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Abstract
When new wells are planned, typically the same trajectory is used for assessing the effectiveness of
conventional wells and wells with smart completions. This study demonstrates that the economically
optimized trajectory for smart and conventional wells can be very different. Two new well trajectory
optimization algorithms were developed using Stochastic Pattern Search (SPS) principles. In both
algorithms, random perturbations are made starting from an initial well trajectory, which are sent to a
reservoir simulator. Thereafter the perturbation with the highest Net Present Value (NPV) is selected. New
perturbations of the selected well trajectory are made and simulated to, again, select the highest NPV. This
process is repeated until a certain stopping criterion is met. The two methods differ in the selection of the
perturbations used to initiate the new iteration and have a slightly different computational performance.
To demonstrate the difference between the optimal well trajectory of a well with a conventional and a
smart completion, both the SPS1 and SPS2 method were evaluated using a realistic, but slightly simplified
reservoir model. Both methods were able to optimize the trajectory for both conventional and smart
completions. The SPS1 method quickly converged to a local optimum, whilst the SPS2 method was able
to determine a trajectory with a significantly higher NPV for both the conventional and smart wells.
Moreover, the optimal well trajectory with the smart completion, as found by the SPS2 algorithm, had an
NPV that was 40% higher than the smart well with the trajectory which was optimal for the conventional
completion. Following the above, it can be concluded that when smart completions are assessed, well
trajectory (re)optimization can have a very significant value impact and may be crucial in evaluating the full
potential of the completion. Furthermore, it was shown that, for the investigated case, the SPS2 procedure is
a good method for well trajectory optimization in a three-dimensional reservoir and, although more testing
is needed, it is believed that it has potential to work with any type of completion.

Introduction
Smart wells, sometimes referred to as intelligent wells, have become an increasingly common well
completion option to maximize the economic value of a reservoir. In general, smart well completions have
some form of downhole inflow control. There are three main types of inflow control completions: passive
Inflow Control Devices (ICDs), active Inflow Control Valves (ICVs) and Autonomous Inflow Control
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Devices (AICDs). An ICD is a preset flow restriction that creates a certain pressure drop to control the flow
from the reservoir into the well. By equalizing the inflow along the well, ICDs are mainly used to overcome
sweep efficiency issues caused by differences in reservoir permeability and by the heel-to-toe pressure drop
in horizontal wells. An ICV is a valve that can be controlled from the surface. It restricts the flow from the
reservoir into the well by partially or fully closing the valve. Initially designed to allow for commingled
production of multiple reservoirs, ICVs are now also being used to mitigate inflow or injection imbalance
and to optimize well and field management (Al-Khelaiwi 2013). An AICD is a device that can self-adjust
the closing of the valve depending on the viscosity of the fluid (mixture) that passes through the device. It
has the ability to delay the breakthrough of water or gas using an effect based on their viscosity being lower
than that of oil. Similar to the AICD is the Autonomous Inflow Control Valve (AICV). The advantage of
an AICV over an AICD is that it can shut off unwanted gas and water production completely. The AICV is
also reversible, which means that a closed valve can autonomously open itself once it detects oil again.

Over the years, several studies have assessed the benefits of smart completions. They have combined
geological and/or economic uncertainty with different smart well completion configurations and several
ICV control optimization strategies (Van Essen et al. 2010, Grebenkin 2013, Addiego-Guevara et al. 2008,
Schiozer and Silva 2009, Pinto et al. 2012). Although it has been recognized that the choice of an optimal
well trajectory is crucial to maximize the economic value of a reservoir, no studies have been found on well
trajectory optimization for smart wells. The objective of this paper is to demonstrate that the optimal well
trajectory for a well with a smart completion can be different compared to the optimal trajectory of a well
with a conventional completion.

Literature review
A wide variety of optimization methods (with wildly varying names and acronyms) have been used for
model-based hydrocarbon recovery optimization. These can be classified into two main groups: gradient-
based and gradient-free methods. Both can further be divided into deterministic and stochastic techniques.
Moreover, a distinction can be made between methods that aim at optimizing well controls (production
rates, well pressures or ICV settings) for a given well configuration, and those that aim at optimizing the
configuration itself (i.e. the well locations and/or trajectories).

