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Abstract
This study investigates the relationship be-
tween deep learning models and the human
brain, specifically focusing on the prediction of
brain activity in response to static visual stim-
uli using functional magnetic resonance imag-
ing (fMRI). By leveraging intermediate outputs
of pre-trained convolutional neural networks
(CNNs) with feature-weighted receptive fields, it
becomes possible to estimate brain activity in the
visual cortex. The primary objective of this re-
search is to analyze how different CNN archi-
tectures affect the accuracy of predicting brain
activity. To accomplish this, we utilize the novel
fMRI Natural Scenes Dataset, which provides a
large-scale data set for comprehensive analysis.
Through this investigation, we aim to gain in-
sights into the impact of CNN architectures on
the prediction accuracy of brain activity in the
context of visual stimuli.

Keywords
Neural Activity, Brain Modeling, Convolutional Neural Net-
works, Visual Stimulus, Deep Learning, fMRI.

1 Introduction
Brain activity prediction based on external stimuli has made
significant advances, primarily due to improvements in ma-
chine learning and functional magnetic resonance imaging
(fMRI) technology, as presented in the surveys of Cao et al.
[1] and Chen et al. [2]. There have been multiple encoding
techniques proposed, such as Bidirectional Deep Generative
Networks (Changde et al. [3]), Gabor wavelet filter-based
networks (Yibo et al. [4], [5]), and semantic models (Nase-
laris et al. [6]).

Accurate prediction of brain activity from visual stimuli
enables scientists to test and validate new theories about brain
function, investigate the role of specific brain areas in vi-
sual processing, study the development of visual perception
throughout one’s lifespan, and understand the contribution
of different neural pathways to various visual functions (e.g.
Henderson et al. [7]).

The recent emergence of large-scale datasets, such as the
Natural Scenes Dataset 1 (NSD) of Kay et al. in [8], presents
a new opportunity for more extensive research in predicting
brain activity in response to visual stimuli. This research pa-
per aims to train and evaluate brain activity encoding models
based on convolutional neural networks on the NSD, using
feature-weighted receptive fields, proposed by St-Yves and
Naselaris in [9], a task that has not yet been attempted due to
the novelty of the dataset.

Kriegeskorte and Nikolaus [10] have shown that there are
similar internal representations between convolutional neural
networks (CNNs) and the human brain. St-Yves and Nase-
laris [9] have proposed a brain activity prediction technique

1https://naturalscenesdataset.org/

that exploits the feature maps of intermediate CNN layers, the
feature-weighted receptive field (fwRF). fwRF demonstrates
high accuracy in predicting brain activity in a voxel (volumet-
ric pixel, cubic section of the brain) based manner and has
been used in the encoding part of the state-of-the-art image
synthesis NeuroGen model (Gu et al. [11]), which is capable
of generating images that achieve predetermined brain acti-
vations when presented to a subject.

There is an opportunity to investigate how model architec-
ture variation affects performance in predicting brain activity
in visual regions of interest within the visual cortex. Studying
how the variation of CNN model architecture affects the per-
formance of the fwRF framework could help us gain further
insight into the links between CNNs and the human brain.

In this research paper, we aim to address these gaps by
training and comparing fwRFs using the large-scale NSD
dataset which has not been thoroughly investigated in pre-
vious studies that used more compact datasets such as vim-1
(Kay et al. [12]), BOLD5000 (Chang et al. [13]), and GOD
(Horikawa and Kamitani [14]). The expected outcome is a
clear view of the performance of various models trained on
NSD, under various experimental settings.

The rest of the paper is structured as follows: Section 2 of-
fers background information regarding the core topics. Sec-
tion 3 presents the used methodology, which involves lever-
aging convolutional neural networks (CNNs) with feature-
weighted receptive fields. Section 4 provides an overview of
the experimental setup and details the utilization of the large-
scale fMRI NSD dataset. The results of our analysis, includ-
ing the performance of five chosen CNN architectures in pre-
dicting brain activity, are presented in Section 5. The results
are discussed in Section 6. Throughout the study, we priori-
tize responsible research practices, as highlighted in Section
7, and finally, in Section 8, we conclude the paper by summa-
rizing our findings and outlining potential avenues for future
work.

