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Abstract
In recent years, researchers have developed several methods to auto-
mate discovering datasets and augmenting features for training Ma-
chine Learning (ML) models. Together with feature selection, these
efforts have paved the way towards what is termed the feature dis-
covery process. Data scientists and engineers use automated feature
discovery over tabular datasets to add new features from different
sources and enrich training data. By surveying data practitioners,
we have observed that automated feature discovery approaches do
not allow data scientists to use their domain knowledge during the
feature discovery process. In addition, automated feature discovery
methods can leak private features or introduce biased ones.

In this paper, we introduce the first user-driven human-in-the-
loop feature discovery method called HILAutoFeat. We demon-
strate the capabilities of HILAutoFeat, which effectively combines
automated feature discovery with user-driven insights. Our demon-
stration is centred around two scenarios: (𝑖) an automated feature
discovery scenario – HILAutoFeat acts as a steward in a large data
lake where the user is unaware of the quality and relevance of the
data, and (𝑖𝑖) a scenario where HILAutoFeat and the user work
together – the user drives the feature discovery process by adding
his domain and business knowledge, while HILAutoFeat performs
the intensive computations.

CCS Concepts
• Information systems → Data analytics.
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1 Introduction
The long-standing presumption that the training data for a Machine
Learning (ML) model is a single table does not hold true. In practice,
essential predictive features often reside across multiple database
tables or files, which could be part of an extensive open data reposi-
tory or a data lake [7, 13, 14]. Currently, there is significant ongoing
research dedicated to developing methods that automate the dis-
covery and augmentation of tabular features for ML model training
[3, 5, 12, 15]. This process, named feature discovery, builds upon the
exploration and integration steps from dataset discovery [1, 2, 5, 11]
and relies on feature selection strategies to select only the most
relevant features for a given ML task.

In data lakes lacking primary-key/foreign-key constraints, em-
ploying dataset discovery [6, 10] is an essential first step for feature
discovery, which reveals table relationships [3, 9] such as join-
ability [1, 11] or unionability [6, 14]. However, dataset discovery
approaches often produce false positives [10], leading to joins that
yield irrelevant tables filled with unrelated data. The issue is exac-
erbated when two datasets are joinable through multiple columns,
a scenario where state-of-the-art feature discovery approaches typ-
ically fall short [3, 12].

The automated systems for feature discovery for ML either focus
on strategies for improving the correlation metrics [5], maximizing
relevance while minimizing redundancy [9], or integrating the ML
model directly into the augmentation process to ensure feature
compatibility [3, 12]. However, our recent user study [8] has re-
vealed two critical issues with fully automated approaches. While
data scientists find the automated feature discovery methods to
be very useful for finding relevant features to train their ML mod-
els, they also lose control over which features are included in the
training data for a given model. This issue is two-fold. First, fully
automated feature discovery methods do not leverage the user’s
domain expertise, which can be pivotal in discovering important
predictive features. Second, the fully automated methods can incor-
porate features that should not be part of the training data due to
government regulations and company policies (e.g., privacy, bias).
Example: Take as an example a dataset for predicting if an employee
is suitable for promotion. In this dataset, the ML model has access
to features such as education, years of experience, technical skills,
and soft skills. Augmenting this dataset with personal information
about the employees, such as age, gender, and nationality, and given
the high amount of male employees the company already has, an
algorithm trained with the gender feature can be biased to generate a
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Figure 1: HILAutoFeat pipeline: automatic workflow and user-driven workflow.

favourable decision for male employees. Here, human input is crucial
in determining the correct set of relevant and related features for
augmentation.