The main advantage of gradient-based over gradient-free approaches is their computational efficiency,
especially for deterministic optimization problems. Gradient-based methods do, however, have some
shortcomings. Most model-based hydrocarbon recovery optimization problems are non-convex. As a result,
they generally contain multiple optima in which the local search of the gradient approach can get trapped.
Furthermore, the optimization surface can be very rough, which can result in discontinuous gradients
(Echeverrıa Ciaurri et al. 2011a).

Optimization of well controls in ‘smart wells’ for a given configuration can be done with a short-term,
operational focus, see, e.g., Gai (2001) and Naus et al. (2006), or by considering the full operational life-
cycle (often referred to as well control optimization), see, e.g., Brouwer and Jansen (2004), Sarma et al.
(2005), Van Essen et al. (2010), and Fonseca et al. (2015). All these life cycle optimization methods are
gradient-based and use the adjoint-method to compute the gradient which is computationally very efficient;
see Jansen (2011) for an overview. However, unlike gradient-free or approximate gradient methods, which
treat the reservoir simulator as a black box, the adjoint method has the disadvantage that it requires access
and detailed knowledge of the simulation source code to be implemented.

Stochastic gradient-based methods (i.e., approximate gradient methods) for life-cycle optimization are,
e.g., the Simplex gradient (Do and Reynolds 2013), and the Ensemble Based Optimization (EnOpt) method
(Chen 2008, Chen and Oliver 2010) with varieties such as the Stochastic Simplex Approximate Gradient
(StoSAG) method (Fonseca et al. 2017). Another alternative to the use of the adjoint method is through
streamline-based optimization; see, e.g., Alhuthali et al. (2009).
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Many well location and trajectory optimization studies, including the earliest ones, used Genetic
Algorithms (GAs – a stochastic gradient-free method); see, e.g., Güyagüler et al. (2002), Yeten et al. (2003),
Güyagüler and Horne (2004), Emerick et al. (2009), and Lee et al. (2009). Other stochastic approaches for
well location optimization that have been reported in the literature include the Simultaneous Perturbation
Stochastic Approximation (SPSA) and Simulated Annealing (SA) methods (Bangerth et al. 2006), the
Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) (Bouzarkouna et al. 2011), Particle Swarm
Optimization (PSO) (Owunalu and Durlofsky, 2010), and Improved Harmony Search (IHS) (Afshari et al.
2011).

Deterministic gradient-based approaches that have been used for well location and trajectory optimization
are the Finite Difference Gradient (FDG) method (Bangerth et al. 2006) and the, computationally much
more efficient, adjoint-based method (Zandvliet et al. 2008, Sarma and Chen 2008, Vlemmix et al. 2009,
Zhang et al. 2010, Loomba 2015).

Several truly gradient-free stochastic methods have also been applied, primarily for well location
optimization. These include the Generalized Pattern Search (GPS), Mesh Adaptive Direct Search (MADS)
and Hooke-Jeeves Direct Search (HJDS) methods and their varieties; see Echeverrıa Ciaurri et al.
(2011a, 2011b). Moreover, some optimization methods combine gradient and gradient-free techniques with
deterministic and stochastic features; see, e.g., the Simultaneous Perturbation and Multivariate Interpolation
(SPMI) method (Gao et al. 2014).

Recently, several papers have been published addressing the combined optimization of well locations and
well rates or pressures, using a variety of methods, see, e.g., Isebor et al. (2014), Forouzanfar and Reynolds
(2014), Forouzanfar et al. (2016), and Humphries and Haynes (2015). Other studies focus on smart wells
from a more operational perspective addressing different optimization strategies (Sampaio et al. 2012) or
model-free closed-loop methods (Jansen et al. 2002, Dilib et al. 2015), or elaborate on the choice between
ICDs, ICVs or AICDs (Al-Khelaiwi et al. 2010).

Trajectory Description and Optimization Strategy
Many well trajectory optimization methods only vary the heel and toe location of the well, resulting in a
straight well path; see, e.g., Emerick et al. (2009). The main advantage of this method is that it results in a
relatively small dimensional optimization problem, involving six dimensions [heel (x1; y1; z1) and toe (x2;
y2; z2)]. The disadvantage of the method is that the well does not have the freedom to change its straight
shape and therefore cannot follow the contours of a specific layer. This can result in a too simplistic and
suboptimal well trajectory. Fig. 1 shows a two-dimensional (2D) example of a well trajectory were only
the heel and toe locations are varied.

