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Abstract

Crack growth is an important failure mechanism in many engineering materials. Numerical models for crack
growth have been developed within the framework of damage mechanics. All these models aim for the same
goal, obtaining accurate results for crack growth under various loading conditions. Many damage models
are based upon the cohesive crack approach. However, level set based models provide advantages compared
to the cohesive crack models with regard to fatigue analysis. Latifi et al. [9] proposed an alternative method
to the existing thick level set (TLS) method, the interfacial thick level set (ITLS) model. The use of interface
elements made the model more suitable to simulate several failure processes. In this thesis it is demonstrated
that this method suffers from a dependency on the initial interfacial stiffness for the global response of a sys-
tem by conducting a parameter study under quasi-static loading conditions. All interfacial parameters, which
include damage shape parameters, damage length and initial stiffness, that are of interest for the ITLS model
are investigated, to measure the individual influence of each parameter on the global response. This param-
eter study proves that for a varying value of the initial interfacial stiffness parameter K the global response
varies as well. This gives motivation to conduct further research on the removal of the initial interfacial stiff-
ness from the current ITLS model.

Two methods are developed to overcome this initial interfacial stiffness dependency. The first method
assumes that the initial interfacial stiffness dependency is caused by the current formulation of the constitu-
tive law of the interface. A new expression for the interfacial stiffness is adapted after which all constitutive
relations are updated. Due to the adapted formulation for the interfacial stiffness, the bounds for the damage
function also have to be adapted resulting in the addition of a lower bound lbound. The new method shows a
perfect agreement with the current ITLS model, which validates the method as an accurate alternative. Com-
pared to the current ITLS model, method 1 allows for the control of the initial stiffness of the undamaged part
of the interface by changing lbound without affecting the global response. However, when executing simula-
tions for a varying initial interfacial stiffness K the same problem as for the current ITLS is observed. It can
be concluded that in a way this method removes the dependency on the initial interfacial stiffness but the
initial interfacial stiffness parameter K should then remain constant. Furthermore, the calibration process is
not simplified compared to the current ITLS model. For this reason method 1 is rejected as the final solution
to the problem and a second method is proposed.

The second method assumes a direct relation between the damage parameter c1 and the initial interfacial
stiffness parameter K . This damage parameter is responsible for the steepness of the damage profile. The
results from the parameter study showed that an increase of one of these parameters results in opposite be-
haviour for the initial stiffness of the global response. The leading hypothesis becomes that an increase in the
stiffness parameter K can be neutralized by an increase in the damage parameter c1. Proportionality between
both parameters is assumed. By trial and error the proportionality is found to be one to one. When using this
proportionality condition, simulations with different values for the initial interfacial stiffness showed a per-
fect agreement for the load-displacement and the crack growth responses. Moreover, the proportionality
condition is accurate for both a linear elastic (LE) material and an elastic-plastic (EP) material. The propor-
tionality condition is proven by elaborating the interfacial stiffness over the damaged zone. This elaboration
is done both numerically and analytically and proves that there is a one to one proportionality between c1

and K , which validates the replacement of c1 by a constant c multiplied with K . Lastly, the method should be
compared to a response obtained through a different type of analysis. The method is compared with the solu-
tion of an analytical analysis resulting in a very good agreement for both a LE and an EP material. Therefore,
method 2 can be approved as a solution to the initial interfacial stiffness dependency problem.

The adapted ITLS model following method 2 with the proportionality condition is proven to be accurate
and robust for simulations with a quasi-static loading type. A study on fatigue loading with the adapted ITLS
was also carried out. For the adapted model to be valid, the amount of plasticity and the computed variation
of energy release rate should be independent of the choice for the initial interfacial stiffness K . The results
show that such behaviour is obtained for a compact-tension test. Therefore, the adapted ITLS model seems to
be accurate for simulating crack growth under fatigue loading. However, further research on the ITLS model
for fatigue is necessary in order to propose the adapted ITLS model as the new approach for crack growth
simulation under any type of loading.
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1
Introduction

The two goal of this research are to prove that there is an initial interfacial stiffness dependency in the inter-
facial thick level set method and to make adjustments to this interfacial thick level set method regarding the
constitutive relations within the interface elements. In this chapter the motivation of this research is given
and the research objective is presented. Finally, an overview of the content of this report will be presented.

1.1. Background

Crack growth and subsequently delamination or rupture is an important failure mechanism in several ma-
terials. To simulate this failure mechanism, many numerical models have been developed in the framework
of damage mechanics. Most models for delamination analysis are based upon the cohesive crack approach.
This approach considers a small fracture process zone (FPZ) around the crack tip. Cohesive tractions are
defined as a function of displacement jumps using a single simplified constitutive relation, the traction-
separation law. Interface elements are used in finite element programs to implement the cohesive zone
models. These elements define the discontinuity at the interface of a laminate or at the crack tip in met-
als for example [9]. Schellekens and De Borst [18] were the first to use interface elements in the context of
delamination modeling.

There are currently two critical issues concerning the cohesive crack models. The first issue is the num-
ber of interface elements applied in the cohesive model. If the mesh is not sufficiently refined, the load-
displacement response will not be smooth. Oscillations may appear in the response, leading to inaccurate
results. However, small elements for analyses on structures of industrial scale will lead to excessive com-
putational work. To overcome this problem Turon et al. [20] proposed to reduce the maximum interfacial
strength, which results in a larger process zone. This enables an accurate simulation with an almost 10 times
coarser mesh compared to an analysis with a nominal interface strength, while retaining an accurate sim-
ulation. However, a lower interfacial strength may lead to an overestimation of the predicted delamination
area. For elastic-plastic material behaviour this can give issues as well. A lower interfacial strength means that
the plastic strains are lower, which potentially can be an important factor for fatigue analysis with plasticity
involved.

The second issue is related to extending cohesive zone models to fatigue analysis. Cohesive zone mod-
els are a successful technique for modeling monotonic fracture. However, the cohesive zone models are not
capable of modeling the cyclic degradation observed in fatigue loading. In fact, the crack will automatically
be apprehended in case of a constant amplitude load. This has given rise to a range of new cohesive zone
models each with their own definition to ensure continuous crack growth under cyclic loading. Nguyen et al.
[16], Roe and Siegmund [17] and Ural et al. [21] all came up with a new model. They all shared the common
vision that damage evolution should somehow be related to fracture mechanics parameters and processes,
albeit in different ways. However, the damage evolution laws are generally phenomenological in nature and
damage and fracture are not clearly linked. An accurate extraction of the energy release rate is required to
link the damage growth to Paris’ law. The Paris law, which is fracture mechanics based, relates the stress in-
tensity factor range to a crack growth rate. Therefore, damage mechanics and fracture mechanics should be
linked to each other for fatigue analyses. Turon et al. [19] tried to bridge the gap between fracture and dam-
age mechanics by relating the damage evolution to the empirical fatigue crack growth law. In his work, Paris’
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2 1. Introduction

law is evaluated at local level, through input of a local energy release rate. However, this is not a straightfor-
ward method since the conversion of local to global fracture parameters gives difficulties. Moreover, a local
treatment can lead to localization and mesh dependency.

It is shown in several earlier works, like Voormeeren et al. [24] and Latifi et al. [8], that level set based mod-
els are a better match with the Paris’ law and are also algorithmically more robust than continuum damage
models, such as the cohesive zone model.

The most recent level set based model is the interfacial thick level set method (ITLS). This method has
been proposed as a new approach for crack growth simulations and is suited to overcome the two issues
regarding cohesive zone models. The ITLS requires the definition of damage as a function of distance to a
damage front (see Fig. 1.1). There are several benefits to the ITLS model. One of the most valuable benefits is

Figure 1.1: ITLS method: damage grows from 0 to 1 over a band with width lc behind the level set front at φ= 0 [8].

that it allows for robust evaluation of the energy release rate and straightforward implementation of a crack
growth rate. For this reason the ITLS method is very suitable for fatigue crack growth analysis, since the Paris
law describes the crack growth rate as a function of the energy release rate [8, 24].

The theoretical framework for the ITLS was developed by Latifi et al. [9] and uses a three dimensional
(3D) formulation of the model. This can easily be reduced to a two dimensional (2D) formulation. For a
2D formulation the line describing the damage front, reduces to a single point, the crack tip. The damaged
zone is a fixed length behind this point along which the undamaged material transforms gradually to a fully
damaged material. The amount of damage at a certain location within the damaged zone is determined from
the damage function, which is a function of the level set fieldφ. In this way crack formation is simulated. The
interface elements are used to describe the crack path and have the advantage that the energy of the bulk is
decoupled from the energy in the crack, which is related to the propagation of the crack.

1.2. Problem definition

The current ITLS model has proven to be a very robust and accurate model to simulate crack growth in quasi-
static and fatigue load cases. However, the suspicion exists that there is a dependency on the initial interfacial
stiffness for the global response of a system. The initial stiffness of the interface is a purely numerical param-
eter without a physical meaning and should therefore have no influence at all on the physical behaviour of
the material.

The suspicion of a dependency on the initial interfacial stiffness is not discussed in any scientific works.
However, in previous research by Voormeeren et al. [24], using an ITLS model with fatigue loading, different
responses were observed when various values for the initial interfacial stiffness were adopted. The research
showed that a variation of the initial interfacial stiffness influenced the predicted crack growth. This gives a
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reason to suspect that the method is sensitive to the initial interfacial stiffness. Since this is the only research
discussing the interfacial stiffness parameter explicitly, the sensitivity to this parameter should be investi-
gated.

If a dependency on the initial interfacial stiffness for the current ITLS model can be proven, the next
problem occurs. For the ITLS model to be an accurate and robust crack growth model, the dependency
on the initial interfacial stiffness should be eliminated. This dependency would complicate the calibration
procedure for identifying a suitable damage function for a given material, which is necessary for realistic
crack formation. This motivates this research that will analyze the effects of the initial interfacial stiffness,
with the aim to remove this spurious effect.

On top of the problem with the initial interfacial stiffness, the influence of plasticity on crack growth is
of interest, since the suspicion for the initial interfacial stiffness dependency originates from fatigue analysis
with plasticity involved. The general idea is that formation of a plastic zone around the crack tip influences
the speed of crack growth. The residual plastic deformation can even lead to crack closure [5]. This happens
for fatigue modeling with cyclic tensile loading. Plasticity also has an effect on the crack growth for quasi-
static analysis. However, the effect is captured better through fatigue analysis with the use of an overload.
Such an analysis can give more insight in the capability of the ITLS method to capture the influence of plas-
ticity on crack growth in a specimen of a ductile material. When a solution can be found to the initial global
stiffness issue, it would be interesting to investigate how an adapted ITLS model responds in a fatigue analy-
sis. If the possible adjustments to the ITLS formulation are indeed applicable to fatigue analysis, the adapted
ITLS model can be proposed as an accurate and robust approach for simulating crack growth under various
loading types.

1.3. Research objective

The first research objective of this thesis is to investigate whether there is a sensitivity to the initial stiffness of
the interface in the current ITLS model. If this is the case, the second objective becomes to remove the sensi-
tivity to the initial interfacial stiffness. The choice for an initial interfacial stiffness should be decoupled from
all other interfacial quantities, such as the damage function. To achieve the required results, the following
research questions and sub-questions need to be answered:

1. Is there an initial interfacial stiffness dependency in the current formulation for the interfacial thick
level set model?

I Are the effects significant for both linear elastic and elastic-plastic materials?

2. How can the formulation of the current ITLS model be adapted such that the effects on the global
behaviour, resulting from the initial interfacial stiffness, are removed?

I Is it possible to adapt the formulation such that the renewed ITLS is applicable to both elastic and
elastic-plastic materials in a quasi-static analysis?

II Does the adjusted method result in accurate solutions for different types of specimen and load
cases?

1.4. Overview of report

This report is structured as follows: Chapter 2 presents the theoretical background of the cohesive zone and
thick level set models. Chapter 3 presents a parameter study to investigate the dependency of the ITLS model
on the initial interfacial stiffness. All parameters that are relevant to the behaviour of the interface are varied
and compared. Chapter 4 presents an overview of two methods on improving the quasi-static ITLS model
and results of a comparison between one of the formulated models and analytical solutions. Chapter 5 shows
the results of the fatigue analyses with plasticity and an overload. Finally, in Chapter 6 conclusions and rec-
ommendations are presented.





2
Literature

In this chapter, the theoretical background that is needed to understand and improve the ITLS model is pre-
sented. In the first section the cohesive zone model with interface elements is discussed. Section 2.2 discusses
the Thick Level Set (TLS) concept and subsequently the expansion to the ITLS model for two-dimensional
(2D) analysis is explained in section 2.3. The ITLS model allows for several material models to be used. This
research focuses on linear elastic and elastic-plastic material models. Linear elastic material models are very
straightforward, plastic material models however need to be elaborated to broaden the understanding such
that plasticity can be combined with fatigue for crack growth analyses. Therefore, the theory for fatigue anal-
ysis and plasticity in an ITLS model is needed, which is presented in sections 2.4 and 2.5. Finally, the type of
loading used during the research is elaborated in section 2.6.

2.1. Cohesive zone method

The cohesive crack concept was first introduced by Dugdale [4] who considered a thin plastic plane in front
of a notch. During the years the concept was elaborated to a finite element model by Hillerborg et al. [6]. The
analysis of the initiation and growth of a crack under mode-I loading was carried out with this model. It was
the basis for current cohesive zone models. In the current models it is assumed that a cohesive damage zone
develops near the crack tip. The cohesive zone model (CZM) approach is characterized by the properties of
the bulk material, the crack initiation condition and the crack evolution function. For the CZM a cohesive law
is considered that relates the cohesive tractions to the displacement jumps along the crack plane. Damage
initiation is related to the interfacial strength, τ0, which is the maximum traction in the traction-displacement
jump relation. The area beneath the traction-displacement jump relation is equal to the fracture toughness,
Gc . There are several types of constitutive laws possible in cohesive elements, however the law with a bilinear
relation between the tractions and displacement jumps is used most often (see Fig. 2.1). The initial slope of
the constitutive relation is referred to as the initial interfacial stiffness, K [20].

Figure 2.1: Bilinear cohesive law with initial stiffness K

In delamination models for 2D simulations crack growth is limited to a straight line and therefore cohesive
damage models are mostly applied in combination with interface elements. In numerical models interface
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6 2. Literature

elements are commonly used to describe a discontinuity along a predefined crack path. The damage is in-
cluded in these interface elements by means of a damage parameter d , which describes the gradual decrease
of the initial cohesive stiffness of the material. The cohesive stiffness then relates the displacement jump
∆ to the corresponding cohesive traction τ, also known as the above mentioned constitutive relation for a
cohesive zone model. The constitutive relation is derived from the definition of the free energy ϕ:

ϕ(∆,d) = 1

2
(1−d)∆T K∆ (2.1)

τ= ∂ϕ

∂∆
= (1−d)K∆ (2.2)

where K represents the initial cohesive stiffness. Since interface elements are used, the energy related to
crack propagation is decoupled from the energy related to the bulk material, which makes the method also
very convenient for problems involving plasticity.

