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SUMMARY

Phononic crystals can be designed to have bandgaps—ranges of frequencies whose
propagation through the material is prevented. They are therefore attractive for vibra-
tion isolation applications in different industries, where unwanted vibrations reduce
performance. Yet, important steps are still to be made for the integration of phononic
crystals into engineering practice. For instance, methods for large scale production are
still in development. Furthermore, it is essential that design methods are established to
enable the design of phononic crystals that meet all of the, often conflicting, require-
ments for practical applications. This thesis focuses on the latter challenge by proposing
a computational design method for phononic crystals based on the combination of an
advanced finite element method and level set-based topology optimization.

The working principle of phononic crystals is based on destructive interference of
waves reflecting from the periodic arrangement of material interfaces (Bragg scatter-
ing). Consequently, it is essential that a numerical design tool accurately captures the
mechanical behavior at material interfaces. Generally, in finite element analyses, this
is ensured by creating a matching mesh: a discretization that conforms to the mate-
rial interfaces. However, during computational design, the locations and geometry of
these material interfaces change in every design iteration. One solution to this would
be to create a new matching mesh for every iteration during the computational design.
Nevertheless, creating new matching meshes for every design iteration is a challenging
and error-prone procedure. In standard topology optimization methods this problem
is commonly avoided altogether by using a density-based representation. In this ap-
proach, the discretization does not conform to the material interfaces. Instead, the in-
terfaces are resolved by assigning a (pseudo-) density to each mesh element. As a result,
these material boundaries are diffused and staircased, which is detrimental for obtaining
the dynamic response of phononic crystals. The extremely fine finite element meshes
required to compensate for this boundary description result in exceedingly large and
expensive optimization problems.

A possible solution is to decouple the boundary description from the discretiza-
tion using a level set method. Level sets have been widely used in topology optimiza-
tion as an alternative design parametrization that offers more defined material bound-
aries. However, in most cases the level set is mapped to element densities using an
Ersatz method for the analysis. Although gray values are limited to the elements that
are intersected by the level set boundary, even during the optimization, the method
still suffers from staircasing and diffuse boundaries. This problem can be solved us-
ing enriched or immersed finite element methods. In these methods, standard finite
element procedures are enhanced or modified to resolve material interfaces inside el-
ements. Many such enriched and immersed methods exist, each having their own ad-
vantages and disadvantages. This thesis focuses on the Interface-enriched Generalized
Finite Element Method (IGFEM), and its extensions: the Hierarchical Interface-enriched
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Finite Element Method (HIFEM) and the Discontinuity-Enriched Finite Element Method
(DE-FEM). As DE-FEM is a generalization of IGFEM/HIFEM, collectively they are also re-
ferred to as discontinuity-enriched finite element methods. An important advantage of
discontinuity-enriched FEMs is the fact that, using a new method that is introduced in
Chapter 2, strong enforcement of essential (Dirichlet) boundary conditions is possible
on boundaries that are non-matching to the discretization mesh. Because of this strong
enforcement of boundary conditions, smooth reaction fields are recovered along these
non-matching boundaries. In Chapter 3 it is demonstrated that this method can also
be extended to the strong enforcement of Bloch-Floquet periodic boundary conditions,
which are required for the immersed analysis of phononic crystals. These two chapters
together show that IGFEM is suitable for PnC design, as it can be used to modify both the
phononic crystal geometry and periodicity without changing the underlying discretiza-
tion, and without loss of accuracy.

By creating a framework for topology optimization using IGFEM and level set func-
tions parametrized by radial basis function, in Chapter 4 a computational design pro-
cedure is established that inherits the benefits of discontinuity-enriched methods as
well as level set methods. The sensitivities required for design updates for compliance
problems are derived analytically. Combining aforementioned procedures, in Chapter 5,
phononic crystals are optimized using the previously introduced topology optimization
procedure. To this end, the sensitivities for bandgap maximization are also derived an-
alytically. This chapter also highlights the importance of accurately capturing the me-
chanical behavior near material interfaces for phononic crystal design. The methods
introduced in this thesis can not only be employed for the topology optimization of
phononic crystals, but may also be advantageous for other optimization problems such
as fluid-structure interaction or contact.



SAMENVATTING

Phononische kristallen kunnen zodanig ontworpen worden dat ze een gewenste
bandgap vertonen—een bereik van frequenties die verhinderd wordt zich voort te plan-
ten door het materiaal. Dit maakt ze onder andere een aantrekkelijke kandidaat voor
het gebruik in vibratie-isolatie in verschillende industrieën, waar ongewenste vibraties
het behalen van strikte toleranties belemmeren. Toch moeten er nog belangrijke stap-
pen worden gezet voordat phononische kristallen naadloos geïntegreerd kunnen wor-
den in de technische praktijk. Zo zijn er bijvoorbeeld productiemethoden nodig om
phononische kristallen op grote schaal te kunnen produceren. Ook is het essentieel dat
er ontwerp-methodieken worden ontwikkeld waarmee phononische kristallen kunnen
worden ontworpen die voldoen aan alle, vaak conflicterende, eisen. Dit proefschrift richt
zich op deze laatstgenoemde uitdaging door toe te werken naar een numerieke ontwerp-
methode die gebruikt maakt van een geavanceerde eindige elementen methode en to-
pologie optimalisatie.

De werking van phononische kristallen is gebaseerd op destructieve interferentie van
mechanische golven die weerkaatsen van periodieke materiaalgrenzen (Bragg-reflectie).
In een numeriek model is het daarom van groot belang om het mechanische gedrag
dicht bij deze materiaalovergangen goed te omschrijven. In het algemeen wordt hier in
eindige elementen analyses voor gezorgd door het creëren van een conformerend reken-
rooster; een discretisatie die de lokatie van materiaalgrenzen in acht neemt. Echter ver-
anderen tijdens een numerieke ontwerpprocedure de locaties en geometrie van de ma-
teriaalgrenzen in iedere ontwerp-iteratie. Een mogelijke oplossing hiervoor zou zijn om
een nieuw rekenrooster te creëren voor iedere iteratie in het ontwerpproces. Niettemin
is het maken van een nieuw conformerend rekenrooster voor iedere ontwerp-iteratie
een uitdagend en foutgevoelig proces. In standaard topologie optimalisatie wordt dit
probleem gewoonlijk helemaal ontweken door het gebruik van methodes gebaseerd op
een pseudo-dichtheid. In deze aanpak neemt de discretisatie de materiaalgrenzen niet
in acht. In plaats daarvan worden de materiaalgrenzen gerepresenteerd door middel
van een pseudo-dichtheid in ieder element van het rekenrooster. Dit heeft tot resultaat
dat de materiaalgrenzen diffuus en getrapt zijn, wat nadelig is voor de nauwkeurigheid
waarmee het gedrag van phononische kristallen wordt beschreven. De extreem verfijnde
rekenroosters die nodig zijn om te compenseren voor de getrapte materiaalgrensdefini-
ties resulteren in buitengewoon grote optimalisatieproblemen.

Een mogelijke oplossing is om de materiaalgrensdefinitie los te koppelen van het re-
kenrooster door gebruik te maken van een level set methode. Level sets worden veel
toegepast als alternatieve parametrisering die zorgt voor een beter gedefinieerde mate-
riaalgrenzen. Echter wordt de level set in de meeste gevallen voor de analyse gerepresen-
teerd met elementdichtheden doormiddel van een Ersatz methode. Hoewel grijswaar-
den dan beperkt worden tot elementen die worden doorkruist door een materiaalgrens,
ook tijdens de optimalisatie, lijdt deze methode nog steeds aan grijze en getrapte materi-

vii



viii

aalgrenzen. Dit kan worden opgelost door middel van verbeterde of aangepaste eindige
elementen methodes. In deze methodes wordt de standaard eindige elementen formu-
lering uitgebreid en aangepast om materiaalgrenzen door elementen heen te accommo-
deren. Er bestaan verschillende van dit soort methodes, die elk hun eigen voor- en nade-
len hebben. Dit proefschrift richt zich op de Interface-enriched Generalized Finite Ele-
ment Method (IGFEM), en de uitbreidingen: de Hierarchical Interface-enriched Finite
Element Method (HIFEM) en de Discontinuity-Enriched Finite Element Method (DE-
FEM). Omdat DE-FEM een generalisatie van IGFEM/HIFEM wordt als verzamelnaam
voor deze methodes discontinuity-enriched eindige elementen methodes gebruikt. Een
belangrijk voordeel van discontinuity-enriched eindige elementen methodes is het feit
dat essentiële (Dirichlet) randvoorwaarden, gebruikmakend van een nieuwe methode
die in Hoofdstuk 2 wordt geïntroduceerd, sterk kunnen worden voorgeschreven op ran-
den en oppervlaktes die niet conformeren aan het rekenrooster. Hierdoor is het ook
mogelijk gladde reactievelden te verkrijgen op niet-conformerende randen. In Hoofd-
stuk 3 wordt gedemonstreerd dat dit ook geldt voor het sterk voorschrijven van de Bloch-
Floquet periodieke randvoorwaarden die nodig zijn voor het analyseren van phononi-
sche kristallen. Deze hoofdstukken samen tonen dat IGFEM geschikt is voor het ontwerp
van phononische kristallen, omdat het gebruikt kan worden om zowel de geometrie als
periodiciteit van phononische kristallen aan te passen zonder daarbij de onderliggende
discretisatie te hoeven veranderen, en zonder verlies van nauwkeurigheid.

Door een werkwijze te ontwikkelen voor topologie optimalisatie die gebruikt maakt
van IGFEM en level set-functies die worden geparametriseerd met behulp van radiale
basisfuncties, wordt in Hoofdstuk 4 een ontwerpmethode ontwikkeld met de voorde-
len van zowel discontinuity-enriched methodes als level set methodes. De afgeleiden
die nodig zijn voor het doen van ontwerpstappen in stijfheidsmaximalisatieproblemen
worden analytisch afgeleid. Door eerdergenoemde procedures te combineren worden in
Hoofdstuk 5 phononische kristallen geoptimaliseerd. De hiervoor benodigde ontwerp-
afgeleiden worden analytisch afgeleid. Dit hoofdstuk benadrukt ook het belang van het
nauwkeurig beschrijven van het mechanisch gedrag in de buurt van materiaalgrenzen in
phononische kristallen. Deze topologie optimalisatie methode kan niet alleen gebruikt
worden voor het ontwerpen van phononische kristallen, maar kan ook aantrekkelijk zijn
voor andere optimalisatieproblemen zoals vloeistof-structuur interacties of contact.
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1
INTRODUCTION

1.1. PHONONIC CRYSTALS
Mechanical waves and vibrations play a significant role in many aspects of both everyday
life and industries. From an environmental point of view, unwanted noise and vibrations
have negative effects on human health and wildlife well-being. For instance, long-term
exposure to whole-body vibration and hand-transmitted vibration gives rise to a range
of disorders in humans (European Parliament Council of the European Union, 2002).
Human-induced noise in the sea, such as noise induced by ships, drilling, and pile dri-
ving, has been found to affect the behavior of ocean life (Peng et al., 2015). In industries,
unwanted vibrations impair mechanical performance and precision, where the trend for
miniaturization of features calls for ever-increasing demands on tolerances. Conversely,
mechanical waves and vibration can be harnessed for many applications, for example,
energy harvesting (Wei and Jing, 2017).

Consequently, the ability to block or otherwise influence these waves is of great im-
portance. Phononic crystals (PnCs) provide such control by a periodic arrangement of
materials; they may exhibit bandgaps, i.e., ranges of frequencies which are attenuated
due to Bragg scattering. The existence of bandgaps can occur on any length scale, and
therefore, applications are found in thermal control (Davis and Hussein, 2014) by ope-
rating on extremely small wave lengths, using unit cells on the nanometer scale, all the
way to seismic engineering (Witarto et al., 2019; Yan et al., 2015), where the unit cells
are in the order of a meter. Other applications include, for instance, low vibration en-
vironments (Hussein et al., 2014), and new sensing schemes for the characterization of
sensitive chemicals and biological samples, where the liquid sample becomes part of a
solid-liquid PnC (Lucklum et al., 2021).

