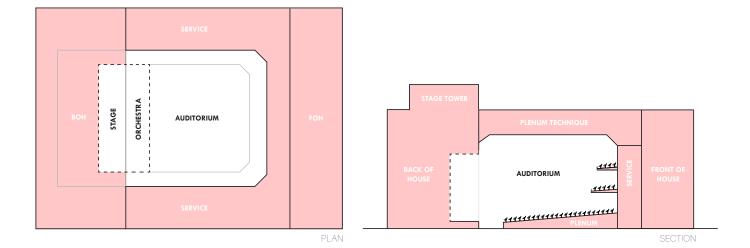

Naturally Ventilated Theatre

An approach to naturally ventilate a theatre in Central European Climate using the stack- and solar chimney effect

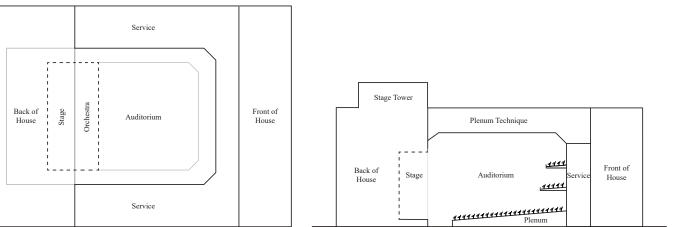
Research Book

PRELIMINARY RESEARCH



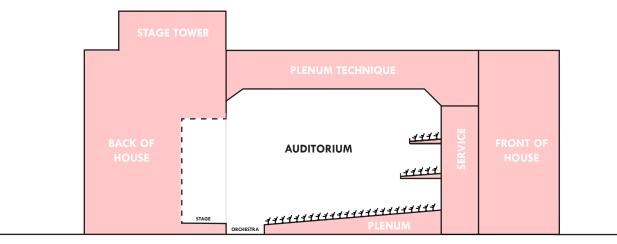
Climatic considerations

NATURAL VENTILATION OF A THEATRE HALL


In Central European Climate

NORMAL THEATRE LAYOUT

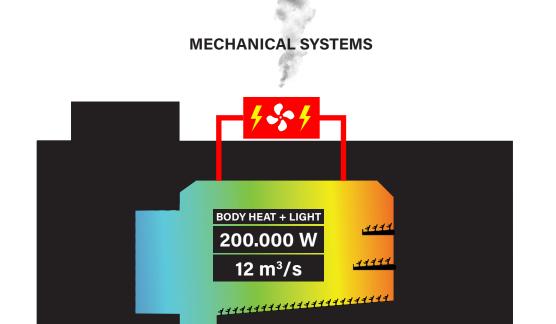
PROGRAM	CAPACITY	AREA	HEIGHT	VOLUME
CONCERTS, OPERAS, THEATRE	1.200 PEOPLE	1.350 M ²	13.5 METER	18.225 M ²



PLAN

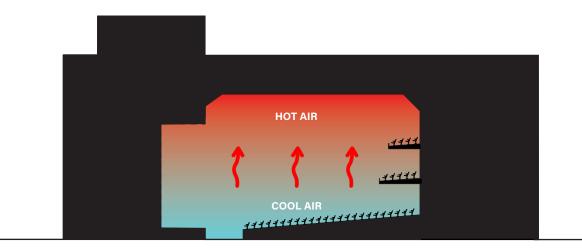
SECTION

NORMAL THEATRE LAYOUT


PROGRAM	CAPACITY	AREA	HEIGHT	VOLUME
CONCERTS, OPERAS, THEATRE	1.200 PEOPLE	1.350 M ²	13.5 METER	18.225 M ²

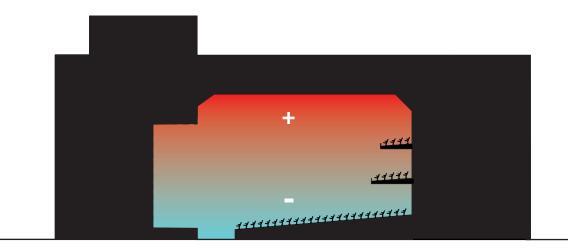
SECTION

NORMAL THEATRE LAYOUT

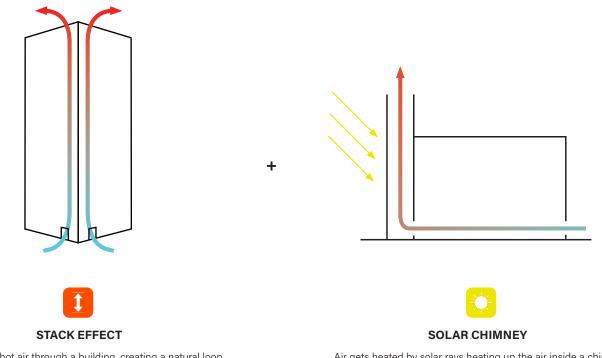

PROGRAM	CAPACITY	AREA	HEIGHT	VOLUME
CONCERTS, OPERAS, THEATRE	1.200 PEOPLE	1.350 M ²	13.5 METER	18.225 M ²

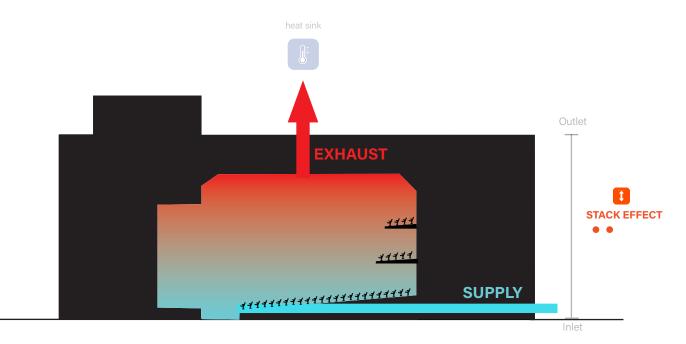
CURRENT SITUATION

The mechanical supply and extraction of air in a theatre. Placed on the roof actively using unnecessary energy for human comfort

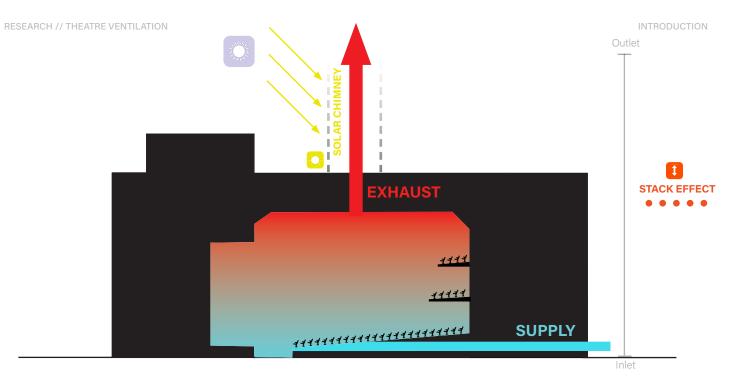


PROPOSED METHOD

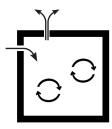

Using natural ventilation caused by buoyancy due to heat rise and create of circulation

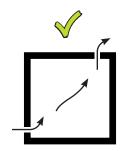

PROPOSED METHOD

Using natural ventilation caused by buoyancy due to heat rise and create of circulation


The rising of hot air through a building, creating a natural loop, inhaling colder air through the bottom.

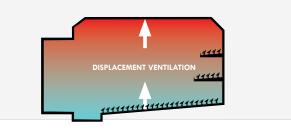
Air gets heated by solar rays heating up the air inside a chimney, creating natural movement of air.


BASIC SYSTEM


Supplying hot air in below, and exhausting hot air above

BASIC SYSTEM

Supplying hot air in below, and exhausting hot air above



MIXING VENTILATION

Traditional method of ventilation. It mixes the new incoming air with the existing air.

DISPLACEMENT VENTILATION

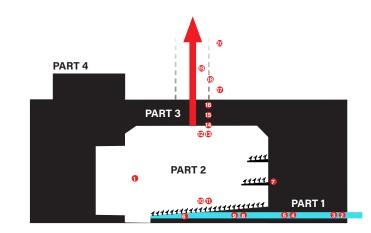
This ventilation method displaces the used air and provides fresh air from below.