2 Background
2.1 Functional Magnetic Resonance Imaging

(fMRI) and BOLD Signals
Functional Magnetic Resonance Imaging (fMRI) is a non-
invasive imaging technique that allows for the observation
and measurement of brain activity. It works by detecting
changes in blood flow to different parts of the brain, which
is indicative of neural activity in those regions. The pri-
mary measure used in fMRI is the blood oxygenation level-
dependent (BOLD) signal. This signal is based on the fact
that oxygenated and deoxygenated blood have different mag-
netic properties. When a particular brain region is active,
there is an increased demand for oxygen, leading to a change
in the BOLD signal. This change can be detected and used to
infer brain activity.

2.2 Natural Scenes Dataset (NSD)
The Natural Scenes Dataset (NSD) [8] is a large-scale dataset
that contains fMRI data from 8 subjects viewing a variety of
natural scenes. The dataset is unique in its size and scope,

https://naturalscenesdataset.org/


providing a rich resource for investigating the relationship be-
tween visual stimuli and brain activity. The NSD includes
both the stimuli (images of natural scenes) and the corre-
sponding brain activity (measured using fMRI), allowing for
a comprehensive analysis of the relationship between these
two elements. The use of natural scenes as stimuli is particu-
larly relevant for studying visual perception, as these stimuli
closely resemble the types of visual input that the human vi-
sual system is designed to process.

In this study, we leverage the NSD to train and evaluate our
models, providing a robust test of their ability to predict brain
activity in response to visual stimuli.

2.3 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are a class of deep
learning models that have proven to be highly effective in
tasks related to image processing and recognition. They are
designed to automatically and adaptively learn spatial hierar-
chies of features from images. CNNs are generally composed
of one or more convolutional layers, followed by one or more
fully connected layers.

The architecture of the CNN is inspired by the structure
and behavior of the visual cortex of the human brain. This
similarity can be used to uncover hidden functionalities of
the brain, in a non-invasive way. The CNNs can be dissected,
layer by layer, as they tend to capture visual features in a hier-
archical manner, early layers capture low-level features such
as shapes and edges with certain orientations, while latter lay-
ers can extract faces, objects, and other complex features.

The CNNs used in our study are pre-trained on the large
scale ImageNet 2 dataset (Deng et al. [15]) and have achieved
high classification accuracies.

2.4 Feature-Weighted Receptive Field (fwRF)

The feature-Weighted receptive field (fwRF) [9] is an encod-
ing model used to find the relationship between the features
extracted by a CNN and brain activity (stimulus-to-voxel
model). The fwRF assumes that the response of a neuron
(or voxel in fMRI) can be predicted by a weighted sum of the
features in a particular region of the input space (the recep-
tive field). The weights are learned from the data, allowing
the model to determine which features are most relevant for
predicting the response of each neuron or voxel, as it can be
seen in Figures 1 and 2.

The feature pooling field is modeled as an isotropic 2D
Gaussian blob as in Equation 1, where µ = (µx, µy) is the
feature pooling field center and σg is the radius of the feature
pooling field.

g(x, y;µx, µy, σg) =
1√
2πσg

exp

[
− (x− µx)

2 + (y − µy)
2

2σ2
g

]
(1)

The response r̂t of a voxel to an image St is modeled as
follows:
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where D is the perceived visual angle - a measure of
the pooling field’s size compared to the whole image, and
i(x), j(y) represent the discretization of spatial coordinates
into pixel indices.

2.5 Visual Cortex
The visual cortex of the brain is a part of the cerebral cortex
that processes visual information. It is located in the occipital
lobe of the primary cerebral cortex, at the back of the brain.
Visual information from the eyes is sent to the primary visual
cortex via the optic nerve and the lateral geniculate nucleus
in the thalamus. The visual cortex is hierarchically organized
into several areas which play different roles in processing as-
pects of vision. These areas include the primary visual cor-
tex (V1), secondary visual cortex (V2), tertiary visual cortex
(V3), and the fourth human visual field map (hV4).

V1
V1, the primary visual cortex, is the first area that processes
incoming visual input in the brain. V1 is one of the best-
understood brain areas, and it’s known to execute basic oper-
ations, such as simple filtering to enhance contours and edges.