The cohesive zone method has a limiting factor, which is the element size requirement. It is necessary to
use a mesh with elements that are several times smaller than the cohesive zone length to assure robustness
and accuracy. Clearly, such a requirement limits the size of the specimens that can be analyzed within an
acceptable computation time [22].

2.2. Thick level set method

The thick level set (TLS) method is a method for modeling damage and fracture in solids. The TLS model was
derived by Moës et al. [14] from the existing level set models as a continuum damage model. Similar to other
continuum damage models a damage variable progressively reduces the stiffness of the material. However,
in this method the damage variable is defined as a function of the distance to a moving front. This results
in a moving band of damage. Furthermore, the model contains a non-local treatment to avoid spurious
localization. Bernard et al. [2] improved the model to a robust and easy to implement model with an explicit
damage growth algorithm. The main idea of the TLS approach is to locate a damaged zone in a material. This
is where the advantage of the TLS lies: different damaged zones in a geometry can be captured through a
single level set function. A level set function with multiple damaged zones is depicted in Fig. 2.2.

Figure 2.2: Example of multiple damaged zones with a single level set function in the domainΩ

The level set φ= 0 separates the domainΩ into an undamaged and damaged zone. It is a signed distance
function of which its value φ(x) is the minimum distance between x and the iso-zero of the level set field
φ, called the damage front. In the damaged zone damage is considered a function of the level set field, d =
d(φ). The damage runs from 0 to 1 as the level set field goes from 0 to lc , respectively. This makes that the
minimal distance between a point with d = 0 and a point with d = 1 is lc , preventing aforementioned spurious
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localization. Mathematically the damage is expressed as follows:
d(φ) = 0, φ≤ 0

d(φ) = 1, φ≥ lc

d ′(φ) ≥ 0, 0 <φ< lc

(2.3)

Moës et al. [14] showed that the TLS approach is very promising for several reasons, of which a few are
mentioned here:

• The non-local treatment is restricted to the damaged zones and it only requires a special treatment in
the zone 0 ≤ d ≤ 1, leading to lower computational costs.

• The transition from damage to crack is automatic, no additional computation is required.

• The TLS model is algorithmically robust due to the staggered solution scheme, which means that the
displacements and damage are computed sequentially instead of iteratively.

Within the framework of the TLS, damage is automatically updated by describing a crack increment. The
prescribed crack update implies an update of the level set φ, which successfully shifts the damage function.

Some characteristics of the quasi-static continuum TLS model are very suitable for 3D fatigue analysis,
since the energy release rate can be computed non-locally and the crack growth rate is imposed from there.
However, the continuum approach is not very suitable for ’normal’ delamination analysis. Therefore, a dis-
continuous version of the TLS is developed for crack growth modeling under quasi-static (and fatigue) load-
ing conditions. This new discontinuous version of the TLS is called the interfacial thick level set.

2.3. Interfacial thick level set method

The interfacial thick level set (ITLS) model can be seen as an adaption to the TLS model to provide an alter-
native to the cohesive zone model. Similar to the CZM, a traction-separation relation involving damage is
assumed as the constitutive model of the interface. However, contrary to the CZM, damage is not an explicit
function of the displacement jump across the surface but a function of a level set fieldφ on the interface. The
level set field is defined in the same manner as for the TLS model as described in Eq. (2.3) [12].

The interfacial thick level set model is, as stated above, a discontinuous damage model for modeling crack
growth along a predefined plane. Damage is applied to an initially stiff interface and the configurational force
is computed from the displacement jumps of the interface. The use of interface elements accommodates the
discontinuity of the model. Latifi et al. [9] found that the model results are not sensitive to the chosen width
of the damaged zone, and if the width is increased the elements can be chosen larger. An independent stress
based initiation criterion is introduced so that, in contrast with cohesive zone models, the size of the numer-
ical FPZ can be increased to mitigate mesh requirements without causing spurious initiation of damage.

The solution algorithm for the ITLS model can be seen in Fig. 2.3. As mentioned before the TLS model pro-
vides a staggered solution scheme [2]. In the ITLS model this same staggered solution algorithm is adopted.
The solution process starts with a given level set field φ(x). The iso-zero of the level set field implicitly de-
fines the damage front location or, in the case of 2D, the crack tip location. Since for 2D situations the crack
has reduced to a single line, the level set field is just the distance to the crack tip. The damage distribution
follows from the given level set field through a predefined damage function d(φ). The displacement jumps
(∆) are obtained through standard finite element computation and the tractions (τ) are obtained through the
constitutive relation for an interface element. This constitutive relation is described in Section 2.3.1.

Since the damage distribution is fixed, the displacement jumps can be used to compute the energy release
rate (G) along the damage front. For 2D situations the damage front collapses into a point, the crack tip. This
research focuses on 2D simulations, therefore the energy release rate is computed along a line, the damage
band. This is done by numerical integration of the local energy release rate over the damaged zone. The
computed energy release rate allows to compute the crack tip movement, which then is used to update the
level set field. The new level set field values are then used in the next time step.

It has been shown that the ITLS model is very suitable for fatigue analysis. A crack growth rate can be
imposed as the front velocity. This makes the method suitable for implementation of crack growth relations
that relate crack growth rate to energy release rate, such as the widely used Paris’ law for fatigue crack growth.
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Figure 2.3: Solution algorithm for the ITLS model in 3D [9]

2.3.1. Local governing equations
For the CZM the definition of free energy was used to derive the constitutive law of an interface element
(See Eq. (2.1)), which is copied in the ITLS model. The constitutive law of an interface element relates the
displacement jump ∆ to the traction τ in a material discontinuity. The free energy is expressed as:

ϕ(∆,d) = (1−d)ϕ0
(
∆i

)−dϕ0
(
δ1i 〈−∆1〉

)
(2.4)

where ∆= (∆1,∆2)T is a vector that contains the displacement jump in a local coordinate frame between the
two facets of the interface. ∆1 is the normal displacement jump and ∆2 is the shear displacement jump. The
scalar damage parameter d follows from the damage function, which is a function of the level set field (φ).
This definition of the damage is different from the definition used in the cohesive zone method, where the
damage is a function of the displacement jump. The variable ϕ0 is defined as:

ϕ0(∆) = 1

2
∆i Kδi j∆ j i = 1,2; j = 1,2 (2.5)

where K is the initial interfacial stiffness, which acts similar as the initial cohesive stiffness in a CZM model.
The initial interfacial stiffness is a purely numerical parameter without a physical meaning that is present
to ensure that the interface is stiff such that is does not contribute to the elastic deformation in a specimen
before opening of the crack.

The traction at the discontinuity is obtained through differentiation of the free energy with respect to the
displacement jump:

τi = ∂ϕ

∂∆i
= (1−d)Kδi j∆ j −dKδi jδ1 j 〈−∆1〉 (2.6)

The local driving force is obtained by differentiating the free energy with respect to the damage:

Y =−∂ϕ
∂d

=ϕ0
(
∆i

)−ϕ0
(
δ1i 〈−∆1〉

)
(2.7)

2.3.2. Damage definition
In Section 2.2 the damage definition of the TLS method is already briefly described. A length scale lc is defined
in the wake of the crack tip or front which determines the size of the damaged zone between the sane and
fully damaged material (See Fig. 2.4).

The thick level set method provides the distance of every point inside the damage band to the crack tip
using a signed distance function. The mathematical interpretation of the damage parameter was already
given in Eq. (2.3). The damage d(φ) is a continuous function that can be differentiated on the domain (0 <
φ< lc ).
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Figure 2.4: Damaged zone between sane and fully damaged material and damage distribution

There are several options for the definition of the damage function. In this research two definitions are
adopted. The first damage definition was proposed by Bernard et al. [2]:

d(φ) =


0, φ≤ 0

c2 arctan

(
c1

(
φ
lc
− c3

))
+ c4, 0 <φ< lc

1, φ≥ lc

(2.8)

where satisfying the conditions given in Eq. (2.3) determines c2 and c4:

c2 =
(
arctan

(
c1

(
1− c3

))−arctan
(−c1c3

))−1

(2.9)

c4 =−c2 arctan
(−c1c3

)
(2.10)

The parameters c1 and c3 are user defined, where c1 determines the size and slope of the damage function
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Figure 2.5: Three different shapes of the damage function as proposed by Bernard et al. [2]

and c3 determines the location in the damaged band at which the damage starts to grow at a higher rate. The
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damage function is governed by five parameters: lc , c1, c2,c3 and c4. An example of three different shapes of
this damage function is depicted in Fig. 2.5. The values for the user defined parameters c1 and c3 are (c1 = 10,
c3 = 1) for d1, (c1 = 15, c3 = 0.5) for d2 and (c1 = 100, c3 = 0.01) for d3.

The second damage definition was proposed by Voormeeren et al. [24]. It should be noted that this dam-
age definition is equal to the first damage definition when the value for c3 is set to zero.

d(φ) =


0, φ≤ 0

1
arctan(c1) arctan

(
c1

φ
lc

)
, 0 <φ< lc

1, φ≥ lc

(2.11)

where the boundary conditions from Eq. (2.3) are met automatically. In this damage definition the user
defined parameter c1 determines the size and slope of the function. Opposite to the first damage function,
this function is only governed by two parameters, lc and c1. The damage function is depicted in Fig. 2.6. The
values for the user defined parameter c1 are (c1 = 10) for d1, (c1 = 15) for d2 and (c1 = 100) for d3.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

φ/lc

D
am

ag
e

d1
d2
d3

Figure 2.6: Three different shapes of the damage function as proposed by Voormeeren et al. [24]

2.3.3. Energy release rate
In the TLS approach the front energy release rate is computed by integrating the local driving force over the
damaged zone. When the damage front moves infinitesimally from A(0) to a new location A′ in the sane
material, the distance from any point P (φ) to the crack tip will change. Therefore, damage in these points,
which is defined as function of shortest distance to the front, will be updated (See Fig.2.7). This results in a
variation of the free energy in these points.

The energy G released due to the movement of A can be computed by integrating the local variation of
free energy over the damaged band. For 2D, the integration takes place along a line:

G =−
lc∫

0

∂ϕ

∂φ
dφ=−

lc∫
0

∂ϕ

∂d

∂d

∂φ
dφ (2.12)

Using the definition of the local driving force in Eq.(2.7), the above equation can be rewritten to:

G =
lc∫

0

d ′(φ)Y dφ (2.13)
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Figure 2.7: Updating damage distribution inside damage band due to an infinitesimal movement

where d ′(φ) is the spatial derivative of the damage function. Eq.(2.13) enables us to compute the energy
release rate at the damage front. Note that the integration domain only spans the region where the damage
derivative is non-zero, i.e. the fracture process zone [24].

For the elementwise numerical integration of Eq.(2.13) a two-point Gauss integration scheme is used.
However, during the movement of the damage band, the front (φ = 0) and wake (φ = lc ) can intersect the
interface element. This causes an unsmooth damage distribution inside the element. In order to improve the
accuracy and prevent unsmoothness, the interface element crossed by one of the boundaries of the damage
band is sub-divided in two sub-elements. In both the sub-elements a two-point Gauss integration scheme is
applied (See Fig. 2.8).

Figure 2.8: Sub-division of zero-thickness interface elements for ITLS model

2.3.4. Damage growth
In a level set method, the level set field needs to be updated after every time step. To update the damage
distribution, the advance of the level set front should be related to the computed values for the energy release
rate G and the resistance against crack growth Gc . The damage develops when the value for G is equal or even
bigger than Gc at the tip. The change of the level set field is related to the normal velocity vn of the front tip.
In quasi-static simulations there is no actual time involved. Therefore, the ITLS does not directly work with
velocities but with a front increment. In this case vn∆t is regarded as the front increment. To update the level



12 2. Literature

set field the following expression is used:

φn+1 =φn + vn∆t (2.14)

where the super-scripted n indicates the number of the time step and∆t is the time increment size. It should
be noted that when the level set field φn in the previous time step n, which is a signed distance function,
moves vn∆t units forward in the normal direction, the updated level set field φn+1 obtained from Eq. (2.14)
is still a signed distance function.

In the TLS model defined by Moës et al. [14], Bernard et al. [2] and van der Meer and Sluys [22] the loading
scheme was based on a unit load analysis in each time step. A critical load scale factor was computed using
the assumption of secant unloading. However, this approach is not applicable when plasticity is involved.
The framework of the TLS method had to be adapted for such cases. A relation for the normal velocity as
found by Van der Meer et al. [23], Latifi et al. [9] and Mororó and van der Meer [15] was adopted:

vn = 1

µ

〈
G

Gc
−1

〉
+

(2.15)

where µ is a parameter that can be interpreted as a viscous resistance against crack growth. The Kuhn-Tucker
conditions for quasi-static crack growth with G −Gc ≤ 0 are approached in the limit of µ→ 0. To denote the
positivity condition the brackets are used, which reflects the irreversibility of crack growth. In order to ensure
stability of the explicit level set update, ∆t is reduced when this is necessary to limit the growth of the front
with [23]:

∆t = min

{
∆t 0,αn

h

vn

}
(2.16)

in which∆t 0 is the initial and maximum time step size andαn is a constant with values 0 <αn < 1. αn ensures
that the crack growth per time step doesn’t become bigger than the size of an element.

In case of a fully developed damaged band, movement of the front implies damage propagation. For this
research a fully developed damaged band is used, which implies that there is only crack propagation and no
crack initiation present in the model.

The fracture mode dependency of Gc , needed in Eq. (2.15), is taken into account by the expression intro-
duced by Benzeggagh and Kenane [1]:

Gc =GIc + (GIIc −GIc )(β)η (2.17)

where η is a mode interaction parameter, G I c and G I I c are the fracture energies in mode-I and mode-II. The
mode ratio β is defined as:

β= GII

G
= Gshear

G
(2.18)

where Gshear is the value of the shear part of the energy release rate. The dependence of G on β and Gshear

means that, apart from evaluating G , the shear part of the energy release rate also has to be computed to
determine the damage update.