Departing from the black-box automated approaches, we have
extended our automated tool AutoFeat [9] to incorporate user feed-
back and involvement during the feature discovery process. With
this human-in-the-loop approach, named HILAutoFeat, we address
the reported issues from our user study. HILAutoFeat leverages the
strengths of automated feature discovery methods while providing
a platform for data scientists to use their domain expertise and
business knowledge. HILAutoFeat allows users to control essential
steps: users can filter the discovered relationships and the join paths
and adjust the selected features while observing the effects of these
updates over the augmented dataset in real-time. To the best of our
knowledge, HILAutoFeat is the first user-driven, semi-automated
feature discovery tool that dynamically adjusts to user feedback.
Specifically designed for data scientists and analysts across various
fields, users reported that this tool provides a more efficient aug-
mentation process and yields effective results through the added
benefit of modifying the data (i.e., relationships, join trees, features)
at any given point.
Demonstration. The demonstration attendants will be able to: (𝑖)
navigate through a data repository while HILAutoFeat filters and
suggests suitable tables and features for augmentation based on
relevance and potential to improve the ML model performance, (𝑖𝑖)
evaluate and select features that best align with their specific mod-
elling objectives, and (𝑖𝑖𝑖) iteratively improve the feature discovery
process and mitigate possible privacy and bias issues by leveraging
their domain knowledge.
System Availability. The automatic feature discovery approach
AutoFeat can be found at https://github.com/delftdata/autofeat,
while the human-in-the-loop approach HILAutoFeat is available
at https://github.com/delftdata/hci-auto-feat. Additionally, a video
demonstration is accessible at https://youtu.be/tjXxCb2C3hU.

2 System Overview
We have developed a user-driven human-in-the-loop feature discov-
ery approach, HILAutoFeat, which extends our automated feature
discovery system, AutoFeat [9]. The primary objective of feature
discovery is to enhance a base table by adding new features that
significantly increase the predictive accuracy of a target ML model.
HILAutoFeat streamlines the process of selecting and integrating
relevant tables from a dataset collection into the base table, based on

the user’s input, whose domain expertise can potentially change the
outcome of the augmentation process. Additionally, HILAutoFeat
employs heuristic-based feature selection strategies to eliminate re-
dundant or irrelevant features from this augmented table. By doing
so, HILAutoFeat notably enhances the efficiency and accuracy of
subsequent ML operations.

Figure 1 illustrates the automated feature discovery process and
the user interactions which are available at every stage in the
pipeline. Our human-in-the-loop feature discovery approach pro-
vides the following functionalities to the user: (1) refining dataset
relationship (Section 2.1), (2) manipulating join trees (Section 2.2),
and (3) refining feature sets (Section 2.3). We also discuss how
HILAutoFeat maintains the high efficiency of AutoFeat through
various scalability enhancements in Section 2.4.

2.1 Refine Dataset Relationships
In a data lake with hundreds or thousands of tables, the number of
relationships between these tables for a fully connected graph is
𝑛 ∗ (𝑛 − 1)/2, where 𝑛 is the number of vertices. For a multi-graph,
the number can be much higher. HILAutoFeat maps the relation-
ships between tables using similarity scores generated by a dataset
discovery algorithm. Currently, we support our schema matching
tool suite Valentine [10]. With the automated feature discovery
process, spurious relations are eliminated. However, the remaining
relationships are not guaranteed to be relevant to augment the base
table. HILAutoFeat enables the users to adjust the relationships
discovered by the automatic process. The users possess domain
knowledge [8] and can immediately recognise which tables are
beneficial for the augmentation.

By default, HILAutoFeat displays a graph with the strongest
relationships between tables, as illustrated in Figure 2. Then, it
enables the user to adjust the similarity threshold, visualise all rela-
tionships, and refine them (i.e., delete, update, or add an additional
one). These functionalities enhance user control over the process
and allow for a more tailored and precise dataset construction,
accommodating specific analytical needs and objectives.

2.2 Manipulate Join Trees
After establishing the relationships, the next step in the pipeline is
streaming feature selection. In this feature selection approach, the
features follow a streaming process: a new batch of features arrives
with every new join. The automatic feature discovery approach
computes two steps in the same streaming feature selection itera-
tion: creates join trees and selects the features. For HILAutoFeat,
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Figure 2: A snippet from the HILAutoFeat GUI showing the
best relationships between tables and the user action of click-
ing on a table, which shows the menu to edit or view it.

we deconstruct this process such that the user can update the join
trees and the subsequent feature sets and actively observe the im-
pact of each join and feature on the performance of the ML model.

The join trees are an early representation of the augmented table,
as each node in the tree represents a table with the associated join
column. We use Breadth First Search (BFS) traversal to navigate
through the graph of table relationships. With BFS, we first join
directly connected datasets and then proceed to join datasets that
are farther away. This order of joining is crucial because it allows
us to prioritise the most relevant datasets in the early stages of the
traversal. Through the BFS traversal, we form join paths of varying
lengths by sequentially left-joining the tables. The choice of a left
join is strategic, aiming to preserve the original number of tuples
and, more importantly, to maintain the number and distribution of
classes in the target variable. We discuss other traversal and join
strategy options in AutoFeat [9].

