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Review 

Rethinking characterization, application, and importance 
of extracellular polymeric substances in water 
technologies 
Sasmitha A Zahra1, Rozalia Persiani2, Morten KD Dueholm3,  
Mark van Loosdrecht2, Per H Nielsen3, Thomas W Seviour1 and  
Yuemei Lin2   

Biofilms play important roles in water technologies such as 
membrane treatments and activated sludge. The extracellular 
polymeric substances (EPS) are key components of biofilms. 
However, the precise nature of these substances and how they 
influence biofilm formation and behavior remain critical 
knowledge gaps. EPS are produced by many different 
microorganisms and span multiple biopolymer classes, which 
each require distinct strategies for characterization. The 
biopolymers additionally associate with each other to form 
insoluble complexes. Here, we explore recent progress toward 
resolving the structures and functions of EPS, where a shift 
towards direct functional assessments and advanced 
characterization techniques is necessary. This will enable 
integration with better microbial community and omics analyses 
to understand EPS biosynthesis pathways and create further 
opportunities for EPS control and valorization. 
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Introduction 
Extracellular polymeric substances (EPS) are complex 
mixtures of biopolymers secreted by microorganisms 
consisting mainly of polysaccharides, proteins, lipids, 
nucleic acids, and humic substances. The EPS play cru-
cial roles in the formation and stability of biofilms. For 
water and wastewater engineering biofilms, such as acti-
vated sludge flocs and granules, the EPS provide struc-
tural integrity, protection, and a matrix for nutrient and 
waste exchange. However, despite the critical role played 
by the EPS in water and wastewater biofilms (e.g. pro-
moting flocculation of activated sludge), the exact com-
position and identities of EPS in environmental and water 
biofilms largely remain a mystery (i.e. EPS ‘identity 
crisis’). This was previously flagged as a critical knowl-
edge gap in water and wastewater engineering [1] as it 
hinders the process optimization and the development of 
circular economies targeting EPS recovery. The lack of 
understanding on EPS composition contrasts to extensive 
knowledge regarding the microbial ecology of biofilms in 
water technologies, which has been made possible by 
advancements in DNA and RNA sequencing technology. 
Furthermore, the EPS were recently identified as a re-
coverable resource from biological wastewater treatment 
processes. Resolving the identities and structures of EPS 
and elucidating their behaviors and functions would in-
crease opportunities for application and inform processing 
and formulation of EPS biopolymers. 

Here, we submit our report card on efforts subsequent to 
the previous call-to-arms to address this critical knowledge 
gap. A general shift has been noted towards direct rather 
than indirect EPS functional assessment, with biophysical 
and physicochemical characterizations on extracted, or in 
some cases even purified EPS, rather than retrospectively 
assigning phenotypic changes to EPS type. EPS char-
acterizations also tend to be more focused now, with a 
tightening of classifications, the introduction of new EPS 
subcategories, and even full identification. Furthermore, 
recent advancements in microbial community surveys and 
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omic analyses such as long-read sequencing, metagenomics 
combined with advanced bioinformatic tools have sig-
nificantly enhanced our understanding of bacterial di-
versity and EPS biosynthesis. This has occurred 
concurrently with an increasing number of EPS applica-
tions, such as wood adhesives, corrosion inhibitors, and 
hydrogels, showcasing the versatility and potential eco-
nomic benefits of EPS in various industrial and environ-
mental contexts. This review article focuses on recently 
applied EPS characterization studies, which specifically 
enhance our understanding of EPS structures, identities, 
and structure–function relationships. These studies are 
taking place in parallel with developments in ‘omics ap-
proaches that pave the way for understanding how EPS are 
synthesized, which bacteria are responsible, and how ex-
pression is regulated. Finally, we discuss new valorization 
strategies where EPS functionality can lead to biomaterials 
with enhanced properties. 

