-
craft [3, 4, 5]. Basically, it is crucial to know when to col-
lect the most useful observations to optimize the outcome
of the navigation filter. Although it is better to equally
distribute measurements over the full orbit, in some cases
it is not possible to track each spacecraft all the time be-
cause of various problems. In some cases, the communi-
cation window must also be used for telemetry and pay-
load data download, as navigation and data transfer occur
at the same time and with reduced performance. In these
cases, the problem turns into finding the best communi-
cation window. This navigation concept is currently being
evaluated as part of the CAPSTONE mission, which relies
on the communication link established between the Lu-
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nar Reconnaissance Orbiter (LRO) and the CAPSTONE
CubeSat orbiting the Moon within the Near Rectilinear
Halo Orbit (NRHO) [6]. In [7], ground-based radio track-
ing performance has been investigated from a tracking
perspective and has been shown that there are tracking
windows that should be avoided. The study also points
out that navigation solutions are sensitive to the location
and number of tracking arcs and their duration. On the
other hand, this study aims at providing a Particle Swarm
Optimization (PSO)-based tracking window planning for
orbiters performing Satellite-to-Satellite Tracking (SST)-
based AOD (instead of simulating all different configura-
tions). In this study, tracking windows are determined by
minimizing the overall OD error.

In the upcoming sections, autonomous radiometric
navigation will be presented first, and then, tracking win-
dows will be discussed. Orbit determination models, in-
cluding dynamical, measurement, and estimation models,
will be introduced. The navigation simulation setup and
results will then be presented. Ultimately, conclusions will
be drawn.

2. Autonomous Radiometric Navigation

This paper investigates the LiAISON OD capabilities
of satellite formations within the lunar vicinity, focusing
on different time frames for satellite-to-satellite tracking.
AOD, in this context, requires the accurate determination
of absolute satellite positions and velocities without re-
lying on ground-based measurements (see Figure 1). In
a two-body problem, inter-satellite measurements do not
provide the absolute state estimation, since only the rela-
tive but not absolute orientation of orbital planes can be
determined. However, in multi-body dynamics, full-state
estimation is possible through satellite-to-satellite track-
ing. LiAISON utilizes these inter-satellite measurements
to estimate absolute spacecraft states, given that one of the
Spacecraft (S/C) follows an orbit with distinctive charac-
teristics in terms of size, shape, and orientation. The OD
performance depends on several factors, including type,
accuracy, precision, frequency of observations, relative
satellite geometry, and more. In general, OD is most ef-
fective in two-S/C configuration where the satellites fol-
low highly elliptical, non-coplanar orbits with significant
separation and short orbital periods. For such applica-
tions, range observations outperform range-rate observa-
tions [4, 5]. Although systematic biases can impact perfor-
mance, the navigation system can still yield an acceptable
state estimation even when inter-satellite measurement er-
rors are relatively high, around the order of 100 meters
(1σ) ranging error, within the lunar vicinity.

Fig. 1: Satellite-to-satellite tracking-based orbit determi-
nation.

3. Tracking Window

Tracking windows require critical considerations since
they dictate when SST operations should take place. This
timing plays a crucial role because tracking windows can
produce different OD performance, potentially causing
navigation requirements not being met and resulting in
mission failures. It is worth noting that the best-placed
tracking windows can align with nearly optimal OD re-
sults, which can translate to reduced propellant usage,
simplifying mission operations, and prolonged mission
durations. Grouping tracking windows, though, can also
help reducing the overall set-up costs in tracking, like an-
tenna pointing, actually lowering the overall navigation
cost.

In essence, the key is to determine the most advanta-
geous time windows for collecting observations that will
maximize the effectiveness of the navigation filter. While
it is generally ideal to equally distribute measurements
across the entire orbit, practical constraints may block
continuous tracking. These constraints can result from
operational phases like Telemetry & Telecommand (TTC)
and station-keeping periods. In some cases, it is feasible
to modulate the ranging signal with telemetry or telecom-
mand signals, effectively creating a single window for
telemetry, telecommand, and tracking. However, conven-
tional ranging methods require a specific amount of on-
board power dedicated to the ranging signal, which could
potentially limit the available power for telemetry. Conse-
quently, in small satellites with limited on-board power
employing SST, planning operations into different time
frames becomes a necessity, as can be seen in Figure 2
(top).