2.3.5. Solution scheme

The solution algorithm for the ITLS model with quasi-static loading is summarized in Fig. 2.9. There are a few
items to be noted: (1) a damage band with length lc is predefined ahead of the initial crack tip before the first
displacement increment is applied; (2) a staggered solution scheme is used for the damage update and the
displacement field, because of its robustness and simplicity. This means that the stresses and displacements
are computed first, before updating the damage field. The solution scheme is sequential rather than iterative,
introducing load step dependence in case of large step sizes.
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1 Set the time step number n = 1;

2 Define an initial damage band with length lc ahead of the crack tip and calculate the
level set field φ(x);

3 Initialize the damage distribution on the level set field using Eqs. (2.8) or (2.11);

4 Set the initial time step ∆t 0;

5 Apply the nth displacement increment;

6 Compute displacement jumps ∆i through standard FEM analysis and tractions τi

through Eq. (2.6);

7 Compute the configurational force Y using Eq. (2.7) and subsequently G from
Eq. (2.13);

8 Determine the crack velocity vn from Eq. (2.15);

9 Set the time step size for the next time step t n+1 through Eq. (2.16);

10 Update the level set field in the crack growth direction with the use of Eq. (2.14);

11 Update the damage distribution with the updated level set field using Eqs. (2.8)
or (2.11);

12 n = n +1, go to step 5 and repeat;

Figure 2.9: Solution algorithm

2.4. ITLS fatigue modeling

In case of quasi-static loading and fracture the crack will propagate when the energy release rate G exceeds
the fracture energy Gc of the material. However, in case of fatigue the loads associated with crack growth are
lower and crack growth is typically described by Paris’ law [7]:

da

dN
=C

(
∆G

Gc

)m

(2.19)

where N is the number of cycles, ∆G the cyclic variation of energy release rate and C and m are material
constants that can be determined from fatigue tests. The cyclic variation of energy release rate ∆G is defined
as:

∆G =
(
1−R2

)
G (2.20)

where G is obtained by solving Eq. (2.13) and R is the fatigue load ratio. Fig. 2.10 shows the logarithmic
relation between the crack growth rate and normalized energy release rate. In fact, the Paris law is an empir-
ical relation and not an actual law. It is however the most appropriate crack propagation criterion currently
available and will be referred to as a law for this reason. The same constitutive framework and expression for



14 2. Literature

Figure 2.10: The Paris’ law relates the crack growth rate to the normalized energy release rate in region II

the energy release rate as described in sections 2.3.1 and 2.3.3 are applicable to a fatigue crack growth anal-
ysis. The part that differs for the fatigue analysis is encapsulated in the damage growth model. It should be
noted that modeling the full loading-unloading cycle is numerically impractical. Therefore, a loading enve-
lope approach is used. This means that the maximum load is applied and the influence of the cyclic loading
is incorporated through the Paris law, which is embedded in the model.

2.4.1. Damage growth model
As mentioned in Chapter 1, the ITLS (or TLS) model offers an elegant way to link damage to the fracture
mechanics based crack growth model. Paris’ law can be assessed for both linear elastic and elastic-plastic
materials. The focus of this research will be on elastic-plastic materials. For elastic-plastic materials, slight
adjustments have to be done to the Paris’ equation and the loading scheme.

The nodal increase of the level set field follows from Eq. (2.14). The velocity however, is computed in
a different manner for fatigue analysis. The change of the level set field is now related to the change of the
cycles. This results in the following velocity:

vn =
(

da

dN

)(
dN

dt

)
(2.21)

where da
dN is the crack growth rate and dN

dt is the time derivative of the cyclic function used.
The size of the time steps are computed with Eq. (2.16), which was also used for quasi-static analysis.

The default value for ∆t 0 is 1. When necessary the time step size is reduced to ensure that the crack growth
per step does not exceed the limit, which is a fraction of the element length. The algorithmic aspects for the
fatigue analysis are exactly the same as for the quasi-static analysis (See Fig. 2.9). The only difference between
the two algorithms is the equation used in step 8, where Eq. (2.21) is used in this case.

2.5. Materials

Previously, interfacial crack growth behaviour studies have been done using the ITLS model on linear elastic
(LE) material by Latifi et al. [9] and Voormeeren et al. [24]. The LE material used was a composite material,
since this material is very sensitive to delamination of the plies. For this reason a composite material is used
in all the LE simulations that were carried out during this research. Composite materials are orthotropic of
nature, which means that the material properties differ in three mutually orthogonal directions.

The second focus in this research is on elastic-plastic (EP) materials, which has also been investigated
by Voormeeren et al. [24] and Mororó and van der Meer [15]. For a perfectly sharp crack tip

(
lim lc → 0

)
the

stresses are singular. In metals however, inelastic material behaviour will dominate the crack tip region by
formation of a plastic zone. This will limit the stresses around the crack tip and will have an effect on the
crack growth behaviour in the material.
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Plastic behaviour is captured by means of a strain hardening model. In this study, it has been chosen to
only consider isotropic hardening. Isotropic hardening increases the size of the yield function as shown in
Fig. 2.11. For isotropic hardening the Lemaitre and Chaboche [11] model is adopted. This model increases

Figure 2.11: Isotropic hardening represented in the stress space, σ0
y is the initial yield stress and σt

y is the transformed yield stress

the yield surface as a function of the equivalent plastic strain:

σt
y =σ0

y +Q∞
(
1−e−by p

)
(2.22)

where σ0
y is the initial yield stress, p represents the equivalent plastic strain, by is the rate of change of the

yield surface and Q∞ is the maximum change in size of the yield surface.
The effect of plasticity on the crack growth behaviour can be seen best through the use of an overload,

which allows for the plasticity to grow while the crack remains at its position. The overload implies a fatigue
analysis as described in 2.4.

2.6. Loading type

Within the field of fracture mechanics three different types of loading are distinguished; mode-I loading,
mode-II loading and mode-III loading. For this research mode-III is not of interest, since 2D plain strain
simulations are carried out and there is no loading in the third direction. However, a combination of mode-I
and II can be made. The three possible modes are shown in Fig. 2.12. Mode-I is a loading normal to the crack
plane, mode-II is the in-plane shear loading and the mixed mode combines the two load conditions. This
research focuses on the mode-I loading, which implies tension dominated loading of the specimen.

Figure 2.12: Loading conditions in three different fracture modes





3
Dependencies of the ITLS model

This chapter focuses on the the proof of the existence of a dependency of the ITLS method on the choice for
the initial interfacial stiffness. A parameter study is carried out to obtain this proof for both linear elastic and
elastic-plastic materials. All parameters that are relevant to the behaviour of the interface are discussed, after
which conclusions are drawn about the influence of each individual parameter. This knowledge can then be
used for adaption of the current ITLS model.

3.1. Input model
To be able to investigate the effect of each interfacial input parameter, a DCB test under plane strain condi-
tions is modeled. The DCB test is common to determine the mode-I fracture toughness. Fig. 3.1 shows the
boundary conditions of the simulations. The specimen was 102 mm long and 1 mm wide, which makes it
equivalent to a two-dimensional (2D) simulation. The arms of the specimen are 1.56 mm thick and the initial
crack is 32.9 mm long. In the vicinity of the crack large crack refinements are present. The elements have a
size of 0.3 mm.

This geometry for the DCB test is used throughout the Chapters 3 and 4 for all simulations. Both a linear

Figure 3.1: 2D DCB specimen for simulating crack growth under quasi-static loading

elastic material and an elastic-plastic material were used in the simulations. The material properties for the
LE material are related to a carbon/PEEK fiber reinforced composite and are listed in Table 3.1. The material
properties for the EP material are related to the properties used by Voormeeren et al. [24] in his EP fatigue
analysis. These properties are listed in Table 3.2.

Table 3.1: Material properties for carbon/PEEK fiber reinforced composite used in mode-I simulations

E1 E2 G12 G23 ν12 GIc

122.7 GPa 10.1 GPa 5500 MPa 3700 MPa 0.25 0.969 N/mm

17
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Table 3.2: Material properties for the elastic-plastic material used in mode-I simulations from Voormeeren et al. [24]

E ν Q∞ σ0
y by GIc

210 GPa 0.3 55 MPa 465 MPa 2.38 2.907 N/mm

3.2. Interface parameter study

In order to determine whether there is a dependency encapsulated in the current ITLS model on the choice
for initial interfacial stiffness, the dependency of each parameter affecting the behaviour of the interface is
investigated. Parameters affecting the interfacial behaviour originate from the chosen level set field φ. The
influence of each parameter is investigated by varying only that parameter, while keeping all other input
parameters and the mesh constant. Quasi-static DCB simulations are considered for all parameters.

3.2.1. Damage function
Three different damage functions following the damage definition as proposed by Bernard et al. [2] were
considered, d1, d2 and d3 (see Fig. 2.5). The damage definition as proposed by Voormeeren et al. [24] is not
used, since it is equal to the first definition with a value of c3 = 0 and has therefore no additional value in this
parameter study. Only crack propagation is considered, since the length of the initial damage band l0 can be
dependent on the type of damage function that is used. Therefore, all simulations start with a fully developed
damaged band with a length of lc = 3 mm. The LE and the EP simulations have a different input dummy
stiffness K , being K = 106 N/mm3 for the LE material and K = 107 N/mm3 for the EP material.

The damage profiles were obtained from Eqs. (2.8), (2.9) and (2.10). The damage function consists of
four parameters, of which only parameters c1 and c3 are user defined input parameters. Parameters c2 and
c4 ensure that the damage function satisfies the boundary conditions and are dependent on parameters c1

and c3. Therefore, only parameters c1 and c3 are of interest in this parameter study. Both parameters will be
varied individually with the aim to obtain insight on the impact of these parameters on the global response
of the DCB specimen. To be able to understand the impact each parameter has on the global response, it is
necessary to show the influence each parameter has on the damage function and therefore on the damaged
zone. The different damage functions for a varying parameter c1 and c3 are depicted in Fig. 3.2.
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(a) Varying parameter c1
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Figure 3.2: Damage functions used for parameter study on the impact of varying damage parameters c1 and c3

In Chapter 2 it was already mentioned that parameter c1 is responsible for the steepness of the damage
function and therefore of the damage growth rate, which also becomes clear from Fig. 3.2a. Furthermore,
it was mentioned that parameter c3 is responsible for the location within the damaged zone at which the
damage starts to grow at a higher rate. This is also the behaviour obtained from Fig. 3.2b. From both graphs it
becomes clear that for a higher damage parameter c1 the damage grows faster, whereas for a higher damage
parameter c3 the initiation of faster damage growth moves further away from the crack tip.
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DAMAGE PARAMETER c1

For this simulation, c1 was varied, whereas c3 remained constant. For all simulations c3 had a value of 0.1. An
increasing value for c1 means that damage grows faster within the damaged band. The length of the damaged
band and the initial interfacial stiffness are chosen to be equal to lc = 3 mm and K = 106 N/mm3 (LE) and
K = 107 N/mm3 (EP). Fig. 3.3 shows the load-displacement response for the DCB specimen with varying c1

values for both the LE and EP material. A few issues can be remarked.
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Figure 3.3: Comparison of load-displacement responses of the DCB specimen for different values of the damage parameter c1

Firstly, the LE material response is discussed. The post-peak behaviour becomes smoother with an in-
creasing c1 with the only exception being c1 = 1000. Furthermore, the c1 = 1 and c1 = 1000 variants give a
slightly higher peak load and subsequently crack propagation branch. However, each c1 value has the same
average trend in the post-peak phase. The load-displacement response for c1 = 100 gives the smoothest re-
sponse in the post-peak phase. The smoothness of a response can be explained by examination of the integral
in Eq. (2.13) that computes the energy release rate. The accuracy of this integral is related to the smoothness
of its integrand d ′Y considering the given number of integration points inside the damaged band. Fig. 3.4a
shows distribution of the product d ′Y over the length of the damaged band. The percentage of elements that
the product d ′Y is distributed over is 20% for c1 = 1, 45% for c1 = 10, 82% for c1 = 100 and 91% for c1 = 1000.
A smaller amount of elements means less integration points and less accuracy for computing the integral,
which in turn explains a larger amount of oscillations. However, this does not explain the higher peak load
and higher amount of oscillations of the simulation for c1 = 1000. The cause for the higher peak load is the
gradient of the damage profile. Due to the high value for c1 the damage function is very steep and grows from
a damage of 0 to 1 within the span of just 1 or 2 interface elements. This gives a maximum of 4 integration
points to compute this gradient. Therefore, the solution becomes less accurate and sensitive to overshooting
of the peak load. A solution to this problem could be to use smaller elements or to use higher order elements.

Secondly, the EP material is discussed. Again the post-peak behaviour of the load-displacement response
becomes smoother with an increasing value for c1. This time however, c1 = 1000 is not an exception on this
trend. Apart from the difference in the onset of crack propagation, c1 = 10, c1 = 100 and c1 = 1000 seem to
follow the same averaged trend. Due to the heavy fluctuations and the peak-load that is significantly higher
than for the three other simulations, it is difficult to validate whether the averaged post-peak response trend
for c1 = 1 can be compared with the other three simulations. The higher peak load is caused by the relatively
small growth of damage inside the damaged band. This results in a postponed crack initiation and therefore
higher peak load. For the EP material the smoothness of the load-displacement responses can be explained
as well by examination of the above mentioned integral. Fig. 3.4b shows distribution of the product d ′Y over
the length of the damaged band. he percentage of elements that the product d ′Y is distributed over is 38% for
c1 = 1, 45% for c1 = 10, 73% for c1 = 100 and 92% for c1 = 1000. Following the knowledge that a higher amount
of contributing elements gives more accuracy for computing the integral and thus less oscillations, the results
are as expected. The response for c1 = 1000 delivers the smoothest response out of the four simulations.
It should be noted that the chosen values for the initial interfacial stiffness differ between the LE and EP
material. Therefore, the results should not be compared directly.
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Figure 3.4: Variation of the product d ′Y along the length of the damaged band for different c1 values

DAMAGE PARAMETER c3

For this simulation, c3 was varied, whereas c1 remained constant. For all simulations c1 had a value of 100
since this gave relatively smooth results in the simulations for a varying c1 parameter. An increasing c3 pa-
rameter results in the retardation of the damage growth. The value of c3 determines where the damage begins
to grow at a steeper rate. Fig. 3.5 shows the load-displacement response for the DCB specimen with varying
c3 values for both the LE and EP material.
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Figure 3.5: Comparison of load-displacement responses of the DCB specimen for different values of the damage parameter c3

The results for the load-displacement response of the LE material show smooth results. Only for c3 = 0.5
the post-peak response is less smooth compared to the other three values for c3. Just as for the c1 parameter,
this can be explained by investigation of the energy release rate integral. The integrand d ′Y determines the
smoothness of the load-displacement response. Fig. 3.5a shows the variation of the product d ′Y over the
length of the damaged band. It becomes clear that for c3 = 0.01, c3 = 0.05 and c3 = 0.1 the product d ′Y is
distributed over approximately the same amount of elements. For c3 = 0.5 this product is distributed over a
lower amount of elements resulting in a less accurate computation of the energy release rate and therefore
a less smooth post-peak load-displacement response. Looking at the trend of the responses, it can can be
observed that for c3 = 0.01, c3 = 0.05 and c3 = 0.1 the exact same response is obtained, where for c3 = 0.5 the
same averaged post-peak trend is obtained.