V2
V2, the secondary visual cortex, receives strong feedforward
connections from V1. It continues the processing of visual
information initiated in V1, handling features such as the ori-
entation of illusory contours, more complex shapes, and color
constancy.

V3
The tertiary visual cortex is part of the dorsal stream of the vi-
sual system. Much is not known about the function of V3, but
it is suspected that it is involved in handling spatial location,
motion, and colors.

hV4
The exact role of area V4 is still under debate, but it is prob-
ably involved in recognizing shapes, and it appears to be es-
sential for perceiving selective colors. hV4 sends outputs to
areas involved in face and scene recognition.

3 Methodology
3.1 Experimental Methodology
In order to investigate how the variation of architecture af-
fects prediction performance, 5 different CNN architectures
have been chosen. The choice of the architectures was lim-
ited by training time, and the tight schedule of the research
plan, but should provide a general perspective for the research
question.

The CNNs are used to extract feature maps from the NSD
visual stimulus. The images used in the NSD experiment
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Figure 1: After input S is fed into the neural network, each stacked feature map ϕk(S), k ∈ Ki is extracted from layer Ki. Adapted from [9]
in NeuroImage, 2018, Volume 180, Part A. Available at https://www.sciencedirect.com/journal/neuroimage/vol/180/part/PA. Licensed under
Elsevier.

Figure 2: A representation of the fwRF, predicting the activation of a single voxel r in response to the stimulus S. After the feature maps
ϕKi are extracted from the model inference using stimulus S, they are filtered by a 2D Gaussian feature pooling field, g, that is selected
by conducting grid search based on the position of the center - µx, µy - and the radius of the pooling field σg . The hyperparameters are
the same for each feature map. The output of each pooling operation, for each feature map ϕi is multiplied by a learned weight wi and
summed up to produce a prediction of the activity in voxel r. Adapted from [9] in NeuroImage, 2018, Volume 180, Part A. Available at
https://www.sciencedirect.com/journal/neuroimage/vol/180/part/PA. Licensed under Elsevier.

are the 2017 train/val subset of the COCO dataset (Lin et
al. [16]). The difference between training data and infer-
ence data used during the experiment (ImageNet and COCO
respectively) should not be a topic of concern because CNNs
are able to generalize features and adapt to unseen data. Also,
the datasets are similar, both ImageNet and COCO contain
images of everyday scenes, common objects, and persons.

These features are then used to train the Feature-Weighted
Receptive Field (fwRF) encoding model [9]. The fwRF
model is a powerful tool for predicting voxel-wise brain ac-
tivity, particularly within the visual Region of Interest (ROI)
of the human brain.

The training process involves fitting the fwRF model to the
features extracted by the CNNs during inference using NSD
samples. The performance of the model is then evaluated
based on its ability to accurately predict brain activity in the
visual ROIs.

This methodology allows us to systematically assess the
impact of different model architectures on the performance
of brain activity prediction. By comparing the performance
of different pre-trained models, we can gain insights into how
the choice of model architecture influences prediction accu-
racy.

In [9] the fwRF model was fitted to feature maps of a stan-
dard CNN architecture, with basic convolutional layers. This

research aims to investigate both standard and more complex
architectures and their impact on the accuracy of the fwRF.

3.2 Model selection
AlexNet (Krizhevsky et al. [17]) and VGG-13 (Simonyan
and Zisserman [18]) possess classical CNN architectures and
provide decent accuracy on the ImageNet dataset. Their
straightforward structure serves as a baseline for the exper-
iment.

GoogleNet (Szegedy et al. [19]) was chosen due to its In-
ception architecture that mimics the brain’s sparse connectiv-
ity between neurons by using 1x1 convolutional filters, con-
nected to a small subset of the inputs. Another similarity with
the brain is the multi-scale processing of the input in the in-
ception blocks. Convolutions with filters of size 1x1, 3x3,
and 5x5 allow the network to learn and combine features of
different scales.