In addition, there are alternative ranging techniques
beyond conventional methods that streamline ranging
operations, such as telemetry ranging [8] or teleme-
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Fig. 2: Operational time windows.

try/telecommand ranging [9]. In such cases, it becomes
possible to eliminate the ranging signal altogether, allow-
ing the entire power capacity to be allocated for teleme-
try or telecommand transmissions. In these cases, the
TTC and SST windows coincide, allowing all operations
to be performed simultaneously as illustrated in Figure 2
(bottom). Furthermore, if necessary, the total duration of
SST/TTC/OD can be extended, resulting in more naviga-
tion data and telemetry transmission. Even in this sce-
nario, the challenge is to find the optimal communication
window that yields the best OD performance.

4. Orbit Determination Models

This section introduces the models and methods em-
ployed for orbit determination and analysis in this paper.
Subsections will present the dynamical, measurement, and
estimation models.

4.1 Dynamical model
In this study, the dynamical model takes the form

of the Circular Restricted Three-body Problem (CRTBP).
This assumes the presence of two massive bodies, Earth
(P1, with mass m1) and the Moon (P2, with mass m2),
both engaged in circular orbital motion around each other
at a radius denoted as r12, driven by their mutual gravi-
tational force. A third body with mass m3, with m3 ≪
m1,m2, exerts negligible influence on the motion of the

primary bodies, P1 and P2. Additionally, a co-moving
reference frame is employed, with its origin located at the
barycenter of the two bodies. The positive x-axis points
from the barycenter to P2, the positive y-axis aligns with
the P2 velocity vector, and the z-axis is perpendicular to
the orbital plane. The equations of motion governing the
CRTBP are as follows [3]:

ẍ = 2ẏ + x− (1− µ)
x+ µ

r31
− µ

x+ µ− 1

r32
[1]

ÿ = (1− 1− µ

r31
− µ

r32
)y − 2ẋ [2]

z̈ = (
µ− 1

r31
− µ

r32
)z [3]

where
r1 =

√
(x+ µ)2 + y2 + z2

r2 =
√

(x+ µ− 1)2 + y2 + z2

For the Earth-Moon system, the gravitational parameter
µ is 0.01215, the normalized time t∗ 4.343 days, and the
normalized length l∗ 384 747.96 km, respectively.

It is important to note that the method described in this
paper can also be utilized for high-fidelity dynamics; how-
ever, employing PSO together with high-fidelity dynamics
would require a considerable amount of computational re-
sources.

4.2 Measurement model
In this research, we focus on two-way pseudorange ob-

servations. The estimated state vector consists of the po-
sition and velocity components of the two spacecraft, re-
sulting in a 12-dimensional state vector as follows:

X = (r1,v1, r2,v2)
T [4]

where the subscript represents the S/C number.
The crosslink range measurement model, referred to

as pseudorange, includes the geometric distance R, deter-
ministic and stochastic clock errors, as well as systematic
and random errors expressed as follows:

ρ = R+ c

2∑
l=0

∆τ lc + cδts + ρnoise [5]

where ∆τ lc represents the deterministic clock errors,
mainly: bias, drift, and aging for l = 1, 2, 3, respectively.
Additionally, the stochastic clock error is given as δts. It
is worth noting that ρnoise signifies the thermal noise that
originates from the ranging system, which is typically the
most significant source of error. These terms are combined
in the equations denoted as ρbias and ρnoise, encompassing
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sources of unmodeled statistical error. The range model is
given as:

ρ =
√
(r1 − r2) · (r1 − r2) + ρbias + ρnoise [6]

Light-time corrections are neglected, as the speed of
light is greater than the S/C relative velocity and the rel-
ative distance is not large enough to introduce significant
errors.

Several inter-satellite radiometric ranging methods ex-
ist, including conventional Pseudo Noise (PN) code, tone-
based, telemetry or frame ranging [8, 10] but in this study,
we will use telemetry ranging, as it allows the concur-
rent execution of all operations, including SST and TTC,
within the same time window. The telemetry ranging jitter
is given as follows [8]:

σρ =

(
1− 2vr

c

)(
4 c T 2

sd

π T ES/N0
+

c

8frc

√
BL

(PRC/N0)

)
[7]

where Tsd is the telemetry symbol duration, c the
speed of light, vr relative velocity between satellites, Tl

the correlator integration time, ES/N0 the symbol-to-
noise ratio, frc the frequency of the ranging clock compo-
nent, and BL one-sided loop noise bandwidth. It has been
assumed that the onboard time-tagging is precise enough
not to affect the overall system performance.