New extracellular polymeric substance 
characterization strategies provide greater 
structural insight 
New characterization strategies and a greater focus on 
the EPS in recent years have provided more precision in 
what the EPS contain and how they behave [2]. It is now 
understood, for example, that glycosaminoglycans 
(GAGs), including hyaluronic acid–like and sulfated 
GAGs-like polymers, are present in aerobic and ana-
mmox granules [3] and sialylated and sulfated glyco-
conjugates are abundant in both anaerobic and aerobic 
sludges [4]. The presence of amyloid-like structures [5] 
and surface (S-) layer proteins has been observed to 
provide structure to granular sludges [6,7]. Macro-
molecular degrading catabolic proteins such as poly-
saccharide-degrading hydrolases, lyases, proteases, and 
nucleases are also present, however, along with re-
structuring proteins such as oxidoreductases and trans-
porter and ion-binding proteins [8,9]. Together these 
findings further suggest that the EPS are more than a 
structural scaffold but an extracellular digestion and 
preprocessing system [10]. Finally, extracellular lipids 
have also been attributed to a structural and mechanical 
function in activated sludge, although their concentra-
tions and compositions in activated sludge are yet to be 
fully explored [11]. Here, we discuss several novel EPS 
characterization methodologies that have provided ad-
ditional valuable insight into the EPS of water biofilms. 

Although the limitations of basic quantification methods 
using colorimetry for proteins and sugars for absolute 
quantification have been described previously [12,13], 
they are still applied to generate valuable information, 
such as describing relative abundance between samples 
or changes over time. This can then be used to support 
mathematical models of EPS regarding its production 
and consumption. For example, Xing et al. correlated a 

reduction in loosely bound exopolysaccharides (LB- 
EPS) and tightly bound exopolysaccharides (TB-EPS) 
with increased zeta potential and decreased sludge vo-
lume index and presented a model for LB-EPS and TB- 
EPS generation and consumption [14], which they sug-
gested could be used to regulate sludge settleability. 

Resolving the abundance of individual EPS compounds 
can better inform EPS production dynamics and func-
tionality [15]. For example, in a polyphosphate accu-
mulating organism (PAO)-enriched biofilm, 13C-labeled 
extracellular and intracellular proteins, and exopoly-
saccharides were quantified by mass spectrometry–based 
proteomics and liquid chromatography-high-resolution 
mass spectrometry (LC-HRMS), respectively. Using a 
secretion-signal prediction tool, extracellular proteins 
could then be distinguished from intracellular proteins 
and turnover rates in intracellular and extracellular bio-
polymers then calculated. It could thus be concluded 
that the EPS were degraded by general decay of biomass 
rather than a preferential EPS consumption by the 
flanking populations [16]. 

Biophysical characterizations have been undertaken to re-
solve EPS behavior through an understanding of their 
higher order structures. Circular dichroism (CD) spectro-
scopy, transmission electron microscopy, atomic force mi-
croscopy, and rheology are just some of the methods 
available for EPS biophysical characterization. EPS func-
tionality can be informed from higher order structure. 
Therefore, particularly for extracellular proteins that are 
more easily identified than sugars (i.e. by proteomics), 
higher order structure and function can be suggested by 
the primary structure using an increasing number of online 
tools for predicting structural features such as PONDR and 
AlphaFold. For example, with EPS from anammox gran-
ules, the structural units forming the 3D network in con-
centrated EPS dispersions were suggested to be functional 
amyloids [17]. Seviour et al. isolated a structural protein 
from anammox granules [18] homologous to that described 
by Lotti et al. [19]. The prediction of β-sheet structural 
motifs by computational structure prediction was con-
firmed for both by CD spectra. This protein was also de-
termined in silico to contain intrinsically disordered 
domains, which were shown by single molecular droplet 
assay on isolated and recombinant expressed protein frag-
ments to promote phase transition of the protein into liquid 
condensates. These condensates adhered to cells, and this 
was proposed as a mechanism for how it could promote 
biofilm formation [18]. 