A single-well trajectory optimization method for 3D reservoirs developed by Vlemmix et al. (2009)
allows the well to move more freely through the reservoir by dividing the well into several subsections.
Fig. 2 shows an example of this. The strategy makes use of the adjoint-based method and was shown to
be successful for well trajectory optimization in a thin oil rim example. Since the reservoir simulator used
in the present research had no built-in adjoint functionality, nor was there access to the source code, this
method could not be used. As a result, a new single-well trajectory optimizer in 3D had to be developed.
Furthermore, the adjoint-based method has the downside that it can easily get stuck in a local optimum. The
newly developed method also sought to overcome this issue.
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Figure 1—A 2D, x-z, view of a well path with only heel and toe location.

The description (parametrization) of the well trajectory is critical to the optimization scheme. In this
research, just as in Vlemmix et al. (2009), the well is divided into N subsections. Every well section is
described by its length (L), inclination (θ) and azimuth (φ). To determine where the well starts, the x, y and
z location of first node of the first well section are defined as Bx, By and Bz. This results in the number of
dimensions of the optimization problem being equal to 3(N + 1). When the well is, for example, divided
into 10 sections (i.e., N = 10) this results in an optimization problem with 33 dimensions. Fig. 2 and Fig. 3
show a 2D and 3D example of a well trajectory respectively. The reason that the well sections are described
in spherical coordinates instead of Cartesian coordinates is discussed in Section 3.2.1.

Figure 2—A 2D, x-z, view of an example well trajectory divided in N sections.

A commercial reservoir simulator (Petex 2015) was used in this research. The simulator was used as a
black box. There were a maximum of 10 concurrent simulation runs possible on the available machine. In
other words there were only 10 evaluation of the objective function possible per iteration. Gradient-free
methods like GAs, PSOs and IHS, which generally require a population size that is equal to or several times
greater than the number of dimensions of the problem, were for this reason not evaluated. If, for example, a
population size that is equal to the number of dimensions would be chosen, the well could only be divided
into a maximum of two sections, which would severely restrict the trajectory freedom of the well.

Figure 3—A 3D view of the first well section of an example well trajectory.
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The EnOpt method, as developed by Chen (2008), was the first approximate gradient method that was
evaluated in our study. Although SPSA has shown to achieve good results in well placement optimization
for simple 2D reservoirs (Bangerth et al. 2006), the EnOpt method was considered more appropriate because
of the following. It is important in approximate gradient techniques that the sample size (i.e. the number of
evaluations of the objective function per iteration) is big enough to achieve convergence of the algorithm
and good quality solutions. The general consensus is that a large sample size relative to the dimensions of
the problem produces higher quality gradients and better results. Because SPSA requires twice as many
objective function evaluations for the same number of samples per iteration as EnOpt, the EnOpt method
was evaluated instead of SPSA. It must be noted that the maximum number of concurrent runs that are
possible on a machine do not limit the number of samples per iteration, but only increases the computation
time. A trade-off has been made between optimization speed and quality by setting the amount of samples
that can be used per iteration equal to the maximum number of possible concurrent runs.

The EnOpt method was tested on simple box models. Details about the implementation of the EnOpt
method can be found in Appendix D of Maas (2016). To achieve a proper gradient out of the 10 ensemble
members, relatively small perturbations and a small step size were needed. Although the algorithm was able
to find an optimum, random testing of well trajectories and the analysis of the objective functions of the
ensemble members showed that there were higher optima in the same space. By analyzing the objective
function data of the ensemble members, it was found that the stochastic element of the EnOpt method could
potentially be used without approximating a gradient. For this reason, a Stochastic Pattern Search (SPS)
method (Hart 2001) was evaluated.

Stochastic Pattern Search
The SPS optimization method is an example of a Pattern Search method, which is a subset of Direct Search
methods. In Hooke and Jeeves (1961), Direct Search is described as: "the sequential examination of trial
solutions involving comparison of each trial solution with the "best" obtained up to that time together
with a strategy for determining (as a function of earlier results) what the next trial solution will be". How
to determine the parameters to obtain these trial solutions and subsequently move forward from these
solutions determines the type of Direct Search method. Generally speaking "Pattern Search methods are
characterized by a series of exploratory moves that consider the behavior of the objective function at
a pattern of points" (Hart 2001, Torczon 1997). In the SPS method the exploratory moves are selected
randomly.