The simulations for the EP material show similar results to the LE results. Again the simulations are rel-
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atively smooth with c3 = 0.5 being the only response with slightly more oscillations and a slightly higher
peak-load. The amount of oscillations is, as before, explained by the amount of elements contributing to the
product d ′Y . From Fig. 3.5b it can be seen that for c3 = 0.5 the amount of elements is less than for the other
c3 parameter values. Hence a less smooth post-peak response is obtained. However, in general all four load-
displacement responses have an equal averaged post-peak trend, where c3 = 0.01, c3 = 0.05 and c3 = 0.1 even
show the exact same response.
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Figure 3.6: Variation of the product d ′Y along the length of the damaged band for different c3 values

CONCLUSION
After reviewing all the obtained results for the simulations with a varying damage function a few conclusions
can be made. The damage function as a whole has a significant influence on the load-displacement response
for the DCB specimen for both the LE and the EP material. This influence relates to the global initial stiffness
of the system, the value for the peak load and the amount of oscillations in the post-peak response. Since
the damage function consists of two input parameters, both parameters where investigated individually to
explore which parameter affects specific aspects of the global behaviour. The results indicate that c3 has
almost no influence on the global response. The influence only becomes evident when the value for c3 is 0.5
or higher. In further simulations no values of c3 ≥ 0.5 will be used due to the fact that it gives less smoothness
of the response and it gives a damage profile less similar to damage in cohesive methods then for lower c3

parameter values. It can be concluded that for c3 values lower than 0.5 the load-displacement response is not
influenced by this damage parameter.

The input parameter c1 has a significant influence on the results. The first conclusion is that an increasing
value for c1 results in a decreasing global initial stiffness. The second conclusion is that an increasing value
for c1 results in less oscillations in the post-peak response of the specimen. However, care must be taken
when increasing the value for c1. There seems to be a certain threshold and exceeding this threshold results
in higher peak loads and more oscillations. The load-displacement response for c1 = 1000 in Fig. 3.3a shows
this behaviour.

3.2.2. Length of the damaged zone
From a numerical point of view the length of the damaged band lc determines the number of elements in-
side the band for a given constant mesh. To investigate the sensitivity to the amount of elements inside the
damaged band on the results, 2D simulations of the DCB test were conducted with four different values for
lc . The initial interfacial stiffness was set as K = 1e6 N/mm3 for the LE material and K = 1e7 N/mm3 for the
EP material. Fig. 3.7 shows the load-displacement responses for a varying length of the damaged zone for
two different materials. For both materials the results are similar. It is observed that with the increase of lc

from 2 mm to 5 mm the oscillatory response converges to a slightly smoother response due to the fact that
the computation achieves a higher accuracy when the number of elements in the damaged zone is increased.
The element size for all computations was 0.3 mm, yielding approximately 7, 10, 14 and 17 elements along
the length of lc .
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Figure 3.7: Comparison of load-displacement responses of the DCB specimen for different lengths of the the damaged band lc

It should be noted that the results from Fig. 3.7b are somewhat surprising. For smaller values of lc the
stresses around the crack tip should be higher, which would then result in more plasticity. From the curves
it can be seen that this also applies to the performed simulations. However, the observed effect is small.
The reason for the relative small effect could be caused by the choice for the damaged zone parameters.
When lc becomes larger the load that has to be carried by the damaged zone is distributed over a larger
surface, which would be visible in the load-displacement curves by a smaller hardening part. In this particular
situation the choice for the damaged zone parameters could be such that for a decreasing lc the part of the
damaged zone responsible for transferring the load does not decrease much in length. It is possible that the
effect is visualized better when a smaller lc than the values used for this research is chosen. Research on
the traction distribution over the damaged zone for varying lengths of the damaged zone is a possible way
of investigating if the length over which the forces are distributed inside the damaged band is only changing
slightly for varying lengths of the damaged zone for a chosen parameter set. Along with such a research also
smaller values for lc could be used to investigate whether the plasticity effect becomes clearer for smaller
lengths of the damaged zone.

CONCLUSION
Two conclusions are drawn from the comparison between different values for the length of the damaged
zone lc . Firstly, it can be concluded that the freedom to choose lc is an advantage of the ITLS model that
provides the possibility to use a coarser mesh resulting in lower computational costs while maintaining an
equal accuracy and smoothness of results. This accuracy and smoothness can even be higher due to a higher
amount of elements and therefore integration points within the damaged band.

Secondly, the length of the damaged band has no influence on the response of the DCB specimen. All
simulations show curves that can be assumed equal. The minor differences that are present are only observed
for the EP material and are negligible for this particular study. As mentioned, further research is needed on
the surprising behaviour obtained for the EP material.

3.2.3. Initial interfacial stiffness
The initial interfacial stiffness K has no physical meaning. It is a purely numerical parameter to ensure that
there is initially contact between the adjacent arms of the specimen. Furthermore, the parameter K provides
that no deformations occur at the interface in the elastic region of the response. The deformations can only
occur when the crack actually begins to grow.

Fig. 3.8 shows the load-displacement response of the DCB specimen with four different values for the
initial interfacial stiffness K and for two different materials. The LE and the EP material display similar be-
haviour for the initial stiffness of the DCB specimen, the peak-load and the amount of oscillations. The initial
global stiffness of the DCB specimen becomes higher with an increasing initial interfacial stiffness K . The
oscillations and peak load increase as well with a growing stiffness K , where K = 1e9 N/mm3 has a signifi-
cantly higher peak load for both materials. However, the post-peak averaged trend is relatively the same for
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all values of K . This is more evident for the LE material but also the EP material seems to acquire a similar
post-peak trend for all four values of K . Since the post-peak response for the EP material is significantly more
irregular than for the LE material it is difficult to judge whether there is indeed an equal averaged trend.
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Figure 3.8: Comparison of load-displacement responses of the DCB specimen for different initial interfacial stiffnesses K

The increasing amount of oscillations are as expected when the variation of the product d ′Y is plotted.
Fig. 3.9a shows the product d ′Y for the LE material and Fig. 3.9b shows the same product for the EP material.
With an increasing value for K the amount of elements that contribute to the computation of the integral
for the energy release rate decreases. The accuracy of the computation becomes less and more oscillations
are observed. The peak-loads increase as well, the cause for this is the value for damage parameter c1. If
c1 becomes too small compared to the initial stiffness K the damage growth is not steep enough anymore,
resulting in a stiffer interface and a crack initiation at a later stage. This also means a higher peak-load. There
seems to be a certain relation between parameters c1 and K , which results in certain threshold values for both
parameters. This is not a real threshold, it is more like a transition, since both parameters affect and reinforce
each others behaviour.
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Figure 3.9: Variation of the product d ′Y along the length of the damaged band for different c3 values

CONCLUSION
From the simulations for a varying initial interfacial stiffness K a few conclusions are made. The choice for
the value of parameter K has a significant impact on the global response of the specimen. An increase of
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the interfacial stiffness implies an increase in the global stiffness of the specimen. Whereas the peak load
increases as well. The increase of the peak load is not of an significant order in most cases but for the initial
interfacial stiffness of 109 N/mm3 the increase is significantly higher compared to the other three stiffnesses.
However, this could be explained by the influence the damage parameter c1 has on the initial interfacial
stiffness. The value for the c1 parameter can not become too low compared to the input value for parameter
K . There is a certain threshold when it comes to the possible combinations of values for the parameters c1

and K . An elaborate parameter calibration should prevent inaccurate results.

3.3. Conclusion

After comparing all parameters related to the interface of the DCB specimen a few conclusions can be drawn.
The first one is that the length of the damaged zone has no influence on the response of the DCB specimen.
It should be noted that the chosen length should be in reasonable bounds relative to the length of the chosen
specimen. No simulations with an extremely low or high length of the damaged zone were conducted. It lies
within reason that this would have an influence on the global response of the DCB specimen.

The second conclusion is that both the chosen damage function as the initial interfacial stiffness has a
significant influence on the global response. The influence of the damage function can be split into two input
parameters. Where the c1 parameter has a significant impact on the global behaviour and the c3 parameter
has a negligible impact on this behaviour. The c1 parameter individually has an impact on the initial stiffness
of the load-displacement response of the DCB specimen. With an increasing c1 parameter the initial stiffness
of the system reduces. The initial interfacial stiffness parameter K results in an opposite trend regarding
global behaviour, an increasing K results in a higher initial stiffness of the system.

The last conclusion is that both the damage parameter c1 and the initial stiffness parameter K have a joint
influence on the global behaviour. This influence is not only related to the initial stiffness of the system but
also yo the accuracy of the response. When the combination of values for c1 and K is not chosen correctly the
peak load will go up and the amount of oscillations in the post-peak response becomes higher.



4
Adapting the ITLS model

This Chapter presents two new ITLS models for the removal of the dependency of the numerical results on
the initial interfacial stiffness K in the current model. The first model is formulated based on a different con-
stitutive relation for the interface. The second model is formulated based on the assumption that there is a
behavioural connection between the damage parameter c1 and the initial stiffness parameter K . Both meth-
ods are validated and discussed after which one of the two models is chosen as the solution to the current
problem of the ITLS model. The traction computed by the ITLS model will also be discussed briefly. A com-
parison with a CZM model is carried out to evaluate the obtained traction qualitatively. Finally, the adapted
ITLS model is compared to an analytical solution to validate the accuracy of the improved model.

4.1. Introduction to solution methods

In the previous Chapter it was proven that the choice for the initial interfacial stiffness is dependent on the
choice for the damage function for the current ITLS model. When a certain damage function is chosen, a
varying initial interfacial stiffness results in a different initial stiffness of the specimen. Since for all simu-
lations that were conducted the bulk material remained the same, the dependency on the initial interfacial
stiffness is assumed to be encapsulated in the response of the interface elements. The constitutive relation of
the interface should be examined to investigate where the dependency on the initial interfacial stiffness and
the damage function occurs. The constitutive law for interface elements was described in Section 2.3.1. For
this reason an adaption of the constitutive law is presumed to be one of the possibilities to remove the depen-
dency on the initial interfacial stiffness. Section 4.2 describes the investigation of the constitutive relations.
This investigation to a new ITLS model will be referred to as method 1.

Secondly, one other method is used to remove the initial interfacial stiffness dependency. From previous
Chapter it became clear that both the damage parameter c1 and the dummy stiffness K have an influence on
the global response of the DCB specimen. The possibility that these two parameters influence each other and
therefore the global response is investigated. This could lead to a different definition of the damage function
in the ITLS model. The derivation of the method is described in Section 4.3. This method will be referred to
as method 2.

For all simulations executed in this Chapter a few parameters relating to the interface remained constant.
The length of the damaged zone lc and the damage parameter c3 proved to be of no influence on the global
response for the DCB specimen. Therefore, constant values for these two parameters were adopted, lc = 3
mm and c3 = 0.1. The material parameters are as described in Tables 3.1 and 3.2.

4.2. Adapted interfacial stiffness formulation - Method 1

It is assumed that an adaption of the constitutive relations can result in the removal of the initial interfacial
stiffness dependency. To be able to adapt the model, a good understanding of the constitutive law of the
interface is necessary. Therefore, the definition of the constitutive relations for method 1 are rewritten with a
new expression for the interfacial stiffness.

25
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4.2.1. Adapting the constitutive relations
All constitutive relations for an interface element are derived from the definition of free energy in Eq. (2.4).
In literature all definitions for the free energy break down to relating a damage parameter, determined by a
certain damage function, to an initial stiffness parameter. Since the goal is to remove the dependency on the
initial stiffness and there is no other definition of free energy without containing an initial stiffness, a new
definition for free energy is proposed. Replacing the stiffness parameter K by K

d is explored as an option.
Where d is the damage parameter and K is the same stiffness parameter as in the initial definition. The
expression for the free energy becomes:

ϕ(∆,d) = 1−d

d
ϕ0

(
∆

)−(
1−d

d
− 1−d0

d0

)
ϕ0

(
δ1i 〈−∆1〉

)
(4.1)

which had to be adjusted compared to the expression as introduced in Section 2.3.1. To ensure that significant
interfacial interpenetration due to negative displacement jumps in the normal direction is prevented, the d

in the second term on the right-hand side needed to be replaced by
(

1−d
d − 1−d0

d0

)
, where the d0 is the lower

bound of the damage. This lower bound is described in more detail in Section 4.2.2. The expression for the
variable ϕ0 could remain the same, which is defined as:

ϕ0(∆) = 1

2
∆i Kδi j∆ j i = 1,2; j = 1,2 (4.2)

Due to the adapted expression for ϕ the traction and the local driving force change. The new expressions
for both become:
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(4.4)

The new expressions of ϕ, τ and Y are less elegant as in the previous constitutive relations. However, these
expressions ensure that there is no unphysical interpenetration in the model, while the new stiffness K

d can
be implemented.

4.2.2. Damage definition
Since the damage parameter d appears in the denominator in the expressions for the traction τ and the local
driving force Y , the definition for the damage should be adopted. It not longer possible to have a damage
growing from 0 to 1. Therefore, the bounds for the damage should be adapted, which leads to a slightly
different determination of the c2 and c4 parameters in the damage function from Bernard et al. [2]. The new
expression for the damage should satisfy the following:

d(φ) = lbound, φ≤ 0

d(φ) = 1, φ≥ lc

d ′(φ) ≥ 0, 0 <φ< lc

(4.5)

where lbound is a parameter that determines the lower bound of the damage, which can be varied. Therefore,
in this definition the damage in the sane material is equal to lbound and increases to 1 in the fully damaged
material.

Due to the change of the boundary conditions for the damage function, the parameters c2 and c4 are
adapted such that they are satisfying the new boundary conditions:

c2 =
(
1− lbound

)(
arctan

(
c1

(
1− c3

))−arctan
(−c1c3

))−1

(4.6)

c4 = lbound − c2 arctan
(−c1c3

)
(4.7)

The new definition for damage is implemented in the numerical code for the ITLS, which makes the method
suitable to run simulations with.
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4.2.3. Comparison with current ITLS
The first thing that needs to be checked for this new method is the similarity with results from the current ITLS
model. The method needs to be able to generate the same crack propagation path when the same parameters
are used for both methods. For damage parameter c1 a value of 100 is chosen, while parameters c3 and lc are
chosen as described in Section 4.1. Fig. 4.1 shows the load-displacement responses for the current ITLS and
for the new method with K

d . Both the LE and the EP material can be seen. From the two graphs it becomes
clear that the load-displacement responses are similar for the two methods.
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Figure 4.1: Comparison of load-displacement responses of the DCB specimen for a stiffness K and K /d

Due to the new formulation for damage it is possible to achieve a higher initial interfacial stiffness in the
fully sane material, while obtaining the exact same global response for the the DCB specimen. For the new
formulation the initial interfacial stiffness is determined as:

Kinit = (1−d)K

d
(4.8)

This formulation and the fact that the lower bound for the damage is not zero but very small, lbound = 1e−4
in the responses in Fig. 4.1, gives an initial stiffness in the sane material that is higher compared to the cur-
rent ITLS model. The new method has an initial interfacial stiffness of Kinit = 9.999e9 N/mm3, whereas the
current method has a stiffness of Kinit = 1e6 N/mm3. After the parameter study done on a varying initial
interfacial stiffness (see Section 3.2.3), one would expect that such a large difference in stiffness would also
show a difference in the global response of the specimen. The absence of dissimilarities in the responses for
both methods can be explained by the initial stiffness over the length of the damaged band. In the case of the
executed simulations a damage function was used that had a very steep growth of damage near the crack tip.
Therefore, the damage is very close to 1 over a major part of the damaged band. From Eq. (4.8) it is observed
that the damage parameter is in the denominator and dividing by a value close to or even equal to 1 reduces
the interfacial stiffness over the damaged zone to a similar interfacial stiffness as for the current ITLS model.
Section 4.2.4 will visualize this behaviour.