ResNet-18 (He et al. [20]) was selected because it is
known for its deep structure and ”shortcut” or ”skip connec-
tions” that pass on output from early layers to distant, later
layers, a technique used to address the problem of vanish-
ing/exploding gradients. One could draw a loose parallel be-
tween the brain’s ability to rewire itself after suffering par-
tial lesions as demonstrated by Johansen-Berg in [21] and the
skip connections that bypass regions of the network. The con-
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Top-5 Accuracy Top-1 Accuracy
AlexNet 79.066% 56.522%

EfficientNetV2 S 96.878% 84.228%
GoogleNet 89.53% 69.778%
ResNet18 89.078% 69.758%
VGG-13 89.246% 69.928%

Table 1: Top-5 and Top-1 accuracy percentages of models on the
ImageNet-1K dataset.

nection of one layer to several other layers, through skip and
normal connections, resembles the multiple feedforward con-
nection of early visual ROIs with other layers (V2 has feed-
forward connections to both V3 and hV4).

Finally, the experiment will make use of a more perfor-
mant model, namely the small version of EfficientNetV2 pro-
posed by Tan and Le in [22]. The model manages to keep
low computational complexity while delivering high classifi-
cation performance, as can be seen in Table 1, by leveraging
progressive training and layers of specialized blocks called
fused-MBConv blocks.

Table 1 presents the Top-5 and Top-1 accuracy of each net-
work on the widely known ImageNet-1K dataset [15]. Effi-
cientNet achieves the greatest accuracy, followed by Resnet,
GoogleNet, VGG and finally AlexNet.

4 Experimental setup
4.1 Data Collection and Preparation
The fMRI and stimulus data are extracted from the NSD
dataset. The dataset offers 40 stimulus trials for each subject.
During each trial, a subject is presented with 750 stimulus
images, and fMRI data is collected based on BOLD signals
(Blood-oxygen-level-dependent).

The used BOLD signals are prepared as 1.8mm volume
betas (difference in percentage between the resting state of
the voxel) and denoised using a GLM-denoise technique pro-
posed by Kay et al. in [23].

For each subject, brain ROI masks were prepared, which
select only the voxels in the V1, V2, V3, and hV4 and ex-
clude the rest. Masks are prepared individually since the brain
structures of the subjects differ. On average, each mask in-
cludes 4000 voxels. Figure 3 illustrates both the complete
brain mask of a subject, representing the overall shape of the
brain (left), and the region of interest (ROI) mask specifically
highlighting the voxels within the visual cortex. Each fMRI
scan is partitioned into an average of 80 vertical slices (varies
depending on the subject), with each slice corresponding to a
specific height within the brain.

4.2 Model Preparation and Evaluation
Our comparison will be done for AlexNet [17], VGG-13 [18],
ResNet-18 [20], GoogleNet [19] and EfficientNetV2-S [22].

Each selected CNN is pre-trained on the ImageNet dataset.
In order to extract both high and low-level features, we chose
to extract feature maps from early, middle, and late model
layers. To maintain consistency between models, 6 or 7 layers
were selected for feature extraction, with similar distributions
in terms of position in the network: 2 early layers, 2 or 3

PCC
GoogleNet 0.3
VGG-13 0.293
ResNet18 0.291
AlexNet 0.288

EfficientNetV2 S 0.279

Table 2: Averaged Pearson correlation scores for each model.

middle layers, and 2 late layers. [9] does not offer a detailed
heuristic for layer selection, but indicates that there should
be a uniform distribution in terms of hierarchical location.
For each layer, we also filtered out feature maps that showed
lower variance, with a maximum number of feature maps per
layer of 512.

After conducting feature map filtering and selection, we
generated a grid of candidate parameters for the fwRF, by
varying center locations and radii. Grid search is then done
for 393 candidate models. We execute grid search separately
for each subject, with varying training samples per subject.
We select the best model from the pool by selecting the ones
that achieve the lowest root mean squared error (RMSE).
Each model is evaluated on a validation set comprised of 2000
held-out samples.

The Pearson Correlation Coefficient (PCC) is a preferred
metric for evaluating model performance due to its ability to
capture the linear relationship between variables and because
it is used as an accuracy metric in multiple papers that discuss
encoding models [9], [24], [25], [26]. The PCC provides a
measure of the strength and direction of the linear association
between two variables, ranging from -1 (perfect negative cor-
relation) to 1 (perfect positive correlation), while a PCC of
0 indicates no correlation. The PCC’s ability to capture lin-
ear relationships, interpretability, its computational efficiency
and common adoption among the similar scientific writings
makes it a preferred metric for evaluating model performance
in the current setting.