Implementation
To create a stochastic pattern of exploratory moves, the well trajectories need to be perturbed randomly.
This is done by defining the trajectory as a control vector comprised of the following variables:

(1)

The control vector is sent to a reservoir simulator, which transforms it into a well trajectory. The starting
point from where the perturbations are created during every iteration is the control vector uℓ. During the
first iteration uℓ is the initial well trajectory. Perturbations of uℓ are created as

(2)

where ui is the perturbation of uℓ and is defined as an ensemble member. The counter of the ensemble
members is denoted with i. The counter of the iteration is ℓ. C is a diagonal matrix in which the degree of
perturbation per control variable is specified. The matrix is specified by the user and can differ per reservoir.
If, for example, the reservoir is relatively thick, larger values in the entries of C that correspond to Bz and
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θ can be taken than when dealing with a thin reservoir. The C matrix is multiplied by a vector z whose
variables are drawn from an univariate Gaussian distribution. Although the use of distributions other than
Gaussian could be viable, they were not investigated in this paper. The algorithm can be set up such that
the runs are reproducible by using the same random seed. In this research a seed is used that is based on the
value returned by the system clock of the machine to ensure a different value for each random sample.

Two different algorithms were developed: Stochastic Pattern Search 1 and 2 (SPS1 and SPS2). The SPS1
method evaluates the objective functions for both uℓ and ui. The control vector with the highest objective
function becomes uℓ+1. The SPS2 method only evaluates the values for ui which implies that the new iterate
uℓ+1 cannot be equal to the previous iterate uℓ.

Both algorithms were subjected to the same test function, namely the Rastrigrin function. This function,
as described in Molga and Smutnicki (2005), has a global minimum and numerous local minima and is
commonly used to test the performance of minimization procedures. Because the objective function used in
this paper is the net present value (NPV), the Rastrigin function was rewritten to a maximization function,
as expressed in Equation 16. In Fig. 4 the results of the SPS1 and SPS2 algorithm are displayed when
subjected to Equation 16. In both methods, the same C matrix, where both non-zero values where 0.2, and
the same number of ensemble members and iterations were used. The blue marker [-1, -0.5] in the plots
shows the starting point ( ) of the algorithms. The red marker, corresponding to the point [0, 0], represents
the location of the global maximum. As can be seen in the left plot, the SPS1 methods was able find the
location of a local maximum, but the algorithm got stuck in the that point. The advantage of the method is
that it has a high probability of convergence compared to SPS2.

The right plot shows how the SPS2 algorithm performed on the test function. Although it is theoretically
impossible for the algorithm to converge, the method was able to (approximately) locate both the global
maximum and several local maxima. To ensure that the SPS2 method does not get stuck in local optima, the
number of ensemble members should be limited. When a small number of ensemble members is used, the
sampling is done less dense, which increases the probability of entering a neighboring domain of attraction.
The downside is that in cases where the evaluation of the objective function takes a considerable amount
of time, it can be argued that using more evaluations of the objective function increases the chance to find
an optimum. When the SPS2 method is used for an optimization problem, a trade-off between these two
features is needed by tuning the number of ensemble members used. In this study this was done by trial-
and error. In addition to this, tuning of matrix C is needed.

Figure 4—The figures shows two contour plots of the Rastrigin function. The left plot shows how the SPS1 method
works on the Rastrigin function as seen in Equation 16. The right image shows how SPS2 reacts to the same function.

The blue markers in the images show the starting point of the algorithm on [-1, -0.5]. The red markers show the
location of the global optimum on [0, 0]. The black dots in both plots show the location of uℓ during all iterations.
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Control Vector Constraints
To evaluate the objective function corresponding to the control vector a complete reservoir simulation is
carried out. Every well that is sent to the reservoir simulator has to meet two conditions. The first is that
the well has to stay within the dogleg severity (DLS) limit. The second is that the well has to lie within the
reservoir. If a well that is constructed by the algorithm does not honor these two constraints, the algorithm
discards the well and generates a new random well until it meets the two conditions. Both these evaluations
require much less cpu time than the full reservoir simulation.

Dogleg Severity
To ensure that every modelled well trajectory is drillable and can be completed at least below the kick-off
point, it has to stay within the DLS limit (Vlemmix et al, 2009). The dogleg angle (β) describes the overall
angle change of the curve between two consecutive directional survey points. Depending on the completion
type of the well, a maximum DLS [°/30m] can be chosen as an input variable for the optimization algorithm.