Identifying and resolving the structure of EPS remain 
challenging due to the complexity of the molecules in-
volved, resulting from low solubility and purity, structural 
heterogeneity, and microbiological variability [15,20]. 
Nonetheless, significant progress has been made toward 
better resolution of characterization through a combination 
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of improved analytical methods and a broader suite of 
fluorescence-binding proteins coupled with microscopy. 
Fluorescence lectin-binding analysis, enzymatic quantifi-
cation, and mass spectrometry demonstrated the presence 
of different nonulosonic acids in the extracellular matrix of 
a ‘Candidatus Accumulibacter’ biofilm, which was further 
suggested by the presence of nonulosonic acid synthase 
genes in the metagenome-assembled genome of Ca. Ac-
cumulibacter, and NuIO-specific receptors, permeases, and 
transporters in its biofilm proteome [21]. These non-
ulosonic acids seem to be an integral aspect of most mi-
crobial EPS [21,22]. By combining sodium dodecyl-sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE) with Al-
cian Blue staining, fourier-transform infrared spectroscopy 
(FTIR), mammalian hyaluronic acid and sulfated GAG 
analysis kits, selective enzymatic digestions, and specific in 
situ visualization by Heparin Red and lectin staining, Felz 
et al. could identify GAGs, including hyaluronic acid–like 
and sulfated GAGs-like polymers in their aerobic granular 
sludge EPS [3]. Finally, Wong et al. raised antibodies 
against the same β-sheet-rich extracellular protein [7] de-
scribed by Seviour et al. [18] (i.e. homologous to that de-
scribed by Lotti et al. [19]). Using immunofluorescence 
coupled with FISH microscopy they then described its 
distribution throughout the biofilm relative to the major 
population. This led to the conclusion that it was an S-layer 
protein secreted by Ca. Brocadia sinica but also that it 
served a secondary function in facilitating the assembly of 
another population into a 3D biofilm scaffold. 

Extensive characterizations have also been performed to 
evaluate and optimize the application potential of EPS. 
Mechanical properties of EPS gels were investigated 
using dynamic and static rheology [23], showing that 
strain-hardening and syneresis of the EPS occur de-
pending on calcium concentration. Molecular-level ana-
lysis combined with FTIR and Inductively Coupled 
Plasma— Atomic Emission Spectrometer (ICP-AES) 
were employed to demonstrate that extracellular poly-
saccharides from anammox biofilms and proteins can 
bind heavy metals [24,25]. Various approaches used to 
characterize EPS are outlined in Table 1. Nonetheless, 
while some extracellular proteins, and types of sugars, 
have been identified for biofilms, the challenge remains 
to identify individual components of EPS comprehen-
sively in biofilms, which is only possible by enabling 
spectroscopic analyses such as FTIR, nuclear magnetic 
resonance (NMR) spectroscopy and mass spectrometry 
following extraction and isolation. 

Omics pave the way for species-resolved 
extracellular polymeric substance 
biosynthesis predictions 
Recent global-scale microbial community surveys have 
provided detailed insights into the diversity of bacteria 
in wastewater treatment systems [29]. Notably, the 

MiDAS global project introduced the MiDAS 4 16S 
rRNA gene reference database with placeholder names 
for the many uncultured microbial species lacking an 
official taxonomy, providing a common language for 
microbes in the wastewater field [30]. It was further re-
vealed that less than 2000 bacterial species constitute 
most of the biomass in global wastewater treatment 
systems [30]. By understanding the EPS production of 
these species, we might be able to predict the overall 
EPS properties with high precision. 

Since genomes encode everything a bacterium can do, we 
can gain unique insights into the EPS potential of in-
dividual species via their genomes if we understand the 
genes involved in EPS production. Recent advancements 
in long-read sequencing technologies enable us to obtain 
high-quality (HQ) metagenome-assembled genomes 
(MAGs) from complex communities, which importantly 
contain 16S rRNA genes that can be directly linked to 
amplicon-based microbial community surveys. This was 
first demonstrated on a large scale for activated sludge 
through hybrid assemblies of Illumina and nanopore reads 
to recover over 1000 HQ MAGs [31]. However, the im-
proved accuracy and throughput of nanopore and PacBio 
sequencing now allow long-read-only assemblies [32], 
simplifying the process of obtaining HQ MAGs and 
paving the way for sequencing all common bacteria in the 
global wastewater microbiome. 

