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Abstract

A digital twin (DT), originally defined as a virtual representation of a physical asset, system, or process, is a new concept in
health care. A DT in health care is not a single technology but a domain-adapted multimodal modeling approach incorporating
the acquisition, management, analysis, prediction, and interpretation of data, aiming to improve medical decision-making. However,
there are many challenges and barriers that must be overcome before a DT can be used in health care. In this viewpoint paper,
we build on the current literature, address these challenges, and describe a dynamic DT in health care for optimizing individual
patient health care journeys, specifically for women at risk for cardiovascular complications in the preconception and pregnancy
periods and across the life course. We describe how we can commit multiple domains to developing this DT. With our cross-domain
definition of the DT, we aim to define future goals, trade-offs, and methods that will guide the development of the dynamic DT
and implementation strategies in health care.

(J Med Internet Res 2022;24(9):e35675) doi: 10.2196/35675
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Background

Overview of the Concept
Interest has been growing worldwide in the virtual representation
of a physical asset, process, or system to model and simulate a
real-world event. This representation, called a digital twin (DT),
can represent the real-time performance or failure incidence of
a deterministic system (eg, a factory production line) [1]. Since
the introduction of the concept of a DT in 2003, DTs have been
developed and used in areas such as construction, power, and
oil and gas industries. In the aforementioned industries, the DT
served mainly as an umbrella term for managing data and
models of a closed system, and these models then guided actions
taken in the system. However, for health care, DT is a new
concept in need of a working definition. The DT in health care
is not a single technology but a domain-adapted multimodal
modeling approach incorporating methodologies for the
acquisition, management, analysis, prediction, and interpretation
of health-related data, aiming to improve medical
decision-making and patient lifestyle choices.

Health care providers strive to obtain and use all relevant
information on patients for personalized decision-making in
clinical practice, considering the available evidence, clinical
guidelines, and patient preferences. For example, wearable
technologies such as smartwatches have enabled individuals to
record their health data continuously, which can form a part of
personal health records [2]. They can be very useful for clinical
decision-making in practice, and they are currently in use for
detection or monitoring of some disorders like atrial fibrillation;
however, they are not yet completely in use in practice [3].
Unsolved challenges such as human information overload [4];
variable quality of routinely collected data from medical,
lifestyle, mental, societal, and environmental sources; and
limited interoperability of digital systems in health care are
barriers to use these scattered large data sets, also referred to as
Big Data. In addition, the current methodological approaches
in evidence-based medicine are not able to use all this
information for medical decision-making, as the population
generating these data is heterogeneous, and previously
discovered relationships between predictor and outcomes might
not always hold for subpopulations. To alleviate these
limitations, the underlying methods and workflow for data use
need to be adapted. Furthermore, currently available analytical
models in health care, such as decision aids using risk prediction
models (eg, the U-prevent software) [5,6], are often developed
based on limited data and the defined outcomes of interest of a
small number of health care professional. Combining
high-quality, scattered data sets for inference by applying a
comprehensive multimodal data management approach in health
care such as DT is deemed necessary to design applications that
allow for diagnosis, treatment, prediction, and prevention of
disease. Moreover, successfully implemented DT has the
potential to improve health care by optimizing individual health
outcomes from the earliest moment in the life course by offering
personalized medicine in primary, secondary, and tertiary health
care [7].