4.3 Estimation model
In this study, the Extended Kalman Filter (EKF) serves

as the estimation model: it operates by taking an initial
state X0 and state covariance P0 at the initial time and
subsequently processes inter-satellite range observations
at all the measurement epochs [11]. The EKF is composed
of two main steps: a prediction step and a correction step,
as summarized in Algorithm 1, where f is the system dy-
namics, X is the state vector, h is the measurement model,
ω̃ is the process noise, v is the measurement noise, P is
the covariance matrix, K is the Kalman gain, Q and W
are process and measurement noise covariance matrices,
respectively.

In one of the cases given in this paper, we examine
how measurement biases affect tracking windows: this in-
vestigation involves introducing a measurement bias as a
consider parameter to be taken into account. In this ap-
proach, the state vector is estimated and the uncertainty of
the measurement model (bias in this case) is included in
the estimation error covariance matrix. This approach is
called Consider Kalman Filter (CKF), and its implemen-
tation is detailed in Algorithm 2, where Ck is the cross-
covariance matrix, B0 is the parameter covariance, b0 is
a priori the parameter error. It is worth noting that CKF
turns into EKF in the case of zero parameter uncertainty.

Algorithm 1: Extended Kalman Filter (EKF)
Given: P0,X0, ỹk, Q,Wk

Model:
Ẋ = f(X,u, t) + ω̃, ω̃ ∼ N(0, Q)
ỹk = h(Xk) + vk, vk ∼ N(0,W )
Initialize:
X̂0 = E

}
X̂0

}
P0 = E

{
X̃0X̃

T
0

}
Propagation:
˙̂
X = f(X̂,u, t)
P̄k = Φ(tk, tk−1)Pk−1Φ

T (tk, tk−1) +Q
Φ̇(tk, tk−1) =

(∂f(X,u, t)/∂X) Φ(tk, tk−1), Φ(t0, t0) = I
Update:
Kk = P̄kH̃

T
k [H̃kP̄kH̃

T
k +Wk]

−1, H̃k =
∂h(Xk)/∂Xk

X̂+
k = X̂−

k +Kk[ỹk − h(X̂−
k )]

Pk = [I −KkH̃k]P̄k

Algorithm 2: Consider Kalman Filter (CKF)
Given: P0, B0, C0,X0,bk, ỹk, Q,Wk

Model:
Ẋ = f(X,u, t) + ω̃, ω̃ ∼ N(0, Q)
ỹk = h(Xk,bk) + vk, vk ∼ N(0,W )
Initialize:
X̂0 = E

}
X̂0

}
b0 = E }b0}
P0 = E

{
X̃0X̃

T
0

}
B0 = E

{
b0b

T
0

}
C0 = E

{
X̃0b

T
0

}
= 0

Propagation:
˙̂
X = f(X̂,u, t)
P̄k = Φ(tk, tk−1)Pk−1Φ

T (tk, tk−1) +Q
Φ̇(tk, tk−1) =

(∂f(X,u, t)/∂X) Φ(tk, tk−1), Φ(t0, t0) = I
C̄k = Φ(tk, tk−1)Ck−1

Update:
Kk = (P̄kH̃

T
k + C̄kN

T
k )[H̃kP̄kH̃

T
k +

NkC̄
T
k H̃

T
k + H̃kC̄kN

T
k +NkB0N

T
k +Wk]

−1

H̃k = ∂h(Xk,bk)/∂Xk, Nk =
∂h(Xk,bk)/∂bk

X̂+
k = X̂−

k +Kk[ỹk − h(X̂−
k ,bk)−Nkbk]

Pk = [I −KkH̃k]P̄k −KkNkC̄
T
k

Ck = C̄k −Kk(H̃kC̄k +NkB0)
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5. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an optimiza-
tion algorithm inspired by the collective behavior of an-
imals [12]where a population of potential solutions, rep-
resented as particles, iteratively explores a search space.
Each particle adjusts its position and velocity based on
its own experience and that of its peers. PSO efficiently
navigates complex, high-dimensional spaces to find near-
optimal solutions. It is widely used in various fields, due
to its simplicity and effectiveness in tackling optimization
and search problems.