With the genomes available, we can examine their po-
tential for EPS production. The AntiSMASH framework 
uses Hidden Markov Models (HMMs) and gene proxi-
mity to identify biosynthetic gene clusters (BGCs) en-
coding secondary metabolites [33]. A similar approach, 
although using simple BLAST searches, was developed 
for detecting BGCs encoding 16 different exopoly-
saccharides (exoPS) in activated sludge [34]. It was 
found that many of the bacteria encode known exoPS, 
such as bacterial cellulose and Pel polysaccharide. 
However, to gain a full picture of the genetic potential 
for EPS biosynthesis, we need to be able to detect not 
only BGCs encoding known exoPS but also novel types. 
This may be achieved by targeting conserved key genes 
for the four common pathways used to produce all 
known exoPS [35], for example, by applying broad 
HMM models and detection rules that fit the specific 
pathways [35]. Furthermore, additional information 
about the exoPS biosynthetic potential of individual 
species can be obtained by investigating which activated 
sugar monomers they can synthesize as building blocks 
for the exoPS. This strategy has been applied to anae-
robic granular sludges treating papermill and brewery 
wastewater and revealed a high content of uronic acids in 
the EPS, which could be linked to specific community 
members [36]. Because the EPS also contain large 
amounts of extracellular proteins, including pili, fim-
briae, amyloids, and adhesins, we also need to be able to 
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identify these compounds. Although this can already be 
done based on manual homology searches, it would be 
relevant to create a user-friendly tool that can detect 
both exoPS BGCs and genes encoding extracellular 
proteins without expert knowledge. 

Insight into the homologs of known exoPS BGCs has 
revealed variations in gene conservation and synteny 
across taxa [34]. This suggests potential differences in 
exoPS processing that could lead to altered physico-
chemical properties. To examine the impact, we need 
representative bacterial pure cultures from wastewater 
treatment systems to study individual EPS components 
under controlled conditions. Unfortunately, very few 
cultured species are available from activated sludge, in-
cluding the floc-forming Zoogloea [33] and Thauera [37]. 
Accordingly, there is a pressing need to apply culturo-
mics to wastewater treatment research [38]. To ensure 
that the isolation efforts focus on common and abundant 
species in the wastewater treatment plants, we can use 
the results from global microbial surveys and genomic 
analyses. First, genome annotations may offer insights 
into the autotrophies of specific taxa, aiding in tailoring 

growth mediums for targeted isolation [39,40]. Second, 
microbial profiling can be used to rapidly screen for 
media and growth conditions that support the growth of 
common taxa. This strategy was recently employed to 
demonstrate that most activated sludge bacteria require 
specific components in the sludge fluid for growth [41]. 
Finally, as most species occur in low relative abundance, 
it may be relevant to enrich for the target species before 
isolation. This can be achieved using high-throughput 
cell sorting techniques, as recently demonstrated for Ca. 
Accumulibacter, Nitrospira [42], and Patescibacteria [43]. 

Since genomes only provide insights into the genetic 
potential for EPS production, it is important to stress 
that transcriptomic and proteomic analyses are required 
to determine if the identified genes encoding EPS are 
expressed and significant in wastewater treatment sys-
tems. Additionally, these analyses can reveal how these 
genes are regulated in response to environmental con-
ditions, including operational processes in wastewater 
treatment. Such information is currently lacking but will 
be instrumental in developing improved treatment 
strategies in the future. 

Table 1 

Overview of current techniques used for EPS characterization.       

Approach Details Biofilm Outcome References  

Staining and 
microscopy 

Immunofluorescence (antibodies) Candidatus Brocadia 
sinica 

Distribution of extracellular 
proteins 

[7] 

Lectins 
Heparin Red 

Aerobic granular sludge Distribution of polysaccharides in 
the extracellular matrix 

[3] 

Lectins Candidatus 
Accumulibacter 

[21] 

Mechanical Dynamic rheology 
Static rheology 

Aerobic granular sludge Strain-hardening and syneresis 
of EPS 

[23] 

Rheology Activated sludge Changes in biopolymer structure [26] 
Biophysical Transmission electron microscopy (TEM) 

Atomic force microscopy (AFM) 
Small-angle X-ray scattering (SAXS) 
Circular dichroism (CD) 
FTIR 
Ultraviolet-visible (UV-Vis) 

Anammox granular sludge Functional amyloids as putative 
structural units 

[17,19] 

FTIR 
Nuclear magnetic resonance (NMR) 
High-performance gel-permeation 
chromatography (HP-GPC) 

Bacteria from biofouled 
reverse osmosis (RO) 
membrane 

Characteristics of EPS that thrive 
on biofouled RO membranes 

[27] 

FTIR 
NMR 
Excitation-emission matrix (EEM) 
CD 

Activated sludge Biopolymers evolution under 
hydrothermal treatment 

[26] 

Chemical FTIR 
Inductively coupled plasma–atomic 
emission spectrometer (ICP-AES) 

Anammox granular sludge EPS as heavy metal biosorbents 
with high capacities 

[24] 