The control variables, except for the first three which describe the location of the first node, are described
in spherical coordinates instead of Cartesian ones. This is done to increase the likelihood that the algorithm
creates wells that stay within the DLS limit whilst exploring a large section of the reservoir. If Cartesian
coordinates of the nodes are perturbed, they change independently from each other, increasing the chance
of hitting the DLS limit if the degree of perturbation is set too large. To reduce this DLS limit risk the degree
of perturbation can be limited, but that would restrict the freedom of movement of the well, potentially
impacting the selection of the optimal trajectory. However, when spherical coordinates are used, movement
of a well section is defined relative to the well section before it. The same reference point for the spherical
coordinate system is used for every well section. A graphical representation of this phenomenon is displayed
in Fig. 5. Having more freedom to move per iteration, without reaching the DLS limit, gives the method
a higher probability of entering a neighboring domain of attraction and or achieving an optimum in fewer
iterations. It must be noted that this issue can also be solved by smoothing the well trajectory as a post-
processing step staying within DLS constraints (Vlemmix et al. 2009).

Figure 5—An x-y view of two well trajectories, one using Cartesian coordinates (top) and one using spherical
coordinates (bottom). Both were constructed using the same initial trajectory and outcome of Czi. It can

be seen that the top trajectory probably does not stay within the DLS limit, but the bottom one does.

Well Within Reservoir
The reason that the well has to lie within the reservoir is because the optimization algorithm is shown
to perform significantly better than without the constraint. This was important due to the limited number
of concurrent runs that were possible on the machine that was used in this study. When all the ensemble
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members lie fully or partly outside of the reservoir it takes the algorithm longer to locate an optimum. The
reason for this is that when a section of the well is not connected to the grid of the reservoir, it does not
produce. This could result in a suboptimal trajectory. It is noted that an optimal well trajectory for a given
reservoir does not necessarily lies completely within the reservoir. The constraint can be easily switched
off to test the performance per individual case.

Evaluating whether or not a well lies within the reservoir can be done by either sending the well trajectory
data to the simulator and checking the well intersection data, or by evaluating if the well is within the
reservoir before sending it to the simulator. Since the simulator used in this paper had a relatively large
latency between input and export of data, a pre-processing method was used to increase the algorithm’s
efficiency. The pre-processing method uses the corner point data of the top and bottom layer of the reservoir
to determine if a node that describes the well trajectory lies within the reservoir. The method works in two
consecutive steps. The first step is evaluating if the node lies in-between the x-y planes of the top and bottom
layers. The second step is to evaluate if the node lies between the z planes of the top and bottom layer. A
detailed explanation of this procedure can be found in Maas (2016).

Objective Function
The objective of the optimization discussed in this paper is to find a well trajectory that yields the highest
NPV, and therefore the NPV will be used as the objective function. The NPV used in this study is defined as:

(3)

where the vector u is the control vector, representing the well trajectory; qo, qw and qg are the production
rates for oil, water [bbl/d], and gas [MMscf/d] respectively; ro, rw and rg are, if positive, the wellhead prices,
if negative, the handling costs of oil [USD/bbl], water [USD/bbl], and gas [USD/MMscf] respectively; Δtk

is the difference between consecutive time steps in days; d is the discount rate; K is the number of time
steps; tk is the cumulative time in days corresponding to time step k; τt is the reference time period used for
discounting; in this case 365.25 days.

There are several methods that can be used to calculate the NPV. In the method described above, the
NPV is discounted per time step as used in the reservoir simulator. Although not used in this paper, standard
practice in the NPV calculation of most hydrocarbon recovery projects is to calculate the discounting
element using a time step of one year. Another commonly used method for NPV calculation in optimization
procedures is the calculation of a continuous NPV throughout the time step.

To ensure a proper comparison between objective functions of different simulations so that only u has
influence on the NPV, two factors have to be taken into account. Firstly, a different time step size can alter
the outcome of the simulation. Secondly if d > 0, the time steps have an influence on the discounting element
of the NPV calculation. If the time steps differ between simulations, it could result in NPV changes due to
the discounting element instead of u. There are two ways to counteract these problems, the first is to fix
the time step for each simulation, e.g. to 10 days. The second option is to interpolate the production data
into fixed steps or to discount using one year time steps. Although this does not solve the first issue, it can
mitigate a large part of the error caused by the discounting element.

In this study the reservoir simulator has been given a maximum time step of 20 days and the production
data is interpolated into fixed intervals.