Since 2015, publication of papers describing the concept of
applying a DT to health care to solve health challenges (eg,
reducing adverse outcomes in certain patient populations or
understanding important factors such as dietary factors or
biomarkers) [8-13] has increased. However, literature
descriptions indicate open theoretical and practical challenges
that need to be addressed before we can work toward efficiently
implementing a DT in health care. Challenges are related to (1)
redefining a target population and matching data set to develop
a DT or (2) implementing a physical or data-driven approach
with limited data and follow-up to learn causal personal patterns.
In addition, we suggest a convergence of experts in the medical,
technical, scientific, and ethical domains, which is required to
design a DT that meets requirements from several theoretical
backgrounds. In our vision, DT development starts with the
identification and description of a medical problem such as the
prediction of cardiovascular complications in a patient who
experienced hypertension during periconception (Figure 1).
Solving such a medical problem involves striving for the best
health- and value-based outcomes and addressing ethical value
goals such as health equality (Figure 2). With these outcomes
and value goals in place, a technological system incorporating
best methodological practices such as reliability and
reproducibility can be developed. After the initial system is
developed, many feedback loops between domains occur in
order to optimize requirements across domains. This digital
health system is then studied to develop best practices using the
scientific domain and keeping the healthy patient life course
journey in mind. In an open system such as the life course, as
opposed to a closed physical system, causal drivers for change
in health conditions might not be known; therefore, the DT uses
algorithms that learn drivers of dynamic data such as user
experiences, medical data fields, medical scans, etc. To serve
that purpose, the DT acquires time-series data and updates
predictions in an online and data-driven manner. Additional
challenges are defining medical applications of a DT in health
care and considering ethical values.

In this viewpoint paper, we address the aforementioned
challenges and put forward a vision for a dynamic DT in health
care for optimizing individual patient health journeys
characterized by healthy outcomes and positive experiences.
Our cross-domain, which has the ethical, medical, technical,
and scientific definition of the DT, will define future goals,
trade-offs, and methods to guide the implementation strategies
and iterative development of a dynamic DT in health care. In
our paper, we propose a dynamic DT for health care that applies
to the management of dynamic patient data and models. These
models of health and disease are dynamic because they are
developed, trained, tested, and updated to meet the dynamic
value goals stemming from ethical, medical, and technological
domains. Additionally, the effect of these interventions (such
as personal lifestyle advice) guided by models is scientifically
evaluated and updated to continually strive for better health
outcomes (Figure 2).
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Figure 1. Digital twin in clinical practice is modeled for hypertension starting from the periconception period until later stages of life. There are four
discrete steps in which the digital twin can bring additional value by using patient data to recommend interventions optimized for the relevant values
and outcomes of interest. CVD: cardiovascular disease; DT: digital twin.

Figure 2. Digital systems and the patient health journey are improved by a continuous feedback loop across domains interacting to develop a digital
twin.

Potential Future Application of a DT in Health Care
Currently, the translation from data to evidence relating to
disease ontology, causation, and effectiveness of treatments
into clinical practice is a slow and partially data-driven process
[14], and even for some of the recommendations in the clinical

practice guidelines, there is no robust evidence available [15].
The dynamic DT can support a health journey by providing
easy access to comprehensive patient data for the patient and
health care providers. The DT can integrate data from health
care sources like hospitals, general practitioners, and laboratories
and from home health monitoring devices such as wearables.
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Real-time integrated access to data will allow analysis on
dynamically acquired data. This feature enables health care
professionals to get a relevant view of factors influencing disease
and health conditions of a patient, which can guide actions to
optimize health care pathways. Different prediction algorithms
can be used to answer medical questions, and real-world
personalized predictions can be updated to meet the dynamic
circumstances of individuals and their medical history. Testing
these prediction models in the real world prospectively can help
to define and research hypotheses about potential causal
relationships between prediction algorithms and outcomes [16].
Formal testing and evaluating medical decisions in a DT can
result in changing the focus of scientific studies to incorporate
testing the implementation of a DT-powered intervention such
as patient-tailored lifestyle advice in the absence of a data-driven
decision framework. Therefore, this DT approach can expedite
the process of knowledge translation into medical
decision-making in clinical practice while striving for iterative
improvement of elements in different domains of the DT.