Mathematical model Unified model-TL1 and expanded unified 
model-TL2 

Activated sludge Generation and consumption 
mechanism of EPS 

[14] 

Mass spectrometry High-resolution mass 
spectrometry (HRMS) 

Candidatus 
Accumulibacter 

Types of polysaccharides in the 
extracellular matrix 

[21] 

Tandem mass spectrometry (MS/MS) Candidatus Brocadia 
sinica 

Identification of extracellular 
structure proteins 

[28] 

Liquid chromatography high-resolution 
mass spectrometry (LC-HRMS) 

PAO-enriched sludge Turnover of EPS in granules [16] 
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Innovative applications driven by extracellular 
polymeric substance functionality and 
composition 
Turning biomass into value-added product and deriving 
new materials from waste biomass can be beneficial to the 
environment and transform the wastewater treatment 
plant into a resource recovery plant. Thus, the various 
potential applications of EPS recovered from sludge have 
been explored. The frequently studied applications for 
EPS are as flocculant or adsorbent [44–47]. Excitingly, 
studies on new EPS applications are constantly popping 
up. Xu et al. made sewage sludge extracts using deep 
eutectic solvents followed by glycerol triglycidyl ether 
processing and applied it as wood adhesive [48]. Having a 
wet shear strength of 0.93 MPa, the resulting adhesive 
reached to the Chinese national standard. This approach 
has a lower environmental impact and higher economic 
efficiency compared to incineration and anerobic diges-
tion of sewage sludge. Go et al. investigated the corrosion 
inhibition potential of EPS from waste-activated sludge. 
EPS could adsorb on the metal surface, forming a film 
that acted as a protective barrier against corrosion on both 
anode and cathode sites of metal surfaces [49]. Due to the 
rapid development of aerobic sludge granulation bio-
technology, significant amount of research has been or-
iented on the EPS extracted from aerobic granular sludge. 
Inspired by the hydrogel property of the aerobic granule 
itself, EPS ionic hydrogel was made by letting the 
structural EPS react with divalent ions. The mechanical 
properties of this hydrogel were comparable to ι-carra-
geenan [50], suggesting a potential application of EPS as 
hydrogel carriers. EPS-based flame retardant has been 
developing since 2020. It improved the fire performance 
of natural fiber such as flax and plastics such as polylactic 
acid and polypropylene by enhancing the char formation  
[51]. In addition, a special focus was put on the enrich-
ment and application of the EPS containing negatively 
charged groups (e.g. nonulosonic acids and sulfated gly-
coconjugates) [52]. With increased charge density, the 
enriched fractions can strongly bind positively charged 
proteins such as histones involved in sepsis and fibroblast 
growth factor 2, demonstrating the possibilities for EPS 
potential application in the medical field (e.g. raw mate-
rial for sepsis treatment drugs) and chemical field (e.g. 
column material for proteins purification). The recovery 
of EPS from sludge means that a fraction of the influent 
COD leaves the wastewater treatment process as biopo-
lymers. If a significant amount of EPS (several tons per 
day) can be recovered, this could generate substantial 
economic revenues for the wastewater treatment plant, 
changing the economics of wastewater and sludge treat-
ment by providing a high-value biobased raw material 
while reducing secondary sludge treatment requirements  
[53]. In order to push the development of EPS application 

forward, it is significantly important to connect the EPS 
property with its application. 

Conclusion and future directions 
EPS characterization requires expertise from many dif-
ferent research fields because EPS are not a single mo-
lecular entity. Unlike other waste biomasses (e.g. 
lignocellulosic), EPS are produced by multiple organisms. 
Resolving EPS structures, therefore, necessitates in-
tegrating biopolymers chemistry, glycomics, proteomics, 
genome-resolved metagenomics and transcriptomics, mi-
croscopy, culturomics, and biophysics. To address the 
EPS identity crisis, our research has moved closer to the 
state-of-the art in such areas, as outlined in this review 
paper. It is important that this continues, as progress in 
relevant disciplines continues to enrich EPS character-
ization, enabling the resolution of the structure and 
identities of more and more EPS. This is necessary to 
demystify the EPS, which will accelerate the uptake of 
EPS as a recoverable resource, inform the development of 
new EPS biomaterials, and improve bioprocess controls. 
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