We refine the join trees by pruning any spurious paths. We em-
ploy similarity-based pruning – where the join column with the
highest similarity score is selected, and data quality-based pruning
– which involves discarding join paths that surpass a pre-defined
threshold for a non-null value ratio. Each join tree is then ranked by
a linear function derived from two distinct feature selection meth-
ods measuring relevance and redundancy. AutoFeat [9] provides
an in-depth analysis of our feature selection methods.

With HILAutoFeat, we open the black box automatic approach
and empower users by giving them control over and insights into
the process. Users can actively influence the augmentation process
by adding or removing paths from a join tree, acting as an external
knowledge source for the algorithm. For example, in Figure 4, the
user applies his domain knowledge and removes a path (i.e., table)
from the join tree, which had the potential to bias the algorithm.
Additionally, HILAutoFeat is enhanced with an explainability func-
tion, also illustrated in Figure 4. At each step of the algorithm,
HILAutoFeat provides users with a comprehensive understanding
of the process. This transparent approach fosters a deeper under-
standing and trust, empowering users to make informed decisions
while fine-tuning their data.

2.3 Refining Feature Sets
At the heart of HILAutoFeat lies the balance between relevance
and redundancy, which is crucial to its effectiveness. In the context

 Input data  Find relations  Create join trees  Update & Evaluate

Type of process

Human-in-the-Loop Automated
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school credit Select...

Select matcher

Jaccard

Select base table *

base.csv
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target
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4
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Figure 3: A snippet from the HILAutoFeat GUI showing the
input required to start the automated process.

of ML, relevance is divided into two categories: strong relevance,
where removing a key feature negatively affects the optimal set of
features, and weak relevance, where less important features impact
the output upon removal. Redundant features, on the other hand,
are those that offer no new information and can be interpreted
as a duplication of relevant features. For HILAutoFeat, we apply
the Spearman correlation to assess feature importance, while the
MRMR metric is used to identify and manage redundancy, ensuring
the model operates efficiently and effectively [9].

Themost granular operations the user canmake are at the feature
level. They can view the collection of selected and discarded features
associated with a join tree and make updates by either adding or
removing features. At this stage, users can leverage their domain
expertise or business knowledge to prioritize more critical features.
By modifying the feature set, the users not only alter the augmented
dataset but also significantly impact the accuracy of the ML model.
The refinement of the feature set introduces a higher degree of
customization and precision to the feature discovery process. It
allows for a dynamic interplay between automated feature selection
and human judgement, ensuring that the final dataset is rich in
relevant features and aligned with specific analytical goals and
business objectives.

2.4 Scalability
In our approach, we rely on external dataset discovery techniques
for the initial computation of table relationships, a phase that consti-
tutes the most extensive duration within the process. Nevertheless,
it is noteworthy that dataset discovery methods can be efficiently
scaled to accommodate thousands of tables, enhancing both accu-
racy and computational speed, as shown in JOSIE [16].

When running HILAutoFeat with hundreds or thousands of ta-
bles, our methodology incorporates pruning strategies to eliminate
irrelevant tables, such as similarity-based pruning and data quality-
based pruning. Consequently, the number of tables in a join tree
will not approach the thousand mark, given that most tables will be
irrelevant to the base table targeted for augmentation. Furthermore,
we have implemented a relationship-caching method, eliminating
the need to recompute these connections for future usage.

In addition, our experimental evaluations with the automated
approach, AutoFeat [9], reveal that our strategy offers a superior
performance speed compared to existing state-of-the-art automated
dataset augmentation and feature discovery techniques. This effi-
ciency is maintained despite the integration of human interaction
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within the process, as user involvement does not affect the compu-
tation time for constructing the join trees.

HILAutoFeat uses hyper-parameters to ensure that the curated
set of features remains manageable for the user. Accordingly, a
maximum of 𝜅 features is chosen from each table. In scenarios
with large data repositories, HILAutoFeat relies on evaluating the
relevance and redundancy metrics for features, thus ensuring the
construction of an optimal feature set.