CONSIDERATIONS

PART 1: RETRIEVING INCOMING AIR

- 0 RETRIEVING AIR FROM OUTSIDE
- CARDINAL INTAKE
- 84567 AIR TEMPERATURE
 - PATH THROUGH BUILDING
- INTO AUDITORIUM
- BALCONIES
- 8 SIZE OF THE AIRINLET
- Ã **REGULATE AIRFLOWS**

PART 2: INSIDE THE THEATRE

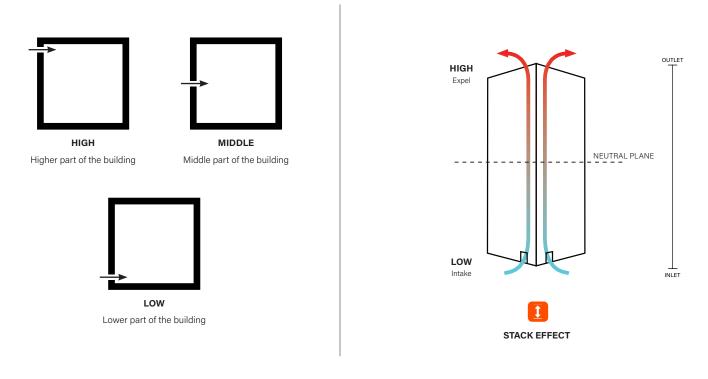

0 **O**QQ Č. HEAT DISSIPATION PER SEASON VENTILATION BY BUOYANCY LESS OCCUPACY AIR AT THE TOP OF THE AUDITORIUM UPPER SIDE OF THE PLENUM

PART 3: THE EXHAUST

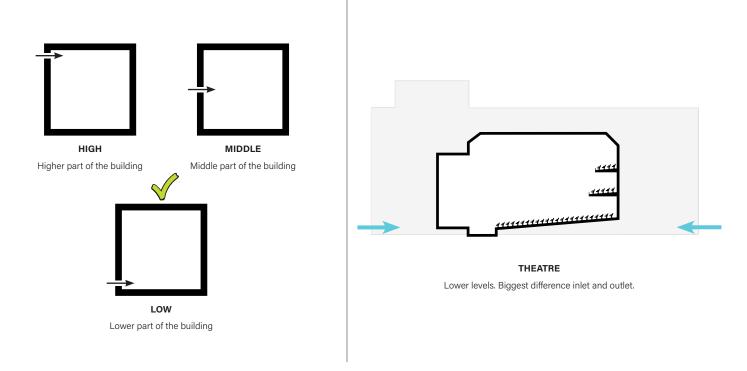
Ð Č D 00000 LOCATION OF THE CHIMNEYS AMOUNT OF EXHAUST CHIMNEYS LENGTH OF EXHAUST CHIMNEYS MATERIAL EXHAUST CHIMNEYS TEMPERATURE EXHAUST CHIMNEYS SOUND WIND AND RAIN

PART 4: ADDITIONAL MEASURES

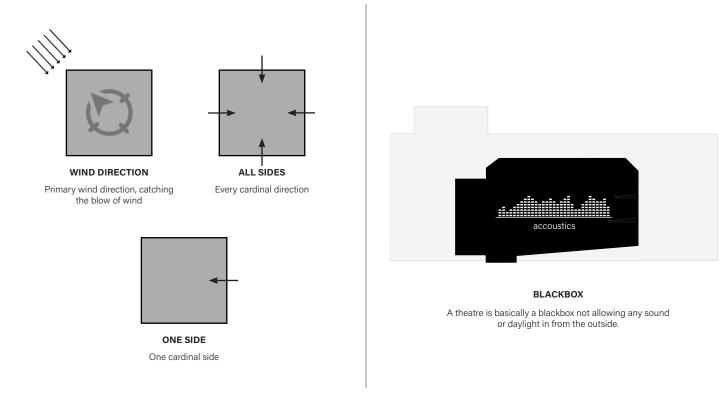
やまる **RE-USING THE HEAT** NIGHT TIME COOLING THERMAL MASS



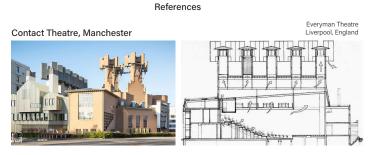
PART 1: RETRIEVING INCOMING AIR


PART 2: INSIDE THE THEATRE

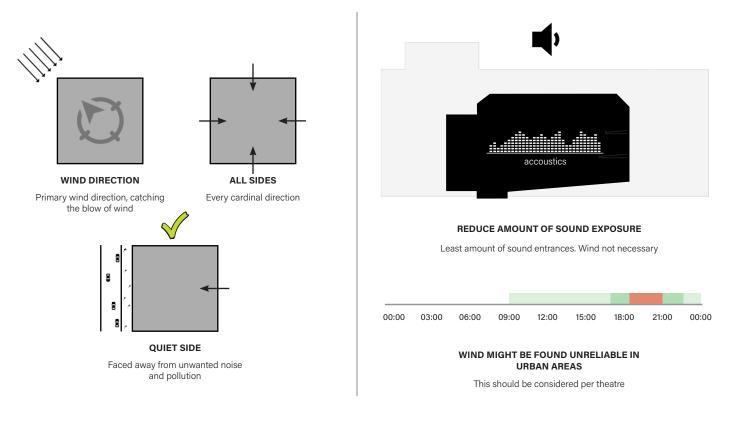
PART 3: THE EXHAUST


PART 4: ADDITIONAL MEASURES





Faced away from unwanted noise and pollution



Wind direction. An open space towards the primary wind direction is necessary to allow wind to enter the building.

Quiet Side. The front side is a busy street of Manchester. The inlet is on the back of the building on a more quiet side street.

SEASONAL DIFFERENCES

Monthly, Hourly Temperatures, Berlin, Germany

	January	February	March	April	Мау	June	July	August	Sept	October	Nov	Dec
1	1,5	-0,5	4,2	6,3	10,7	15,2	16,8	16,2	13,1	9,2	3,8	2,0
2		-0,6	4,0	5,9	10,3	14,7	16,3	15,8	12,7	8,9	3,7	1,9
3	1,4	-0,7	3,8	5,4	10,0	14,3	15,9	15,3	12,4	8,7	3,6	
4	-1-	-1,0	3,7	5,0	9,8	13,7	15,5	15,0	12,2	8,5	3,5	
5	-/-	-1,1	3,5		9,5		15,1	14,7	12,0		3,2	
6	-/-	-1,1	3,3	4,7	10,3	14,4	15,4	14,6	12,1	7,9	3,1	2,1
7		-1,2	3,1	5,2	11,5	15,3	16,3	15,3	12,2	7,9	3,0	
8	-1/-	-1,2			12,8		17,2	16,4	13,1	8,2	2,9	
9	-/-	-0,7	4,0		14,0		18,2	17,6	14,2	9,0	3,2	
10	-/-	-0,2	4,9			18,1	19,5	18,7	15,2	10,0	3,7	2,2 2,4
11	-/-					19,1	20,4	19,8			4,5	
12	-/-					19,8	20,9	20,4		11,6		
13	-/-		7,4			20,6	21,8	21,2			6,1	3,2
14	-/-	2,0				21,1	22,3	21,7	18,5		6,4	
15	-/-	2,1	8,0		17,7	21,2	22,9	22,1	18,6	13,0	6,4	
16	2,5		8,1		18,0		23,0	22,1	18,4		6,1	3,3
17	-/-	1,7	7,8		18,0		22,8	22,0			5,7	3,0
18	-, -	1,2			17,2	20,2	22,4	21,8	17,2	11,6	5,3	
19	-/-	1,0			16,6	19,5	21,6	21,0			4,9	
20	-/-						20,6	20,0			4,7	2,4
21	1,0				14,1	17,5	19,4	19,0	15,0		4,5	
22	-/-				13,4		18,7	18,2	14,3			
23	1-			7,3	12,4		17,9	17,5	13,7	9,7	4,2	
24	1,4	-0,1	4,6	6,8	11,9	15,7	17,4	17,0	13,3	9,4	3,9	2,1

_

Autumn Winter Spring Summer 17 12,0 2,4 12,5 21,9 18 11,4 2,1 11,9 21,4 19 1,9 11,1 20,7 10,8 20 10,4 1,7 10,3 19,8 21 9,9 9,5 1,6 18,6 22 9,5 1,4 8,9 18,0