It should be noted that when using a damage function that does not have a steep growth to a damage of
1, the response could also have less similarity with the response for the current ITLS model when the same
value for the dummy stiffness K is used.

4.2.4. Validating adapted interfacial stiffness
Since method 1 has proven to be a method that produces a similar global response compared to the current
ITLS model, the method should now be validated as a possible solution to the problem of the initial inter-
facial stiffness dependency. This is done by executing simulations with varying values for the parameters
K and lbound. If this method is a solid solution to the problem, the responses should be exactly the same
independent of the chosen values for K and lbound.

The first parameter that is discussed is the stiffness parameter K . Fig. 4.2 shows the load-displacement
responses for a LE and EP material with a varying value for the stiffness parameter K . It becomes evident that
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partly the the same behaviour is obtained as from the simulations with a varying K in Section 3.2.3. The initial
stiffness of the global response increases with the increase of the interfacial stiffness parameter K . However,
regarding the peak loads for the different values of K an opposite behaviour is obtained. Whereas the current
ITLS model resulted in higher peak loads for higher initial interfacial stiffness values, the new model results in
higher peak loads for lower initial interfacial stiffness values. Generally a higher value for the initial stiffness
K leads to higher stress concentrations around the crack tip. Therefore, crack initiation is reached earlier and
a lower peak load is achieved.
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Figure 4.2: Comparison of load-displacement responses of the DCB specimen for a varying stiffness parameter K

The variation of the lower bound of the damage lbound is discussed next. Fig. 4.3 gives the load-displacement
response for the LE and EP material. The graphs show a perfect resemblance between the simulations with
different values for the lower bound of the damage. It can be concluded that the new definition for the bounds
of the damage, specifically the value for lbound, has no influence on the global response of the DCB specimen.
This supports the statement that the addition of the damage parameter d in the denominator of Eq. (4.8) has
a negligible influence on the development of the interfacial stiffness inside the damaged band.
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Figure 4.3: Comparison of load-displacement responses of the DCB specimen for a varying lower bound damage lbound
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4.2.5. Conclusion
A few conclusions for method 1 can be drawn. Firstly, the interfacial stiffness in the sane material for method
1 will be higher while obtaining the exact same response compared to the current ITLS model. It should be
noted that both method 1 and the current ITLS method can adopt an equally high initial interfacial stiffness
before this stiffness becomes too high and causes divergence of the numerical model. However, the formula-
tion of method 1 allows us to control the initial stiffness of the undamaged part of the interface by changing
the value for lbound without affecting the global response.

The second conclusion follows from the first conclusion and is regarding the influence of initial interfacial
stiffness parameter K and the lower bound of the damage function lbound. The simulations with a varying
stiffness parameter K have shown that there is a dependency of the model on the parameter K in this method.
However, due to the fact that the global response is not influenced by varying values for lbound, this method
can be independent of the initial stiffness of the interface. Therefore, the independence is not the expected
independence of the model to parameter K but an independence to the parameter lbound. By the addition
of lbound the model is capable of acquiring different interfacial stiffness values in the sane material while
obtaining similar global responses. It should be noted that in order to accomplish equal results, the value
for initial interfacial stiffness K should remain constant for all simulations, which is still a limitation of the
model.

Finally, the conclusion can be drawn that method 1 is capable of removing the initial interfacial stiffness
dependency in the current ITLS formulation. However, the formulation of method 1 does not allow for sim-
pler calibration of the numerical model, since the same set of parameters needs to be calibrated as for the
current ITLS model. Therefore, the only advantage of the method is the possibility to control the interfa-
cial stiffness in the sane material through parameter lbound. It is chosen not to continue this method and to
propose a second method that is also capable of simplifying the calibration process.

4.3. Relating damage to the initial interfacial stiffness - Method 2

Method 1, which holds the adaption of the constitutive relations and the boundary conditions of the damage
function, proved to be no solution to the problem of the initial stiffness in the ITLS model. Therefore, a new
method should be invented that does solve the initial stiffness problem. Chapter 3 showed that there are only
two parameters, active in the interface, that have an influence on the global response of the DCB specimen.
These parameters are the damage parameter c1 and the interfacial stiffness parameter K and they are the key
pillars to the the second method for the removal of the initial interfacial stiffness dependency.

4.3.1. Adapting the damage function
From Sections 3.2.1 and 3.2.3 it became clear that for an increasing value of parameter c1 the initial stiffness
of the global response decreased and for an increasing value of parameter K the initial stiffness of the global
response increased. Method 2 assumes that there is a dependency between parameter c1 and K that can be
used to adapt the definition of the damage function and allows us to obtain the exact same results for simu-
lations with a different value for the input parameter K . The hypothesis is that the influence of an increase
in the damage parameter c1 can be neutralized by an increase of the stiffness parameter K . This would mean
that c1 and K are proportional to each other. The order of the proportionality is investigated by trial and error.

The simulations were executed with the following interfacial parameters, a damage parameter c3 of 0.01,
a length of the damaged zone lc of 3 mm and an element size of 0.3 mm. After investigation a proportionality
between the parameters c1 and K is found. Fig. 4.4 shows the results for a simulation where the parameters
c1 and K are increased with the same factor, meaning there was a one to one proportionality. For both the LE
and EP material a perfect agreement between the responses is obtained. Therefore, the executed simulations
give rise to the thought that the parameters c1 and K are one to one proportional to each other.

This should be investigated further to exclude the possibility that the simulations coincidentally obtained
equal results. If one to one proportionality is indeed the solution to the problem of the initial interfacial
stiffness dependency, the crack tip location should grow at an equal rate for all variations of the stiffness
parameter K . If this crack growth curve shows equal responses, it can be concluded that a solution for the
problem is found. Fig. 4.5 shows the crack growth responses for both a LE and EP material. For both materials
the curves for a varying stiffness parameter c1 and K show a perfect resemblance. The curves for the EP
material have slight oscillations but the averaged trend of the curves is equal. It can be concluded that one to
one proportionality removes any stiffness dependencies in the current ITLS model.
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Figure 4.4: Comparison of load-displacement responses of the DCB specimen with K and c1 one to one proportional
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Figure 4.5: Comparison of crack growth responses of the DCB specimen with K and c1 one to one proportional

It is clear that a solution for the problem is found. Since proportionality between c1 and K is proven,
the c1 damage parameter can be replaced such that the numerical model always obtains equal responses
independent of the chosen value for the stiffness K . It should be noted that there are certain thresholds and
in case these are exceeded, different results for the peak load of the response are obtained. This was already
explained in Chapter 3. Therefore, one should always be careful when determining all model parameters
and an elaborate parameter calibration should be done before executing simulations to obtain the desired
response.

An adaption of the damage parameter c1 is very straightforward when it is known that parameters c1

and K are one to one proportional. c1 can be replaced by a constant parameter multiplied with the stiffness
parameter K . This results in the following adapted damage function:

d(φ) =


0, φ≤ 0

c2 arctan

(
cK

(
φ
lc
− c3

))
+ c4, 0 <φ< lc

1, φ≥ lc

(4.9)

where parameters c2 and c4 are determined as follows:

c2 =
(
arctan

(
cK

(
1− c3

))−arctan
(−cK c3

))−1

(4.10)
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c4 =−c2 arctan
(−cK c3

)
(4.11)

In all the expressions c1 was replaced by cK , where c is a constant with unit mm3/N that needs to be cali-
brated. The advantage over the current damage formulation is that only one parameter, the constant c, needs
to be calibrated, whereas before both the c1 and K needed to be calibrated separately. When the constant c
is calibrated one can choose a value for parameter K freely. With this new formulation there is no need to
manually adjust c1 and K anymore when one of those two is set to a different value.

4.3.2. Validating proportionality condition
The new found solution for the problem of the ITLS initial interfacial stiffness dependency was only proven
with a trial and error based process until this point. There needs to be an explanation for the found propor-
tionality between damage parameter c1 and initial interfacial stiffness parameter K . To find the explanation
the interfacial stiffness over the damaged zone is elaborated. The interfacial stiffness over the damaged zone
is given as:

Kc =
(
1−d

)
K (4.12)

There are two parts that contribute to the global initial stiffness of the DCB specimen, the initial stiffness
of the interface (see Eq. (4.12)) and the stiffness obtained from the bulk material. Since the bulk material
remains the same and therefore also its part that contributes to the global initial stiffness, the solution to
the global initial stiffness problem relates to the interfacial stiffness over the damaged zone. If somehow
for variations of stiffness parameter K this interfacial stiffness can obtain equal results, the initial interfacial
stiffness dependency can be removed completely. The interfacial stiffness over the damaged zone is plotted
with the use of the new damage formulation to determine if the traction stiffness over the damaged zone can
actually explain the similar results in Fig. 4.4 and 4.5.

Fig. 4.6 shows the interfacial stiffness over the damaged zone for a variation of parameter K values. Due
to the different values of parameter K there is a difference in interfacial stiffness in the most left part of the
graph. However, this difference is accumulated around the crack tip over a very small length of the damaged
zone. When looking at the global response of the specimen this difference is negligible. For the remaining
part of the damaged zone the interfacial stiffness Kc is equal for varying values of the dummy stiffness K .
The equality of the load-displacement responses in Fig. 4.4 and the crack growth curves in Fig. 4.5 is now
proven by elaboration of the interfacial stiffness. The interfacial stiffness over the damaged zone can also be
elaborated analytically by using a Taylor series around φ = lc . This proof can be found in Appendix A. For
both the numerical and analytical proof a damage parameter c3 with the value 0.01 is used since this value
was also used in the earlier simulations for method 2. It should be noted that the proportionality condition
can also be proven numerically and analytically for other values of damage parameter c3. However, using
smaller values for c3 minimizes the dissimilarity obtained for the interfacial stiffness around the crack tip.
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Figure 4.6: Interfacial stiffness over the damaged zone for a varying parameter K and a constant parameter c
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To emphasize the difference between this new method for the ITLS and the current ITLS method the
traction stiffness over the damaged zone is also plotted with a varying stiffness parameter K and a constant
value for the old damage parameter c1. Here the current formulation for the ITLS is used again to allow us to
keep the damage parameter constant without it being scaled by parameter K automatically. Fig. 4.7 shows
the results for the traction stiffness over the damaged zone with a constant damage parameter c1. As expected
the results are not equal anymore for the different values of stiffness parameter K . On top of that, all curves
in the graph seem to have the same factor difference between the them. This again supports the claim that
there is a proportionality condition.
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Figure 4.7: Interfacial stiffness over the damaged zone for a varying parameter K and a constant damage parameter c1

4.3.3. Conclusion
After conducting all simulations a conclusion can be drawn for method 2. The main conclusion that can be
drawn is that this new method is able to remove the initial interfacial stiffness dependency in the current ITLS
model and thus solves the problem of the current ITLS model. An adaption of the damage formulation was
needed to successfully counteract the effects that the parameters c1 and K had on the global response of the
DCB specimen individually. For the remaining part of this research, this adapted ITLS model is used, since it
is now known that this model is able to solve the problem for the global initial stiffness. However, there are a
few aspects that are not proven yet. It should be proven that the adapted ITLS model will result in accurate
responses compared to the CZM and analytical solutions. On top of that, the new model should be validated
for other loading types, such as fatigue loading.

4.4. Interfacial stiffness

During the research on the removal of the initial interfacial stiffness dependency, resulting traction curves
over the damaged zone from the ITLS model have been found to be remarkable at times. In many simulations
the traction had a negative value inside the damaged band near the crack tip. In addition, when the traction
was not negative inside the damaged band, a traction profile was obtained with a very high peak that drops at
a steep rate which then develops into a plateau that eventually drops to zero if the damage reaches 1. These
particular cases occurred several times, Fig. 4.8 shows an example for both cases.

Fig. 4.8a was obtained from a simulation with a LE material and Fig. 4.8b was obtained from a simulation
with a EP material. The relevant parameters for the new model are added in the legend, all other interfacial
parameters were as described in Section 4.3.1. The obtained shapes for the traction are not as expected when
considering the bilinear cohesive traction-separation law. A comparison with a CZM simulation could give
more insight in the traction-separation behaviour and might give the reason why traction shapes are obtained
that are significantly dissimilar to the bilinear cohesive traction-separation law.
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Figure 4.8: Two different traction profiles acquired for ITLS simulations with a DCB specimen

4.4.1. Traction comparison with CZM
To be able to compare the ITLS model with a cohesive model, a CZM model should be defined after which
results form the CZM simulation can be obtained and post-processed. The CZM used for this research is taken
from the work of Dekker et al. [3] and uses fatigue loading. Therefore, the type of loading differs compared
to the quasi-static loading used in this Chapter. However, the main difference originates from the way the
crack tip propagates. For quasi-static loading the physical crack tip moves automatically, whereas for fatigue
loading the crack tip is pushed forward by the use of an empirical relation, the Paris law. More on fatigue
will be discussed in Chapter 5. The difference between fatigue loading and quasi-static loading regarding the
damage and subsequently the traction over the damaged zone is negligible. For this reason the CZM with
fatigue loading can be compared to the ITLS model. The relevant parameters of this CZM model are depicted
in Table 4.1. For this simulation a LE material was used.

Table 4.1: Material properties for the CZM model [3]

E ν GIc lc

70.94 GPa 0.33 14.5 N/mm 0.5 mm

In order to understand the difference between the computed traction over the damaged zone both the
traction for the ITLS model and the CZM have to be determined with the same parameters. This compari-
son is shown in Fig. 4.9. It should be noted that damage is determined in a different manner for the CZM.
Whereas damage is an input parameter for the ITLS model, the damage in the CZM is a result from the
traction-separation relation. For the simulations that were executed in this Section the damage profile for
the ITLS model was made to fit the CZM damage in the best possible way.

It becomes clear that there is a significant difference between the two models for the traction distribution
over the length of the damaged zone. It should be noted that the traction for the CZM does not decrease
to zero inside the damaged band. This is due to the fact that in the used CZM the damage never becomes
equal to 1. The obtained traction profile for the CZM shows similarities to a bilinear traction-separation
curve. The traction curve for the ITLS model is composed with a numerical model in Matlab. The adapted
damage function from section 4.3.1 is implemented. To compute the overall traction for the ITLS model, the
dataset for the displacement jumps obtained from the CZM simulation is used. The reasoning behind that
is to analyse whether the difference between the traction for the ITLS model and the CZM is based on the
computed values for the displacement jumps in the interface or on the shape of the damage function.