5 Results
5.1 General Performance
The obtained results exhibit a clear and concise pattern,
which allows for a succinct presentation in the results sec-
tion. One particular model demonstrates superior perfor-
mance across all evaluated areas, while the remaining models
can be also ranked in a straight-forward hierarchical fashion.

Using the Pearson Correlation Coefficient (PCC) as a mea-
sure of performance for our models, the average performance
of the fwRF model increases by at most 7.5% (worst model
compared to best). Table 1 presents mean correlation coef-
ficients for each model, averaged over each subject. Each
model was trained on 4000 samples per subject.

Googlenet presents the best performance across all sub-
jects and all testing setups. VGG and Resnet follow with a
difference of 2-3% accuracy, while AlexNet and EfficientNet
(especially) present the worst performance. The Googlenet-
based encoding model seems to be able to converge faster
than the other models to a point of diminishing returns.



Figure 3: Brain (left) and ROI (right) masks for one slice. The ROI mask portrays voxels in different regions of the visual cortex with different
colors.

5.2 Performance across different subjects
The multisubject experiment was conducted with a training
set of 4000 samples for each subject, with a grid search of 393
candidate models for each voxel. A bigger training size was
not chosen due to the previously mentioned time constraints.

The performance across subjects varies in terms of abso-
lute value from subject to subject, but it is consistent with our
previous results. Googlenet outperforms all the other models,
for each subject. The best accuracies are achieved when fit-
ting subjects 1, 2 and 3, while subjects 6 and particularly 8
exhibit low accuracy.

Figure 5 portrays the scores of a resampling with replace-
ment validation test. The validation input data is ran through
the model, and mean correlation coefficients are computed for
64 resampling runs. This is a procedure that analyzes the sta-
bility of correlation coefficients to data variability. The distri-
bution of mean PCC for the resampling runs follows a normal
distribution, with a mean standard deviation of approximately
0.00928 for each model, which verifies the validity of our re-
sults.

5.3 Model performance variation based on
training size

In order to assess the performance evolution under differ-
ent training sizes. Models were trained with varying training
sizes from 100 to 8900 samples, for subject 1. Figure 5 de-
picts the performance of each model (left), and the percentual
advantage of GoogleNet over each model (right). The models
seem to converge when using 4000 or more training samples,
while GoogleNet constantly outperforms the other models.
AlexNet and EfficientNet demonstrate similar performance
for bigger training sizes, but AlexNet has an edge on training
sizes lower than 4000. VGG and ResNet are within 2-3% of
GoogleNet for higher training sizes.

We can observe that GoogleNet has better performance for
intermediate training sizes, 2000-4000 samples, where it out-
performs every network by 3-8%, while still achieving a good
performance-to-training-set-size ratio.

5.4 ROI performance
Figure 6 depicts the performance of each model for different
regions of interest (ROI). GoogleNet is the best-performing
model in every ROI. The general model performance suggests
that models capture early layers features better than the latter

layers, with the mean PCC decreasing from 0.399 for V1 to
0.266 for hV4.

EfficientNet struggles to learn voxel activations for the lat-
ter layers when the training sizes are low to medium, and the
performance for larger training sizes suggests that the model
is catching up in performance.

All models experience a drop in accuracy for the V3 ROI,
when trained with 5000 training samples. This is a curious
observation since the other ROIs do not present a drop in
PCC. This may be caused by isolated overfitting, high data
variability for V3, or a skewed sample distribution for a train-
ing size of 5000 samples.

5.5 Bigger Grid Search
In order to test the potential performance of the models we
trained the models on a bigger grid of 1414 candidate mod-
els. The selection of models was enlarged by halving the min-
imum distance between the possible centers of the Gaussian
pooling function. Besides VGG, each network experiences
an increase in performance of approximately 1.7%. This sug-
gests that there is performance to be found by performing
more detailed grid searches, that fine-tune the position of the
pooling field’s center.