Seasonal Temperatures, Berlin, Germany

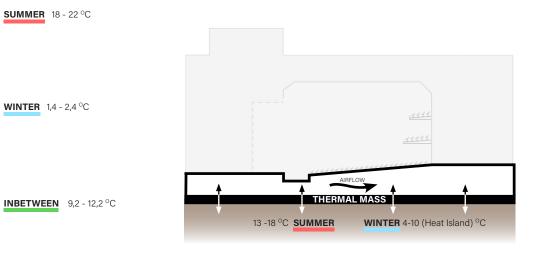
	Summer	Winter	Inbetween		
17	21,9	2,4	12,2		
18	21,4	2,1	11,6		
19	20,7	1,9	11,0		
20	19,8	1,7	10,3		
21	18,6	1,6	9,7		
22	18,0	1,4	9,2		

Seasonal Temperatures, Berlin, Germany

4 AIR TEMPERATURE

THERMAL MASS

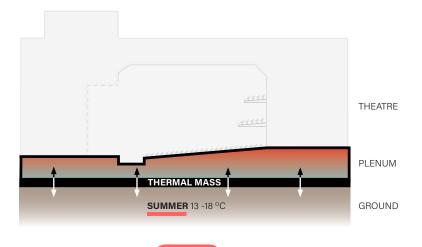
EXPOSED CONCRETE Situated as a maze for the air



WATER Collected from rainwater

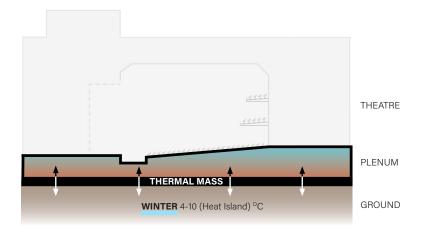
OTHER HIGH THERMAL MASS

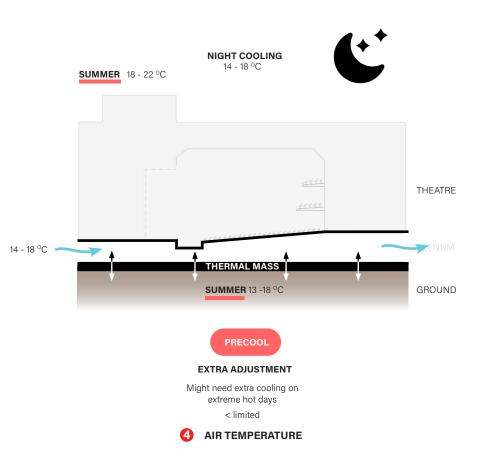
Fryfat

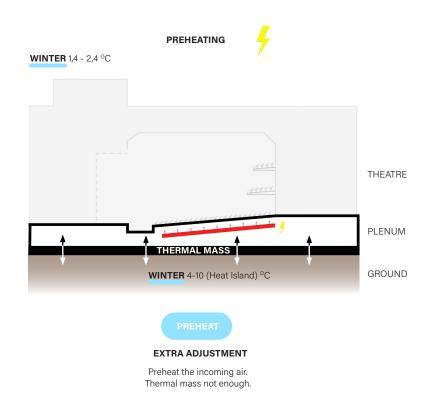


GROUND COUPLING

Coupled thermal mass will naturally heat up the incoming air in winter and cool down in summer by making use of the temperature of the ground.

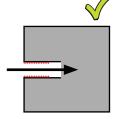


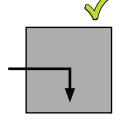



PRECOOL

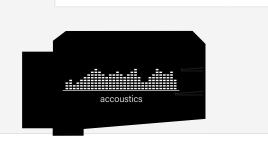
WINTER 1,4 - 2,4 °C







ADVICES

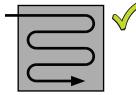


ACCOUSTIC ATTENUATORS

To lower the possible noise disturbance

90 DEGREE TURN

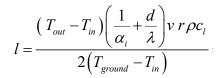
As the natural ventilation facilitates a direct connection, turns in the air tubes reduce possible noise disturbance from guts of wind or traffic



BLACKBOX

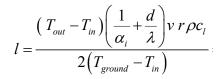
A theatre is basically a blackbox not allowing any sound or daylight in from the outside.

ADVICES


MAXIMIZE EXPOSURE

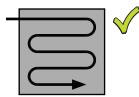
The longer the path past the thermal mass, the more it is able to exchange its temperature


LENGTH OF UNDERGROUND DUCTS


I = length of the necessary ducts (m)	
T _{out} = temperature of the outgoing air (°C)	20 °C
T _{in} = temperature of the ingoing air (°C)	24 °C
α_i = the heat transfer coefficient between the surface of the duct and the air	10 m ² K/W
$d/\lambda =$ thermal conductivity (m ² /K/W)	0,02 m ² K/W
T _{around} = temperature of the ground (°C)	14 °C
pc,air = specific heat air = 1200 J/m3K	1200 J/m ³ K
v = velocity (m/s)	1 m/s
r = radius (m)	3,91 m

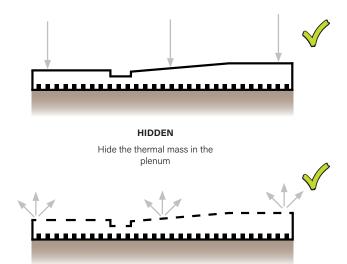
I = length of the necessary ducts (m) T_{___} = temperature of the outgoing air (°C) 20 °C T_{in} = temperature of the ingoing air (°C) 24 °C α_{i} = the heat transfer coefficient between the surface of the duct and the air 10 m²K/W d/λ = thermal conductivity (m²/K/W) 0,02 m²K/W T_{around} = temperature of the ground (°C) 14 °C pc,air = specific heat air = 1200 J/m3K 1200 J/m³K v = velocity (m/s) 1 m/s r = radius (m) 3,91 m

l = **72 meter**

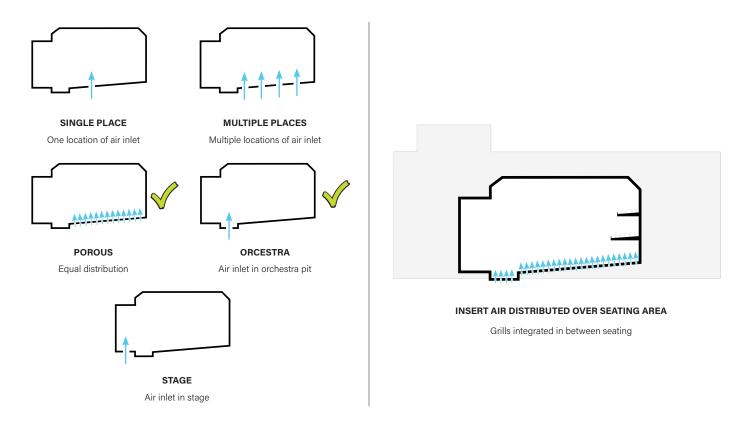

COOLING CAPACITY

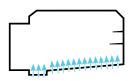
 $Q = mCp\Delta T$

Q = cooling capacity (W) Cp = specific heat air = 1200 J/m³K m = mass flow of air (m³/s) dT = temperature difference

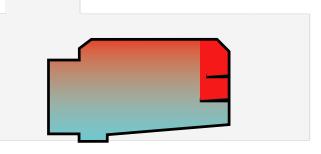

Substract

MAXIMIZE EXPOSURE


The longer the path past the thermal mass, the more it is able to exchange its temperature

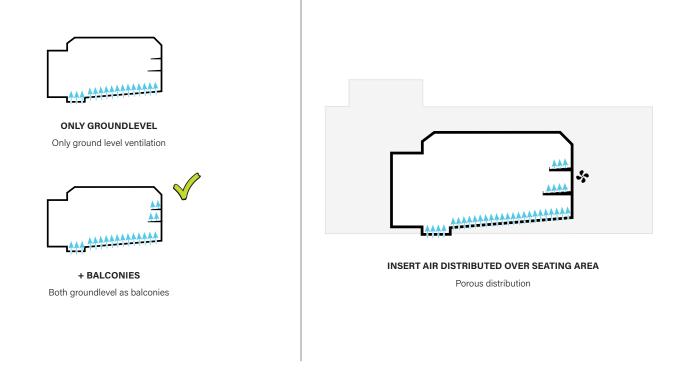

INTEGRATE

Seek to contribute to an architectural element



ONLY GROUNDLEVEL
Only ground level ventilation

+ BALCONIES Both groundlevel as balconies

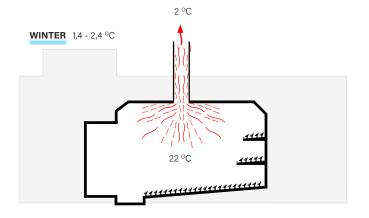


PREVIOUS RESEARCH:

The auditorium modelling also highlighted the problem of insufficient air movement around the upper level gallery seating. 'When we modelled the air flow, we found that it by-passed the galleries altogether'

Purcell, Architect, The Contact Theatre

SIZING IN- AND OUTLET


WORST CASE SCENARIO

SUMMER 18 - 22 °C

	January	February	March	Apr∥	May	June	July	August	September	October	November	December
1	1.5	-0,5	4.2	6.3	10.7	15.2	16,8	16,2	13,1	9.2	3.8	2
2	1,4	-0,6	4,0	5,9	10,3	14,7	16,3	15,8	12,7	8,9	3,7	2,
3	1,4	-0.7	3.8	5.4	10.0	14.3	15,9	15,3	12.4	8,7	3.6	1.
4	1,1	-1,0	3,7	5,0	9,8	13,7	15,5	15,0	12,2	8,5	3,5	2,
5	1,2	-1,1	3,5	4,7	9,5	13,7	15,1	14,7	12,0	8,2	3,2	2
6	1,1	-1,1	3,3	4,7	10,3	14,4	15,4	14,6	12,1	7,9	3,1	2
7	1,1	-1,2	3,1	5,2	11,5	15,3	16,3	15,3	12,2	7,9	3,0	2
8	1,2	-1,2	3,3	6,6	12,8	16,3	17,2	16,4	13,1	8,2	2,9	2
9	1,3	-0,7	4,0	7,8	14,0	17,2	18,2	17,6	14,2	9,0	3,2	2
10	1,5	-0,2	4,9	8,9	15,1	18,1			15,2	10,0	3,7	2
11	2,0	0,6	5,8	9,8	16, 1	19,1	20,4	19,8	16,1	10,7	4,5	2
12	2,6	1,2	6,9	10,4	16,7	19,8	20,9	20,4	17,1	11,6	5,4	2
13	2,9	1,7		11,0	17,2			21,2			6,1	3,
14	3,1	2,0		11,6	17,7				18,5		6,4	3,
15	3,1	2,1		11,6	17,7				18,6		6,4	
16	2,9	2,1		11,7	18,0	21,2	23,0	22,1	18,4	13,0	6,1	3,
17	2,7	1,7		11,6	18,0	20,9	22,8	22,0	18,0		5,7	3
18	2,4	1,2	7,3	11,1	17,2	20,2	22,4	21,8	17,2	11,6	5,3	2
19	2,2	1,0			16,6						4,9	2,
20	1,9	0,8	6,1	9,3	15,4	18,7	20,6	20,0	15,6	10,8	4,7	2
21	1,8	0,5		8,7	14,1	17,5		19,0	15,0	10,3	4,5	2
22	1,6	0,3	5,5	7,9	13,4	17,0	18,7	18,2	14,3	9,9	4,3	2
23	1,5	0,1		7,3	12,4						4,2	2
24	1,4	-0,1	4,6	6,8	11,9	15,7	17,4	17,0	13,3	9,4	3,9	2

BASE TO WORST MOMENT

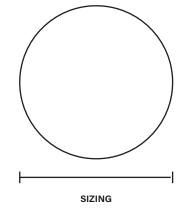
Summer

DISSIPATION IN WINTER

Porous distribution

STACK DRIVEN VENTILATION

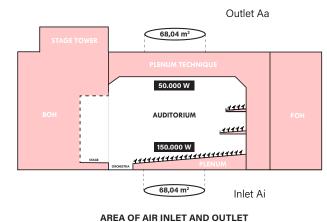
REQUIRED SIZE OF VENTILATION OPENINGS $\mathbf{A}_{_{in}} = \mathbf{A}_{_{out}} = \sqrt{2^*}\mathbf{A}_{_{e}}$


$$A_{e} \approx 5Qh^{-\frac{1}{2}}\Delta T^{-\frac{3}{2}}$$

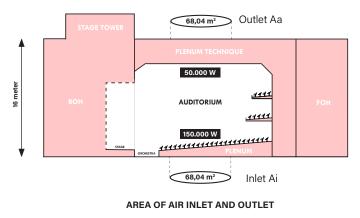
Ae= equivalent sizeventilationopenings[m2] dT = averageraisein temperature [K] Q= incomingheat [kW] (solar+ internalloads) h = heightdifferenceair inlet-outlet [m]

SIZE OF THE INLET AND OUTLET OPENINGS

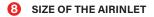
REQUIRED SIZE OF VENTILATION OPENINGS

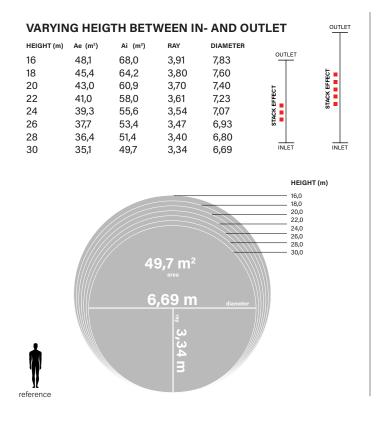


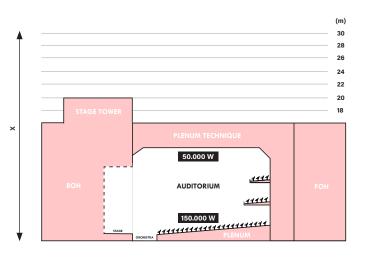

Ventilation area

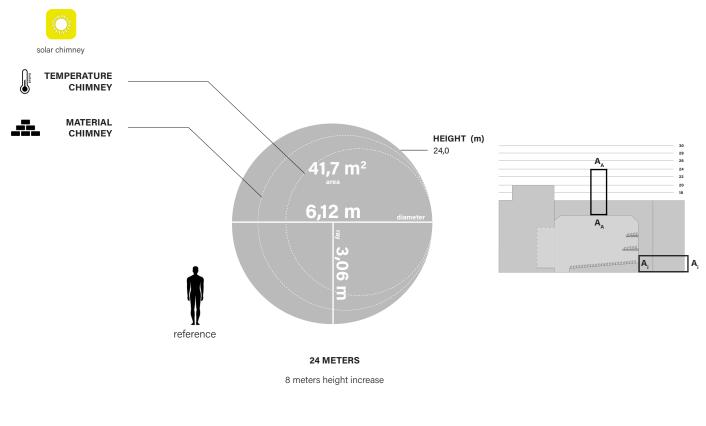

1 STACK DRIVEN VENTILATION **REQUIRED SIZE OF VENTILATION OPENINGS** $A_{in} = A_{out} = \sqrt{2*A_{e}}$ $A_e \approx 5Qh^{-\frac{1}{2}}\Delta T^{-\frac{3}{2}}$ Ae= equivalent sizeventilationopenings[m2] dT = averageraisein temperature [K] 3°C Q= incomingheat [kW] (solar+ internalloads) 200.000 W h = heightdifferenceair inlet-outlet [m] 16 m $A_e \approx 48,11 \text{ m}^2$ SIZE OF THE INLET AND OUTLET OPENINGS REQUIRED SIZE OF VENTILATION OPENINGS meter $\mathsf{A}_{\rm in}=\mathsf{A}_{\rm out}=\sqrt{2^*}\mathsf{A}_{\rm e}$ 9 $= \left[\frac{1}{A_i^2} + \frac{1}{A_a^2}\right]$ $\frac{1}{A_e^2}$ TAGE $A_i = A_a = \sqrt{2} A_e = 68,04 m^2$