Fig. 4.9b shows similar aspects of the traction curve as the traction curve in Fig. 4.8b. The curve from
Fig. 4.8b is significantly less smooth but this can be explained by the higher amount of data points in the
curves from Fig. 4.9b. Furthermore, the curve from Fig. 4.8b has a lower plateau than the curve from Fig.
4.9b. However, these differences between the two traction curves can be easily explained by the fact that
different input parameters were used for both models. The general shape of the traction curve is similar.
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Figure 4.9: Comparison of traction over the damaged zone for a CZM and ITLS model

This gives reason to believe that in the numerical model used for the ITLS method the computed values for
the displacement jumps are similar to the computed displacement jumps in the CZM method. Therefore,
the cause for the dissimilarity in the traction over the length of the damaged zone between the two methods
should be the shape of the damage profile.

In order to determine if the shape of the damage profile is the actual cause for the difference in traction
profiles, the interfacial stiffness over the damaged zone is plotted. This stiffness is computed by Eq. (4.12). Fig.
4.10 shows the interfacial stiffness over the damaged zone for both models with a varying initial interfacial
stiffness K . It can be concluded that the interfacial stiffness for the ITLS model can be fitted relatively well to
the interfacial stiffness obtained from the CZM analysis. However, it can not take the exact shape.
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Figure 4.10: Comparison interfacial stiffness over the damaged zone for a CZM and ITLS model

From this figure the difference between the two models seems negligible but the undershoot close to the
the crack tip (φ/lc = 0) for the ITLS model is the cause for the quick drop and subsequently the slight increase
in the traction profile in Fig. 4.9b. Therefore, the difference between the ITLS and CZM traction profiles can
be explained by the shape of the input damage function in the ITLS model. A possible solution to this could
be another type of damage function that can better fit the damage obtained from a CZM analysis. However,
this is beyond the scope of this research.
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4.4.2. Conclusion
From the results in this Section it is possible to formulate the hypothesis that the shape of the traction profile
for the ITLS model is heavily dependent on the chosen damage profile. This would then explain the difference
between the ITLS model and CZM model. However, more research should be conducted to fully understand
the origin of the acquired traction profiles in the ITLS model. Due to limited time and lower necessity this
was not done during this research.

It should be noted that the dissimilarity in the traction profiles does not mean that the acquired traction
for the ITLS model is incorrect. This is because it is not proven that the traction profile acquired for the CZM
model is the correct traction. Therefore, the only real conclusion that can be drawn is that due to the different
damage profiles the acquired traction profile is dissimilar for both methods.

4.5. Results and discussion

Section 4.3 concluded that an adaption of the damage function, which relates the damage function to the nu-
merical initial interfacial stiffness, removes any dependency on the initial stiffness K for the global response.
However, this is still purely numerical. To determine if the new method is capable of producing realistic
results, the simulations will be compared to analytical results. For the EP material there are no analytical so-
lutions available but the initial stiffness of the specimen should be equal to the initial stiffness resulting from
an analytical LE analysis. After all there is no plasticity involved at the start of loading. For the simulations a
damage parameter c3 = 0.01 and a length of the damaged zone l c = 3 mm are used as input.

The analytical solution for a LE material with crack growth is derived from beam theory following Mi
et al. [13]. The linear analytical solution was simply obtained from the load-displacement relationship of a
cantilever:

P = 3E I∆

2a3
0

(4.13)

where I is the second moment of area of one arm of the cantilever, a0 is the initial crack length, ∆ is the
opening displacement and P is load. The decreasing part of the load-displacement relationship is given as
follows:

∆= 2

3

(
W Gc E I

)3/2

E I P 2 (4.14)

where W is the width of the specimen and Gc is the fracture energy.
Now the analytical solution can be compared to the obtained responses from the adapted ITLS model.

Fig. 4.11 shows the comparison between the load-displacement responses for the adapted ITLS model and
the analytical model. The LE simulation shows an excellent agreement for the initial stiffness of the DCB re-
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Figure 4.11: Comparison of the load-displacement responses from the adapted ITLS model and from an analytical model

sponse. For the post-peak response there is a slight difference but this is negligible. Overall the the LE simu-
lation shows a good agreement with the analytical solution. The EP simulation shows an excellent agreement
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for the initial stiffness of the system as well. Due to the plasticity the response in the plastic region and the
crack region can not be compared to analytical models. However, despite the presence of oscillations in the
post-peak response the simulations individually show a good agreement to each other.

4.6. Conclusion

In this Chapter, an adaption of the ITLS model is proposed for simulating and propagation in LE and EP
materials under quasi-static loading conditions. Two methods for an adaption to the model were discussed.
The first option, method 1, proved to be able to remove the interfacial stiffness dependency that was present
in the current ITLS by means of the lower bound of the damage function lbound. Similar results were obtained
for this method with varying values for lbound. However, this method does not allow for an simpler calibration
process. Therefore, the method is not continued in further research.

The second option, method 2, also proved to be able to remove the problem of the interfacial stiffness de-
pendency. Damage parameter c1 and initial stiffness parameter K were found to be connected to each other,
enabling an adaption of the input damage function. By replacing parameter c1 with a constant multiplied
by the initial stiffness (cK ) the numerical model no longer suffered from the interfacial stiffness dependency.
This simplifies the calibration process, since now only the new constant c has to be calibrated instead of both
c1 and K .

The adapted ITLS model has also proven itself in a comparison with another method to compute the
crack response of a specimen. A very good agreement was found between the executed simulations and a
numerical model. This proves the accuracy of the adapted ITLS model.

Finally the traction for the adpated ITLS model was investigated and compared to a CZM model. It can be
concluded that there are dissimilarities between traction obtained from the ITLS model and the CZM model.
Even fitting the input damage function to the damage obtained from the traction-separation law in the CZM
does not result in similar traction behaviour. More research should be conducted to be able to conclude
whether the traction in the ITLS model is computed in a correct manner. However, this is outside the scope
of this research. It should also be noted that it is not possible to demonstrate at this moment if the traction
from the ITLS model is incorrect, just as it is not possible to cocnlude that the traction obtained from the CZM
model is correct. Both are numerical models with a number of assumptions. Experimental results are needed
for a clear answer.
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Adapted ITLS approach fatigue loading

The goal of this Chapter is to determine whether the adjusted ITLS model following method 2 is capable
to deliver an accurate solution for a different specimen and loading type. Therefore, a CT specimen under
fatigue loading is investigated. Again plasticity is involved for the simulations, which is very interesting for
ductile materials under fatigue loading. Plasticity is assumed to affect the retardation due to crack growth
in the specimen. The capability of the adapted ITLS model to capture this retardation is investigated. The
specimen will be investigated for both a constant amplitude loading and an overload situation. Finally, con-
clusions are drawn about the overall performance of the adapted ITLS model to obtain accurate results.

5.1. Paris’ law conversion

The previous Chapter presented an adjusted version to the ITLS model created by Latifi et al. [9]. This method
2 using the proportionality condition proved to be a solution to the initial interfacial stiffness dependency in
the current ITLS model. The adapted model provides accurate results for a DCB specimen under mode-I
quasi-static loading conditions. In order to accept the adapted model as the new approach for crack growth
simulations, the model should also be validated for a fatigue loading type. The model must be capable to
compute crack growth for all relevant loading types possible in crack growth analysis.

For fatigue analysis in this Chapter a loading envelope approach is used. The maximum load is applied at
once, resulting in a constant amplitude (CA) loading. The influence of the cyclic loading is determined by the
Paris law (see Eq. (2.19). In most formulations for the Paris law the stress intensity factor (SIF) KSIF is used.
However, in this research a formulation containing the variation of energy release rate G is used, because the
energy release rate is computed within the numerical framework of the ITLS and can be used directly in the
Paris law. Therefore, care should be taken when determining the Paris parameters C and m. These should
be converted for G when the parameters are related to a Paris law containing the SIF. In order to convert the
parameters C and m a relation between the energy release rate G and the stress intensity factor KSIF is needed:

G =
K 2

SIF

(
1−ν2

)
E

(5.1)

which is valid for a plane strain model under mode-I loading. This empirical relation is only suitable for linear
elastic fracture mechanics (LEFM) as it assumes a singular stress field around the crack tip. In elastic-plastic
fracture mechanics (EPFM) stresses are not singular and therefore plasticity influences the crack growth rate
at the crack tip. However, there is no relation between G and KSIF known at this moment for fatigue analysis
with plasticity involved. Therefore, due to lack of existing relations the LEFM relation is used in this research.
It is considered a disadvantage since it infers a less accurate response when plasticity is involved.

Eqs. (5.1) and (2.19) are used to convert the Paris parameters to the correct values when the energy release
rate G is used. For simplicity it is assumed throughout this entire Chapter that the fracture energy Gc is equal

37
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to 1, removing it from the Paris law, which gives:
CG

(
∆G

)mG =CK

((
∆GE
1−ν2

) 1
2

)mK

CG
(
∆G

)mG =CK

(
E

1−ν2

) 1
2 mK (

∆G
) 1

2 mK

(5.2)

From this it follows that the Paris parameters CG and mG relating to the energy release rate G become:CG =CK

(
E

1−ν2

) 1
2 mK

mG = 1
2 mK

(5.3)

It should be noted that for the simulations that are executed in this research, the relations in Eq. (5.3) were
initially used to convert the Paris parameter values related to the SIF to values related to the energy release
rate. However, after converting the Paris parameters used by Voormeeren et al. [24], the result was a diverg-
ing numerical model. Therefore, the Paris parameter C was adjusted to a value that allowed for converging
simulations.

5.2. Input model

The potential of the adapted approach has been evaluated through fatigue analysis of a single test specimen
subjected to CA loading. The adapted method is assessed for EP materials through the analysis of a steel
compact tension (CT) specimen. The CT specimen is analysed under plane strain conditions.

The geometry and boundary conditions of the CT specimen are shown in Fig. 5.1. In this research the
specimen has a width of W = 100 mm, a thickness B = 1 mm and an initial notch of a0 = 31 mm. The thickness
B is equal to 1 mm since this is equivalent to a 2D model. The length of the initial notch is measured from
the reference plane, which is positioned through the centerline of the loading pin holes. In the vicinity of the
crack large mesh refinements are used to ensure accurate crack growth computation. The elements in this
area have a constant mesh size of 0.05 mm.

Figure 5.1: 2D CT specimen for simulating crack growth under fatigue loading

A CA load with a stress ratio R = 0 is used for all simulations throughout this Chapter for reasons of sim-
plicity. Therefore, there is no difference between the maximum and minimum variation of energy release rate
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∆G . The maximum load applied is varied for different simulations in this Chapter and will be mentioned in
the corresponding sections.

As noted in the previous Section, Paris’ parameters C and m could be converted from values related to the
SIF to values related to the energy release rate. The Paris parameters that were initially used to convert are
C = 3.1 ·10−13 and m = 3.75 [24]. However, divergence occurred when using the converted values according
to Eq. (5.3). Therefore, only m was converted, whereas the value for C was found by trial and error in order
to obtain a properly converged solution. The final Paris parameters used for all initial simulations are C =
8.36 ·10−6 and m = 1.875.

The geometry remains constant for all simulations. It is chosen to use an EP material of which the material
properties are listed in Table 5.1 according to the material used by Voormeeren et al. [24].

Table 5.1: Material properties for the elastic-plastic material used in fatigue mode-I simulations

E ν Q∞ σ0
y by GIc

210 GPa 0.3 55 MPa 465 MPa 2.38 1 N/mm

5.3. Validating adapted ITLS model

The found initial interfacial stiffness dependency in the current ITLS model under quasi-static loading is
present under fatigue loading as well. Voormeeren et al. [24] showed that initial stiffness K affects the num-
ber of cycles needed to grow a fatigue crack of certain length. Furthermore, it is assumed that for the current
ITLS model the amount of plasticity in the specimen is dependent on the chosen value for the initial inter-
facial stiffness K . These behavioural aspects of the numerical model are undesirable and should therefore
be removed from the model. Since the last Chapter proved that an adapted version of the ITLS model was
capable of removing the dependency of the model on the choice for the initial interfacial stiffness K for a
specimen under quasi-static loading, it is assumed that the adapted ITLS model will be capable of removing
this dependency for a specimen under fatigue loading as well. This needs to be validated in order to investi-
gate whether the adapted ITLS model is an accurate and robust method to simulate fatigue crack growth. At
the same time it should be validated whether the adapted ITLS model is capable of obtaining equal amounts
of plasticity independent of the initial interfacial stiffness K . In order to validate the adapted model for both
aspects, a comparison between the current and the adapted ITLS model is carried out. The comparison en-
ables us in the first place to demonstrate the presence of the two above mentioned issues in the current ITLS
model and in the second place to validate the capability of the adapted ITLS model to remove the two issues.

The comparison between both models is carried out for an initial interfacial stiffness range of 1e8 to 1e10
N/mm3. The damage parameter c3 had a value of 0, reducing the damage function to the function used by
Voormeeren et al. [24]. The length of the damaged zone lc was chosen as 0.3 mm, resulting in an amount of 6
elements over the damaged zone. The CA loading is equal to 700 N for the current ITLS model and 900 N for
the adapted ITLS. The difference in loading is due to numerical robustness of the model. By executing several
simulations, it was found that the model is very sensitive to changes in the interfacial parameters c and K
and the Paris parameters C and m. These two CA loads enabled both ITLS models to converge to results that
could be compared to each other.

5.3.1. Comparison between adapted and current ITLS model
To validate whether the adapted ITLS model is capable of removing the initial interfacial stiffness dependency
for fatigue, the variation of energy release rate ∆G versus the crack growth a can be investigated. In order to
obtain similar crack growth results for a varying initial interfacial stiffness K , the variation of energy release
rate over the growing crack should be equal for all values of K . Furthermore, it should be investigated if the
amount of plasticity differs for various values of the initial interfacial stiffness K . This is carried out for both
the current and the adapted ITLS model, after which the results can be compared. First the variation of the
energy release rate ∆G will be discussed.

VARIATION OF ENERGY RELEASE RATE
Fig. 5.2 shows the variation of energy release rate ∆G over the crack growth for the current and adapted ITLS
model. From the figure a few conclusions can be drawn. The results for the current ITLS model are discussed
first. The curves show large oscillations, which can be explained by the sensitivity of the numerical model.
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During the execution of the simulations the model proved to be very sensitive to the values for parameters
C , m and c1. This made it difficult to find a combination of parameter values capable of executing a simu-
lation that converges for various initial interfacial stiffness values and a constant damage parameter c1. The
oscillations are the largest for K = 108 N/mm3, which can be explained by the fact that the damage parameter
c1 is relatively large compared to the initial interfacial stiffness. It was accomplished that besides the one to
one proportionality for quasi-static loading a dependency between these two parameters exists. Therefore,
the choice for a value of one of the parameters limits the choice for the value of the other parameter regard-
ing the accuracy of the response. Furthermore, the results show that for the different values of parameter
K the variation of energy release rate ∆G differs regarding the averaged trend of the oscillations. This gives
definitive proof that an initial interfacial stiffness dependency is truly present in the current ITLS model for
fatigue.