To achieve full command over the travelling waves, intuitive or trial-and-error-based
approaches to design do not suffice. Instead, systematic design tools such as topology
optimization (TO) (Bendsøe and Kikuchi, 1988) have been used to design periodic arran-
gements of materials for specific wave propagation properties. At the base of systema-
tic design procedures is the numerical analysis method. For wave propagation through
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2 1. INTRODUCTION

periodic materials, a variety of modeling techniques is available (Yi and Youn, 2016), in-
cluding the Boundary Element Method (BEM) (Isakari et al., 2016; Li et al., 2013a,b), Fi-
nite Differences - Time Domain (FDTD) (Su et al., 2010; Tanaka et al., 2000), Plane Wave
Expansion (PWE) (Economou and Sigalas, 1993; Kushwaha et al., 1994) and the Finite
Element Method (FEM) (Veres et al., 2013). Although all of these methods have their
own advantages and disadvantages, FEM (see Section 1.2) is found to be advantageous
for cases with complex geometries because irregular meshes may be used, and is often
used in TO. Sigmund and Jensen (Sigmund and Jensen, 2003) were the first to use TO for
the design of phononic crystals. Many works on the topology optimization of PnCs have
been published since, the majority of which focus on the maximization of the absolute
or relative bandgaps, exploiting symmetry of the periodic unit cells. However, in some
works, improvements in the band gap width could be achieved by relaxing the symme-
try conditions (Dong et al., 2014; Gazonas et al., 2006). Other objective functions, such
as maximizing the spatial decay of evanescent waves (Chen et al., 2017a), maximizing
the wave attenuation in viscoelastic materials (Chen et al., 2018), and self-collimation of
elastic waves (Park et al., 2015), have also been demonstrated. Reviews on the develop-
ments of TO of PnCs were written by Yi and Youn (2016) and by Li et al. (2019b).

1.2. DECOUPLING THE DESIGN FROM THE ANALYSIS MESH
The finite element method (FEM) has proven to be tremendously valuable for the nume-
rical analysis of structural, thermal, electromagnetic, fluid and multi-physics problems.
In FEM, the domain of interest is subdivided into smaller sections—finite elements—for
which simple interpolation rules are used. The assembly of elements with simplified
behavior can then accurately describe the behavior of the entire domain, provided a suf-
ficiently large number of elements is used. Nevertheless, despite the many advantages
of this method, there is a major drawback: a discretization mesh (i.e. the subdivision into
elements) is needed that conforms to the problem’s geometry. Creating such a matching
(or geometry-conforming) mesh poses a challenge in optimization cases, where the loca-
tion of the interface changes at every iteration, and consistent sensitivities should con-
sider also the change in element shape.

In TO, this is commonly solved by creating a structured mesh and approximating the
geometry by means of a density-based model. Each element in the discretization is assig-
ned a density, which is used as a continuous design variable. This concept is illustrated
in Figure 1.1a, where a circle is approximated by means of elemental densities (or gray
values). These density values are used in TO as design variables, giving the optimizer the
opportunity to distribute material freely in the design domain.

Despite the successful application of TO to PnCs and other problems, there are some
downsides to the method. First of all, as the design variables are coupled directly to the
mesh elements, the resulting designs are inevitably “staircased” or “pixelized”, as is de-
monstrated in Figure 1.1. In this thesis it will be shown that this is detrimental for the
accuracy of the analysis, especially for problems which are dominated by the bounda-
ries, as is the case for Bragg scattering in PnCs. Refining the mesh partly alleviates the
issue, but it increases computation time in both the analysis and the optimization, as the
number of design variables is directly coupled to the number of elements in the mesh.

Furthermore, for PnCs, which are periodic, a periodic unit cell (PUC) is used. Such
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(a) (b)

Figuur 1.1: A density-based topology optimization representation of a circle, versus an enriched FEM repre-
sentation. In (a), the geometry is approximated by a “staircased” description, where elements on the boundary
of the circle are assigned an intermediate (gray) value that corresponds to the volume fraction of the element
that lies within the circle; (b) uses an enriched finite element method to obtain a crisper representation of the
circle, without intermediate material properties.

a PUC, describes a single geometry, that is tiled along its lattice vectors a1, a2 and a3 to
create a periodic structure. Periodicity is then enforced by requiring the displacements at
either side of the PUC to be equal, or, in cases with travelling waves, equal with a phase
shift. The latter boundary conditions are known as Bloch-Floquet periodic boundary
conditions. They determine that not only the geometry within the PUC is important,
but also the shape of the PUC itself.

Enriched finite element methods can be used to mitigate these problems: through
enrichment functions, they can model a smooth description of material interfaces, as
shown in Figure 1.1. Boundaries may be defined explicitly as line sections, or implicitly
using level sets. The latter are very suitable as an alternative design parametrization in
TO. As such, they avoid problems with “staircased” or “pixelized” boundary representa-
tions. Furthermore, when used in an immersed setting, where the PUC is fully enclosed
by the mesh, enriched FEM might be used to decouple the PUC shape from the discreti-
zation mesh. The Interface-enriched Generalized Finite Element Method (IGFEM) (Sog-
hrati et al., 2012a) is an enriched method that might be used to this extent. It differs from
the more known the eXtended/Generalized Finite Element Method (X/GFEM) (Duarte
et al., 2001; Moës et al., 1999) in that it places enrichments exclusively at locations on the
discontinuity. This approach has many advantages, including the extension to an unified
formulation for both weak and strong discontinuities—DE-FEM (Aragón and Simone,
2017), the possibility for hierarchical implementation HIFEM (Soghrati, 2014), and the
use in an immersed setting (Cuba Ramos et al., 2015). In this thesis, these methods will
be referred to as discontinuity-enriched finite elements methods.

1.3. RESEARCH AIM AND SCOPE
The main research question in this work is formulated as:

How can a numerical analysis and design methodology be formulated
that provides accurate and computationally efficient results for phononic crystals?
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In order to answer this question, in the subsequent chapters, the following questions will
be answered:

• How can boundary conditions be prescribed on immersed edges using
discontinuity-enriched analysis?

• How can this method be extended to Bloch-Floquet boundary conditions for the
fully immersed analysis of phononic crystals?

• How can discontinuity-enriched analysis be used in a level set-based topology op-
timization setting?

• How can this optimization procedure be extended to the smooth design of phono-
nic crystals?

1.4. MAIN CONTRIBUTIONS OF THIS THESIS
The main contributions of this thesis revolve around decoupling the design from the
analysis mesh by means of the Interface-enriched Generalized Finite Element Method
and Discontinuity-Enriched Finite Element method.

• Immersed enriched finite element analysis: This thesis demonstrates the use
of discontinuity-enriched finite element methods as an immersed boundary me-
thod, where the physical domain is enclosed by a simple structured mesh. Ma-
terial properties are only assigned to the physical parts of the domain, and ele-
ments that lie completely outside of the physical domain are removed from the
analysis. It is shown that it is straightforward to impose boundary conditions in
discontinuity-enriched finite element methods. To the best of the author’s know-
ledge, the paper on which Chapter 2 is based was the first work where essential (Di-
richlet) boundary conditions could be applied to non-matching edges in a strong
manner. Not only does this significantly simplify the use of the method, it also
ensures that reaction forces on non-matching edges can be recovered accurately.
Furthermore, the Bloch-Floquet periodic boundary conditions, that are used for
the analysis of phononic crystals in Chapter 3, can be applied in a similar manner.

• Levelset-based topology optimization using IGFEM: This thesis shows the first le-
vel set-based topology optimization using the Interface-enriched Generalized Fi-
nite Element Method for analysis. This combination required special treatment
of sensitivities, which are required for updating the design. The computation of
these sensitivities is first developed for compliance minimization problems. The
formulation is then applied to phononic crystals.

1.5. THESIS OUTLINE
This thesis presents three research chapters that have been published as journal papers,
one research chapter that will be submitted for publication, and one concluding chapter.
The first two research chapters are about immersed analysis, and were a prerequisite for
the two optimization chapters that follow. A visual overview of the thesis outline is found
in Figure 1.2.
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Chapter 2 presents an enriched formulation for immersed finite element analysis. This
formulation allows for the strong enforcement of essential (Dirichlet) boundary condi-
tions on edges that are non-matching to the discretization mesh. The method is de-
monstrated to be stable and optimally convergent, by means of a number of numerical
examples. Moreover, it demonstrated that smooth reaction fields can be recovered.

Chapter 3 extends the method that was introduced in Chapter 2 to the analysis of immer-
sed periodic unit cell of phononic crystals. To that end, Bloch-Floquet boundary condi-
tions are strongly prescribed on non-matching edges, similar to the Dirichlet boundary
conditions in Chapter 2 The proposed approach is studied for analyzing phononic
crystals in 1-D, 2-D, and 3-D. It shows that both the phononic crystal geometry and pe-
riodicity can be modified without changing the underlying discretization.

Chapter 4 introduces a level set-based topology optimization framework using IGFEM
analysis and Radial Basis Functions (RBFs). The sensitivities are derived analytically.
This chapter demonstrates the use of the topology optimization procedure for minimum
compliance in 2-D and 3-D, and for the optimization of a heat sink.

In Chapter 5, the importance of using smooth boundaries for the computational design
of phononic crystals is demonstrated. Furthermore, the topology optimization proce-
dure introduced in Chapter 4 is adapted to optimize PnCs. The computation of the sen-
sitivities for bandgap maximization are derived and the final designs are evaluated.

Chapter 6 contains a discussion and conclusions on DE-FEM as an immersed method
for the analysis and design of phononic crystals. Furthermore, recommendations for
future work are given.



1

6 1. INTRODUCTION

Chapter 1:
Introduction

Chapter 2:
Immersed domain

analysis using DE-FEM

0 2
Chapter 3:

Immersed analysis
of PnCs

Chapter 4:
Topology optimiza-
tion using IGFEM

Chapter 5:
Smooth-boundary

design of PnCs

Chapter 6:
Conclusions and re-

commendations

Figuur 1.2: Visual overview of the thesis outline. Chapter 2 establishes IGFEM/DE-FEM as an immersed me-
thod. In Chapter 3 this method is extended to PnCs, and in Chapter 4 a topology optimization approach is
described. Chapter 5 combines this work into the optimization of PnCs.
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AN INTERFACE-ENRICHED FINITE

ELEMENT METHOD FOR IMMERSED

PROBLEMS

In order to fully decouple the analysis mesh from the design of phononic
crystals using IGFEM, it has to be used in an immersed setting. In this chap-
ter, IGFEM and DE-FEM are introduced as immersed domain methods. A
formulation is derived in Section 2.2.2 for the strong enforcement of Di-
richlet boundary conditions on edges that are non-matching to the discreti-
zation mesh. Numerical examples are provided in section 2.3 that demon-
strate that the method is stable and optimally convergent.

This chapter has been published in
International Journal for Numerical Methods in Engineering

2019 (120) 1163 – 1183

7

https://doi.org/10.1002/nme.6139
https://doi.org/10.1002/nme.6139


2

8 DE-FEM FOR IMMERSED PROBLEMS

A Stable Interface-Enriched Formulation for
Immersed Domains with Strong Enforcement of

Essential Boundary Conditions

Abstract Generating matching meshes for finite element analysis is not always a

convenient choice, for instance in cases where the location of the boundary is not

known a priori or when the boundary has a complex shape. In such cases, en-

riched finite element methods can be used to describe the geometric features in-

dependently from the mesh. The Discontinuity Enriched Finite Element Method

(DE-FEM) was recently proposed for solving problems with both weak and strong

discontinuities within the computational domain. In this paper we extend DE-

FEM to treat fictitious domain problems, where the mesh-independent bounda-

ries might either describe a discontinuity within the object, or the boundary of

the object itself. These boundaries might be given by an explicit expression or an

implicit level set. We demonstrate the main assets of DE-FEM as an immersed

method by means of a number of numerical examples; we show the method is

not only stable and optimally convergent, but most importantly, that essential

boundary conditions can be prescribed strongly.

2.1. INTRODUCTION

Immersed boundary techniques eliminate the need for intricate meshing algorithms by
decoupling the external boundary description from the discretization mesh. In this pa-
per we introduce a novel method for immersed problems, where enrichments to the fi-
nite element approximation are associated to locations on the immersed boundary. This
facilitates the strong enforcement of essential boundary conditions on non-matching
edges, which was not possible in immersed methods until now.

The Finite Element Method (FEM) is a well-established numerical procedure for the
analysis of a wide range of problems in physics and engineering. It requires a discre-
tization mesh whose elements align with the domain’s external boundaries and inter-
nal interfaces. However, for problems with complex geometries, creating a good-quality
matching or geometry-conforming mesh is a demanding procedure, where admissible
element aspect ratios have to be guaranteed. The burden of meshing increases even
further in cases where the domain boundaries are changing in subsequent analyses,
as is the case in optimization procedures. Local mesh-adaption techniques (Auricchio
et al., 2015; Basting and Weismann, 2014; Frei and Richter, 2014; Gangl and Langer, 2018)
such as Universal Meshes (Rangarajan and Lew, 2014) and the Conforming to Interface
Structured Adaptive Mesh Refinement (CISAMR) (Nagarajan and Soghrati, 2018; Sog-
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hrati et al., 2017) have been proposed to account for changing boundaries. These me-
thods ensure elements with proper aspect ratio are created. Alternatively, immersed
boundary methods alleviate the burden of remeshing by describing the external bounda-
ries independently from a usually structured discretization mesh (Hansbo and Hansbo,
2002; Parvizian et al., 2007), which is less sensitive to aspect ratio. In doing so, part of the
complexity is merely shifted from the mesh generation to the integration scheme and
mesh interactions. This shift is reasonable in cases where mesh generation is cumber-
some, such as for complex-shaped problem domains (Heinze et al., 2015) and for moving
interfaces during optimization (Villanueva and Maute, 2017).