Without Chimney


Size of the inlet and outlet

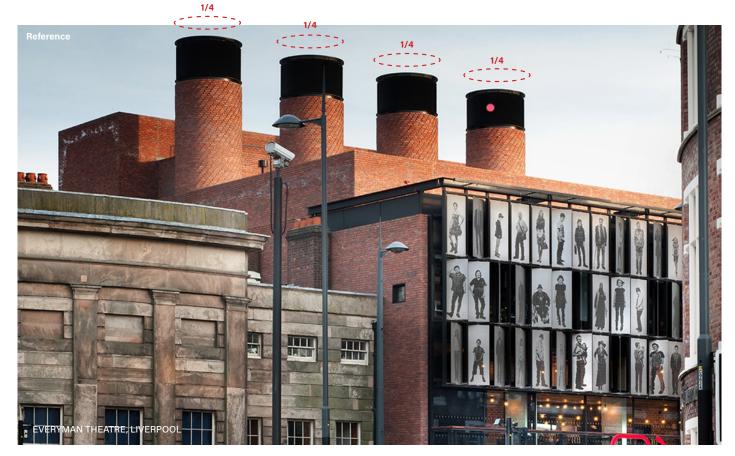


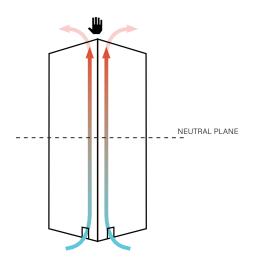

Without Chimney



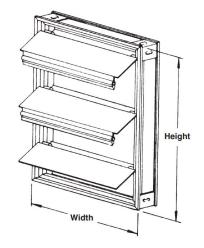
HEIGHT ABOVE THEATRE

Stack effect heights

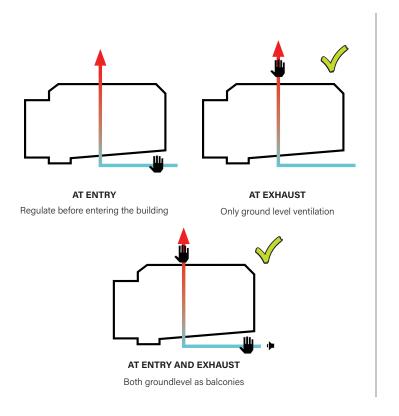

8 SIZE OF THE AIRINLET

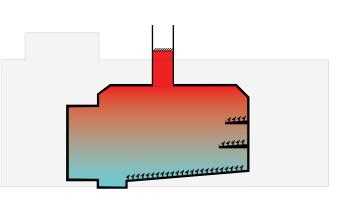

RESEARCH // THEATRE VENTILATION

8 SIZE OF THE AIRINLET


RESEARCH // THEATRE VENTILATION

STACK EFFECT


Most important to stop the air from flowing out, if you want to stop the stack effect. If the air cannot flow out, new air cannot enter



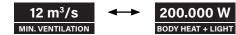
ACTUATOR CONTROLLED DAMPERS

Installed into shafts or doorways may dampers play a role in the stopping of air. These can be controlled by sensors or the building manager.

UPPER DAMPERS

Lower dampers may be installed as an extra to stop unwanted noise or guts of wind to come in but are not as necessary

PART 1: RETRIEVING INCOMING AIR


PART 2: INSIDE THE THEATRE

PART 3: THE EXHAUST

PART 4: ADDITIONAL MEASURES

HEAT DISSIPATION

HEAT DISSIPATION AT GIVEN VENTILATION RATE

$\Delta W = \rho c_{air} Q.f \Delta T [W]$

dW = warmteafvoer door ventilatie in W

dcair = specifieke warmte lucht = 1200 J/m3K

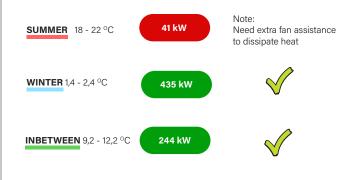
Q = ventilatiehoeveelheid in m3/s

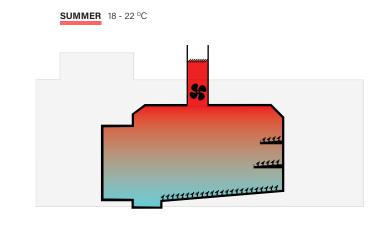
dT = gemiddelde temperatuurverschil tussen binnen en buiten

f = factor voor verschil tussen gemiddelde temperatuurverschil en Tuit-Tin

f = Tuit-Tin / delta T = (Tuit-Tbuiten) / (Tgem-Tbuiten)

		Summer	Winter	Inbetween
	17	21,9	2,4	12,2
	18	21,4	2,1	11,6
	19	20,7	1,9	11,0
	20	19,8	1,7	10,3
	21	18,6	1,6	9,7
	22	18,0	1,4	9,2
average (°C)		20,1	1,9	10,7
inside (19-25 °C)		22	22	22
difference (°C)		1,9	20,1	11,3

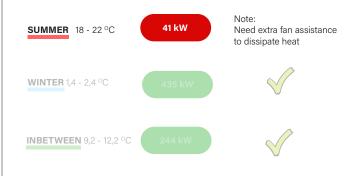



12 m/s

.9 20.111.3

1,5

HEAT DISSIPATION PER SEASON



LOW PRESSURE FAN

To initiate the air flow when the outdoor climate is too hot to do this.

HEAT DISSIPATION PER SEASON

FULL OCCUPANCY

200.000 W

NATURAL VENTILATION DUE TO HEAT

TEMPERATUURVERSCHIL DOOR HITTE PRODUCTIE

 $\Delta T = \frac{0,0279 \cdot \Delta W^{\frac{2}{3}}}{h^{\frac{1}{3}} \cdot f^{\frac{2}{3}} \cdot A_{a}^{\frac{2}{3}}} = 0,0279 \left($ ΔW^2 $h \cdot \overline{f^2 A_2^2}$

 $\begin{array}{l} dT = temperatuurverschil tussen binnen en buiten\\ dW = warmteafvoer door ventilatie\\ h = hoogteverschil tussen toevoeropening en afvoeropeningen in m\\ Ae = equivalente ventilatieopening in m2$ $f = Tuit-Tin / delta T = (Tuit-Tbuiten) / (Tgerm-Tbuiten)\\ \end{array}$

 $\Delta T = 2,65 \ ^{\circ}C$

BIJKOMENDE VENTILATIEVOUD

 $Q=C_{D}\times A_{e}\sqrt{2gh\times\Delta T/T_{a}}$ [m³/s]

- Q = ventilatiehoeveelheid in m3/s
- Cd = weerstandcoefficient, tussen 1 en 0,7
- hg = zwaartekrachtconstrante = 9,8 m/s2
- h = hoogteverschil tussen toevoeropening en afvoeropeningen in m
- dT = gemiddelde temperatuurverschil tussen binnen en buiten
- Ta = buitentemperatuur in K (circa 300 K)
- Ae = equivalente ventilatieopening in m²

HALF OF THE OCCUPANCY

NATURAL VENTILATION DUE TO HEAT

TEMPERATUURVERSCHIL DOOR HITTE PRODUCTIE

 $\Delta T = \frac{0,0279 \cdot \Delta W^{\frac{2}{3}}}{h^{\frac{1}{3}} \cdot f^{\frac{2}{3}} \cdot A_{a}^{\frac{2}{3}}} = 0,0279 \left($ ΔW^2 $h \cdot f^2 \overline{A_2^2}$

dT = temperatuurverschil tussen binnen en buiten

dW = warmteafvoer door ventilatie

h = hoogteverschil tussen toevoeropening en afvoeropeningen in m Ae = equivalente ventilatieopening in m2

f = Tuit-Tin / delta T = (Tuit-Tbuiten) / (Tgem-Tbuiten)

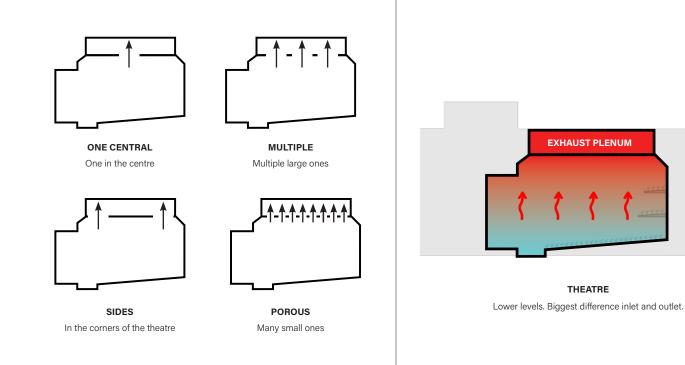
ΔT = 1,68 °C 🔶

BIJKOMENDE VENTILATIEVOUD

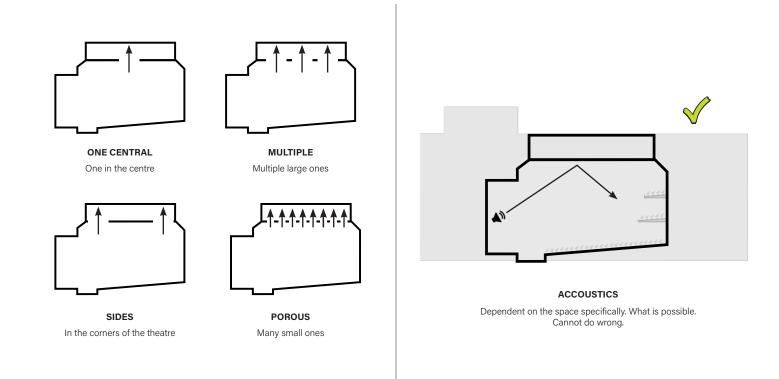
 $Q=C_{D}\times A_{e}\sqrt{2gh\times\Delta T/T_{a}}$ [m³/s]