6 Discussion
[9] does not offer exact prediction accuracies for the
DeepNet-fwRF, therefore we cannot directly compare the re-
sults of our experiments with the original paper’s results. [9]
compares the accuracy of the deepnet-based model against a
Gabor-wavelet-based fwRF and against a layer-wise Deepnet
regression model. The main observations are that the model
outperforms the other two, especially in latter visual ROIs,
and that it achieves state-of-the-art performance. [9] uses a
smaller training and validation set, more specifically, 1750
training samples and 120 validation samples.

The performance for each ROI is in line with the commu-
nity consensus about the limitations of CNN-based encoding
models. CNNs are known to struggle with the prediction of
high-level visual regions. As a solution to this problem, Xiao
et al. [26] proposed fitting a DNN on data from early vi-
sual cortex layers, in order to predict activations in the lat-
ter layers. The stimulus-to-voxel encoding model that uses
the CNN’s feature maps is leveraged for its high accuracy
on early layers, and the voxel-to-voxel DNN model is fed



(a) AlexNet CC scores (b) GoogleNet CC scores (c) ResNet CC scores

(d) VGG-13 CC scores (e) EfficientNetV2 S CC scores

Figure 4: PCC scores for each model, based on subject. The black dots indicate the mean PCC achieved over 64 resampling runs.

with the predictions of the fwRF in order to predict activity
in high-level layers.

GoogleNet’s performance edge could be justified by its
unique inception architecture, which has a biological resem-
blance to early visual cortex areas. Firstly, the Inception ar-
chitecture adopts a multi-scale processing approach, by us-
ing filters of different sizes ,on the same layer, 1x1, 3x3, and
5x5, similar to how the early visual cortex processes visual
information across different visual scales. Inception modules
in the Googlenet model use 1x1 convolutions to reduce the
dimensionality of feature maps before applying larger convo-
lutions. This sparse connectivity mimics the observed neural
connectivity in the early visual cortex, where neurons have lo-
cal receptive fields and selectively connect to nearby neurons.
The Inception architecture also incorporates parallel convolu-
tional pathways with different receptive field sizes. This par-
allel processing strategy is reminiscent of the parallel path-
ways observed in the early visual cortex, such as the magno-
cellular and parvocellular pathways. These parallel pathways
specialize in processing different visual features, such as mo-
tion and color, respectively. Similarly, the parallel convolu-
tional pathways in Googlenet can capture different types of
visual information and facilitate the model’s ability to extract
diverse and meaningful features.

Even though EfficientNet has a similar architecture to
VGG, it still cannot reach the same level of performance. The
PCC of EfficientNet, the model with the highest accuracy on
ImageNet, represents a solid argument for the use of brain-
optimized neural networks to the detriment of goal-optimized
neural networks, as proposed by St-Yves et al. [25], where
the underlying neural network takes part in joint training with
the feature pooling field. Since the classification accuracy of
the network appears to be of no direct use to the encoding
models, this allows us to tweak the parameters in intermedi-
ate layers toward a voxel-focused prediction.

The research could be improved by testing the performance
of more CNN architectures, especially of more performant

models because they can help identify what is the bottleneck
of the ensemble, the model, or the fwRF technique.

7 Responsible Research
This segment is dedicated to discussing the ethical principles
adhered to in this project, with a particular emphasis on the
ability to reproduce the methods and outcomes. The aspect
of reproducibility gains heightened significance in studies in-
volving comparisons; a simplified replication process enables
researchers to assess a variety of detectors and generate a
larger volume of results with more ease.

7.1 Ethical implications
In this research, we have taken great care to ensure that our
work is conducted in an ethically responsible manner. The
use of machine learning models to predict brain activity has
profound implications, not only for the field of neuroscience
but also for society at large.

The potential to predict and understand brain activity could
lead to significant advancements in medical diagnostics and
treatments, particularly for neurological disorders. However,
it also raises important ethical questions about privacy and
consent. As we move forward with this research, we must
ensure that any applications of our work respect individuals’
rights to privacy and are used in a manner that benefits so-
ciety. Furthermore, the use of machine learning models in
neuroscience research also raises questions about algorithmic
bias and fairness. It is crucial to ensure that our models do
not perpetuate existing biases in the data or in the pre-trained
models.