A number of immersed boundary techniques have been proposed which deal with
external boundaries independently from the mesh. In the unfitted finite element me-
thod, first introduced by Barrett and Elliot (1987) and later improved by Hansbo and
Hansbo (2002), the basis functions in the intersected elements are restricted to the res-
pective integration domains, resulting in a doubling of the number of basis functions in
intersected elements. This method was developed further into the Cut Finite Element
Method (CutFEM) (Burman and Hansbo, 2010, 2012; Burman et al., 2015) by adding
ghost penalty terms to improve the condition number of the resulting matrices. Cut-
FEM has been studied in the context of both solid (Burman et al., 2015, 2018) and fluid
mechanics (Villanueva and Maute, 2017), and has recently been applied to the topology
optimization of flow problems (Villanueva and Maute, 2017). The Finite Cell Method
(FCM) (Düster et al., 2008; Parvizian et al., 2007) is a fictitious domain procedure ba-
sed on the p–version of the finite element method (p–FEM) where the field variables
extend smoothly outside the physical domain. FCM has also been used in topology op-
timization (Parvizian and Rank, 2012), and has been extended to handle NURBS-based
geometries (Ruess et al., 2013; Schillinger et al., 2012). While all of these methods un-
doubtedly allow greater flexibility by decoupling the discretization from the problem’s
geometric features, one of the core challenges remains prescribing essential (Dirichlet)
boundary conditions. To the best of our knowledge, in the existing immersed boundary
methods there is currently no way to strongly prescribe essentialm boundary conditions
to a non-matching element side. Instead, several methods have been proposed to weakly
impose essential boundary conditions, such as utilizing Lagrange multipliers (Burman
and Hansbo, 2010; Glowinski et al., 1994; Tur et al., 2014) or employing Nitsche’s me-
thod (Burman and Hansbo, 2012; Hansbo, 2005). Natural (Neumann) boundary conditi-
ons, on the other hand, do not pose generally much of an issue, as the only requirement
is a means to integrate them accurately over the immersed boundary.

In parallel, the mesh-independent analysis of discontinuities that are internal to
the domain has become established practice in enriched methods such as the eXten-
ded/Generalized FEM (X/GFEM) (Aragón et al., 2010; Belytschko et al., 2009; Duarte
et al., 2001; Fries, 2008; Moës et al., 1999, 2003), which originated from partition of unity
methods (Babuška and Melenk, 1997; Melenk and Babuška, 1996). They provide an ele-
gant solution to handling strong or weak discontinuities, referring to whether the dis-
continuity is present in the field itself (e.g., a crack) or in its gradient (e.g., a material
interface), respectively. When modeling discontinuities with X/GFEM, the standard fi-
nite element approximation is augmented by enrichment functions that incorporate the
desired behavior otherwise missing by the use of a non-matching mesh—in this case the
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jump in the field and/or its gradient. It has been shown that this method outperforms the
standard FEM in situations where changing topologies are involved, such as solidifica-
tion problems (Chessa et al., 2002), fluid-structure-contact-interaction problems (Mayer
et al., 2010), and topology optimization (van Dijk et al., 2013; Villanueva and Maute,
2014). However, X/GFEM comes with its own set of challenges, such as the need for
choosing appropriate enrichment functions that do not degrade accuracy (Fries, 2008)
and the need for special formulations for prescribing interface conditions and essential
boundary conditions (Babuška et al., 2003). More recently, research efforts have focused
on obtaining stable formulations through Stable Generalized Finite Element Methods
(SGFEM) to address issues inherent to the formulation that result in ill-conditioned ma-
trices (Babuška and Banerjee, 2012; Gupta et al., 2013; Kergrene et al., 2016). X/GFEM
has been studied in the context of immersed domain problems. However, as explained
in Cuba Ramos et al. (2015), it suffers from boundary locking as the Lagrange multiplier
space overconstrains the problem.

The Interface Enriched Generalized Finite Element Method (IGFEM) (Soghrati et al.,
2012a) was introduced as a particular type of enriched FEM for the mesh-independent
modeling of weak discontinuities(Aragón et al., 2013; Soghrati, 2014; Soghrati and Geu-
belle, 2012). It differs from X/GFEM in that it places the enrichments exclusively on
nodes collocated along discontinuities, instead of associating them to nodes of the ori-
ginal mesh. This significantly simplifies implementation, as enrichment functions are
straightforward to construct by using Lagrange shape functions of integration elements,
i.e., subdomains created for the purpose of integrating the element local stiffness matrix
and force vector. IGFEM, which converges optimally with mesh refinement (Soghrati
and Geubelle, 2012; Soghrati et al., 2012a), has been demonstrated successfully in the
modeling of fibre-reinforced composites (Soghrati and Geubelle, 2012), the multi-scale
damage evolution in heterogeneous adhesives (Aragón et al., 2013), and microvascular
materials with active cooling (Soghrati and Geubelle, 2012; Soghrati et al., 2012a,b). Mul-
tiple interfaces crossing a single element can be resolved recursively by using a hierar-
chical implementation of IGFEM called the Hierarchical Interface-enriched Finite Ele-
ment Method (HIFEM) (Soghrati, 2014). This makes it straightforward to analyze in-
terfaces that are very close together, or even n-junctions, where n interfaces meet at a
single point inside an element, allowing for crack branching in arbitrary locations, and
for the analysis of cracks in composite materials. However, special treatment is required
at crack tips to achieve optimal convergence. IGFEM has also been used in combination
with adaptive meshing (Soghrati et al., 2015), with NURBS interfaces (Tan et al., 2015),
and in an optimization setting (Najafi et al., 2015; Tan and Geubelle, 2017). Cuba Ramos
et al. (2015) demonstrated IGFEM as an immersed boundary method, by using Lagrange
multipliers to weakly impose Dirichlet boundary conditions on IGFEM edges. More re-
cently, Aragón and Simone (2017) introduced the Discontinuity Enriched Finite Element
Method (DE-FEM) as a generalization of IGFEM to treat both weak and strong discon-
tinuities with a unified formulation. In addition to the flexibility of dealing with both
discontinuity types, DE-FEM inherits all of the virtues of IGFEM/HIFEM:

• The construction of both weak and strong enrichment functions is straightfor-
ward, as they are based on the standard Lagrange shape functions of integration
elements;
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• Because enrichment functions vanish at original mesh nodes, the Kronecker-delta
property is maintained in standard nodes, allowing essential boundary condition
to be applied in the same way as in standard FEM;

• With the use of a diagonal preconditioner, or a proper scaling factor for the en-
richment functions (Aragón et al., 2020), the formulation used for treating weak
discontinuities is stable, i.e., the conditioning number increases at the same rate
as that of standard FEM under mesh refinement;

• A hierarchical implementation of DE-FEM can analyze multiple discontinuities
and n-junctions within a single element. Cracks and interfaces are allowed to in-
tersect each other as well.

In this paper, we place IGFEM, HIFEM, and DE-FEM in the context of immersed pro-
blems, using a strong enforcement of essential boundary conditions based on multi-
ple point constraints. In the absence of strong discontinuities, the DE-FEM formulation
simplifies to that of IGFEM/HIFEM. As external boundaries are weak discontinuities, the
method for imposing Dirichlet BCs holds for IGFEM, HIFEM, and DE-FEM alike. We de-
monstrate the versatility of DE-FEM by means of an immersed-discontinuous patch test
that includes a material interface and a crack, within just one element. Convergence
of immersed IGFEM is demonstrated by means of the Eshelby inclusion problem. An
example with a slightly rotated background mesh is used to demonstrate the stability of
the method. Lastly, it is shown that the method is capable of dealing with complex 3-D
geometries by means of immersing an intricate level set function within the volumetric
mesh. Summarizing, the main novelties in this paper are:

• The use of DE-FEM as an immersed boundary method, where a material is only
assigned to the physical parts of the domain. We include cracks and material in-
terfaces in the immersed problems as well.

• To the best of the authors’ knowledge, this is the first immersed method where
Dirichlet boundary conditions can be applied on non-matching boundaries in a
strong manner, by means of multiple point constraints.

2.2. DE-FEM AS AN IMMERSED METHOD

2.2.1. DISCRETIZATION

Consider a solid body, represented by an open domainΩ ∈Rd referenced by a Cartesian
coordinate system spanned by {ei }i=1..d , as shown in Figure 2.1. The body is composed
by matrix and inclusion materials, denoted asΩm andΩi, respectively, such that the do-
main closure, denoted by an overbar, is defined as Ω = Ωm ∪Ωi and Ωm ∩Ωi = ;. The
boundary of the domain ∂Ω ≡ Γ = Ω \Ω, with outward unit normal n, is composed by
disjoint lower-dimensional manifolds Γu and Γt, such that Γ= Γu∪Γt and Γu∩Γt =;. We
assume Γu 6= ; is the region where essential (Dirichlet) boundary conditions are prescri-
bed. Similarly, Γt is the region with prescribed natural (Neumann) boundary conditions.
The figure also shows a traction-free crack Γc ⊆ Γt that interacts with both materials, and
might also coincide with the material interface Γi . The crack is parameterized by the
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Γt
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Figuur 2.1: Mathematical representation of a cracked solid composed by materials Ωm and Ωi, which repre-
sent the matrix and an inclusion, respectively. A crack Γc is also illustrated interacting with both faces. The
schematic shows a problem containing both weak and strong discontinuities.

curve s, which also serves to define the orientation of the crack in space so that a unique
normal nc can be defined. The normal vector field is also used to identify two regions
in the immediate vicinity of the crack, shown in the figure with positive (+) and negative
(-) symbols. Thus, two points that coincide in space but are situated at each side of the
crack are separated after deformation by a distance δ, which denotes the displacement
jump as a function of a local coordinate s through the crack centerline.

The setting just described corresponds to that of a solid that contains both weak and
strong discontinuities. The weak discontinuity results from the mismatch in material
properties between the matrix and the inclusion, while the strong discontinuity arises
from the crack. In this work, we restrict ourselves to traction-free cracks, but extension
to cohesive or pressure-loaded cracks is straightforward. For simplicity the graphical
representation of the problem shows a single inclusion and a single crack, but the gene-
ralization to multiple inclusions and cracks is straightforward as well. We are interested
in solving the linear elastostatics problem on Ω. We denote the displacement field u in
the matrix (Ωm) and inclusion (Ωi) by um and ui, respectively, i.e., u j ≡ u|Ω j , j = m,i.

Given the prescribed displacement ū j : Γu, j ≡ Γu ∩Γ j → Rd and traction t̄ j : Γt, j → Rd

fields, and the body force b j :Ω j → Rd , the strong form of the boundary value problem
is: Find u such that

∇·σ j +b j = 0 inΩ j , (2.1)

u j = ū on Γu, j , (2.2)

t j = t̄ on Γt, j , (2.3)

with interface conditions

um = ui on Γi =Ωm ∩Ωi, (2.4)

σm ·ni =σi ·ni on Γi, (2.5)
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and constitutive and continuity relation

σ=λ tr(ε)ε+2µε, (2.6)

ε= 1

2

(∇u +∇uᵀ) . (2.7)

In Equation (2.1), ∇· denotes the divergence operator and σ j : Ω j → Rd × Rd is the
second-order stress tensor that follows Hooke’s law for isotropic linear elastic materials,
which can be fully characterized by the Lamé parameters λ and µ.

Let V (Ω) ≡ [V (Ω)]d be a vector-valued function space onΩ, where each vector com-
ponent of v ∈V belongs to the first-order Sobolev function space H 1 (Ω). Similarly, let
V0 (Ω) ⊂V be the subset that satisfies homogeneous boundary conditions on Γu. To deal
with non-homogeneous boundary conditions, we define the linear variety V? = ũ +V0

as a translation of V0 by the vector-valued function ũ : ũi ∈ H 1 (Ω) , ũ|Γu = ū, i.e., every
element of V? satisfies the non-homogeneous essential boundary condition.