Smart Completion
In this section the completion that was used as the smart completion is discussed. The choice has been made
to use an autonomous valve instead of a valve that has to be operated (e.g. an ICV). The reason for this
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was to simplify the optimization method so no active open/close strategy was needed in the method. In
this research the relatively new inflow control valve, AICV (InflowControl 2016), was used as the smart
completion. The valve combines the main advantages of an AICD and ICV (Aakre et al. 2013, 2014). Like
an AICD the valve is self-regulating and does not require any connection to the surface. The advantage of
an AICV over an AICD is that it can shut off unwanted gas and water production completely. The AICV is
also reversible, which means that a closed valve can autonomously open itself once it detects oil again.

The reservoir simulator that was used did not have the option to model AICVs directly, but did have the
ability to model ICVs. Using the AICV’s closing sequence as described in Aakre et al. (2014), the ICVs were
coded within the simulator in such a way that they mimicked the AICVs. For the smart well completion,
every well section comprised a tubing packer and an ICV. The configuration of the completion can be seen
in a schematic cross section of the well in Fig. 6. To further optimize the smart well completion, the closing
sequence of the ICVs, the location and amount of the ICV and packers need to be optimized as well. This
was out of the scope of this research.

Figure 6—A schematic overview of the smart well configuration, which consist of tubing, packers and ICVs. (Naus et al. 2006)

Case Studies
To assess the algorithms, both were tested on a sector model of a reservoir. In this section the model and
the results of both optimization methods are discussed. The name and the location of the reservoir are not
given for confidentially reasons.

Reservoir Model
The sector model used, was a three-dimensional model of a plunging anticline dipping in both east and west
directions. A 3D view of the model can be seen in Fig. 7.

Figure 7—A 3D view of the reservoir model. The z scale in the plot is
scaled, so the dip and the layering of the reservoir is more clearly visible.

The model, which is similar to the one used by Vlemmix et al. (2009), consist of in total 10800 (x:80, y:15,
z:9) grid blocks of which 6621 are active. The dimensions of the reservoir are 5.50 km in the x direction,
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1.34 km in the y direction and 192 m in the z direction. The latter is the vertical distance between the highest
and lowest part of the reservoir. The average thickness of the reservoir is approximately 30 m. As can be
seen in Fig. 7, a gas cap overlays the oil layer, which, in turn, lies above an aquifer. In the figure oil is
depicted in green, gas in red and water in blue. To model the aquifer, a pore volume multiplier of 2000 was
applied to the grid blocks below the oil/water contact (OWC). The OWC is located at a depth of 3348 m and
the gas/oil contact (GOC) at 3415 m. The reservoir is heterogeneous with permeabilities varying between
6.5 mD and 2627 mD. In Table I it can be seen that the horizontal permeabilities (kx, ky) are the same and the
vertical permeability (kv) is one tenth of the horizontal ones. Fig. 8 depicts a cross section of the reservoir
where the kx of the different layers are shown. Furthermore, a transmissibility multiplier of 0.2 was applied
to a certain area of the reservoir so that part of the reservoir is expected to show a different development of
water or gas production. In this setting, a smart completion should have a bigger impact on the NPV. Fig.
9 shows the part of the reservoir where the transmissibility multiplier is used. The multiplier is applied to
all layers within the area marked in the figure.

Table I—Rock Properties

Table II—Fluid Properties at Standard Conditions

In the reservoir a black oil model is used with oil of 35 degrees API and an initial gas/oil ratio (GOR)
of 500 scf/STB. More details on the fluid properties can be found in Table II. The following relative
permeabilities (kr) were used; krw = 0.2, kow = 0.2, krog = 0.2, krg = 0.05. All had end points of 1 and Corey
exponents of 2.

Figure 8—An x-z cross section of the reservoir, showing the permeability of the different layers. In the image, the zone with
the transmissibility multiplier is not visible. The same stretched z scale is applied as in Fig. 7 to emphasize the layering.
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Figure 9—An x-y view of the reservoir model, with the transmissibility multiplier zone indicated.

Results

Conventional Completion
As discussed in the Introduction, first the optimal well trajectory for the conventional well has to be found,
which can then be compared to the optimal trajectory of the smart well. To asses the optimum for the
conventional completion first an initial well trajectory was chosen manually. The well was set as the initial
control vector uℓ and thus formed the starting point of the optimization procedure. In Fig. 10 the location
of the initial well, which is depicted in red, can be seen. For simplicity reasons an open-hole completion
was used for the conventional well. Both the SPS1 and SPS2 method were evaluated using the economic
parameters listed in Table III.