There are various OD performance analysis metrics
given in scientific literature that can be derived through
methods such as Monte Carlo simulations, Cramér-Rao
Lower Bound (CRLB), or the observability analysis that
includes observability indices, condition numbers, Root
Mean Square (RMS) or Root-Sum-Square (RSS) posi-
tion/velocity error or uncertainty. Any of these metrics can
serve the same purpose as outlined in this research. How-
ever, for our study, we have adopted the approach given in
[3], which is based on the length of the largest axis of the
error ellipsoid:

βi = 3max(
√
λj) [8]

where λj for j = 1, 2 are the eigenvalues of Pi3×3 (rep-
resenting position or velocity components of S/C) and the
average value of the two spacecraft system

β̄ =
1

n

n∑
i=1

βi, βave =
1

2

2∑
j=1

β̄j [9]

where n is the number of β values during the simulation
and the system average βave is given as βave.

In summary, PSO can be used to minimize the overall
position and velocity uncertainty by finding near-optimal
tracking windows. In this context, the optimization prob-
lem is given as follows:

min βave =
1

2

2∑
j=1

1

n

n∑
i=1

3max(
√
λj)

s.t. 0 < TSST < Tend

[10]

where TSST represents SST windows (timing points)
with the number w = 1, 2, 3 (e.g., three tracking win-
dows), while Tend is the simulation duration. It should
be noted that, based on different scenarios, the constraints
are varied throughout this study and more details are given
in Section 6.

In brief, the OD simulation starts with an array con-
taining the initial times of each tracking window deter-
mined by the PSO particles. Subsequently, the filter
utilizes SST observations obtained during these tracking
windows with the starting times defined by the particles

and a fixed tracking duration. As the simulation pro-
gresses, βave is assigned to the respective particle, and
this process continues until the maximum number of par-
ticles is achieved in the first iteration. In each iteration, the
global fitness value (which represents the minimum posi-
tion and velocity uncertainty) is stored until the maximum
iteration count is reached. This process can be seen in Al-
gorithm 3.

Algorithm 3: Particle Swarm Optimization
(PSO)

Given: P0,X0, Q,Nk, LB,UB
Minimize:
f(X), minimizing βave

subject to 0 < TSST < Tend,
TSST = [T1, T2, ..., Tl]

(can be extended as ρ < Rreq or
T1 << T0 + 3days

Initialize: For each particle i in a swarm
population size Ps

Xi a random vector within [LB UB]
Vi a random vector within [LB UB]
Evaluate the fitness f(Xi)=βave,i

pbesti with a copy of TSST,i

gbest with a copy of TSST,i with the best fitness
while k ≥ Nk do

i← i+ 1;
Update V k

i and Xk
i for each particle i by

V k+1
i = wV k

i + c1rand1(pbesti −Xk
i +

c2rand2(gbest−Xk
i ))

Xk+1
i = Xk

i + V k+1
i

Evaluate fitness f(Xk
i )

pbesti ← Xk
i if f(pbesti) < f(Xk

i )
gbesti ← Xk

i if f(gbesti) < f(Xk
i )

end

6. Simulations

This section presents the OD results using the track-
ing windows optimized with PSO. The simulation setup is
presented first, and, thereafter, results are provided.

6.1 Simulation setup
This study investigates AOD for cislunar formations

using SST-based radiometric measurements, focusing on
a cislunar satellite formation made by two or three satel-
lites, as shown in Figure 3. Initial simulations will focus
on a two-satellite formation that includes a satellite in an
Earth-Moon L1 NRHO (T = 7.83 days, Cj = 3.00) and
a L2 orbiter (T = 14.14 days, Cj = 3.11). Later simula-
tions will also include a second orbiter around the Earth-
Moon L1 point (T = 12.10 days, Cj = 3.10).
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Fig. 3: A cislunar satellite formation formed by 3 S/C in
a mesh topology. In orange the EM L1 NRHO, in blue
the EM L2 Halo orbiter, and in yellow the EM L1 Halo
orbiter.