The weak formulation is: Find u ∈V? such that

B (u, v ) = L (v ) , ∀v ∈V0, (2.8)

or equivalently: Find u ∈V0 such that B (u, v ) = L (v )−B (ũ, v ) , ∀v ∈V0. The linear and
bilinear forms are given by

L (v ) =
∑

j=m,i

∫

Ω j

v j ·b j dΩ+
∫

Γt

vi · t̄ dΩ (2.9)

and

B (u, v ) =
∑

j=m,i

∫

Ω j

σ j
(
u j

)
: ε j

(
v j

)
dΩ. (2.10)

For solving the problem we choose a domain ∆ ⊂ Rd that fully encloses our ori-
ginal problem domain (∆ ⊇ Ω), as illustrated in Figure 2.2a. This hold-all domain is
discretized by finite elements so that ∆h = int

(⋃
i e i

)
, where ei is the i th element and

ei ∩ e j = ;, ∀i 6= j . An interaction between the discretization ∆h and the problem’s
geometric features (boundary, interfaces, and/or cracks) then takes place, resulting in
new nodes, created at the intersection of the discontinuities with the edges of elements
in the discretization. Similarly, intersected—or cut—elements are divided into sub-
domains (called integration elements), which are added to a hierarchical data struc-
ture. For instance, Figure 2.2a shows an element ei that is traversed by the interface
Γi and the crack Γc. First, this background element ei is split into three integration ele-
ments (e(1)

i , i = 1,2,3) according to the crack Γc . Integration element e(1)
1 is in turn split

into three integration elements (e(2)
i , i = 1,2,3). The resulting hierarchy is shown in Fi-

gure 2.2b. The new discretization containing new nodes and the element hierarchy will
be denoted henceforth as ∆h

H . Despite their name, integration elements are used for
more than just integration. In fact, the purpose of these integration elements is fourfold:
i) they are used for integration of the element matrices; ii) enrichment functions are
constructed as linear combinations of their standard Lagrange shape functions; iii) they
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Figuur 2.2: Schematic representation of the mesh interaction: (a) the original mesh is hierarchically interacted
with the discontinuities, (b) integration elements are stored in a tree structure, (c) new nodes and integration
elements are added to the discretization.
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ensure that the enrichment functions are smooth, and can thus be integrated with the
least number of Gauss points; and iv) they are used to ensure the field can be displayed
correctly after postprocessing.

The finite-dimensional form of Equation (2.8) is then solved on ∆h
H by choosing our

trial solution uh and our weight function w h from the Discontinuity-Enriched Finite
Element space

Vh =
{

v h : v h =
∑

i∈ιh
Ni (x)Ui

︸ ︷︷ ︸
std. FEM

+
weak︷ ︸︸ ︷∑

i∈ιw
ψi (x)αi +

strong︷ ︸︸ ︷∑
i∈ιs

χi (x)βi

︸ ︷︷ ︸
enriched

, Ui ,αi ,βi ∈Rd
}
⊂V. (2.11)

In Equation (2.11), ιh represents the index set of all nodes in∆h
H from the original discre-

tization (shown in Figure 2.2c with and symbols for the degrees of freedom (DOFs)
outside and inside the domain, respectively). Similarly, ιw and ιs denote index sets of
weak and strong enriched nodes, respectively, which are the result of the aforementio-
ned interactions with the background mesh (shown with and symbols in Figure 2.2c,
respectively). The first term in (2.11) corresponds to the standard FEM part, where
Ni and Ui are the Lagrange shape functions and DOF vector, respectively, associated
with the i th mesh node. The standard FEM space is augmented by enrichment func-
tions. The result is an enriched space that is spanned by enrichment functions that
contain the kinematic description of the discontinuities. In the approximation, ψi (χi )
are the enrichment functions that reproduces the weak (strong) discontinuity with as-
sociated enriched DOF vector αi (βi ). Notice that if ∆h is a linear triangulation, then
v h

∣∣
e ∈ [P1 (e)]d , ∀e ∈∆h

H , where P1 represents the space of first-order polynomials on e.
As previously stated, DE-FEM is a particularly versatile method which allows arbi-

trary configurations of interfaces, domain boundaries, and cracks. Any number of in-
terfaces and domain boundaries are allowed to come arbitrarily close to one another,
and intersections of domain boundaries with cracks are allowed. As a result, an element
ei ∈ ∆h

H can be intersected by an arbitrary number of discontinuities. The method has
this advantage by virtue of the hierarchical construction of the shape functions in ele-
ments split by multiple interfaces, as illustrated earlier in Figure 2.2a, and in Figure 2.3.
Here, we follow the work of Soghrati (2014) for the hierarchical construction of enrich-
ment functions. At the element level, the approximate solution uh ∈ Vh can be written
as

uh(x) =
∑

i∈ιh
Ni (x)Ui +

∑
k∈h

∑
i∈ιw

ψki (x)αki +
∑

k∈hs

∑
i∈ιs

χki (x)βki , (2.12)

where h ≡Z+ = {1,2, . . . ,D} is the index set of hierarchical levels resulting from D discon-
tinuities that interact with the element, and hs ⊆ h represents the subset associated with
strong discontinuities—since strong DOFs are not present in weak discontinuities. Note
that an element intersected by D discontinuities will have D levels of hierarchy in the
ordered tree. Because enrichment functions are constructed with the aid of Lagrange
shape functions in integration elements, these functions are non-zero only in the do-
main of the cut element by construction; the functions attain their maximum absolute
value at the location of the enriched node, and ramp linearly to zero at nodes of cut ele-
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N2,U2
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x4
x5
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ψ11,α11

ψ12,α12

ψ21,α21

ψ22,α22

ψ23,α23

χ21,β21

χ22,β22

(b)

Figuur 2.3: Hierarchical splitting of an element crossed by a material interface (Γe
i ), defined by element sub-

domains Ωe
i and Ωe

m, and a crack Γc (shown in red). The hierarchical construction of the corresponding en-
richment functions ψki and χki is illustrated. Observe that all enrichment functions can be written as linear
combinations of Lagrangian shape functions of the integration elements. Also, note that there is no strong
enrichment function associated with the crack tip.

ment. The procedure for constructing hierarchical shape functions for both weak and
strong enrichments is outlined in Figure 2.3.

The numerical quadrature of every integration element ei ∈∆h
H is conducted hierar-

chically in order to obtain the local stiffness matrix ki and force vector fi as

ke =
∫

Ωi




dN
dψ
dχ


C

[
dN dψ dχ

]
dΩ, fe =

∫

Γt




dN
dψ
dχ


 t̄ dΓ, (2.13)

where C is the constitutive matrix. In the Appendix, pseudo-code is given for the compu-
ter implementation, where the traversal over the hierarchy is executed in a loop. Subse-
quently, following standard procedures, the discrete system of linear equations KU = F
is obtained, where

K =A
i

ki , F =A
i

fi , (2.14)

andA denotes the standard finite element assembly operator.
An important issue in immersed boundary methods is the ill-conditioning of the re-

sulting system matrices, which can hinder obtaining a solution. Immersed methods suf-
fer from conditioning issues due to nearly-zero contributions to the system matrix, ori-
ginating from intersected elements with low volume fractions belonging to the physical
domain. Several strategies have been proposed to prevent ill-conditioning in immersed
methods. A possible solution is to add an artificial stiffness to the fictitious part of the
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domain. However, adding stiffness to void regions modifies the problem at hand, and it
is not straightforward to strike a balance between stability and accuracy. Another option
is to modify the FE function space; one could either simply remove all basis functions
that deteriorate the condition number, or scale the FE basis functions. Lastly, a precon-
ditioner could be employed to improve the condition number of system matrices. In
this work we use a diagonal preconditioner to avoid ill-conditioning. We also choose
to remove all DOFs belonging to nodes in void areas from the system matrices, while
setting the material properties in the void regions to zero. However, an optimal scaling
for enrichment functions, which is a function of the geometric properties of the inter-
section and the material properties on each side of the interface, was proposed recently
and could be used instead of the preconditioner (Aragón et al., 2020).

2.2.2. TREATMENT OF BOUNDARY CONDITIONS
An important issue in immersed methods relates to prescribing boundary conditions on
the non-matching boundaries Γu and Γt, which may coincide with the interface Γi and
crack Γc. In immersed methods, in general, it is not straightforward to apply boundary
conditions on these edges, as no degrees of freedom are explicitly related to the boun-
daries. Consequently, boundary conditions have to be imposed in a weak manner. In
DE-FEM, on the contrary, prescribing boundary conditions is straightforward due to the
fact that enrichment functions vanish at nodes of the background mesh, and that their
associated enriched nodes are collocated exclusively along discontinuities. In fact, in
DE-FEM it is possible to impose Dirichlet conditions in a strong manner by solving lo-
cal problems, which is a distinctive asset that gives DE-FEM an advantage over other
immersed domain methods.

DIRICHLET BOUNDARY CONDITIONS

We first start our discussion on prescribing essential boundary conditions on enriched
nodes placed along the immersed boundary—which is a weak discontinuity described
by weak enriched DOFs alone. By denoting xα the spatial coordinate of an enriched
node associated with DOFsαk j , we simply solve for the latter using (2.12) since uh (xα) =
ū (xα):

αk j =
1

ψk j

[
ū (xα)−

∑
i∈ιh

Ni (xα)Ui −
∑

n∈h,n<k

∑
i∈ιw ,i 6= j

ψni (xα)αni −
∑

n∈h,n<k

∑
i∈ιs

χni

(
xα j

)
βni

]
.

(2.15)
Note that, only the enrichment functions that are non-zero at xα need to be taken into
account. In practice, this means that only the higher levels of hierarchy (n < k) need to
be considered. Equation (2.15) can be used to find the valueαk j for all prescribed nodes,
as a function of Ui ,αni and βni . The resulting system of equations can subsequently be
written in the form of a multiple point constraint (MPC):




U
α

β


= T




Ũ
α̃

β̃


+g , (2.16)

where the vector
[
Ũ α̃ β̃

]ᵀ contains only the remaining non-prescribed DOFs. The
matrix T contains the contributions of other nodes, both original and enriched, to the
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prescribed DOFs. The vector g contains the prescribed values ū and β. The modified
system matrix and right-hand side can then be computed as

K̃ = T ᵀK T

F̃ = T ᵀ (
F −K g

)
.

(2.17)

In these reduced matrices, the displacements are strongly enforced.

To illustrate the procedure, consider the triangular element e in Figure 2.3, split by a
boundary Γi so that part of the element lies in the domainΩm and part lies in the domain
Ωi. In this example, Ωm is void. The element is also split by a crack Γc so that multiple
integration elements are created hierarchically. We now prescribe the primary field va-
riable u over Γi (i.e., u|Γi = ū) which is discontinuous at the crack. To obtain the DOF
values that should be prescribed on the first level of hierarchy—corresponding to coo-
rdinates x1 and x2 in the figure—we evaluate (2.15) for α11 and α12, respectively. Note
that the DOFs in the void area are set to zero, and are therefore removed from the system.
Furthermore, enrichment functions from deeper levels of the hierarchy vanish at these
coordinates, so only the function N2 corresponding to U2 will have a contribution:

α11 =
1

ψ11 (x1)
[ū (x1)−N2 (x1)U2] ,

α12 =
1

ψ12 (x2)
[ū (x2)−N2 (x2)U2] .

(2.18)

For the next hierarchy level, only the coordinate x4 is located on Γi, but here, both weak
(α) and strong (β) DOFs are present. Because β physically represents the crack ope-
ning displacement (Aragón and Simone, 2017), their values are readily available once

the jump in the displacement is known, i.e., β21 = �u (x4)� =
(

ū (x4)|Γ+c − ū (x4)|Γ−c
)
. Then

solving for α at x4 follows the same procedure just described for α11 and α12 . Because
the prescribed field ū (xα) is discontinuous at this location, we prescribe here the aver-
age displacement ūavg (x4). The strong DOF β21 then vanishes from the equation. These
DOFS can later be interpreted as the crack opening around the average displacements.
The resulting expression forα22 is written as

α22 =
1

ψ22 (x4)

[
ūavg (x4)−N2 (x4)U2 −ψ11 (x4)α11 −ψ12 (x4)α12

]
. (2.19)

Note that ψ11 and ψ12 (belonging to a higher hierarchy level) also have a contribution,
as their values are nonzero at x4. However, the deeper levels of hierarchy can never in-
fluence the higher ones.

Upon inspection, it becomes clear that the only DOFs that are not prescribed are U2,
α23 and β22, all other DOFs can be written as a function of these remaining DOFs. For
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this example, these vectors and matrices become:




U1

U2

U3

α11

α12

α21

α22

α23

β21

β22




=




0 0 0
I 0 0
0 0 0

− N2(x1)
ψ11(x1) I 0 0

− N2(x2)
ψ12(x2) I 0 0

0 0 0(
N2 (x4)− ψ11(x4)

ψ11(x1) N2 (x1)− ψ12(x4)
ψ12(x2) N2 (x2)

)
I 0 0

0 I 0
0 0 0
0 0 I







U2

α23

β22




+




0
0
0

1
ψ11(x1) ū (x1)

1
ψ12(x2) ū (x2)

0
1

ψ22(x4) ūavg (x4)

0(
ū (x4)|Γ+c − ū (x4)|Γ−c

)

0




.

(2.20)

NEUMANN BOUNDARY CONDITIONS

As stated before, tractions on the boundary Γt follow the same element-wise assembly
procedure into f as in standard FEM. In order to apply a traction t̄ on Γt ⊂ e, one would
simply compute

fe =
∫

Γt

v · t̄ dΩ=
∫

Γt

Nᵀ t̄ dΓ, (2.21)

where Nᵀ contains not only the element’s Lagrange shape functions Ni , but also enrich-
ment functions ψki and χki , as Nᵀ = [

Ni ψki χki
]ᵀ. As a result, fe will add contributions

to DOFs that are not located on the boundary Γt. For example, if a traction were to be
applied on Γi in Figure 2.3 (still assumingΩm to be void, and therefore removing U1 and
U3), contributions would appear on DOFs U2,α11,α12,α22 andβ21, as all of their corres-
ponding functions are non-zero on the boundary.