Example of a Patient Journey From the Earliest
Moment of the Life Course
The periconceptional period refers to the 6 months around
conception; it is the earliest and one of the most critical periods
in life, with long-lasting impact on health and disease later in
life and in future generations [17]. The patient journey and data
generated during this period can help to illustrate our vision of
the dynamic DT and how it would intervene in medical practice.
To develop a DT from the earliest moment of the life course,
the first set of data would include static (demographics) and
dynamic (conditions such as subfertility, hypertension, lifestyle,
and vital information from wearables) covariates relating to the
parents. This DT supports dynamic medical decision-making
(Figure 1). The first example is based on subfertility, for which
enrollment in the evidence-based lifestyle coaching program is
recommended. This eHealth coaching is not static but dynamic
as it gives advice based on the variable input of the individual.
For example, if healthy food intake is sufficient, parents will
be empowered to maintain this behavior. A second example of
how the DT can be used is aiding physicians to prevent
short-term adverse outcomes of preeclampsia in pregnant
women. The mobile phone app, a smartwatch, and lab
measurements combined can yield predictions of risk before
and after intervention, empowering medical decision-making
and resulting in a better outcome for mother and baby. A third
example to highlight the long-term benefits of a DT is
hypertension. By mechanisms not fully understood, high blood
pressure and preeclampsia during pregnancy yield increased
cardiovascular risk for the unborn child and mother in later life
years [18-20]. This data-driven association can make more
comprehensive follow-up of these individuals valuable as this
information can be used to monitor and potentially prevent
worse outcomes such as cardiovascular disease. In our example,
the DT has enacted medical decision rules driven by pattern
recognition in patient data. In general terms, the rules obtained
from pattern recognition systems are chosen so that they
optimize for healthier outcomes.

Why Now: Innovations That Power the DT
In 2016, a pivotal paper was published that described how data
should be managed according to the following 4 principles:
findable, accessible, interoperable, and reusable (FAIR) [21].
These principles promote data accessibility to power innovation
and are the basis for the following 4 technical innovations that
accelerate the progression of DT in health care. The first
innovation is data storage, where we can securely store big data
in the cloud by designing access rights for each service and
algorithm [22]. Data collection innovations such as wearables,
which can act as continuous vital sign monitoring systems, feed
the new data to the storage keeping the data up to date and
relevant. Connectivity innovations such as the Internet of Things
then trigger the training and prediction algorithms with the
updated information. Finally, computing innovations such as
more powerful data processors like tensor processing units can
fit bigger and more flexible models with higher performance
to yield better representations of disease. These innovations
have changed the way we form hypotheses about the physical
reality. Increased data and processing power formats require
and allow for new dynamic pattern recognition methods that
can be described as computer pattern recognition or artificial
intelligence [23].

These innovations power the DTs and allow for deep
personalized predictions that leverage patient-specific dynamics
such a specific disease pathway relating to biomarker panels
based on genomics, metabolomics, or proteomics, which have
previously been prioritized or identified. These predictions need
to be translated in a concise way to an individual, patient or
health care provider. For example, a score, dashboard, or written
advice can guide individuals to healthy behavior. In our
example, continuously monitored medical and lifestyle data of
a couple contemplating pregnancy supplies the DT with data
that can be used to give personalized integrated medical advice
and brings personalized medicine closer [24].

Themes in Pattern Recognition
There are multiple paradigms for the underlying data analytic
platform of a DT relating to pattern recognition approaches. We
can use a data-driven or physics-based approach. Physics-based
models are based on the understanding of the phenomenon and
formulation in a mathematical model, with underlying
assumptions that potentially oversimplify the phenomenon [25].
Data-driven (associative) models avoid these assumptions, but
they lack interpretability and are sensitive to bias in the model
development data. We should choose our (inductive) bias in a
way that allows us to optimize interpretability and predictive
performance by leveraging domain medical expert–level
knowledge. When the physical drivers of disease are not known,
these associative data-driven methods can generally be used to
diagnose patients, but they cannot identify causation. An
alternative approach within the associative methodology is to
enrich models with counterfactuals, which leverage
counterfactual information to causally weight predictions [26].

In the DT for health care, pattern recognition algorithms are
used for predicting continuous outcomes such as blood pressure,
classification of diseases, and risk assessment. Medical data
generally comprise different types of data and algorithms. For
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example, they include longitudinal data with missing predictors
and variables, which can be used to enrich the model. Research
on how to associatively predict with longitudinal data,
population-level data, and data with missing values is ongoing.
A statistical modeling approach, which can relate a limited
number of predictors to a longitudinal outcome with missing
values, uses linear mixed models [27]. Deep-learning methods
[28,29], where we flexibly fit either a neural network
architecture or many random kernels, are used when a large
number of predictors is present. This modeling approach seems
to perform well in this domain, but least absolute shrinkage and
selection operator regression-based techniques may also yield
good performance on this type of data [30].