The study generates true and estimated trajectories us-
ing the ODE113 solver in Matlab, with a simulation du-
ration, Tm, set to 21 days (1.5 times the longest orbital
period in the formation). Telemetry ranging has been as-
sumed as the inter-satellite ranging method, and measure-
ment errors (1σ error of 10m) have been considered with-
out any bias (see Table 1 for further details). However, a
10m bias is considered in the CKF case.

The initial state errors for each state parameter are set
to 500m for position and 5mm/s for velocity, while the
initial state uncertainty (1σ) is set to 1 km for position and
1 cm/s for velocity. Each tracking window, as a reference
setting, spans a continuous 2 days period with measure-
ments taken every 180 seconds. To put this into context, an
example taken from ground-based conventional PN track-
ing (assuming the T2B code) involves approximately 175 s
for signal acquisition, 0.25 s to 500 s for signal correla-
tion (including ambiguity solving) and user-defined mea-
surement intervals on the major tone (e.g., 0.5 s) [10]. In
practice, additional measurements can be conducted, and
observations can be averaged after signal acquisition to
enhance accuracy. Given the total tracking window dura-
tion and the overall duration of the ranging sequence, a
measurement cadence of 180 s is considered an appropri-
ate choice.

It is important to note that the satellites within the for-
mation have different orbital periods and, consequently,
the measurement geometry continually changes over time,
making it impossible to plan SST when one orbiter passes
a specific point in its orbit, and the other is at a completely
different location. For example, the first orbiter may be in
a high-velocity region in the NRHO, while the second or-
biter is in a low-velocity region in the EM L2 Halo orbit.
Due to this variability, the orbit was not divided into sep-

Table 1: Radiometric parameters

Inter-Satellite Link Budget Value
Frequency, f 2200 MHz/2100MHz
TX power, Pt 3 dBW
TX path losses, Lt 1 dB
TX antenna gain, Gt 6.5 dBi
Polarisation loss, Lp 0.5 dB
Data rate 5 kbps
Required Eb/N0 2.5 dB
Link Margin 3 dB
Inter-Satellite Radiometric
Measurement Parameters Value

Symbol rate, 1/Tsd 5 ksps
Correletor integration time, Tl 1 s
Symbol-to-noise ratio, Es/N0 -1 dB
Modulation BPSK
Range clock frequency frc 1 MHz
Range clock to noise
spectral density, Prc/N0

25 dBHz

Tracking Loop Bandwidth, BL 1 Hz
Ranging jitter, σρ, see Eqn.7 10 m

arate segments, and the different combinations have not
been simulated. Instead, PSO is employed to seek a near-
optimal solution, providing the best averaged OD uncer-
tainty. To achieve this objective, we explored six distinct
scenarios to identify the most favorable tracking windows
under different conditions:

• Case-A: Four tracking arcs.

• Case-B: Four tracking arcs, each within four equally
divided time windows.

• Case-C: A single tracking arc initiated after the con-
vergence period.

• Case-D: A single tracking arc planned when the
inter-satellite distance is less than 90 000 km.

• Case-E: Three tracking arcs that incorporate mea-
surement bias as a consider parameter.

• Case-F: Three tracking arcs for a satellite formation
consisting of three spacecraft in a mesh topology,
where all satellites are linked with each other.

Simulation results are presented in the next sections,
starting from the nominal scenario and then continuing by
progressively adding more constraints.
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Fig. 4: Comparison of PSO-based and equally distributed
tracking windows (EML1 Halo/EML2 Halo case). Ver-
tical lines represent SST points for each solution.

6.2 Case-A: Nominal
This presents the standard scenario in which the goal is

to identify SST windows (a total of N ) providing the best
overall OD accuracy. Here, we impose straightforward
limitations, including tracking arcs, which must fall within
the range of 0 to Tend. We have selected four tracking win-
dows, each comprising 1000 measurements taken at inter-
vals of 180 seconds, resulting in approximately 2.08 days
of continuous tracking. A further constraint was imposed
to avoid two tracking windows to overlap: the PSO nor-
mally avoids this and would not provide optimal results,
but the constraint limits the search space and reduces the
simulation time. To sum up, these constraints can be out-
lined as follows:

min βave

s.t. 0 < TSST < Tend

TSST = [T1, T2, T3, T4]

Tl = 2.08 days

Tl+1 − Tl = 2.08 days

[11]

Figure 4 presents the comparison between equally dis-
tributed tracking windows and the tracking windows pro-
vided by the PSO technique: the colored vertical lines in
figure represent SST points for each approach. Basically,
PSO pushes the very first two tracking windows into the
very initial phase of the mission, as expected, due to the
high initial uncertainty in the system. On the other hand,
distributing tracking arcs couldn’t provide an accurate so-
lution, since the first tracking session was not long enough
to capture useful information. This results in around 6 km
(3σ) increase in overall position uncertainty.