In the case of Neumann boundary conditions, DE-FEM also benefits from placing
nodes on the interface and creating integration elements, as the boundary Γt is explicitly
known, and therefore can be used for integration. Note that, as the partition of unity is
not retained in cut elements, the sum of all contributions will be higher than the total
applied traction. However, the obtained solutions are correct, as demonstrated in Sec-
tion 2.3.
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2.3. NUMERICAL EXAMPLES
In the following examples, a consistent unit system is assumed. Furthermore, plane-
strain conditions are used for the 2-D examples, and a quadrature rule that exactly in-
tegrates integration elements is adopted, i.e., one integration point is used for the linear
triangular (integration) elements.

2.3.1. THE “ULTIMATE” DISCONTINUITY PATCH TEST

0.5L 0.5L

E1, v1 E2, v2

Γc

0.
5L

0.
5L

t2

t1
e1

e2

Figuur 2.4: A plate composed of two materials is split in two by a crack Γc, denoted by the red line. Tractions
t̄1 and t̄2 are applied to the right edge, and the displacement is prescribed as shown.

In order to establish that DE-FEM can indeed recover constant states of stress, and
to demonstrate the flexibility provided by DE-FEM, we devise an immersed patch test
aiming at recovering multiple independent kinematic fields; the problem contains an
interface and a crack that intersect each other within an immersed domain. The pro-
blem, schematically shown in Figure 2.4, consists of a square domain of area L ×L. The
material to the left (right) of the interface has a Young’s modulus E1 = 2 (E2 = 20), and
both materials have Poisson ratio ν1 = ν2 = 0, to ensure that the vertical strain ε22 is zero
in both materials, and a constant analytical stress is obtained above and below the crack.
Regarding boundary conditions, the plate is constrained in displacement as shown in
the figure, and subjected to a traction per unit length

∥∥t̄1
∥∥= 1 and

∥∥t̄2
∥∥= 2, respectively,

below and above a crack Γc at x2 = 0.5L.
The analytical displacement field of this patch test is given by

u1 =





∥∥t̄1
∥∥x1

E1
for x1 ≤

1

2
L, x2 <

1

2
L,

∥∥t̄1
∥∥ 1

2 L

E1
+

∥∥t̄1
∥∥(

x1 − 1
2 L

)

E2
for x1 ≥

1

2
L, x2 <

1

2
L,

∥∥t̄2
∥∥x1

E1
for x1 ≤

1

2
L, x2 >

1

2
L,

∥∥t̄2
∥∥ 1

2 L

E1
+

∥∥t̄1
∥∥(

x1 − 1
2 L

)

E2
for x1 ≥

1

2
L, x2 >

1

2
L,

u2 = 0,

(2.22)
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(a) (b) (c)

Figuur 2.5: Hierarchical creation of the integration elements within a single background element, for each
discontinuity type: (a) The first level of hierarchy: the material interface is immersed in a single triangular
background element, enriched nodes are added, shown as , and three integration elements are created; (b)
the second level of hierarchy: the square material domain is interacted with the mesh that was obtained in
(a), enriched nodes are placed on the intersection of element edges and the square discontinuity, and the next
level of integration elements is created. Standard nodes and enriched nodes that lie completely outside the
square domain are shown as and , respectively, and will not be considered in the analysis; (c) the third level
of hierarchy: the crack is added: weak and strong enriched nodes, shown as , are placed at intersections
along the crack, and the final layer of integration elements is created.

and the stresses within the domain are given analytically as

σ11 =
{

2 for x2 < 0.5
1 for x2 > 0.5

,

σ22 = 0,

σ12 = 0.

(2.23)

This problem is then discretized within a single background element. This is pos-
sible because in this case, the linear displacement field, combined with these material
properties, will induce a constant state of stress. It has to be noted that, in physical pro-
blems containing multiple discontinuities, the interaction between these is likely to be
more complex. A finer mesh would then be preferred to accurately capture the physics
in that region. Even then, it is important to be able to describe multiple discontinuities
within a single element for several reasons:

• A crossing between two non-matching discontinuities will typically occur in a sin-
gle element, even after refinement. This may occur, for example, in composite
materials, crack branching (or merging), and in crack propagation in composite
materials or immersed domains.

• The method is more robust when discontinuities can come arbitrarily close to one
another. While a mesh refinement step might be required, a linear interpolation
between two interfaces might give a reasonable first estimate of the solution.

The hierarchical immersion of the problem in a single 3-node triangular element is
illustrated in Figure 2.5, together with the integration elements that result from the in-
teraction with the mesh at each level of the hierarchy. Figure 2.6a shows the numerical
displacement field, that matches the analytical one exactly. Note that, although only
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(b)

Figuur 2.6: Numerical results for the ‘ultimate’ patch test: (a) The deformations exactly match the analytic
deformations, as given in 2.22. (b) A constant state of stress, that corresponds to the analytical solution as
given in (2.23), is retrieved at either side of the cracked domain. The deformations of the integration elements
that lie outside the physical domain do not induce any stress.

the physical domain is colored, the integration elements outside the domain clearly un-
dergo deformation as well. However, because Young’s modulus in that region is exactly
zero, these deformations do not lead to any stress. As shown in Figure 2.6b, DE-FEM is
able to recover the analytic displacements and stresses exactly, despite the fact that this
problem contains an interface and a crack and is immersed in a single, non-matching,
background element.

2.3.2. CONVERGENCE: IMMERSED ESHELBY INCLUSION PROBLEM
The accuracy and convergence of the formulation are tested on the classical Eshelby in-
clusion problem, as illustrated in Figure 2.7a. A circular inclusion of a compliant material
(E1 = 1 , ν1 = 0.25) and radius ri = 0.9 is immersed in a stiffer material (E2 = 10, ν2 = 0.3)
with a radius of ro = 2. The circular boundary is subjected to a prescribed displacement
along the outer radius

ur (ro,θ) = ro,

uθ(ro,θ) = 0.
(2.24)

The analytic solution for the displacement field is

ur =





(
(1− r 2

o

r 2
i

)α+ r 2
o

r 2
i

)
r for 0 ≤ r ≤ ri,

(
r − r 2

o
r

)
α+ r 2

o
r for ri ≤ r ≤ ro,

uθ = 0,

(2.25)

where α is a function of the Lamé parameters of the materials λ1, λ2 and µ1, µ2:

α=
(
λ1 +µ1 +µ2

)
r 2

o(
λ2 +µ2

)
r 2

i + (
λ1 +µ1

)(
r 2

u − r 2
i

)+µ2r 2
u

, (2.26)

and the Lamé parameters are defined as λ = Eν/(1+ν)(1−2ν) and µ = E/2(1+ν).The analy-
tic displacement field (2.25) is non-linear in terms of spatial coordinates, and therefore
cannot be recovered exactly by the linear interpolation space of the discretized model.
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ro

ri

E1

E2

ur (ro ,θ) = ro
uθ(ro ,θ) = 0

(a) (b)

Figuur 2.7: (a) Schematic of the Eshelby inclusion problem: A circular domain with a concentric circular inclu-
sion and prescribed displacements along the radial and tangential directions; and (b) The immersed discreti-
zation on a structured triangular mesh, and sub-triangulation into integration elements shown with thinner
lines.

This circular domain is immersed in a square structured mesh as shown in Fi-
gure 2.7b, creating non-matching edges for both the internal material interface Γi as
well as the external domain boundary Γo. On the boundary, the exact solution is prescri-
bed in the form of a Dirichlet boundary condition. Contrary to the weak enforcement of
non-homogeneous Dirichlet boundary conditions in Cuba Ramos et al. (2015), here we
prescribe it using multiple point constraints, as described in Section 2.2.2. The numeri-
cally obtained displacement field is shown in Figure 2.8. Furthermore, the tractions on
the Dirichlet boundary are recovered by mapping the nodal forces (obtained as KU = F )
back to d − 1 elements. The recovered traction profile is smooth, as illustrated in Fi-
gure 2.8.

Figure 2.9 shows an element-wise evaluation of the error fields in both the energy-
norm and the L2-norm, which we define for an element e as

∥ e ∥2
L2(e) ≡

∥ u −uh ∥2
L2

∥ u ∥2
L2

=
∫

e

(
u −uh

)ᵀ (
u −uh

)
de∫

e ∥ u ∥2 de
, (2.27)

and

∥ e ∥2
E(e) ≡

∥ u −uh ∥2
E

∥ u ∥2
E

=
∫

e

(
ε(u)−ε(uh)

)ᵀ
C

(
ε(u)−ε(uh)

)
de∫

e ε(u)ᵀCε(u)de
, (2.28)

where u is the analytic solution, uh is the numerical solution, ε(u) is the strain due to
displacement field and C the elasticity tensor, here written in Voigt notation. As this error
evaluation is done on the level of integration elements, all elements are either completely
inside or completely outside the physical domain. As we are not interested in the latter,
we simply omit them from the error analysis. It is clear that the error is concentrated
mostly along the material interface, as the circular interface is discretized as a piece-wise
linear discontinuity. Particularly, the error in the energy norm may be large in integration
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Figuur 2.8: Deformed configuration of the immersed Eshelby inclusion problem including the recovered
smooth traction profile.

elements with bad aspect ratios, due to inaccurate computations of the derivatives of
the field (Nagarajan and Soghrati, 2018; Soghrati et al., 2017). Note, however, that the
error on the domain boundary is relatively low, as the enriched DOFs are prescribed to
represent exactly the imposed displacement there.

To further investigate the influence of aspect ratio on the error, we analyze a series
of Eshelby inclusion problems on a single mesh that is matching to the material in-
terface, but non-matching to the outer boundary. Figure 2.10 shows that the error on
the matching interface is of a similar order as the error in DE-FEM. Changing the ra-
dius of the outer boundary while keeping the background mesh fixed changes the as-
pect ratio of the integration elements. The error in an integration element close to the
immersed boundary—indicated with a red outline—is plotted as a function of the as-
pect ratio in Figure 2.11. Both the absolute error ∥ u −uh ∥2

(e) and the normalized error

∥ u −uh ∥2
(e) / ∥ u ∥2

(e) are shown. From the former, it can be seen that the absolute er-
ror in the element decreases with aspect ratio, as the volume of the elements decreases.
From the normalized error it becomes clear that the aspect ratio indeed has an influ-
ence, but the error remains bounded. Therefore, bad aspect ratio elements are expected
to not have much influence on the global error measure under mesh refinement, as is
investigated next.

In order to analyze convergence under mesh refinement, we use the standard L2-
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Figuur 2.9: Element-wise error fields in the immersed Eshelby inclusion problem; (a) L2-norm and (b) Energy-
norm
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Figuur 2.10: Element-wise error for an immersed Eshelby problem, where the outer boundary is non-matching
to an unstructured background mesh that is aligned with the inclusion;(a) L2-norm and (b) Energy-norm. The
integration element indicated with a red outline is used in the aspect ratio study of Figure 2.11.
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Figuur 2.11: Error in an integration element (normalized by the integration element area) as a function of
aspect ratio. Figure (a) shows the error in the L2-norm and (b) shows the error in the energy norm.
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Figuur 2.12: DE-FEM shows optimal convergence for the immersed Eshelby inclusion problem with strongly
prescribed nonzero Dirichlet boundary conditions: (a) Convergence with respect to the number of DOFs, and
(b) the mesh size h.

and energy-norms of the relative error, given respectively by

∥ e ∥L2 ≡ ∥ u −uh ∥L2

∥ u ∥L2
=

√√√√√
∑

e∈∆h
H

∫
e

(
u −uh

)ᵀ (
u −uh

)
de

∑
e∈∆h

H

∫
e ∥ u ∥2 de

, (2.29)

and

∥ e ∥E ≡ ∥ u −uh ∥E
∥ u ∥E

=

√√√√√
∑

e∈∆h
H

∫
e

(
ε(u)−ε(uh)

)ᵀ C
(
ε(u)−ε(uh)

)
de

∑
e∈∆h

H

∫
e ε(u)ᵀCε(u)de

. (2.30)

The convergence behavior under mesh refinement of the method is illustrated in Fi-
gure 2.12. Immersed DE-FEM, where both the domain boundary and the material in-
terface are non-matching, as described before, is compared with standard FEM, where a
mesh that conforms to both circular boundaries is used. In Figure 2.12a the error in both
norms is plotted against the number of DOFs, while in Figure 2.12b the error is plotted
against the mesh size h. Dotted lines with slopes corresponding to optimal convergence
rates are provided for reference. It is clear from the results that immersed DE-FEM has
an optimal rate of convergence. Furthermore, it performs comparable with the standard
FEM with respect to accuracy. For h-convergence, DE-FEM has a slightly better accuracy,
as details within a background element can be captured by DE-FEM, without a change
in h.