Therefore, the anonymity of the subjects that consent to
share their biometric data should be kept throughout experi-
mental incursions. Models trained to predict the activity of a
subject’s brain response to visual stimuli must not be used for
commercial use or monetary gain. Fortunately, since every
person has different brain reactions to the same visual stim-
uli, our encoding model is not able to accurately generalize



(a) PCC change based on training size (b) GoogleNet advantage compared to other models.

Figure 5: PCC scores for each model trained on subject 1 fMRI data, with varying training sizes (Left) and the difference in accuracy
(in percentage) between AlexNet, EfficientNet, ResNet, and VGG compared to GoogleNet, where the Y axis represents the increase in
performance by using GoogleNet compared to a specific model (Right).

predictions to unknown persons.

7.2 Reproducibility of the results
In order to guarantee the reproducibility of the results, a
GitHub repository 3 has been made available with the note-
books used for data preparation, model training, and evalua-
tion. The repository is based on another GitHub repository
4 created by the author of the fwRF paper [9] and the CNN
models are adapted from the Pytorch torchvision repository 5.
The data used during the experiment is available on an Ama-
zon S3 bucket, but access must be requested through the NSD
website 6.

8 Conclusion and Future Work
This study has provided an investigation into the impact of
Convolutional Neural Network (CNN) architecture variation
on predicting brain activity using feature-weighted receptive
fields. Our research leveraged intermediate outputs of five
pre-trained CNNs - AlexNet [17], EfficientNetV2 S [22],
GoogleNet [19], ResNet-18 [20], and VGG13 [18] - with
feature-weighted receptive fields to estimate brain activity in
the ventral stream in response to static visual stimuli. The
primary objective was to analyze how different CNN archi-
tectures affect the accuracy of predicting brain activity.

Our findings suggest that the performance of the encod-
ing models can be influenced by the architecture of the CNNs
used. The Inception architecture used by GoogleNet provided
the most promising results, outperforming the other models
in every ROI. This opens up a new avenue for improving

3https://github.com/VladMurgoci/BrainEncoding
4https://github.com/styvesg/nsd/tree/master
5https://github.com/pytorch/vision/tree/main/torchvision/

models
6https://naturalscenesdataset.org/

the performance of such models by testing more state-of-the-
art CNN architectures, and improved versions of the ones we
tested (e.g. Inception v2, Inception v3, ResNet-50, VGG16).
It also raises important questions about the nature of the bot-
tlenecks in the ensemble, the model, or the fwRF method,
which warrant further investigation.

Another significant discovery is the low prediction accu-
racy of the EfficientNet model, the one with the highest clas-
sification accuracy on ImageNet-1K [15], indicating that the
high image classification accuracy of an architecture does not
necessarily translate to additional performance for the corre-
sponding brain encoding model.

The coupling of deep learning feature extraction, the fwRF
model, and other mathematical, medical, and behavioral tech-
niques could present novel methods of non-invasive brain ac-
tivity analysis. This could have far-reaching implications,
benefiting both the neurological and technological worlds.

Looking ahead, future research should focus on how the
performance varies based on the subject and region of in-
terest. It would be particularly interesting to further explore
whether the fwRF is able to predict voxel activity better in the
latter parts of the visual cortex that process high-level features
and whether the answer is mainly influenced by the quality of
the feature maps from corresponding layers in the network,
or by the method itself.

In terms of reproducibility, we have made every effort to
ensure that our methods and results can be replicated by other
researchers. To this end, we have provided a GitHub repos-
itory with the Python notebooks used for data preparation,
model training, and evaluation. The data used during the ex-
periment is available on an Amazon S3 bucket, with access
available upon request.

In conclusion, this study has shed light on the potential
of CNN architectures to influence the accuracy of predicting
brain activity. The findings pave the way for future research

https://github.com/VladMurgoci/BrainEncoding
https://github.com/styvesg/nsd/tree/master
https://github.com/pytorch/vision/tree/main/torchvision/models
https://github.com/pytorch/vision/tree/main/torchvision/models
https://naturalscenesdataset.org/


(a) Mean PCC by ROI and model (b) PCC evolution by ROI and model

Figure 6: ROI PCC scores for each model, based on subject.

to further optimize these models and expand their application
to other areas of the brain.
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