Table III—Economic Parameters

In Table IV the input parameters of the SPS algorithm are shown. In this case a maximum number of
iterations of 500 is taken. For the SPS1 method it is likely that the objective function would not change after
these many iterations because it has probably converged before the 500th iteration. When using the SPS2
method a trade off has to be made between computation time and the likelihood that the algorithm can find
a higher optimum when increasing the number of iterations. The well was divided into 10 sections to give
the well the freedom to move trough the reservoir and to demonstrate how the optimization method would
perform when dealing with a relatively high-dimensional optimization problem.

The reservoir simulator was set so that the simulation would terminate if it reached 3650 days or when
the well would stop producing. Furthermore, the well was tubing head pressure constrained, without any
constraints on gas, oil and water production.
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Table IV—SPS Parameters

In Fig. 11 the results of the objective function (NPV) are shown for the SPS1 and SPS2 algorithms. It
can be seen that both methods were able to find an optimal well trajectory that yielded a significantly higher
NPV than the initial well. Furthermore it can be seen that the SPS1 method has probably converged to
a local optimum as the objective function did not change after about 80 iterations. The SPS2 method, as
expected, did not converge, but was able to find a trajectory with a higher NPV. This confirmed what has
been seen from the results of the Rastrigin function in Section 3.4. In addition to the initial well, the optimal
well trajectory found by SPS1 and SPS2 can be seen in Fig. 10. The SPS2-optimized trajectory ended up,
as expected, far away from the OWC and close to the GOC. No penalty (handling cost) was set on the gas
production, and as a result all the gas from the gas cap that was produced increased the NPV because of the
gas lift it provided. The gas cap was not strong enough to generate massive gas breakthrough.

Figure 10—An x-y view of the reservoir showing the initial trajectory (red) and the optimal well trajectories as found
by the SPS1 (magenta) and SPS2 (black) methods. All the wells in the figure have a conventional completion.
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Figure 11—The objective function (NPV) results of the SPS1 (red) and SPS2 (black) methods for the conventional completion.

The production results of the initial and optimal (SPS2) trajectories are shown in Fig. 12. The production
results from the initial well show that the well stopped producing before 3650 days were reached. This was
a result of the well being unable to lift the fluids to surface due to the high water cut. The well found by
SPS2 was able to produce for the full 3650 days and shows to have a lower water cut and higher oil and
gas production, which resulted in a significantly higher NPV.

Figure 12—Plots of the production results of the optimal well (SPS2) and the initial well, both with conventional completions.

Smart Completion
Once the optimal well trajectory for the conventional completion had been found, it could be compared
to that of the smart completion. This was done by setting the optimal conventional well trajectory found
by SPS2 as the initial trajectory (uℓ) for the smart well trajectory optimization procedure. Both the SPS1
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and the SPS2 method were evaluated. The algorithms, and the economic and SPS input parameters were
identical to those used in the trajectory optimization of the conventional well. The plot in Fig. 13 shows
that both SPS1 and SPS2 were able to find a well trajectory for the smart well completion that yields a
higher NPV than the optimal trajectory that was found for the conventional completion. It can also be seen
that SPS2, again, performs significantly better than SPS1. The NPV plot in Fig. 14 shows the comparison
between the conventional and smart completion both optimized with the use of SPS2. From this plot it can
be seen that the smart well completion does not yield a higher NPV if the trajectory is not optimized. The
highest NPV value of the conventional completion is higher than the starting point of the smart completion.

Figure 13—The objective function (NPV) results of the SPS1 (red) and SPS2 (black) method for the smart completion.

Figure 14—The objective function (NPV) results of the SPS2 (red) and SPS2 (black) method for the smart completion.
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The difference between the two trajectories can be seen in Fig. 15. As expected, the trajectory of the
smart well yields a higher NPV while it is closer to the OWC. The production results in Fig. 16 show that the
smart well produces less oil than the conventional well, but also significantly less water, which contributes
to a higher NPV. When the NPVs of the initial and optimized trajectory of the smart well are compared,
a difference of 40% is observed. This implies that when smart completions are assessed, well trajectory
optimization is crucial in evaluating the full potential of the completion. The plot in Fig. 14 also shows that
the smart well has an NPV that is 25% higher than the NPV of the conventional well.

Figure 15—An x-y view of the reservoir showing the optimal conventional well trajectory (magenta) and
the optimal smart well trajectory (black). Both trajectories were obtained using the SPS2 procedure.