In summary, this example demonstrates that the method is optimally convergent
for cases without singularities such as crack tips. For the same number of DOFs, a si-
milar error is obtained as with standard FEM, without the burden of creating a mat-
ching mesh. Furthermore, this example shows that the MPC method for prescribing
Dirichlet boundary conditions in a strong manner is also able to correctly prescribe non-
homogeneous displacements on a non-matching boundary.
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2.3.3. STABILITY: SLIGHTLY ROTATED MESH

Here we study the stability, meaning the influence of refinement on the condition num-
ber, of the proposed methodology by looking at the condition number of the system ma-
trices. A rectangular domain is evaluated on a background mesh that was rotated by 3◦,
as illustrated in Figure 2.13a, to ensure that integration elements of all shapes and sizes
are present. The background mesh is then refined in multiple steps, creating different
irregular-shaped elements in each level of refinement. The stability is then evaluated.
The problem is not subjected to any boundary conditions, but rigid body motions are
accounted for by discarding the lowest three eigenvalues in the system, which are zero
within numerical precision.

As stated earlier, in this method we remove all DOFs belonging to nodes in the void
area of the system. The remaining stiffness matrix can in general be written as

K =



Kuu Kuα Kuβ

K >
uα Kαα Kαβ

K >
uβ K >

αβ
Kββ


 , (2.31)

where Kuu is the portion that corresponds purely to the standard FEM, Kαα corresponds
to weak enrichments, and Kββ corresponds to strong enrichments. The off-diagonal
matrices Kuα,Kuβ,Kαβ contain coupling terms. Note that in this particular example,
no strong discontinuities are present, and therefore the matrices Kuβ,Kαβ and Kββ are
absent. Following the work of Kergrene et al. (2016), we study the condition number
of K and a modified matrix K̂ = DK D , where D is a diagonal matrix, defined such that
Di i = 1/

p
Ki i and thus K̂ has unit values on the diagonal. The condition number is then

obtained as

Å= λmax

λmin
, λmin 6= 0, (2.32)

where λmax and λmin are the maximum and minimum (non-zero) eigenvalues of either
K or K̂ . Ideally, the condition number of a DE-FEM matrix would scale under mesh
refinement at the same rate as standard FEM does: O

(
h−2

)
.

In Figure 2.13b the results are shown: we compare the conditioning of the full system
without any preconditioner (K ) and the preconditioned system (K̂ ) with the part of the
matrix (Kuu) that corresponds to the standard part of the approximation. From these
results, it is clear that the method indeed suffers from ill-conditioning if no measures
are taken to prevent it. This happens because when an enriched node is placed close
to an original node, integration elements with a small measure are created. The condi-
tion number grows with j−1, were j is the Jacobian of these small integration elements,
as was shown by Aragón and Simone (2017). In DE-FEM without a preconditioner, the
condition number is not a straight line as a function of h−1, suggesting that the condition
number is highly dependent on the intersection geometry in each particular background
mesh. However, the results also show that a simple diagonal pre-conditioner suffices in
reducing the conditioning number of the full matrix to that of standard FEM. Alterna-
tively, a local scaling of the enrichment functions has been proposed by Aragón et al.
(2020) that results in the same reduction of the conditioning number. Consequently, the
method is stable, and complex conditioning schemes are unnecessary in DE-FEM.
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Figuur 2.13: Stability of DE-FEM: a) Model problem showing a rectangular domain immersed in a structured
background mesh that was rotated by 3◦; b) Condition number as a function of the reciprocal of mesh size h. It
is visible that, while the condition number Å (K ) of the raw matrix is unstable, Å

(
K̂

)
—which uses the diagonal

preconditioner—is close to the condition number of the standard FEM component Å (Kuu ).

2.3.4. A 3-D IMMERSED THERMO-MECHANICAL “POPCORN”
As a final example, we demonstrate the method in 3-D. To this end, we immerse a level
set description of a popcorn shape (Annavarapu et al., 2012; Burman et al., 2015; Chern
and Shu, 2007; Hautefeuille et al., 2012) (Figure 2.14a) into a structured cubic mesh, as
illustrated in Figure 2.14b. This geometry is described by the function

φ (x) =
√
‖x‖− r −

11∑
k=0

A exp

[
−

∥∥x −x (k)
∥∥

σ2

]
, (2.33)

where

x (k) =





rp
5

[
2cos

(
2kπ

5

)
2sin

(
2kπ

5

)
1
]ᵀ

for 0 ≤ k ≤ 4,

rp
5

[
2cos

(
(2(k−5)−1)π

5

)
2sin

(
(2(k−5)−1)π

5

)
−1

]ᵀ
for 5 ≤ k ≤ 9,[

0 0 r
]ᵀ

for k = 10,[
0 0 −r

]ᵀ
for k = 11.

(2.34)

Following Burman et al. (2015), we choose r = 0.6, σ= 0.2 and A = 4.
The material inside the domain is assigned a Young’s modulus E = 2, a Poisson ratio

ν = 0, and a thermal expansion coefficient α = 0.01. A uniform temperature is applied
on the surface Γi of the popcorn, described by the zero level set. A simple thermal solve
leads to a constant temperature throughout the domain, such that the material will try
to expand uniformly. However, a homogeneous Dirichlet boundary condition is pre-
scribed for the displacement field on the entire surface Γi, preventing the popcorn from
expanding.

The analytic result of this problem is a constant state of stress throughout the entire
physical domain with stress magnitude ‖σ‖ = 0.346. In Figure 2.15, the numerical results
are illustrated. It is clear that the constant temperature field with a value of T = 1, and
the state of stress, with magnitude ‖σ‖ = 0.346 are indeed retrieved.
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(a) (b)

Figuur 2.14: Immersed DE-FEM applied to a complex 3-D shape: (a) the zero contour of the level set function;
(b) computational domain, resulting from the interaction between the zero level set and a structured mesh.
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Figuur 2.15: A constant temperature field (a) and a constant state of stress (b) are obtained throughout the
domain.
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2.4. SUMMARY AND CONCLUSIONS
In this work we extended the Discontinuity-Enriched Finite Element Method to treat im-
mersed domain problems. The formulation, combined with a hierarchical implementa-
tion, results in an extremely versatile mesh-independent method for solving problems
containing both weak and strong discontinuities with a unified formulation.

We have demonstrated, by means of a complex patch test, that a domain contai-
ning interfaces and cracks can be analyzed by enclosing it by a discretization that dis-
regards completely all discontinuities. With the immersed Eshelby inclusion problem,
we showed that non-homogeneous essential boundary conditions on a non-matching
boundary can be prescribed in a strong manner. Furthermore, this example was used to
show that optimal convergence is attained. The stability of the method was investigated
by means of a rotated mesh example, and it was found that the method remains stable
under mesh refinement with the use of a diagonal preconditioner. Lastly, the extension
to complex 3-D structures was demonstrated. Discontinuities were represented both
implicitly (via level sets as in the Eshelby and popcorn examples) and explicitly (through
line segments, in the immersed patch test and in the stability example).

As any other computational method, DE-FEM has advantages and disadvantages:

Pros

• The most remarkable merit of DE-FEM as an immersed method is the strong en-
forcement of Dirichlet boundary conditions. In this respect, DE-FEM is unique
amongst other immersed boundary methods. With strong enforcement, essential
boundary conditions are fulfilled exactly on the nodes.

• DE-FEM is also the first method in the field of enriched finite element methods
that can be applied succesfully as an immersed method with strong enforcement
of Dirichlet boundary conditions. Previously, Cuba Ramos et al. (2015) had de-
monstrated the use as an immersed method with weak enforcement of essential
boundary conditions.

• DE-FEM is a particularly versatile enriched method due to the hierarchical con-
struction of enrichment functions. The method is truly mesh independent: dif-
ferent types of weak and strong discontinuities are allowed to lie arbitrarily close
to one another or even intersect, within a single element. This makes the method
robust against any placement of discontinuities, and suitable for the analysis of
complex geometries, such as fracture analysis in immersed domains.

• The method is stable, i.e. the conditioning number increases at the same rate as
that of standard FEM, O

(
h−2

)
.

Cons

• Compared to existing immersed boundary methods—for example the finite cell
method—the geometric operations are more complex. Enriched nodes need to be
placed along the boundary, and integration elements need to be created. These
geometric operations can be done efficiently, but require specialized code: a “ge-
ometric engine”.
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• The hierarchical construction of enrichment functions calls for a dedicated data
structure—such as an ordered tree—to store the hierarchy. However, this small
overhead enables the hierarchical implementation, which is a major asset.

• For problems with material interfaces, it has been shown that IGFEM/HIFEM may
overestimate stresses in integration elements with bad aspect ratios (Nagarajan
and Soghrati, 2018; Soghrati et al., 2017). This issue, however, is not significant
near Dirichlet boundaries, where the essential boundary condition are enforced
exactly.

Considering DE-FEM’s many interesting properties, the advantages over other immer-
sed methods strongly depend on the application. As a final remark, for the same functi-
onality, the complexity of the geometric operations is similar to X/GFEM. Any increased
complexity in the geometric operations of DE-FEM immediately opens up a wide range
of new capabilities, such as the hierarchical implementation, interface with sharp cor-
ners and crack tips inside an element, and immersed domains inside a single element.
This trade-off between generality of the method and simplicity of implementation is to
be expected, and in cases where this flexibility is not needed, simplified geometric ope-
rations might be executed. This makes DE-FEM suitable as an all-purpose immersed
domain method, and especially suitable for problems with complex configurations of
discontinuities.

APPENDIX: PSEUDO CODE FOR HIERARCHICAL IMPLEMENTA-
TION
For completeness, pseudo code for the hierarchical implementation of DE-FEM is provi-
ded. This algorithm assembles a leaf integration element by looping over the hierarchical
tree and assembling all contributions. This pseudocode works in all dimensions and is
based on the pseudo-code given by Zhang et al. (2019a).

In Algorithm 1 the general assembly loop for integration elements is described. This
procedure is the same as for standard FEM, except that a check is done to confirm
that the integration element lies within the physical domain. To assemble the con-
tributions of integration element e(k) inside the physical domain at hierarchy level k,
local arrays are initialized. Then, in a loop over integration points, the Jacobian, the
shape/enrichment function matrix N and its derivative B , are computed as described
next.

Algorithm 2 describes the computation of N and B at every integration point. As
a first step, the nodal coordinates of the integration elements are obtained. Then, in a
loop over the enriched nodes of the integration element, the contribution is found for
each level in the hierarchy. Starting from the leaf element we obtain the global coor-
dinate, the Jacobian matrix, the Lagrange shape functions, and their derivatives. If the
current hierarchy level is a leaf, the Jacobian determinant is also computed and stored.
Furthermore, the enrichment function and its derivatives, corresponding to the current
enriched node, are appended to an array. Finally, the level of hierarchy is decreased, the
parent of the current element is found, and an inverse mapping is conducted to find the
local coordinate in the parent element. Once all hierarchical levels and enriched nodes
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have been visited, the shape & enrichment functions and their derivatives are expanded,
according the number of DOFs per node, into the N and B matrix.