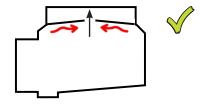
- Q = ventilatiehoeveelheid in m3/s
- Cd = weerstandcoefficient, tussen 1 en 0,7
- hg = zwaartekrachtconstrante = 9,8 m/s2

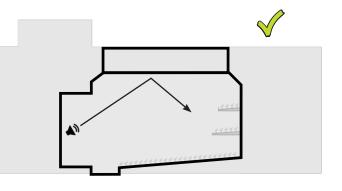
40,81 m³/s 🗡


- h = hoogteverschil tussen toevoeropening en afvoeropeningen in m
- dT = gemiddelde temperatuurverschil tussen binnen en buiten
- Ta = buitentemperatuur in K (circa 300 K)






O =



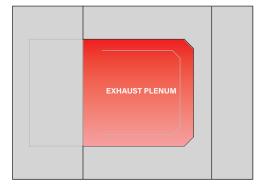
SLOPED TO HIGHEST POINT To not created accumulations of hot air

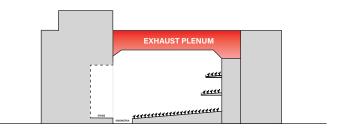
ACCOUSTICS

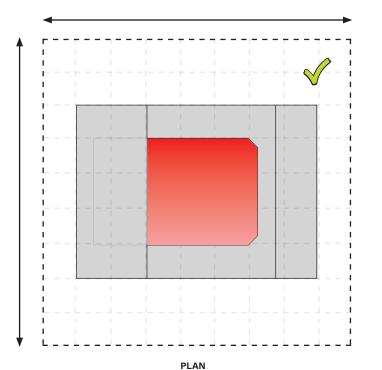
Dependent on the space specifically. What is possible. Cannot do wrong.

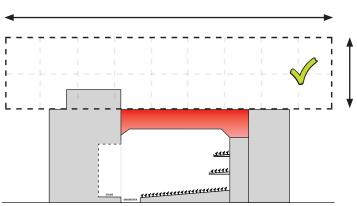
PART 1: RETRIEVING INCOMING AIR

PART 2: INSIDE THE THEATRE

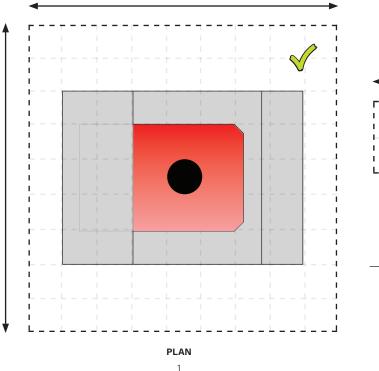

PART 3: THE EXHAUST

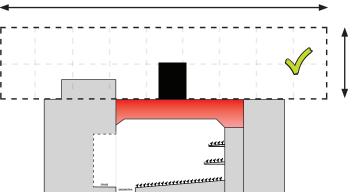

PART 4: ADDITIONAL MEASURES


(b LOCATION OF THE CHIMNEYS

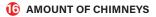


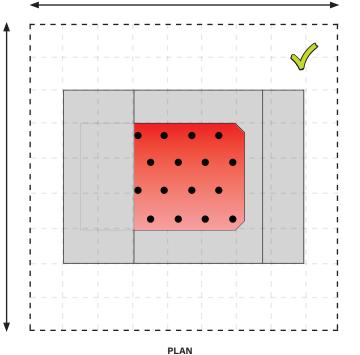
SECTION

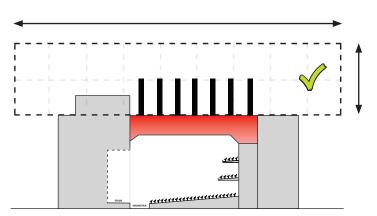



Anywhere in the proximity of the auditorium. Exact location not important.

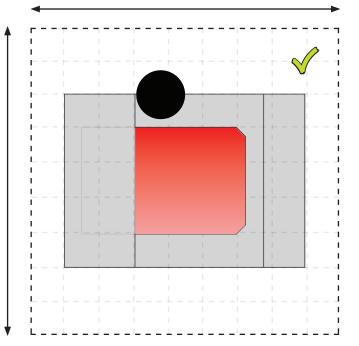
SECTION


The inlet into the chimney needs to be ábove the exhaust plenum

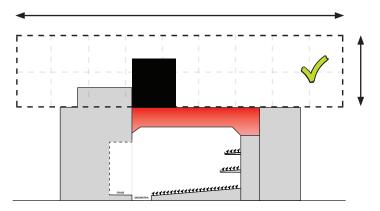

IOCATION OF THE CHIMNEYS



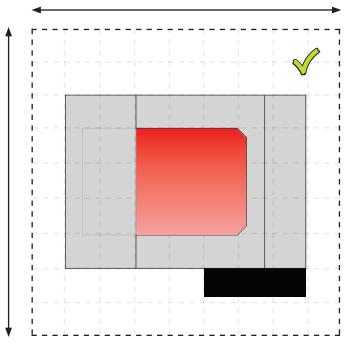
SECTION

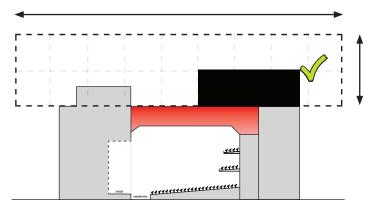


16

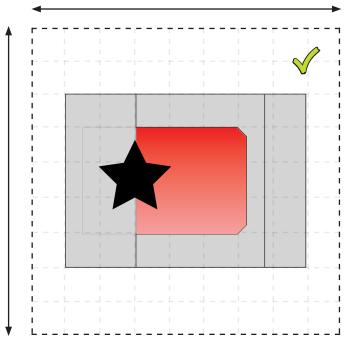

SECTION

16

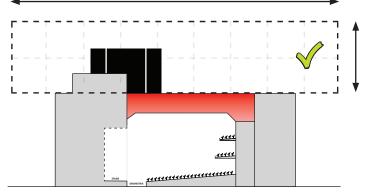


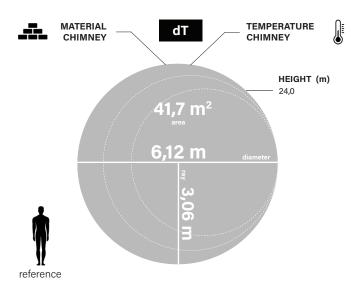

SECTION

1 Decentralized

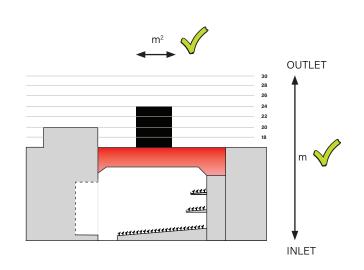


SECTION

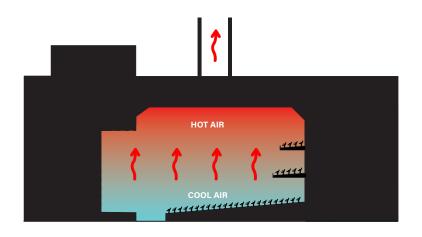

1 Decentralized



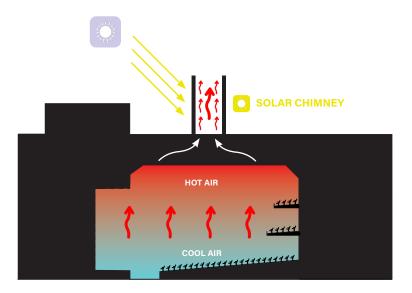
Odd shape


SECTION Odd shape

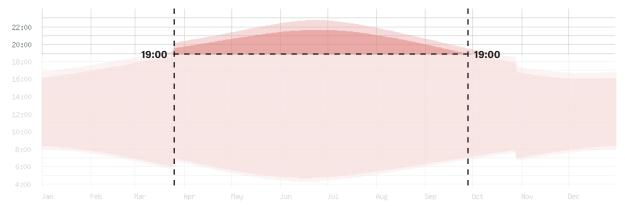
(6 AMOUNT OF CHIMNEYS



8 meters height increase

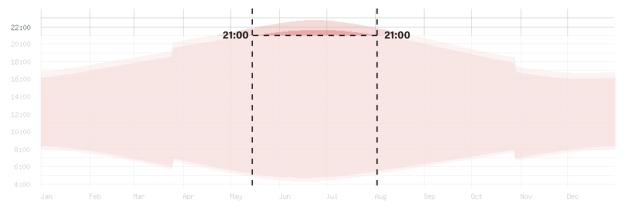


(B) MATERIAL EXHAUST CHIMNEYS



SUN ENHANCES HEAT INSIDE A CHIMNEY

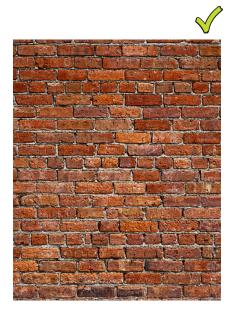
This stimulates the speed of the air rise inside the chimney