Figure 16—Plots of the production results of the optimal well (SPS2) with a
conventional completion and the optimal well (SPS2) with smart completion.
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Discussion, Recommendations and Conclusions

Discussion and Recommendations

• The reservoir model used in the case study had a relatively coarse grid. For the robustness of the
algorithm, the modeling of the inflow of the well and coning effects, an overall finer grid or local
grid refinement around the well is recommended. More research is needed to evaluate the trade off
between computation time and the robustness of the method when refining the grid.

• No geological uncertainties (i.e. permeabilities, contacts etc.) were taken into account in the
optimization methods. To assess the benefits of the smart well in a more robust manner, it is
recommended to take these uncertainties into account. This can be done by including them into
the optimization method as was done by Yeten (2003) or by separately running the algorithm on
different reservoir realizations.

• In the NPV calculation no capital expenditures like completion costs and drilling cost were taken
into account. To properly asses the economic benefits of any trajectory and any type of completion
these have to be taken into account.

• To increase the algorithm’s performance and decrease computation time, a constraint that the
well trajectories had to lie fully within the reservoir was imposed. Because the optimal well
trajectory does not necessarily have to lie fully within the reservoir, further study is needed on the
performance of the algorithm without using this constraint when used on a machine where more
concurrent runs are possible.

• The matrix C that limits perturbations of the control variables was tuned on a trial-and-error basis.
Although the algorithm performed very well, further research on how to tune C is needed to
optimize the method.

• The vector z was comprised of variables that were drawn from a univariate Gaussian distribution.
Although it is not expected that the performance of the algorithm would significantly change if
another distribution is used, research is needed to confirm this.

• The optimization of the closing sequence, sizes and locations of the smart completions were not
evaluated in this research. Whether it is best to include these in the SPS method or optimize them
with the use of another method needs to be investigated.

Conclusions

• The SPS1 and SPS2 methods both performed well when used to optimize a single well trajectory in
a 3D reservoir. Although the SPS2 method, by design, does not converge, it performs significantly
better than the SPS1 algorithm. This is because it has a higher probability to get out of local optima.

• By using the SPS methods it was shown that the optimal trajectory of a well with a conventional
completion is not necessarily identical to the trajectory of the same well with a smart completion.
Thus, when assessing the benefits of a well with smart completions it is recommended to optimize
the well trajectory. Although no proof was given that the SPS2 method is the best method to do
this, this research shows that, for the example considered, the use of the method is very effective
even when only a small number of concurrent runs are possible.

• Because the SPS methods are not limited to the completion used in a well, they can be used for every
completion type which does not have an active downhole inflow control ability. It is highly probable
that every completion type has its own optimal well trajectory. The SPS methods provide an easy
and quick way to evaluate this. When a well trajectory with active downhole inflow control is
optimized, adding an additional optimization layer is recommended to optimize the control settings
of the downhole valves.



SPE-188368-MS 17

• Although the SPS methods were only tested on one type of reservoir simulator it is believed that
they are straightforward to implement in most commercial reservoir simulators.

• Because the SPS2 method has the feature that it has a high probability of evaluating different
domains of attraction, it might provide a good benchmarking method for a wide range of
optimization problems.

Nomenclature

List of Symbols
B = location of first node of well trajectory
C = perturbation matrix
d = discount rate
J = objective function [USD]
K = number of time steps
k = Permeability [mD]
K = iteration counter
L = well section length [m]
N = number of well sections
P = Pressure [Pa]
q = flow rate [oil/water: bbl/d][gas:MMscf/d]
r = price per unit volume [oil/water: USD/bbl][gas:USD/MMscf]
t = Time [d]

u = control variables vector
z = vector of random variables
β = dogleg angle [°]
θ = inclination
μ = viscosity
ρ = Density [kg/m3]
τ = reference period
φ = Azimuth [°]
Φ = porosity

Subscripts
g = gas
h = horizontal
k = time step counter
ℓ = iteration counter
o = oil
r = relative

w = water
v = vertical

Superscripts
T = transpose

Acronyms
AICD = Autonomous Inflow Control Device
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AICV = Autonomous Inflow Control Valve
DLS = Dogleg Severity
GOC = Gas Oil Contact
GOR = Gas Oil Ratio
ICD = Inflow Control Devices
ICV = Inflow Control Valves

NPV = Net Present Value
MM = Million

OWC = Oil Water Contact
SCF = Standard Cubic Feet
SPS = Stochastic Pattern Search
STB = Stock Tank Barrel
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