3 Demonstration Scenario
We will demonstrate our human-in-the-loop approach for feature
discovery within a web application. In our demonstration scenario,
a user aims to augment a dataset by adding features to enhance
the accuracy of a tree-based ML model. The default ML model is
LightGBM, which is a part of the AutoGluon AutoML framework
[4]. Users, however, have the flexibility to select their desired model
from the range of models supported by AutoGluon. The user starts
with a base table that includes a target variable for binary classi-
fication and promising features for the ML model. Additionally,
the user has access to a data repository containing multiple tables,
either relevant or irrelevant, for augmentation.
Datasets. For our demonstration, we assemble a collection of
datasets commonly used in evaluating state-of-the-art data aug-
mentation techniques [3, 9, 12]. The dataset repository includes
eight datasets, each comprising between five and 40 joinable tables
and featuring a total of 20 to 420 attributes. All the datasets are
used for binary classification problems.

3.1 Scenario #1: Distil Information
In the first demonstration scenario, we showcase the capability
of HILAutoFeat to distil information. Given a large collection of
tables, manually performing feature discovery implies inspecting
the tables and selecting the most relevant features for the augmen-
tation. This manual process takes a tremendous amount of effort
and time to complete. In this scenario, we assume that the user is
unaware of the quality and relevance of the information in the data
repository. Thus, HILAutoFeat helps users by automatically filter-
ing out irrelevant tables. The feature discovery process is entirely
automatic, requiring no user intervention.

In Figure 3, we present a snippet of the user interface. The user
initiates the process by specifying the input: the desired data repos-
itories, the base table to augment and its corresponding target
variable and the hyper-parameters to adjust the method. From here
on, HILAutoFeat autonomously performs the steps illustrated in
Figure 1: (𝑖) finds relationships between the tables from the dataset
repository, (𝑖𝑖) identifies suitable features for the base table and
creates join trees, and (𝑖𝑖𝑖) returns top-𝜅 join trees. HILAutoFeat
helps the user to find relevant information and returns top-𝑘 op-
tions to the user. Now, the users have an overview of the relevant
tables and features and can choose the most suitable join tree for
their subsequent processes.

3.2 Scenario #2: User-Driven Feature Discovery
In this scenario, the dataset repository is smaller, and we assume
the user has knowledge about the datasets. In this semi-automatic
process, HILAutoFeat and the users work together. While the users

 Input data  Find relations  Create join trees  Update & Evaluate
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        from (table.column) school/base.csv.DBN 

             to (table.column) school/survey.csv.DBN with Non-Null ratio 0.87

   	 

        from (table.column) school/base.csv.DBN 

             to (table.column) school/transfer.csv.DBN with Non-Null ratio 0.96 

 	 

        from (table.column) school/base.csv.DBN 

             to (table.column) school/gender.csv.DBN with Non-Null ratio 0.86 	 
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Figure 4: A snippet from the HILAutoFeat GUI showing a join
tree, an explanation, and the user action of deleting a path.

rely on HILAutoFeat to perform automatic time-consuming compu-
tations, they can apply domain and business knowledge to enhance
the feature discovery process and create the best-performing aug-
mented dataset. The users start by selecting a dataset repository
and the candidate tables for augmentation, similar to the automatic
process from Figure 3.

3.2.1 Refine Relationships. HILAutoFeat works with multiple da-
taset discovery algorithms, as described in Section 2.1. For this
demonstration scenario, we use Jaccard similarity for ease of under-
standing the process. Following the initialisation phase, users have
the opportunity to examine and modify each step of the pipeline.
This process begins with determining the relationships between
the tables in the data repository. Subsequently, users can visualize
and refine these relationships as illustrated in Figure 2. Users can
add or remove a relation or alter the similarity score of an exist-
ing relationship, ensuring that only the most relevant tables are
considered for augmentation.

3.2.2 Manipulate Join Trees. Once we establish the relationships
between tables, the next step in the workflow is computing join
trees. The user can visualize and conduct a detailed examination of
these trees. In this detailed view, they can observe the ranking of
each join tree and examine all the join paths that constitute the tree,
as shown in Figure 4. Users can actively influence the augmentation
process by adding or removing paths. They can also verify in real
time the effect of each refinement on the augmented dataset by
evaluating the tree.

3.2.3 Refine Features. The most granular operations the user can
make are at the feature level. They can view the selected and dis-
carded feature sets associated with a join tree and make updates
by adding or removing features. The user can remove highly re-
dundant features and re-evaluate the dataset by retraining the ML
model with the revised feature set.

With these scenarios, we demonstrate how incorporating the
user’s domain knowledge is instrumental in shaping a significantly
more robust and tailored training dataset, thereby enhancing the
overall effectiveness of our approach.
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