Secondly, the results for the adapted ITLS model are discussed. Fig. 5.2b shows that for varying values
for the initial interfacial stiffness K the variation of energy release rate over the crack growth is similar. This
suggests that the computation of the energy release rate in the interface is independent of the value for the
initial interfacial stiffness K , which then implies that similar crack growth can be obtained independent of
the chosen initial interfacial stiffness. The variation of energy release rate for the simulation with an initial
interfacial stiffness of 108 N/mm3 is slightly dissimilar to the results of the other two simulations. The curve
has more oscillations and lies below the other two curves. However, these dissimilarities are negligible and it
can be concluded that the proportionality condition seems to work for fatigue analysis regarding the depen-
dency on the initial interfacial stiffness. In order to validate the proportionality condition to a larger extent,
the amount of plasticity and the size of the plastic zone needs to be checked.
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Figure 5.2: Variation of energy release rate ∆G versus crack length a for steel CT specimen

PLASTIC ZONE
It is assumed that the current ITLS model affects the amount of plasticity and the size of the plastic zone
around the crack tip. The capability of the adapted ITLS model, and therefore the proportionality condition,
to overcome this behaviour is investigated. A model that computes equal plastic strains and subsequently
plastic stresses independent of the chosen value for initial interfacial stiffness K is desired. The capability of
both the current and the adapted ITLS model to obtain equal plastic zones is investigated by comparing the
contour plots of the Von Mises stresses in the CT specimen around the crack tip. From these contour plots
the size of the plastic zone can be obtained as well as the values of the stresses.

Fig. 5.3 depicts the Von Mises stress around the crack tip for all simulations with the current ITLS model.
All contour plots are taken at a moment where the crack tip location is equal for all simulations. This allows
for a comparison of the plastic zone in each simulation. The plots show that the amount of plasticity differs
for varying values of the initial interfacial stiffness K . The stresses are not of equal magnitude for the three
simulations. Furthermore, the size of the plastic zone is dissimilar when equal crack growth is obtained. This
behaviour is undesired, since in reality the results should be independent of numerical parameters such as
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the initial interfacial stiffness. This proves that the amount of plasticity in the current ITLS model is depen-
dent on the choice for the initial interfacial stiffness K when fatigue is taken into account.

(a) K = 108 N/mm3 (b) K = 109 N/mm3 (c) K = 1010 N/mm3

Figure 5.3: Contour plot Von Mises stresses along the crack surface for current ITLS model (crack tip has grown from 31 mm to 32.7 mm)

The undesired influence of the initial interfacial stiffness on the amount of plasticity needs to be removed.
It is assumed that the adapted ITLS model is capable of achieving this. Therefore, the contour plots for the
Von Mises stress are shown for simulations with the adapted ITLS model. Fig. 5.4 depicts the Von Mises stress
around the crack tip for the adapted ITLS model. To allow for a good comparison of the plastic zone, the
contour plots are taken at a moment where all simulations have obtained an equal crack growth. The contour
plots show a good agreement between the three simulations with a varying parameter K . The stresses around
the crack tip are higher than the yield stress, which means plasticity is present around the crack. This is of
importance since plasticity is needed to validate whether the adapted ITLS model is capable of removing a
dependency between the plasticity and stiffness parameter K . The magnitude of the stresses show a good
resemblance and the plastic zone is of an equal size in every simulation. This result suggests that the chosen
values for the initial interfacial stiffness K do not influence the amount of plasticity anymore.

(a) K = 108 N/mm3 (b) K = 109 N/mm3 (c) K = 1010 N/mm3

Figure 5.4: Contour plot Von Mises stress along the crack surface for adapted ITLS model (crack tip has grown from 31 mm to 40 mm)

CONCLUSION

Conclusions from the comparison between the current and adapted ITLS model can be drawn. Prior to the
simulations, it was assumed that the current ITLS model suffered from a dependency on the initial interfa-
cial stiffness for the computation of the crack growth and the plasticity. Furthermore, it was assumed that
the adapted ITLS model is capable to overcome these issues. The results in this section support both as-
sumptions, since the current ITLS model obtained dissimilar plastic behaviour and computed values for the
variation of energy release rate ∆G , whereas the adapted ITLS obtained similar results for both aspects. The
results suggest that the adapted ITLS model has the intended influence for fatigue analysis by removing the
undesired dependencies in the current ITLS model. To be able to propose the adapted model as the new ap-
proach to crack analysis under fatigue loading, further validation of the model is needed. In a next step, the
accuracy of the computation of crack propagation needs to be validated.
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5.3.2. Crack growth adapted ITLS
The adapted ITLS model shows great potential for fatigue analysis. However, this needs to be validated fur-
ther. The next step is to compare the computed crack growth over the amount of cycles. An accurate numer-
ical model should be able to compute the same crack growth rate independent of the initial stiffness given to
an interface. Therefore, the simulations for the adapted ITLS model from the previous section are examined
further. The crack growth versus the amount of cycles needed to reach that crack growth is investigated to
validate whether the previously found similarities between the computed values for the variation of energy
release rate for a varying initial interfacial stiffness can be translated directly to crack growth results that are
similar as well. The results for the crack growth over the number of cycles are depicted in Fig. 5.5. From
the figure it becomes clear that the crack growth for an initial interfacial stiffness of K = 108 N/mm3 differs
slightly from the other two curves. This can be explained by the results in Fig. 5.2b for the same initial inter-
facial stiffness variation. The variation of energy release rate for the stiffness K = 108 N/mm3 slightly differed
from the other two results. There were minor oscillations, suggesting less accuracy, and a slightly lower vari-
ation of energy release rate. These dissimilarities are directly translated to the results for the crack growth
over the number of cycles in Fig. 5.5. For initial interfacial stiffness 109 and 1010 N/mm3 there is a perfect
agreement.
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Figure 5.5: The crack growth versus the number of cycles for the adapted ITLS model

In order to overcome this slight dissimilarity an elaborate parameter calibration is needed. However, there
is a quick fix for such dissimilarities. The Paris parameters determine the distance over which the crack prop-
agates every time step. Therefore, these parameters, more specifically the C parameter, could be adjusted to
obtain a slightly different crack growth. The analytical model for LEFM fatigue crack growth in a CT specimen
can then be used to find the value needed for this C parameter. Then a new simulation with the adjusted C
parameter can be executed to obtain crack growth over the number of cycles similar to that of the simulations
for the other initial interfacial stiffness values.

Analytically the number of cycles required to grow a crack from a0 to a certain length a f can be deter-
mined by Paris’ law (Eq. (2.19)) through simple integration:

N =
a f∫

a0

1

C∆Gm da (5.4)

This can be used to determine the value of parameter C necessary for obtaining the same amount of cycles
for all simulations. The variation of energy release rate computed through the simulations are used as input
for the analytical expression. From investigation it follows that for the simulation with an initial interfacial
stiffness of 108 N/mm3 the Paris parameter C should be equal to 8.62 ·10−6. When this value is then used in
the numerical model for a new simulation the crack growth over the number of cycles as depicted in Fig. 5.6
is obtained. It shows that there is now a perfect resemblance between the results for the three simulations.
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Furthermore, it can be concluded that a method is found that can be used to overcome slight differences
in fatigue analysis results due to numerical issues. However, when large dissimilarities in the response of
the specimen are obtained this post-processing method may not suffice. In that case an entire calibration
of the numerical parameter set may be needed. Further research on this should be carried out for better
understanding.
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Figure 5.6: The crack growth versus the number of cycles for the adapted ITLS model with calibrated C parameter

5.3.3. Validating proportionality condition with an overload
The last step in this research for the validation of the adapted ITLS model with the proportionality condition
is to execute simulations with an overload (OL). The OL affects the amount of plasticity around the crack tip.
Generally, an OL incidentally enlarges the plastic zone around the crack tip, resulting in a retardation of crack
growth. Due to the influence of the initial interfacial stiffness on plasticity in the current model, simulations
with overloads give accuracy issues. However, the adapted ITLS model showed no influence of the initial
interfacial stiffness with CA loading and has therefore great potential. Simulations similar to those for the CA
loading with the adapted ITLS model are executed to validate this model for fatigue with an OL.
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Figure 5.7: Variation of energy release rate ∆G versus crack length a and The crack length a over the number of cycles needed to reach a

The symmetry for the CT specimen is equal to the symmetry described in Section 5.2. The loading for
this analysis consists of a constant part of 750 N and an OL of 1125 N. The length of the damaged zone lc is
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equal to 0.3 mm and the damage parameter c3 is equal to 0. Both the constant c and the initial interfacial
stiffness K remained the same as for the CA loading analysis with the addition of a fourth simulation with
an initial interfacial stiffness K = 1011 N/mm3. Fig. 5.7 depicts the results of the simulations with an OL
for four different values of the initial interfacial stiffness K . It should be noted that for the initial interfacial
stiffness of 108 N/mm3 the analytical method for calibrating the Paris parameter C is used. This method
was described in Section 5.3.2. The results for the variation of energy release rate ∆G (see Fig. 5.7a) show a
good agreement, where only the results for K = 108 N/mm3 is slightly less accurate with some oscillations.
However, this inaccuracy could be solved for the obtained curves of the crack growth versus the number of
cycles by the use of a calibrated Paris parameter C . In this case the parameter C has a value of 8.5 ·10−6 for
the simulation with K = 108 N/mm3 instead of C = 8.36 ·10−6 for the other simulations.

The crack growth over the number of cycles shows a perfect agreement between the simulations (see Fig.
5.7b). Even after the OL is applied a perfect agreement is found for the crack growth curves. The results show
the potential of the adapted ITLS model to capture accurate and equal responses.

5.4. Conclusion

In this Chapter the capability of the adapted ITLS model with the proportionality condition for simulating
crack growth under fatigue loading is discussed. Two types of analysis are discussed, the analysis with CA
loading and the analysis with an OL. Both analyses were executed to investigate the capability of the proposed
ITLS model to obtain accurate results for crack growth under fatigue loading. A few conclusions can be drawn.

From the results for both the analysis with only CA loading and the analysis with an OL, it can be con-
cluded that the proposed adapted ITLS model is capable of removing the initial interfacial stiffness depen-
dency in the current ITLS model. Furthermore, the amount of plasticity in the model seems to remain con-
stant for a varying initial interfacial stiffness K , whereas this was not the case for the current ITLS model. This
makes the model independent of the initial interfacial stiffness in a more general context. However, this is
not a full proof that the amount of plasticity remains constant for the different simulations. In order to prove
it definitively the equivalent plastic strains should be plotted.

Lastly, it became clear from the results for the current ITLS model and the simulation with K = 108 N/mm3

for the adapted ITLS model that the numerical model is sensitive to the parameter input. For the adapted
model this minor dissimilarity could be fixed by adjusting the Paris parameter C but further research should
be executed to investigate the impact of the parameter input on the computed crack growth over the number
of cycles.
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Conclusions and recommendations

In this thesis the dependency on the choice for the initial interfacial stiffness of the ITLS model is investi-
gated. A method is proposed that is capable of eliminating this dependency. This method is validated for
analyses under quasi-static loading conditions and fatigue loading conditions. In Section 6.1 the conclu-
sions are given based on the research objective and research questions as defined in Section 1.3. Section 6.2
presents recommendations for further research.

6.1. Conclusions

To assess the research objective two research questions and three sub-questions were formulated. The re-
search questions and sub-question(s) associated to it are discussed individually:

1 Is there an initial interfacial stiffness dependency in the current formulation for the interfacial thick level
set model?

Within this thesis a parameter study was conducted with the aim to determine which interfacial param-
eters are affecting the response of a DCB specimen. Each parameter was varied individually after which
the influence on the global response was evaluated. The parameters of interest were: the damage pa-
rameters c1 and c3, the length of the damaged zone lc and the initial interfacial stiffness K . The length
of the damaged zone proved to be of no influence on the DCB response. This provides the possibility to
use a coarser mesh while maintaining the same accuracy. It should be noted that enough elements are
present inside the damaged band, otherwise the amount of integration points is too small to capture
the correct damage profile resulting in less accuracy. The damage parameter c3 also has no influence
on the global response for the DCB specimen for the lower value range. When the value of c3 becomes
higher or equal to 0.5 there is a slight influence on the global response. However, these higher values for
c3 are used mainly in continuous TLS models, whereas the ITLS model mostly uses low values already,
which allows for damage shapes more similar to shapes obtained from cohesive models.

The remaining two parameters both have proven to be of significant influence on the global response
of the DCB specimen. It is as expected that the damage parameter c1 has a significant influence on the
response of the specimen. Latifi et al. [9] already showed that the choice for a certain damage function
affects the response of a specimen. Since c3 only results in a minor influence with a value above 0.5, the
larger part of the influence of the damage function should be related to the c1 parameter. It could be
concluded that an increasing value for c1 results in a decreasing initial stiffness of the DCB specimen.
However, one should always take care when using a high valued c1 parameter since this could require
mesh refinements or even the use of higher order elements to retain accuracy. The initial interfacial
stiffness K is the second parameter that has a significant influence on the specimens behaviour. The
simulations showed that for an increasing value of parameter K , the initial stiffness of the DCB response
increases as well. It is also demonstrated that there is a certain relation between parameters c1 and K ,
which was adopted as one of the solution strategies for answering the second research question in this
thesis. The threshold for the combination of the two parameters is dependent on several factors such
as used material and geometry. Calibration of these parameters for the used specimen is needed to
ensure accurate results and to prevent spurious initiation of damage.

45
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The sub-question to this research question was: Are the effects significant for both linear elastic and
elastic-plastic materials?. The results showed that the global initial stiffness, peak loads and amount
of oscillations were affected similarly for a LE and an EP material due to a varying initial interfacial
stiffness K . So it can be concluded that the effects due to the damage parameter c1 and initial stiffness
parameter K are present in both material types. Overall it is concluded that there is an initial interfacial
stiffness dependency present in the current ITLS model that needs to be removed.

2 How can the formulation of the current ITLS model be adapted such that the effects on the global be-
haviour, resulting from the initial interfacial stiffness, are removed?