Sun hours in Berlin, Germany

MEAGER SUN EXPOSURE DURING SHOWS

To not created accumulations of hot air

MATERIAL EXHAUST CHIMNEYS

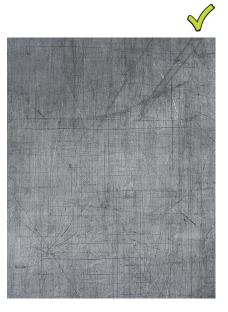

Sun hours in Berlin, Germany

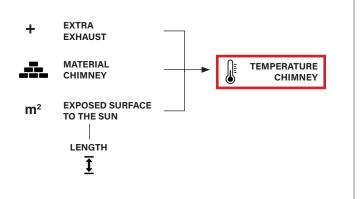
MEAGER SUN EXPOSURE DURING SHOWS

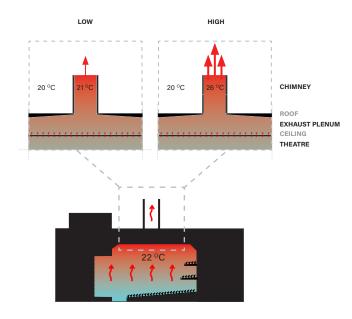
To not created accumulations of hot air

MATERIAL EXHAUST CHIMNEYS

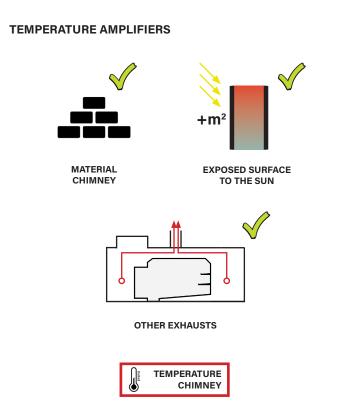
STONE / BRICK / CONCRETE

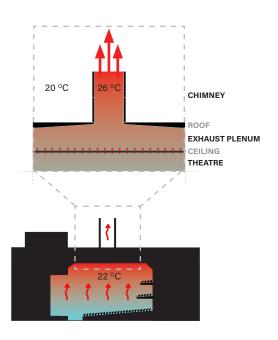

High thermal mass


PHASE CHANGE MATERIALS (PCM'S)


Change Phase at certain temperature range. Keep significant amount of energy

MATERIAL EXHAUST CHIMNEYS


STEEL High thermal conductivity



ENLARGED SECTION Auditorium, Plenum and Chimney

ENLARGED SECTION Auditorium, Plenum and Chimney

TEMPERATURE RISE IN CHIMNEY

$$\Delta T = \frac{0,0279 \cdot \Delta W^{\frac{2}{3}}}{h^{\frac{1}{3}} \cdot f^{\frac{2}{3}} \cdot A_{e}^{\frac{2}{3}}} = 0,0279 \left(\frac{\Delta W^{2}}{h \cdot f^{2} A_{e}^{2}}\right)^{\frac{1}{3}}$$

 $\begin{array}{l} dT = temperatuurverschil tussen binnen en buiten\\ dW = warmteafvoer door ventilatie\\ h = hoogteverschil tussen toevoeropening en afvoeropeningen in m\\ Ae = equivalente ventilatieopening in m2$ $f = Tuit-Tin - (delta T = (Tuit-Tbuiten) - (Tgerm-Tbuiten)\\ \end{array}$

 ΔW = Internal heat production (W) -

+

SOLAR HEAT

Solar heat gain (W) = $A_{exposed} (m^2) *$

+

exposed (

Solar radiation (W/m²)

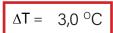
200.000 W

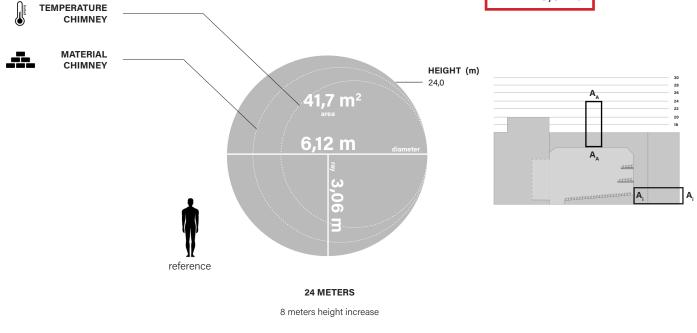
ADDITIONAL EXHAUSTS

W = Exhaust of the rest of the builidng

 ΔW = Internal heat production (W)+ Solar heat gain (W) + Additional Exhaust (W)

SOLAR HEAT RADIATION

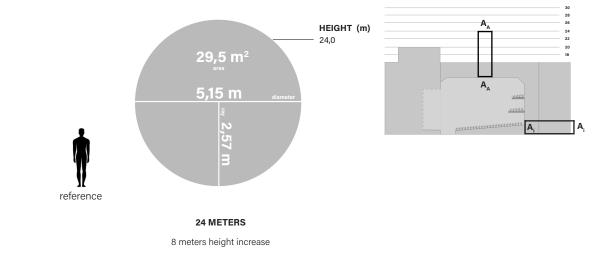

Month


1	2	3	4	5	6	7	8	9	10	11	12
149	223	369	418	418	459	448	403	346	275	251	118
Radiation Average hourly monthly solar heat radation (W/m ²)											