Medical patient data can comprise higher dimensional data,
such as echography, and multiple sensor data, such as
electrocardiograms, which are continuously collected in a setting
such as the coronary care unit. Imaging data is typically only
acquired once and not collected continuously. Although each
modality may be information rich, the number of measurements
per individual may be limited, causing models to overfit on that
individual. To prevent overfitting, we use feature selection and
methods that can find a lower representation of these data, such
as an auto encoder. Feature selection and engineering can
prevent overfitting and summarize high-dimensional data in a
feature vector, which can be used to describe disease
progression.

As models are implemented in clinical practice, other challenges,
such as model drift and the appearance of new class definitions,
can arise that cause previously found associations to change.
The online learning paradigm can adapt to this change by
continuously updating the model with new information and
thereby learning to adapt to changes in the environment [31].

Last, because the medical profession generally deals with
interventions, another theme of interest is causal machine
learning, where the focus is on creating a model that can predict
the change in target output if a predictor were changed (eg,
change in diet or blood pressure). The challenging part is
inferring causality from observational data, as in medicine we
would not only like to associatively predict but intervene in
patient health journeys to prevent adverse outcomes. The current
gold standard is randomized intervention data, but these data
are resource-intensive to collect, and the clinical trial setting

does not reflect real life, so the distribution of these data may
not fit the general population [32]. However, there are powerful
alternatives for causal questioning that may have a future in
drug efficacy and safety evaluation on real-world data [33].
Moreover, there are tools being used for evaluating interventions
with methods, which can possibly extend into other medical
domains [34].

In summary, applying accurate and understandable models on
data that fit well to the target individual will be paramount to
the success of the DT. Equally important is deconvoluting the
causal factors that influence health outcomes, as this knowledge
will power interventions based on personalized causal factors.
Using a combination of these methods can form the technical
analysis part of the DT framework (Figure 2).

Dynamic Digital Wins
A dynamic DT (Figure 3) is a twin whose relationships—and
the data contained within—change over time as the conditions
of people’s lives change over time (eg, a young healthy
individual who needs preventive care to increase the chance of
fertility, a patient treated for a life-threatening disease at the
coronary care unit). The dynamic aspect also refers to the
changing of the model targets according to the relevant question
and value trade-off. As an individual experiences different
phases of life, the relevant dynamic DTs are triggered to make
a prediction using the up-to-date data. To keep the predictions
relevant to the patient, the DT needs to be updated in a
continuous manner, preferably with the least amount of burden
on the individual. The continuous monitoring of vital signs (for
patients in a hospital setting and at home) using wearable
devices allows for prompt detection of developing pathologies
and early intervention, which may not be possible using standard
intermittent vital sign measurements [35]. To have a successful
implementation of a dynamic DT, a minimal requirement is to
start with a FAIR data set. On this data set, algorithms must be
trained and tested, and this output needs to be translated into
medical or lifestyle advice. The next step is the validation of
this advice to see if this decision-support tool improves patient
outcomes. For the full DT, there are multiple requirements: (1)
continuous collection of, for example, medical and user
experience data, (2) integration of new data with existing data
in the databases, and (3) improvement of accessibility of systems
that access and store new data [36].
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Figure 3. A digital twin encompassing different aspects of the life course can be queried to improve medical decision-making to reduce cardiovascular
complications. In orange, we show data (and data generators). In green, we display the digital life course platform and real-life course. Together they
supply information to each other to support a healthy patient lifestyle by defining a personalized care path.