Algorithm 1 Element-wise assembly of the force vector f and stiffness matrix k in an
integration element

Input: Modified mesh M = {
N∪Ne ,E∪H

}
, ordered tree H, leaf integration

element e(k) at hierarchical level k, quadrature point weights γ and
coordinates ξ, constitutive matrix C and body force b;

Output: Local stiffness matrix k and local force vector f .

function getLocalArrays(M,H,e(k),γ,ξ,C ,b)
Check if the element lies outside the physical domain:

if C = 0 then return

Initialize local arrays:{
k , f

} ← {0,0}

Loop over integration points:

for i ← 1, . . . , |ξ| do

Get shape/enrichment functions (and their derivatives) and Jacobian:{
j , N ,B

} ← functions(M,H,W,e(k),ξi )

Add contributions to stiffness matrix and force vector:

k ← k +γi j BᵀC B – Update stiffness matrix

f ← f +γi j Nᵀb – Update nodal load vector

return k , f
end function
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Algorithm 2 Shape and enrichment functions, together with their derivatives

Input: Modified mesh M := {
N∪Ne ,E∪H

}
, ordered tree H, leaf integration

element e(k) at hierarchical level k, quadrature point at this level
labeled ξ(k)

i ;
Output: Jacobian determinant j, and arrays of shape and enrichment functions

N together with their derivatives B.

function functions(M,H,e(k),ξ(k)
i )

Get element coordinates:

X = [
x1 . . . x4

]ᵀ ← (N∪Ne )∩e(k)

Loop over element’s enriched nodes:

for n j ←Ne ∩e(k) do

do

Shape functions and their derivatives:{
N (k), N (k)

,ξ

}
← Lagrange(e(k),ξ(k)

i )

x ← X ᵀN (k) – Obtain global coordinate

J (k) ← X ᵀN (k)
,ξ – Obtain Jacobian matrix

if not j then – check if leaf Jacobian is set

j ← det
(

J (k)
)

– Save leaf Jacobian

N (k)
,x ← N (k)

,ξ

[
J (k)

]−1
– Compute derivatives with respect to x

Add child contribution:

Compute enrichments/derivatives at level k:{
ψ(k),ψ(k)

,x

}
,
{
χ(k),χ(k)

,x

}
← enrich(N (k), N (k)

,x )

Stack functions and derivatives:{
F ,F,x

} ←
{[

F ψ(k) χ(k)
]

,
[

F,x ψ(k)
,x χ(k)

,x

]}

k ← k −1 – Decrease level of hierarchy

e(k) ← H(k,e(k)) – Get parent element in the hierarchy

ξ(k)
i ← invert(x ,e(k)) – Obtain local master coordinate

while k 6= 0 – If k ← 0, parent mesh element reached

Add parent contribution:

Shape functions and their derivatives:{
N (0), N (0)

,ξ

}
← Lagrange(e(0),ξ(0)

i )

Stack parent shape functions and their derivatives:{
F ,F,x

} ←
{[

N (0) F
]

,
[

N (0)
,x ,F,x

]}

Expand to multiple DOFs per node:

{N ,B } ← {
expand (F ) ,expand

(
F,x

)}

return j , N ,B
end function
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IMMERSED ANALYSIS OF

PHONONIC CRYSTALS USING

IGFEM

The formulation for immersed IGFEM, that was developed in Chapter 2, is
extended in this chapter to the immersed analysis of phononic crystals. To
that end, periodic unit cells are immersed in structured background mes-
hes. In Section 3.2.1 a formulation is derived for the strong application of
Bloch-Floquet boundary conditions on non-matching boundaries by means
of multiple point constraints, analogous to the Dirichlet boundary conditi-
ons of Section 2.2.2. In Section 3.3, the proposed approach tested on the
analysis of phononic crystals in 1-D, 2-D, and 3-D, and found to converge at
the same rate as standard FEM. It is shown that both the phononic crystal
geometry and periodicity can be modified without the burden of changing
the underlying discretization.
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Fully decoupling geometry from discretization in
the Bloch-Floquet finite element analysis of

phononic crystals

Abstract An immersed enriched finite element method is proposed for the analy-

sis of phononic crystals (PnCs) with finite element (FE) meshes that are comple-

tely decoupled from geometry. Particularly, a technique is proposed to prescribe

Bloch-Floquet periodic boundary conditions strongly on non-matching edges of

the periodic unit cell (PUC). The enriched finite element formulation effectively

transforms a periodic non-confirming discretization into an enriched node-to-

node periodic discretizations where periodicity is enforced by any standard pro-

cedure. The enriched formulation is also used to describe the interior material

interface. This completely eliminates the tedious process of generating matching

or fitted meshes during the design process, as it allows changing the inclusion’s

geometry as well as the PnC’s lattice type without changing the FE mesh. The

proposed approach, which is used to analyze phononic crystals in 1-D, 2-D and

3-D using structured meshes, exhibits the same performance as the standard fi-

nite element analysis on fitted meshes.

3.1. INTRODUCTION

Efficient analysis of phononic crystals (PnCs) is essential to their design for engineering
applications. Specifically, computational design and optimization require the analysis of
many variations of a design. In such cases, the fully immersed analysis of PnCs proposed
in this work prevents the cumbersome procedure of generating matching meshes. As in
the proposed method Bloch-Floquet boundary conditions are applied to non-matching
edges in a strong manner, the lattice type as well as the inclusion can be altered without
remeshing. Therefore, the computational design of PnCs is greatly simplified.

Phononic crystals have distinctive effects on waves traveling through them, and their
design and optimization has therefore seen a recent increase in interest (Li et al., 2019b;
Yi and Youn, 2016). They exhibit bandgaps, i.e., ranges of frequencies for which no waves
can propagate through the material due to Bragg scattering. A negative effective density
and modulus can also be attained (Mokhtari et al., 2019). PnCs can be applied in many
fields of engineering and across many length scales. For example, they can be used for
thermal control (Davis and Hussein, 2014) at one end of the frequency spectrum, and
for seismic engineering at the other end (Yan et al., 2015). New sensing schemes for li-
quids based on PnCs have also been introduced for biological samples and for hazardous
chemicals such as gasoline (Lucklum and Li, 2009; Oseev et al., 2013). Additional appli-
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cations can be found in vibrationless environments for high-precision systems, sound
protection devices, and acoustic waveguides and lenses (Rupp et al., 2010). Tuneable be-
havior may also be achieved: in situ changing of the impulse transmission can be achie-
ved (Chaunsali et al., 2017), and amplitude-tunable PnCs are optimized in (Manktelow
et al., 2013). Using a wave-like modulation of the constitutive parameters, symmetry and
reciprocity of the wave propagation may even be broken (Nassar et al., 2017).

In order to optimally utilize the full potential of PnCs, efficient and accurate models
that capture the wave propagation properties are invaluable. Furthermore, methods for
the systematic design of such crystals are required. For the analysis of PnCs, a large
variety of modeling techniques is available. Examples are the Finite Element Method
(FEM) (Veres et al., 2013), the Boundary Element Method (BEM) (Isakari et al., 2016; Li
et al., 2013a,b), Finite Differences - Time Domain (FDTD) (Su et al., 2010; Tanaka et al.,
2000), Plane Wave Expansion (PWE) technique (Economou and Sigalas, 1993; Kushwaha
et al., 1994), the monodromy matrix method (Kutsenko et al., 2013, 2011), the Spectral
Element Method (SEM) (Shi et al., 2016), IGA (Alberdi et al., 2018), and meshfree me-
thods (Zheng et al., 2016). Homogenization approaches for the effective dynamic pro-
perties of PnCs are also being developed (Hu and Oskay, 2019; Nassar et al., 2016; Sridhar
et al., 2018). While all of these methods have advantages and disadvantages, FEM is wi-
dely used for complex geometries, as it extends effortlessly to inclusions of any shape.
With FEM, periodic structures are generally studied by analyzing a PUC, whereby requi-
ring the displacements at opposite sides of the PUC to be equal, periodicity is enforced.
In the case of wave propagation problems, Bloch-Floquet periodic BCs are used instead;
these impose a phase difference between both edges of the unit cell, and as a result they
can describe traveling waves.

Despite the ease of implementation of standard FEM, it has a big disadvantage: the
procedure calls for a matching (or fitted or geometry-conforming) mesh, i.e., the ed-
ges of finite elements must align to material interfaces and PUC’s sides. Creating such
a mesh is undesirable in many situations, for instance during an iterative design pro-
cess, where the unit cell geometry is not known a priori. Moreover, even when the
geometry is known, the process of generating matching meshes is computationally ex-
pensive and prone to errors when complex geometries are involved. The issue of re-
meshing can be avoided completely by non-fitted or enriched finite element approa-
ches. Wang et al. (2019) have shown the use of a non-fitted Petrov-Galerkin interface
approach for the analysis of PnCs. Similarly, the eXtended/Generalized Finite Element
Method (X/GFEM) (Duarte et al., 2000; Moës et al., 1999) provides a means to decou-
ple material discontinuities from the FE discretization, by enriching the finite element
formulation with discontinuous functions that are associated to nodes of intersected
elements. For PnCs, this was demonstrated by Zhao et al. (2015). However, X/GFEM
has many disadvantages: as enrichment functions do not vanish at original mesh nodes,
their degrees of freedom (DOFs) do not retain their physical meaning. Therefore, essen-
tial (Dirichlet) boundary conditions generally need to be imposed weakly, e.g., by means
of Lagrange multipliers or the penalty method (Cuba Ramos et al., 2015). In the former
case, positive definiteness of the system matrices is lost. Sanders et al. (2009) discuss va-
rious methods for applying and stabilizing interface constraints. For the Bloch-Floquet
periodic analysis of quantum-mechanical problems, Sukumar and Pask (2009) proposed
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a formulation for classical and enriched finite element methods by constructing Bloch-
Floquet periodic trial and test spaces. Additionally, X/GFEM can lead to ill-conditioned
system matrices, which may be remedied by the use of Stable Generalized FEM (SG-
FEM) (Babuška and Banerjee, 2012; Gupta et al., 2013; Kergrene et al., 2016). Lastly, the
accuracy of the approximation in blending elements—elements for which not all nodes
are enriched—may deteriorate (Fries, 2008).

There is another family of enriched finite element methods that can fully decou-
ple the discretization from the problem’s geometric features (Aragón and Simone, 2017;
van den Boom et al., 2019b; Soghrati, 2014; Soghrati et al., 2012a; Zhang et al., 2019a);
contrary to what is done in X/GFEM, enriched DOFs are collocated along discontinui-
ties, eliminating many of the aforementioned issues. The Interface Enriched Generali-
zed Finite Element Method (IGFEM) (Soghrati et al., 2012a) was first proposed to solve
problems with weak discontinuities, i.e., where the gradient of the primal field is discon-
tinuous as in problems containing perfectly bonded material interfaces. Enrichment
functions in IGFEM are local to intersected elements by construction and they vanish at
the original mesh nodes and at edges which are not crossed by material interfaces. As a
result, Dirichlet boundary conditions are as straightforward to prescribe as in standard
FEM. Dirichlet boundary conditions were prescribed weakly on enriched edges by Cuba-
Ramos et al. (Cuba Ramos et al., 2015), who first proposed IGFEM as an immersed (ficti-
tious domain) method. In the context of computational design, the use of IGFEM for
shape optimization has been shown for a range of engineering applications (Pejman
et al., 2019; Tan and Geubelle, 2017; Tan et al., 2018a,b), and has been demonstrated for
NURBS-based geometries as well (Najafi et al., 2017). Recently, IGFEM was also propo-
sed for level-set based topology optimization (van den Boom et al., 2021b). The benefits
of assigning enrichments to enriched nodes along the discontinuities have inspired two
important extensions to the method: the Hierarchical Interfaced-enriched Finite Ele-
ment Method (HIFEM) (Soghrati, 2014), that can resolve multiple interfaces interacting
within a single finite element, and the Discontinuity-Enriched Finite Element Method
(DE-FEM) (Aragón and Simone, 2017; Zhang et al., 2019a). The latter is able to handle
not only weak but also strong discontinuities—those where the field itself is disconti-
nuous as in fracture problems—with a single unified formulation. DE-FEM inherits all
assets of IGFEM and HIFEM, and in the absence of strong discontinuities (e.g., cracks),
it simplifies to these methods. Curved cracks and interfaces may also be analysed using
DE-FEM with NURBS-based discontinuities (De Lazzari et al., 2021).

In this paper, which builds on the recently proposed immersed DE-FEM with strong
enforcement of Dirichlet boundary conditions (van den Boom et al., 2019b), we intro-
duce the Interface-enriched Generalized Finite Element Method for the fully immersed
analysis of PnCs, for which we derive a method for applying Bloch-Floquet BCs along
non-matching PUC edges, similar to the strong enforcement of Dirichlet BCs introduced
in (van den Boom et al., 2019b). We first verify the procedure by comparing the analyti-
cal and computed shear and pressure wave velocities obtained by means of an enriched
immersed analysis of a homogeneous material. We then compare the convergence rates
of IGFEM to those of standard FEM for a 1-D PnC and for the 2-D homogeneous PUCs,
and demonstrate that the same rates of convergence are achieved for 2-D PnCs. Fur-
thermore, we analyze a range of immersed 2-D phononic crystals with different lattice
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Figuur 3.1: Schematic representation of a PUC: a 3-D cube with lattice vectors a1, a2 and a3. The domain Ω
consists of a host phase Ωh and an inclusion Ωi. The boundary between the two is denoted Γi, and Γo is the
boundary of the PUC.

vectors, using the same background mesh, to demonstrate that full decoupling of mesh
and PUC geometry is achieved. Finally, it is demonstrated that the formulation extends
to complex 3-D phononic crystals, by means of an immersed cubic PUC with a “pop-
corn” shaped inclusion.

3.2. PROBLEM FORMULATION
In this work, we analyze PnCs by means of their periodic unit cell, represented by a d-
dimensional parallelotope (line segment in 1-D, parallelogram in 2-D, or parallelepiped
in 3-D). The PUC is replicated in d-dimensional space along the directions defined by
lattice vectors ai , i = {1, . . . ,d}. The PUC, illustrated in Figure 3.1, will be denoted by an
open domain Ω ⊂ Rd . It is composed by a host phase Ωh and an inclusion phase Ωi,
such that Ωh ∩Ωi =;; the closure of the domain is denoted Ω=Ωh ∪Ωi. The boundary
of the domain Ω is given by ∂Ω ≡ Γo = Ω \Ω. We denote by Γi the interface separating
the two material phases that is responsible for the weak discontinuity. Fields such as the
displacement field u are defined over the entire domainΩ, whereas the restriction of the
field to the subdomainΩ j is denoted u j (x , t ) ≡ u|Ω j .