1 TEMPERATURE OF EXHAUST CHIMNEYS

RESEARCH // THEATRE VENTILATION

solar chimney


(E) TEMPERATURE OF EXHAUST CHIMNEYS

solar chimney

stack effect

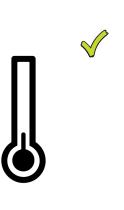
$$\Delta T = 6.0 \ ^{\circ}C$$


1 TEMPERATURE OF EXHAUST CHIMNEYS

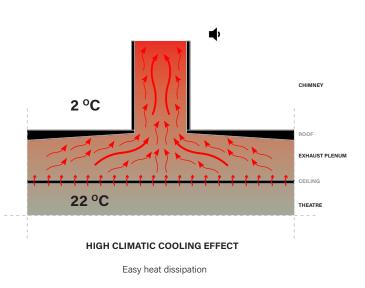
solar chimney

Î

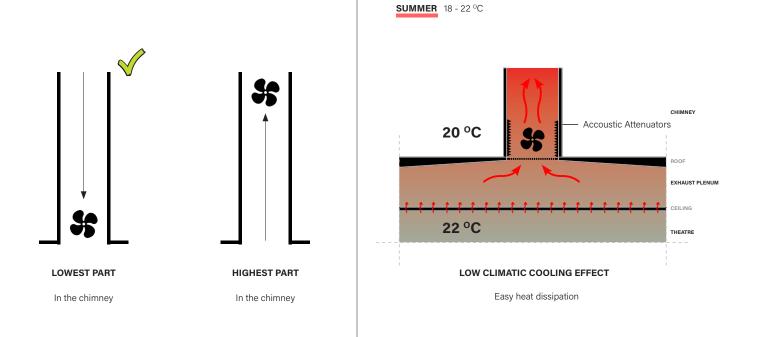
stack effect


 $\Delta T = 3,0$ °C

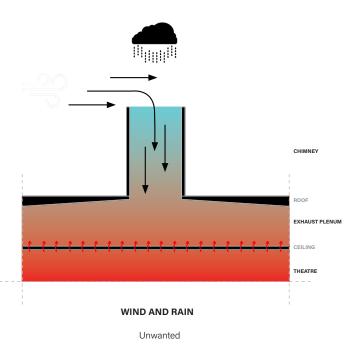
24 METERS


8 meters height increase

(E) TEMPERATURE OF EXHAUST CHIMNEYS


LOW AMBIENT TEMPERATURE

Easy heat dissipation

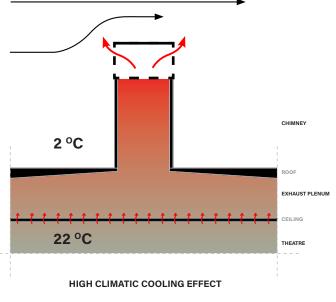

WINTER 1,4 - 2,4 °C

2 SOUND

REVERSING AIRFLOWS

Because of wind flows

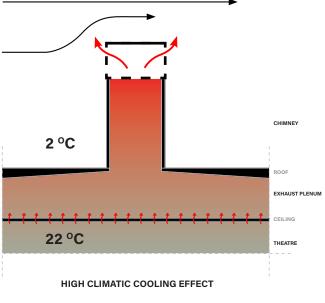
PART 3: THE EXHAUST WIND AND RAIN



Architectural Expression

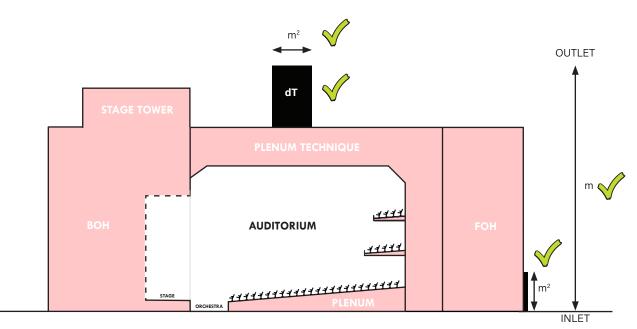
INTEGER

Architectural Expression



Easy heat dissipation

PART 3: THE EXHAUST



Easy heat dissipation

EXAMPLES

PART 1: RETRIEVING INCOMING AIR

2345678

õ

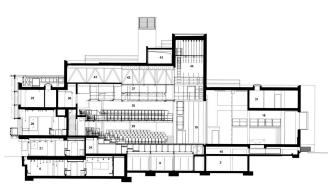
CONSIDERATION 2: RETRIEVING AIR FROM OUTSIDE CONSIDERATION 3: CARDINAL INTAKE CONSIDERATION 4: AIR TEMPERATURE CONSIDERATION 5: PATH THROUGH BUILDING CONSIDERATION 6: INTO AUDITORIUM CONSIDERATION 7: BALCONIES CONSIDERATION 8: SIZE OF THE AIRINLET CONSIDERATION 8: REGULATION INCOMING AIR

PART 2: INSIDE THE THEATRE

8900

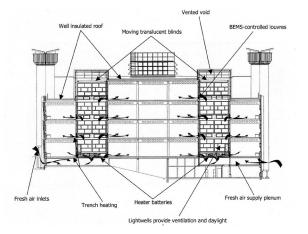
ā

CONSIDERATION 10: HEAT DISSIPATION PER SEASON CONSIDERATION 11: VENTILATION BY BUOYANCY CONSIDERATION 12: LESS OCCUPACY CONSIDERATION 13: AIR AT THE TOP OF THE AUDITORIUM CONSIDERATION 14: UPPER SIDE OF THE PLENUM


PART 3: THE EXHAUST

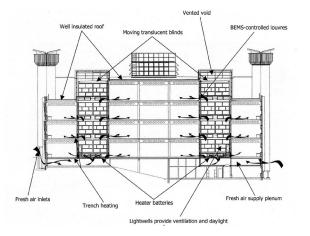
000000

CONSIDERATION 15: LOCATION OF THE CHIMNEYS CONSIDERATION 16: AMOUNT OF EXHAUST CHIMNEYS CONSIDERATION 17: LENGTH OF EXHAUST CHIMNEYS CONSIDERATION 18: MATERIAL EXHAUST CHIMNEYS CONSIDERATION 19: SOUND CONSIDERATION 20: WIND AND RAIN



Everyman Theatre Liverpool, England

CHIMNEY On top of building



The Contact Theatre Manchester, England

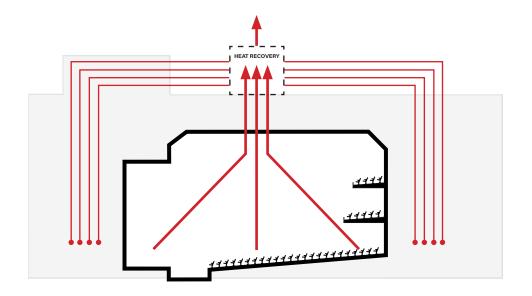
CHIMNEY On top of building

Lanchester Library Coventry, Engeland

CHIMNEY On top of building

Hexagone Balard, Ministry of Defence Paris, France

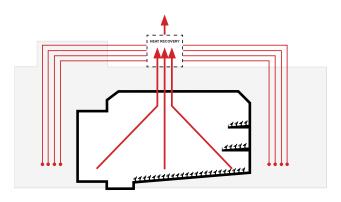
INTEGRAL PART Of the building


INTEGRAL PART Of the building design

PART 1: RETRIEVING INCOMING AIR

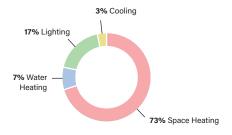
PART 2: INSIDE THE THEATRE

PART 3: THE EXHAUST


PART 4: ADDITIONAL MEASURES

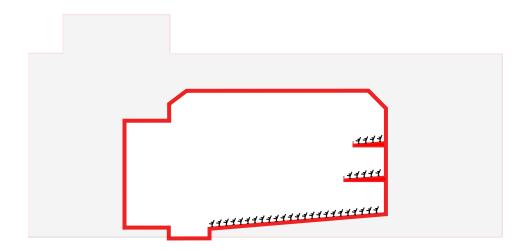
HEAT RECOVERY

As all the heat naturally centralizes in one or multiple locations, these spaces offer good space for heat recovery of the heated air. This can be used to heat other parts of the building.


HEAT RECOVERY

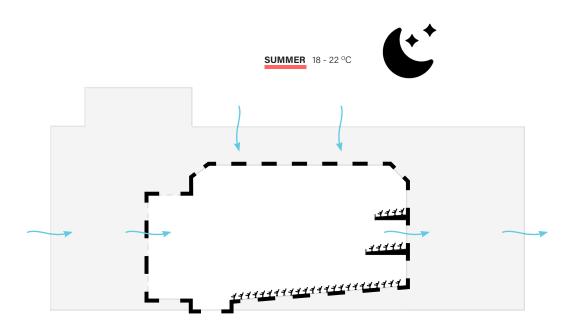
As all the heat naturally centralizes in one or multiple locations, these spaces offer good space for heat recovery of the heated air. This can be used to heat other parts of the building.

CENTRAL EUROPEAN REGION


Location of Berlin

AVERAGE ENERGY CONSUMPTION

Non-residential



SUMMER 18 - 22 °C

THERMAL MASS < 2 -3 °C in summer

High thermal mass of the theatre results in slower heating of the space as the high thermal mass slowly heats up due to daytime temperatures. This is especially effective with night ventilation.

NIGHT TIME VENTILATION

In summer we can cool the thermal mass of the structure by the colder outside temperatures.

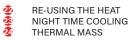
CONSIDERATIONS

PART 1: RETRIEVING INCOMING AIR

RETRIEVING AIR FROM OUTSIDE
CARDINAL INTAKE
AIR TEMPERATURE
PATH THROUGH BUILDING
INTO AUDITORIUM
BALCONIES
SIZE OF THE AIRINLET
REGULATE AIRFLOWS

PART 2: INSIDE THE THEATRE

99999


HEAT DISSIPATION PER SEASON VENTILATION BY BUOYANCY LESS OCCUPACY AIR AT THE TOP OF THE AUDITORIUM UPPER SIDE OF THE PLENUM

PART 3: THE EXHAUST

<u>ଚନ୍ତ୍ରଶ୍</u>ତ୍ରଶ୍

LOCATION OF THE CHIMNEYS AMOUNT OF EXHAUST CHIMNEYS LENGTH OF EXHAUST CHIMNEYS MATERIAL EXHAUST CHIMNEYS TEMPERATURE EXHAUST CHIMNEYS SOUND WIND AND RAIN

PART 4: ADDITIONAL MEASURES

Naturally Ventilated Theatre – Hybrid

 \checkmark

Mechanically Assisted