The previous case was good for illustration purposes
since there were only four tracking sessions. However,

Fig. 5: PSO-based SST windows and corresponding posi-
tion uncertainty (EML1 NRHO/EML2 Halo case)

Fig. 6: PSO-based SST windows and corresponding posi-
tion uncertainty (EML1 Halo/EML2 Halo case).

almost 2 days of continuous tracking might be too long
for small satellite missions. For this reason, in the sec-
ond scenario, each tracking session is reduced to 10 hours
(Tl = 10hours), representing 200 measurements once ev-
ery 180 s. Figure 5 and 6 illustrate what would happen in
this scenario, showing a trend for the first figure, EML1
NRHO/EML2 Halo: pushing tracking windows into the
very early phase of a mission to reduce the initial position
uncertainty and distributing fewer tracking sessions at a
later stage, since convergence had already been achieved.
The second one, EML1 Halo/EML2 Halo, shows a trend
of distributing tracking sessions over the full mission.

6.3 Case-B: Equally divided time windows

In the previous case, the tracking windows were dis-
tributed over the full mission duration; however, there
might be the need to have a tracking window at specific in-
tervals due to mission constraints. This then requires one
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Fig. 7: Comparison of PSO-based and equally distributed
tracking windows (EML1 Halo/EML2 Halo case).

to divide the full mission span into segments and place a
tracking arc into each individual part, and the PSO can
help find the best tracking windows for each correspond-
ing segment. We can formulate the problem as follows:

min βave

s.t. 0 < TSST < Tend

TSST = [T1, T2, T3, T4]

LB = [0, 4.7, 9.4, 14.2](days)
UB = [4.7, 9.4, 14.2, 18.9](days)
Tl = 2.08 days

Tl+1 − Tl = 2.08 days

[12]

Figure 7 illustrates the corresponding result: it is in-
teresting to see in this case that the PSO skipped the very
first days and placed the first tracking arc around day 2.
This means that the relative geometry between satellites
(thus, the measurement geometry) is better after around
day 2 than the very first days, compensating for the in-
crease in state uncertainty. Overall, around 4.5 km (3σ)
positional improvement has been observed (26m after the
second tracking window).

6.4 Case-C: After the convergence period
Until now, previous simulations have indicated the

advantages of having tracking windows during the ini-
tial phases of missions, primarily due to the presence of
high initial uncertainties. From an operational perspective,
there will be an initial OD performed either from ground-
based sources or from another external source, which pro-
vides an initial state to the on-board filter. After the con-
vergence period, the PSO can seek the near-optimal track-
ing window: a single tracking window starting after day
4, determined by running a separate simulation. The opti-

Fig. 8: Comparison of PSO-based and nominal (mid-
point) tracking windows (After convergence, EML1
NRHO/EML2 Halo case).

mization problem can be defined as:

min βave

s.t. 0 < TSST < Tend

TSST = T1

LB = 4days

UB = 18.92 days

Tl = 2.08 days

[13]

The comparison between a single tracking window
found by PSO and a midpoint selected tracking window is
shown in Figure 8 where the PSO shifts the tracking win-
dow a bit earlier than the midpoint of the mission, result-
ing in a better overall state uncertainty. In case the number
of tracking windows is increased to ten, while each track-
ing session is reduced to 10 hours, the same pattern can
be seen as given in Figure 9 (≈125m (3σ) positional im-
provement with PSO).

6.5 Case-D: constrained distance

Another operational constraint can be related to the
communications system: inter-satellite distance can be
limited due to the onboard power that can be used for
ranging. For such cases, tracking windows may be re-
stricted to short time intervals only when the distance is
lower than a certain value. In this case, we have checked
the mean inter-satellite distance (90 000 km) and set it as a
constraint: Figure 10 illustrates the corresponding results,
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Fig. 9: Comparison of PSO-based and equally distributed
tracking windows (After the initial tracking session,
EML1 Halo/EML2 Halo case).