Data Management
The first requirement in data management is the collection of
high-quality data, which includes similar distribution of patients
and individuals as the target individual. As the clinical data is
collected from different sources, an important challenge is to
synergize, homogenize, integrate, and standardize the
heterogeneous data to have a standardized data model. In such
a data model, we transform the local data source into the
common data model via extract, transform, and load procedures
[37]. This data model should live in a system that can sustain
FAIR principles. Moreover, patients/researchers and health care
providers should have an easy and flexible way to add or remove
medical and lifestyle data sources [24]. Data security and
privacy are important for DT development in the medicine and
health care sectors. Open challenges are cleaning and preparing
the data [38] and protecting the privacy of data residing on
cloud-based data storage platforms [39]. The rising popularity
of storing health data on cloud platforms requires deliberate

design in managing data access control and data ownership in
combination with schemes such as federated analysis.

Values
Values are the quality of a digital health service as it is
experienced by an individual in relation to their needs [40].
Based on this definition, values are created when users such as
patients, clinicians, nurses and others use the DT to address
their challenges [41,42]. Representative examples of such
challenges were identified by the World Health Organization
in 2018 [43] and include efficiency, cost, and access to
information.

In our early life course patient journey example, the DT can
solve information challenges by collecting high-quality data
through wearable devices and then providing easy access and
visual summaries of the data to the patient and their treating
health care professional. Additionally, the DT can provide
personalized predicted probabilities of adverse health outcomes
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and suggest treatment consisting of lifestyle advice or drug
treatment to lower those probabilities. The DT can aid the use
challenges of low adherence to treatment by visualizing the
effect that treatment may have on future health outcomes so
that the patient can better understand and be motivated by the
potential benefit of adherence to treatment. The DT addresses
efficiency challenges by dynamically updating a patient’s
predicted probabilities for adverse health outcomes, which
enables an early reaction to increased risks. This information
may also be used to choose the optimal time between health
checks and interventions; in limited care situations, it may be
used to prioritize patients with greater needs in triage settings.
The cost challenges can be addressed by early risk detection
and interventions of the DT, which may prevent the need for
costly treatments at later stages of disease progression. To create
a valuable DT for users, it may help to include lead users in the
development team [24].

Legal and Ethical Considerations

Value Trade-offs
The DT allows us to optimize for healthy outcomes at the cost
of other values (eg, fairness). While incorporating more
health-related data might increase a prediction’s accuracy, it
could also raise concerns about surveillance health care and
erode the trust between the health care system and individuals
[44]. A DT measuring patient data (such as sleep) and the
feedback of health guidance could even affect the parameters
it is measuring. For example, commercial consumer wearables
are not accurate in estimating sleep [45], and the results may
worry consumers and even cause sleep problems. An increased
number of measurements may identify patients that are
considered atypical. Currently, we lack a clear understanding
of how to interpret slight deviations from the normal ranges and
means and whether these asymptomatic deviations will lead to
future diseases. Balancing the ideal of early diagnosis and
reducing overdiagnosis and overtreatment can therefore be
challenging [46,47]. The attempt to introduce personalized
lifestyle advice to curb lifestyle diseases such as obesity,
diabetes, and hypertension also risks promoting an overly
individualized view of health management.

Additionally, many have expressed concern about worsening
existing health inequity [48,49]. People from lower
socioeconomic backgrounds might not have the means to access
the digital device required for a DT service, or they might not
know how to benefit from the information provided to them
due to cognitive constraints such as limited digital or health
literacy and external constraints. Instead of empowering users
by offering them more health-related information, the DT might
burden users with a sense of guilt or anxiety and give rise to
the idea that users who do not make the advised change could
be accused of being responsible for their adverse health
outcomes [50-52].