The previous research question has proven that there is an initial interfacial stiffness dependency in
the current ITLS model. This stiffness dependency has to be removed such that similar responses can
be obtained when using different values for the initial interfacial stiffness K . In order to achieve the
desired result, two methods were proposed. The first method was based on the assumption that the
solution to the initial stiffness dependency is based on an adaption of the constitutive relations for the
interface. Instead of initial interfacial stiffness K , the new expression K

d was used, which included the
adaption of the damage boundaries. In this adapted damage definition the damage grows from lbound

to 1. After elaborating the method and comparing the required results, this method proved to be capa-
ble of resolving the initial interfacial stiffness problem and obtaining similar behaviour as was obtained
for the current ITLS model. By adjusting the new parameter lbound the interfacial stiffness of the sane
material can be varied without affecting the global response, which is essentially a solution to the ini-
tial interfacial stiffness dependency in the current ITLS model. However, the initial interfacial stiffness
K should remain constant for all simulations and the parameter calibration process does not become
simpler by the use of this method, which is considered to be a limitation of this method. Therefore, a
second method was proposed.

The second method was based on the assumption that there is a certain relation between the damage
parameter c1 and the initial interfacial stiffness parameter K . Since increase in both parameters re-
sulted in an opposite influence on the initial stiffness of the DCB specimen, a certain proportionality
between c1 and K seemed to be of importance. Executing simulations on a trial and error basis re-
sulted in a one to one proportionality between parameters c1 and K . When using this proportionality
condition an excellent agreement was found between simulations with a varying value for the initial
interfacial stiffness for both LE and EP materials. Moreover, the crack growth rate showed an excel-
lent agreement as well. The proportionality can also simply be explained without looking at the results
from simulations. When an interface becomes stiffer the rate at which the damage function grows also
has to become higher to overcome the extra numerical stiffness. Otherwise, the damage grows slower
resulting in a postponed crack initiation and therefore a higher peak load. However, this is more intu-
itively than an actual proof. The actual proof was found when the interfacial stiffness (1−d)K over the
damaged zone was elaborated numerically and analytically. Since the initial stiffness of the DCB spec-
imen consists of two parts, the stiffness from the bulk and the stiffness from the interface, the solution
is found when the stiffness of the interface remains constant for varying initial interfacial stiffness K
values. The curves for the simulations with the proportionality condition resulting from the numerical
elaboration showed a perfect agreement, whereas the curves without proportionality showed dissimi-
lar results. By using a Taylor series around φ = lc to elaborate the interfacial stiffness analytically, the
proportionality condition could also be proven. Both the numerical and the analytical elaboration of
the interfacial stiffness demonstrate how the proportionality condition removes the initial interfacial
stiffness dependency in the ITLS model.

The found proportionality condition enabled a new formulation for the damage inside the ITLS model.
With this adapted damage formulation the numerical model becomes independent of the chosen value
for the initial interfacial stiffness K . This already answers a part of the first sub-question for this re-
search question, which was: Is it possible to adapt the formulation such that the renewed ITLS is ap-
plicable to both linear elastic and elastic-plastic materials in a quasi-static analysis?. For a complete
answer a comparison between an analytical analysis and the adapted ITLS model needs to be carried
out. This comparison was performed to ensure the accuracy of the adapted ITLS model. Again both a
LE and an EP material were investigated. Since there is no analytical solution for the EP material, the
analytical LE definition is used to obtain the initial stiffness of the linear elastic part of the global re-
sponse. Subsequently, the responses from the simulations were calibrated to this global initial stiffness.
Both the LE and EP material showed a very good agreement with the analytical solution. It was found
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that for the LE material the post-peak response shows the exact same averaged trend but it is slightly
higher than for the analytical solution. However, this dissimilarity is negligible. For the EP material
there was no analytical result to compare the post-peak responses to but there was a perfect agreement
between the simulations themselves. Therefore, it can be concluded that the adapted ITLS model is
applicable to both LE and EP materials for an analysis under quasi-static loading.

During the research the obtained traction curves over the damaged zone were found to be remarkable.
The shape of the curves differs significantly from traction curves traditionally obtained with a CZM
model. After investigation of the damage profiles and subsequently the interfacial stiffness in both
models, the hypothesis that the shape of the traction profile is heavily dependent on the chosen damage
profile is stated.

In order to prove whether the adapted ITLS model can be proposed as the new approach to model
crack growth, the last sub-question needs to be answered: Does the adjusted method result in accurate
solutions for different types of specimen and load cases? Crack growth is a very common failure type in
fatigue analysis. Moreover, the formulation of the ITLS model enables a direct link between damage
mechanics and fracture mechanics. The Paris law is fracture mechanics based and is used for fatigue
analysis with crack growth. Therefore, the adapted ITLS model also needs to be validated for a fatigue
analysis. For this research it was chosen to perform a fatigue analysis on a steel compact-tension speci-
men containing plasticity. In the current ITLS model the chosen value for the initial interfacial stiffness
K is assumed to have an influence on the amount of plasticity in the specimen. The hypothesis is that
this influence disappears when the ITLS model is no longer dependent on the choice for the initial in-
terfacial stiffness. To prove this a fatigue analysis with constant amplitude loading and with an overload
was conducted. Initially, the results for the variation of energy release rate ∆G were compared for both
the ITLS model with and without proportionality. The comparison between the current and adapted
ITLS model showed that there is an initial interfacial stiffness dependency for the amount of plasticity
occurring around the crack tip. The contour plots for the Von Mises stress showed dissimilarities for the
current ITLS model, whereas there was a good agreement for the adapted ITLS model. Furthermore,
the variation of energy release rate ∆G for the current ITLS model imparted dissimilar results, which
demonstrates that the found initial interfacial stiffness dependency in the current ITLS model is also
present in the model for fatigue. The adapted ITLS model results for the variation of energy release rate
proved that the proportionality condition is accurate for the simulations in this research.

With the knowledge that the proportionality condition is valid for the fatigue simulations with a CT
specimen, the results for the crack growth over the number of cycles was obtained for simulations with
CA loading and with an OL. For the simulations for both the CA load and the OL with an initial interfa-
cial stiffness K = 108 N/mm3 the Paris parameter C had to be adjusted such that similar crack growth
over the number of cycles was obtained. This was necessary due to the slight difference in the varia-
tion of energy release rate compared to the other simulations. By using the method of adjusting the
Paris parameter C through the use of the analytical expression for the number of cycles, the dissimi-
larity between simulations is removed. Therefore, the obtained results proved that the adapted ITLS
model is capable of acquiring similar solutions when various initial interfacial stiffness values are used.
However, a post-processing method is needed in some cases to obtain equal crack growth results. Fur-
thermore, the numerical model proved to be sensitive to the parameter input. Therefore, the adapted
ITLS model should be investigated further for fatigue loading, which means that no definitive answer,
regarding the accuracy and capability of the adapted ITLS model, to this sub-question can be given.
However, the proportionality condition shows great potential for acquiring accurate results for crack
growth under fatigue loading independent of the choice for the initial interfacial stiffness K .

6.2. Recommendations

For future research the following recommendations are given.

6.2.1. Proportionality condition

FATIGUE
The capability of the adapted ITLS model to capture the behaviour of a CT specimen under fatigue loading
was discussed earlier. The preliminary conclusion that the adapted ITLS model is capable of removing any
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initial stiffness dependency in the model for fatigue was presented. The results showed that the variation of
energy release rate ∆G and the amount of plasticity, visualized by the contour plot of the Von Mises stress,
remained constant for varying values of the initial interfacial stiffness K . However, a contour plot of the Von
Mises stress to compare the plasticity for different simulations is not the most accurate proof of the indepen-
dence of the plasticity. Contour plots for the equivalent plastic strains could be investigated to provide more
knowledge.

Furthermore, some simulations required a post-processing adjustment of the Paris parameter C to obtain
similar results for the crack growth over the number of cycles. Further research is recommended to remove
the need for such a post-processing step. Research on the influence of the parameter input, particularly the
Paris parameters, of the numerical model and the robustness of the model could help in this removal.

LOADING MODES
This research has proven that for a mode-I quasi-static loading case with a DCB specimen, the damage pa-
rameter c1 and initial stiffness parameter K should be one to one proportional. It was shown that this re-
moves the initial interfacial stiffness dependency in the ITLS model without any loss of accuracy. However,
only simulations for a mode-I loading scheme were conducted. Therefore, it is impossible to prove whether
the proportionality condition is still valid when a mode-II, mode-III or even mixed mode loading is applied.
Further research on simulations under different loading conditions would be needed to validate the adapted
ITLS model for all possible quasi-static loading types.

For fatigue loading a similar research could be conducted. Since the adapted ITLS model showed great
potential for simulations with mode-I fatigue loading, expanding to different types of loading modes would
be a next step in the validation of this adapted ITLS model.

3D MODEL
This research focused on 2D model simulations. The next step would be to extend the adapted ITLS model
to a 3D model. 3D modeling extends the system of equations that needs to be solved to compute the energy
release rate. Moreover, the local driving force Y has to be averaged over the nodes along the crack front, after
which a variational approximation is taken to compute the energy release rate. Research should be conducted
to investigate whether the one to one proportionality is still valid in the extended system of equations for the
computation of the energy release rate. This could then validate the accuracy of the proportionality condition
in 3D models.

6.2.2. Traction
Tractions over the length of the damaged zone are computed through the existing constitutive relations in
the ITLS model. It was shown that both the initial interfacial stiffness K and the damage function d affect
the computed traction. For this research the traction from the ITLS model was compared to that of a CZM.
Moreover, the damage function, which is an input parameter in the ITLS model and a result from the com-
puted tractions and displacement jumps in the CZM simulation, were compared. The values for the initial
interfacial stiffness were kept equal between the models, therefore the observed difference is caused by the
input damage function for the ITLS model. It is impossible to determine whether the traction obtained in the
ITLS model is correct or incorrect, just as it is impossible to determine this for the CZM. The only conclusion
that could be drawn was that the current shape of the damage function makes it impossible to obtain similar
traction profiles over the length of the damaged zone when comparing the ITLS and CZM models.

For future research it is advised to investigate the traction profile at the crack plane. Since it is impossible
to determine how the traction profile should look exactly, an experimental test could be conducted on a
DCB specimen. However, the traction at the crack plane can only be obtained in an inverse manner. It can
not be measured directly. Strains could be measured after which these strains can be inversely translated to
tractions. This would allow for a comparison between the inversely obtained traction and the ITLS model.
One would then need to adapt the ITLS model such that it produces a similar traction profile. If this means
adjusting the damage function, it should also be investigated how this would affect the found proportionality
condition.

A second solution strategy could be to couple the ITLS damage mechanics with the cohesive zone models.
Lé et al. [10] already researched the coupling between the TLS and CZM model. It would be interesting to
extend this to the ITLS model to investigate the influence it has on the resulting tractions at the crack plane.



A
Analytical solution proportionality

In Chapter 4 the proportionality condition for the ITLS model was proven numerically. However, this can also
be proven analytically by elaborating the interfacial stiffness

(
1−d

)
K . In order to obtain similar results this

stiffness should remain constant for varying values of initial interfacial stiffness K . To obtain this result, the
part

(
1−d

)
should change with an equal but opposite factor to K . Therefore, the first step is to elaborate the

damage definition as proposed for the proportionality condition.

d(φ) = c2 arctan

(
cK

(
φ

lc
− c3

))
+ c4 (A.1)

Where parameters c2 and c4 are:

c2 =
(
arctan

(
cK

(
1− c3

))−arctan
(−cK c3

))−1

(A.2)

c4 =−c2 arctan
(−cK c3

)
(A.3)

This results in a damage function as follows:

d(φ) =
arctan

(
cK

(
φ
lc
− c3

))
−arctan

(−cK c3
)

arctan
(
cK

(
1− c3

))−arctan
(−cK c3

) (A.4)

This form of the damage function is difficult to elaborate analytically for the investigation of the influence
of a varying initial interfacial stiffness K . To be able to elaborate this analytically the Taylor series of this
damage function should be used. A Taylor series around φ = lc will enable the comparison between the
damage resulting from different values for parameter K . The Taylor series of a simple arc-tangent function is
given as:

arctan(x) =



∞∑
n=0

(−1)n x2n+1

2n+1 , −1 ≤ x ≤ 1

π
2 −

∞∑
n=0

(−1)n 1
(2n+1)x2n+1 , x ≥ 1

−π
2 −

∞∑
n=0

(−1)n 1
(2n+1)x2n+1 , x ≤ 1

(A.5)

Now that the point of expansion and the shape of the Taylor expression is known, the Taylor series for this
particular damage function is carried out. It should be noted that it is assumed that an expansion order of
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O(4) is sufficient for the proof of the proportionality condition. The result of the expansion is:

d(φ) = 1+ cK
(
φ− lc

)(
arctan

(
cK
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(
cK c3

))(
1+ c2K 2
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3
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Then for the part
(
1−d

)
of the interfacial stiffness this results in:(
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)= cK

(
φ− lc

)(
arctan

(
cK

(
1− c3

))+arctan
(
cK c3

))(
1+ c2K 2

(
1− c3

)2
)

lc

− c3K 3
(
1− c3

)(
φ− lc

)2(
arctan

(
cK

(
1− c3

))+arctan
(
cK c3

))(
1+ c2K 2

(
1− c3

)2
)2

l 2
c

+
c3K 3

(
c2K 2

(
1− c3

)2 − 1
3

)(
φ− lc

)3(
arctan

(
cK

(
1− c3

))+arctan
(
cK c3

))(
1+ c2K 2

(
1− c3

)2
)3

l 3
c

+O
((
φ− lc

)4
)

(A.7)

To check the proportionality condition the expression in Eq. (A.7) can be elaborated for two different
values of parameter K for any given coordinate φ. To be able to express the difference in a percentage, some
values are assumed for the different parameters present in the expression. These values are listed in Table
A.1. K1 and K2 are the two different values for the initial interfacial stiffness used to prove proportionality.
Elaboration of the Taylor expansion yields:

Table A.1: Interface properties

c c3 K1 K2

5 ·10−5 mm3/N 0.01 108 N/mm3 109 N/mm3

(
1−d1,2

)=


6.603 ·10−5
(
− (φ−lc )

lc
+ (φ−lc )2

l 2
c

− (φ−lc )3

l 3
c

)
+O

((
φ− lc

)4
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for K1

6.565 ·10−6
(
− (φ−lc )
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+ (φ−lc )2

l 2
c

− (φ−lc )3

l 3
c

)
+O

((
φ− lc

)4
)

for K2

(A.8)

From Eq. (A.8) it becomes clear that for K2 the value of
(
1−d

)
is 6.603·10−5

6.565·10−6 = 10.06 times lower than the same
value for K1. Opposite to this the value for initial interfacial stiffness K2 is 10 times larger than that of K1.
Therefore, both effects will neutralize each other, which is shown as follows:

K2 = 10 ·K1(
1−d2

)= 6.565 ·10−6

6.603 ·10−5

(
1−d1

)≈ 0.1
(
1−d1

) (A.9)

When this is used to compare the interfacial stiffness
(
1−d

)
K for the K1 and K2, the definitive analytical

proof is found: (
1−d1

)
K1 =

(
1−d2

)
K2

= 0.1
(
1−d1

)
10 ·K1

= (
1−d1

)
K1

(A.10)
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