90e6 km

Fig. 10: PSO-based tracking window planning under the
distance constraint.

while the following equations represent the problem:

min βave

s.t. 0 < TSST < Tend

TSST = [T1, T2, T3]

ρ ≤ 90 000 km

Tl = 2.08 days

Tl+1 − Tl = 2.08 days

[14]

6.6 Case-E: Considered bias
It is well known that systematic bias has a significant

impact on measurement quality, consequently influenc-
ing the OD performance. There are various approaches
to handling systematic biases, and one of them is imple-
mented in this study as CKF. The filter, in this case, takes
into account the impact of measurement bias, which has

Fig. 11: PSO-based tracking window planning under the
measurement bias constraint.

been assumed 10m. The optimization problem is the same
as given in Eqn. 11, the only difference being the covari-
ance matrix in the filter.

Figure 12 presents cases where both PSO-based track-
ing windows. However, there is a distinction between
them: the former takes into account measurement bias
and incorporates it into the filter, while the latter does not
have any bias in measurements. As can be seen, PSO pro-
vides completely different solutions, highlighting the idea
that systematic biases can affect the timing of tracking
windows. It is worth noting that the average OD uncer-
tainty is around 9773m (3σ) for the considered bias case,
while it is around 9665m (3σ) for the no-bias scenario,
as expected. Using the tracking window of the no-bias
case instead of the tracking window of the considered case
brings the average solution of 9933m (3σ) when measure-
ments are affected by a constant bias. This demonstrates
that measurement biases can impact OD uncertainty under
specific geometries, leading PSO to recommend a differ-
ent time window to minimize overall OD uncertainty.

6.7 Case-F: Network topology

Adding a third satellite (in a mesh topology) to the cis-
lunar satellite formation (see Figure 3 for the full configu-
ration) leads to an optimization problem equivalent to the
one expressed in Eqn.11, with the sole distinction being
the size of the estimated state vector (18 instead of 12)
and the increased number of inter-satellite links (number
of measurements). The PSO-driven SST windows are il-
lustrated in Figure 12, where it is interesting to see that the
final tracking window is long enough to maintain a stable
uncertainty. In this case, conducting just a few hours of
tracking would be sufficient, but it is worth noting that OD
performance is more accurate accurate (average 2141m,
3σ) in the mesh topology due to the higher amount of
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Fig. 12: PSO-based tracking window planning for a satel-
lite formation formed by 3 S/C in a mesh topology.

links, allowing for more relaxed tracking durations.
In this section, it has been demonstrated that PSO can

provide an accurate solution for SST windows for cislunar
satellite formations performing on-board OD. This algo-
rithm can be used in advance on the ground to plan TTC
windows. Although the given approach is applied only
to the EM L1 Halo/NRHO/L2 Halo case, this method is
applicable to missions in different orbital regimes. It is
worth noting that there are several limitations that can be
further investigated in the future. In this study, the tracking
durations are assumed to be fixed. However, these dura-
tions can also be optimized to have much more compact
planning. Additionally, two-way ranging operations are
assumed in this study. However, one-way ranging opera-
tions can be investigated by estimating clock parameters
along with spacecraft states by minimizing the overall OD
uncertainty.

7. Conclusions

This study introduced a PSO-based approach for plan-
ning satellite-to-satellite tracking windows in cislunar or-
bits, particularly for satellite formations performing au-
tonomous on-board orbit determination. The algorithm
was tested with various operational constraints, demon-
strating that PSO effectively addresses constraints related
to spacecraft characteristics and design choices. Even in
scenarios involving multiple satellites within a formation,
the proposed algorithm was able to provide accurate solu-
tions, simplifying operational complexities. Furthermore,
this technique can readily be adapted for other cases, such
as minimizing station-keeping maneuver costs through the
identification of near-optimal SST windows. The pri-
mary benefit of this algorithm lies in its ability to offer
a straightforward solution without the need to account for
various SST configurations. It has been highlighted in this

study that uncertainties in measurements, such as biases,
can impact tracking window selection when near-optimal
solutions are required. Additionally, the algorithm can
easily integrate communication power constraints (inter-
satellite distances), simplifying complex implementations.
The presented results offer valuable information to refine
the design of satellite formations performing autonomous
on-board OD and obtaining cost-effective solutions for
mission planning.
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