Data Governance and Accountability
The digitalization of health care gives rise to new legal and
accountability issues. For instance, who owns the health data
gathered by the DT? Is it owned by the patient, the health care
provider, or a third party? Is it morally permissible for a DT
service provider to sell user data to a third party? To avoid data
being used against the patients’best interest, Schwartz et al [24]
suggest 3 principles: (1) patients own their data, which
empowers patients to protect the privacy of their data against
misuse, (2) patients must provide explicit informed consent for
the use of their data, and (3) advocacy efforts should enshrine
patient data ownership and access into law. The implementation
of these principles poses technical and legislative challenges.
Additionally, DTs are susceptible to biases present in the data
from which they are developed. Data included in the DT should
be reviewed and methods to remedy biases should be considered
to avoid the perpetuation of historical biases [24]. De Laat [53]
and Nissenbaum [54] describe the obstacles of accountability
of machine learning algorithms and how this relates to shared
development, human and computer errors, and a culture where
it easy to blame the technology. There is also a lack of
understanding of how algorithms work [53,54]. Transparency
of decision rules and oversight of the decision-making
algorithms by governing bodies could solve these outstanding
obstacles.

Scientific Domain
In this paper, the DT was defined in terms of requirements
stemming from medical, technological, and ethical domains,
but to evaluate the effectiveness of such a DT system, we require
scientific convergence to test its merit and limitations (Textbox
1). In translational medical science, we aim to generate
knowledge in clinical practice so we can intervene and improve
health care processes [55]. To achieve this aim, we need to
understand the disease process and uncover the relevant causal
pathways that influence health outcomes. DTs can be helpful
in combining cross-domain knowledge. As a DT incorporates
more than one data set, such as physiological measurements,
questionnaires, and lifestyle factors, there are many rich features
for each patient or individual ready to be used for pattern
recognition. Knowledge about individual contributors of disease
progression, in turn, could lead to the identification of subtypes
of disease with different disease ontologies and treatments,
described as deep phenotyping [13]. The DT platform may allow
us to test our predictions more efficiently in an umbrella or
real-world trial [16,56]. Predicting patients prospectively and
monitoring for outcomes may allow us to test the accuracy of
the predictions from the DT. In a second step, randomized
intervention based on these predictions can unveil causal factors,
and this in turn can help us test our scientific hypotheses using
real-world evidence and thereby moving science forward by
generating medical knowledge and developing novel technical
methodologies.
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Textbox 1. Benefits of digital twin development in health care.

Health agency and promoting healthy outcomes

• More accurate diagnosis using integrated data

• Improved treatment selection for patients

• Prognosis of patient disease trajectories

• Real-time remote monitoring of health state

• Simulation of treatment and care processes to guide policy

Fair data and validation of research

• Data structures in the digital twin will make data more accessible

• Validation of scientific results provide an implementation framework for decision-making

Algorithm development for medical decision-making, diagnosis, and prevention

• Innovation in algorithms allows us to make more accurate predictions on unseen data

• Causality is inferred from observational data

• Privacy is preserved during data sharing and analysis

• Uncertainty is quantified from different sources and considered during the decision-making processes

Conclusion

In conclusion, translational science and medical care can be
improved by following a DT life course approach:
high-dimensional data collection and storage, patient trajectory
modeling, outcome predictions, testing, model interpretation,
and implementation in clinical practice. By committing multiple
nonmedical domains to developing a DT, we aim to improve
patient care journeys in a systematic and diligent way.

Future Research Opportunities

Our vision of a dynamic DT allows for collaboration of many
researchers from different domains, where we can align our
research applications in order to develop a dynamic DT. Some
subjects related to the DT have not been fully investigated, and
new opportunities for research have been defined. A part of the
technical domain, which is under active investigation, is how

we can leverage personal and lifestyle factors to reach more
accurate predictions on unseen data. This involves but is not
limited to using nonrandom and sparse sampling as a predictor
matrix to improve our models and infer causality.

We also need more work on how to identify new classes, such
as disease types based on new distance metrics, and how to tune
our models to meet patient preferences and different privacy
settings. A large body of research in the ethical domain is
dedicated to value trade-offs in the DT setting and investigates
how we can balance values such as fairness, equality, and health.
We are also concerned with data storage and federated data
analytics, and we performed analysis on harmonized big data
sets. Optimal design of the DT application and user interaction
is required to meet the requirements of users while optimizing
for values arising from different domains. The science domain
should come into play to judiciously evaluate the data, models,
application, and ability of the technologies to impact patient
life course trajectories and decrease the incidence of disease.
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