The governing equations that describe the linear behavior of the PnC are the homo-
geneous elastodynamic wave equation, the constitutive equation, and the linear conti-
nuity relation, which hold on both parts of the domain:

ρ j
∂2u j

∂t 2 =∇·σ j inΩ j , j = i,h, (3.1)

σ j =λ j tr
(
ε j

)
ε j +2µ jε j , (3.2)

ε j =
1

2

(
∇u j +∇uᵀ

j

)
, (3.3)
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(a) (b)

Figuur 3.2: Mesh-independent periodic unit cell: (a) The PUC is immersed in a non-matching structured mesh;
(b) Enriched nodes are placed along the discontinuities ( and ) and integration elements are created. Ele-
ments that lie completely outside the PUC are removed, and nodes outside the PUC ( ) are fixed. Bloch-
Floquet periodic BCs are applied to enriched nodes on the PUC boundary ( ).

with Bloch-Floquet periodic boundary conditions

u (x +ai , t ) = e i (k·ai )u (x , t ) on Γo. (3.4)

In (3.1) ρ j is the material density, ∇· is the divergence operator, u j (x , t ) is the displa-
cement as a function of position x and time t ; similarly, σ j (x , t ) ≡ σ|Ω j is the Cauchy
stress tensor, described by the linearized strain tensor ε j (x , t ) ≡ ε|Ω j and Lamé parame-
ters λ j and ν j . In (3.4) k denotes the wave vector of the traveling wave. In accordance
with Bloch-Floquet theory, the displacement field u corresponds to a traveling wave,
modulated by some unknown periodic function Ψ (x) with the same periodicity as the
medium:

u (x , t ) = e i (k·x−ωt )Ψ (x) , (3.5)

where ω is the angular frequency.
In weak form, the elastodynamic wave equation reads: Find u ∈V? such that

∑
j=h,i

[∫

Ω j

ρ j ü j v j dΩ+
∫

Ω j

σ j
(
u j

)
: ε j

(
v j

)
dΩ

]
= 0, ∀v ∈V0, (3.6)

where V? is a linear variety that accounts for the non-homogeneous Bloch-Floquet
BCs (Aragón and Simone, 2017), and V0 is a vector-valued function space onΩ j , so that

V0 =
{

v ∈ [
L2 (Ω)

]d
, v |Ωi ∈

[
H1(Ωi )

]d
, v |Γo = 0, i = h, i

}
, (3.7)

where L2 (Ω) is the space of square-integrable functions and H1(Ωi ) is the first-order
Sobolev space.
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We solve the problem on a domain∆⊇Ω that fully encloses the PUC. The discretized
domain ∆h , or background mesh, does not necessarily conform to the geometric featu-
res of the PUC. To account for the mismatch between the discretization and the PUC’s
geometry, we choose our weight function and trial solution from the finite-dimensional
IGFEM space Sh

e ⊂V0:

Sh
e =

{
v h (x)

∣∣∣ v h (x) =
n∑

i∈ιh
Ni (x)Ui

︸ ︷︷ ︸
standard FEM

+
∑

i∈ιw
siψi (x)αi

︸ ︷︷ ︸
enrichment

, Ui ,αi ∈Rd
}

, (3.8)

where ιh refers to the index set of all original mesh nodes, ιw is the set of enriched no-
des, and si refers to a scaling factor that produces well-conditioned system matrices and
thus makes the formulation stable (Aragón et al., 2020). The space Sh

e consists of the
standard FEM approximation—the first term with standard Lagrange shape functions
Ni and standard DOFs Ui —that is augmented with an enriched term that introduces,
by means of enrichment functions ψi and associated enriched DOFs αi , the required
jumps in the gradient of the solution field.

In order to construct the IGFEM enrichment functions, operations on the back-
ground mesh using the PUC geometry are required, as illustrated in Figure 3.2: new no-
des (shown by and symbols) are created at intersections of the boundaries (Γo and Γi)
with edges of elements of the background mesh; the cut elements are subdivided into
integration elements accordingly, as illustrated with dotted lines. The purpose of these
integration elements is fourfold:

• as their name suggests, the integration elements are used for integration of the
elements’ local arrays;

• the enrichment functions ψi are constructed as linear combinations of standard
Lagrange shape functions of those integration elements;

• the integration elements are used to ensure the field can be displayed correctly
after postprocessing; and

• the triangular or tetrahedral integration elements are easy to split, thus facilita-
ting a hierarchical implementation when multiple discontinuites cross a single
element.

Elements that lie completely outside the PUC are removed from the analysis, as are DOFs
corresponding to outside nodes (shown with symbols). In the case that an element is
intersected by multiple discontinuities, this procedure can simply be applied hierarchi-
cally, as described in detail in Soghrati (2014) and Aragón et al. (2020).

Following a Bubnov-Galerkin approach, the discretized system of linear equations,
MÜ −KU = 0, can now be obtained via standard procedures, with global stiffness and
mass matrix, K and M , respectively:

K =A
i

ki , M =A
i

mi . (3.9)
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The finite element assembly operator is here written as A and ki , mi denote element
local stiffness and mass matrices, respectively, which are obtained by numerical quadra-
ture.

Once K and M are assembled, Bloch-Floquet periodicity is enforced by means of a
transformation matrix T . This complex matrix contains the complex exponent of the
Bloch-Floquet BCs and is therefore a function of the wave vector k. The modified system
matrices K̃ and M̃ can be found by pre- and post-multiplying the original matrices with
T , resulting in complex Hermitian matrices:

K̃ (k) = T (k)HK T (k),

M̃(k) = T (k)HMT (k).
(3.10)

This rectangular transformation matrix T reduces the size of the system of linear equa-
tions, as subordinate periodic boundary DOFs are removed (e.g., in contrast to Lagrange
multiplier methods, where the system of linear equations is augmented). The costs of
these operations are relatively low, as the transformation matrix T (k) is very sparse;
for the internal part of the domain it is the identity matrix, and the only off-diagonal
terms relate to the boundary DOFs. Due to the sparsity of T as well as K and M , these
operations can be performed very efficiently. As the boundaries of the PUC are lower-
dimensional manifolds (e.g., lines in 2-D and surfaces in 3-D), the cost of these trans-
formations relative to the cost of solving the system reduces with mesh refinement. The
dispersion relation—or band structure—is subsequently obtained by performing a se-
ries of eigenvalue analyses for a set of wave vectors k j , defined along the edge of the
irreducible Brillouin zone (Brillouin, 1930):

[
K̃ (k j )−ω2

j M̃(k j )
]

V j = 0, (3.11)

where V j are complex eigenvectors that represent traveling waves andω j are the corres-
ponding eigenfrequencies.

Although IGFEM has not been used in phononic crystal analysis before, it can be
readily used to describe the material interfaces within the periodic unit cell. However,
when a discontinuity crosses the PUC boundary, or when the PUC itself is non-matching,
enriched nodes are subject to Bloch-Floquet periodicity as well, as explained in the next
section.

3.2.1. BLOCH-FLOQUET PERIODICITY ON ENRICHED NODES

Bloch-Floquet periodic BCs enforce periodicity of the PUC, but allow for a phase diffe-
rence of the traveling wave between unit cells; they guarantee that the displacements u
take the form of a Bloch wave throughout the entire domain, while only operating on
the boundaries. As these BCs operate directly on the field u, we follow the procedure
for Dirichlet BCs on immersed IGFEM edges using multiple point constraints (MPCs), as
described by van den Boom et al. (2019b). On the boundary nodes of the PUC, Bloch-
Floquet periodic boundary conditions are applied as

u(xs) = e i k·a u(xm), (3.12)
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(a) (b)
(c)

Figuur 3.3: Cases where boundary nodes are not spaced exactly one lattice vector apart: (a,b) PUCs immer-
sed in a structured (a) and unstructured (b) meshes, where additional enriched nodes are added to properly
enforce periodicity; (c) PUC were the mesh conforms to both the inclusion and the outer PUC edge, but the
nodes on either side do not coincide, so enriched nodes are added.

where u(xm) and u(xs) are displacements corresponding to a main and a subordinate
node, respectively. These two nodes are assumed to be separated by exactly one lattice
vector a, as attempting to apply periodicity to non-matching nodes would result in inac-
curate results. In general, enriched nodes are not guaranteed to coincide on either side of
the PUC, thus Bloch-Floquet periodicity cannot be enforced directly. In such cases, sup-
plementary enriched nodes can be added to ensure that every enriched boundary node
has a counterpart. These extra enriched nodes can easily be accounted for by creating
additional integration elements, and as such they do not change the rest of the proce-
dure. Figure 3.3 illustrates some situations where the enriched nodes do not coincide
exactly. Figure 3.3a is similar to Figure 3.2 in that it shows a square unit cell immersed in
a structured mesh. The difference is that the PUC edges do not lie exactly in the middle
of the background elements, so that the intersections with the diagonal element edges
do not coincide on either side of the PUC. Other cases where the boundary nodes do not
coincide are found in unstructured meshes, regardless of whether the edges are immer-
sed, as in Figure 3.3b, or conforming, as in Figure 3.3c. In cases where the nodes do not
coincide, the full procedure to prescribe the Bloch-Floquet periodic boundary conditi-
ons on immersed edges is:

• Find the intersections between the immersed edges and the background elements;

• Find the counterpart of these nodes by adding the lattice vector to the coordinate
vector of the node;

• Create integration elements taking into account all enriched nodes.

In IGFEM, the enriched DOFs do not directly represent the displacement field at their
location because the partition of unity property is lost in intersected elements 1. Instead,

1In IGFEM, enrichment functionsψi (x) are added to the standard FEM approximation, breaking the partition
of unity. The original shape function Ni do not vanish at the locations of the enriched nodes, and as a result,
the displacements at those locations are computed per Eq. (3.13). However, because enrichment functions
vanish at original mesh nodes, the Kronecker-δ property on those nodes is retained and therefore standard
DOFs keep their physical meaning.
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the solution also depends on the DOFs of the parent cut element, as given by (3.8). The
solution at the enriched locations can therefore be written for j = m,s as:

u(x j ) =
∑
i∈ι j

Ni (x j )Ui + s jψ j (x j )α j , (3.13)

where the index set ι j ⊂ ιh refers to the parent nodes which have a non-zero contribution
on the enriched node location x j , and ψ j (x j ) = 1. Expanding (3.12) in terms of this
IGFEM approximation results in an expression from which the subordinate DOFs of the
system can be calculated:

αs =
e i k·r

ssψs(xs)

[ ∑
i∈ιm

Ni (xm)Ui + smψm(xm)αm

]
− 1

ssψs(xs)

∑
i∈ιs

Ni (xs)Ui . (3.14)

Writing such a constraint equation for every subordinate node results in a system of
equations, that can be written in the form:

[
U
α

]
= T

[
Ũ
α̃

]
, (3.15)

where T is a complex-valued transformation matrix that is a function of wave vector k,
and that maps between the free system

[
U α

]ᵀ
and the constrained system

[
Ũ α̃

]ᵀ
.

The system matrices can now be modified as described in Eq. (3.10). A one-dimensional
example on the construction of T is given in the Appendix.

In cases where the parent elements of the outer edges of the PUC are intersected by
multiple discontinuities, e.g., when the immersed inclusion crosses the PUC edge, a hier-
archical implementation of the multiple point constraint is required. This implemen-
tation follows naturally from the HIFEM approximation, and is described for Dirichlet
boundary conditions by van den Boom et al. (2019b).

3.3. NUMERICAL RESULTS

3.3.1. 1-D PHONONIC CRYSTAL
Consider in Figure 3.4 a 1-D phononic crystal composed of two materials of dissimi-
lar properties. A PUC of length L ≡ ‖a1‖ can be defined such that its boundaries lie
on the host and the other material outlines an inclusion of length b. The materials
used are polycarbonate and lead for the host and inclusion, respectively. Polycarbonate
(lead) has an elasticity modulus E1 = 2.3GPa (E2 = 16GPa) and density ρ1 = 1200kg/m3

(ρ2 = 11340kg/m3). This phononic crystal has a total unit cell length L = 25mm, with an
inclusion of length b = 14mm. Therefore, the length of the two sections are lh = 11mm
and li = 14mm, respectively.

L
b

x

Figuur 3.4: One-dimensional phononic crystal with PUC of length L.



3.3. NUMERICAL RESULTS

3

45

Following Nielsen and Sorokin (2015) for the analytic solution, we scale the lengths
by lh and time by lh/ch, where ch is the wave speed in the host material. This problem
can then be described by the non-dimensionalized 1-D wave equation on both material
domains (i = h,i):

∂2ui (x, t )

∂x2 = 1

ci /ch

∂2ui (x, t )

∂t 2 , (3.16)

with the wave speeds

ci =
√

Ei /ρi , (3.17)

interface conditions

uh(1, t ) = ui(1, t ), (3.18)

u′
h(1, t ) = E2

E1
u′

i(1, t ), (3.19)

Bloch-Floquet periodic boundary conditions

uh(0, t ) = ui(1+ Li

Lh
, t )λ, (3.20)

u′
h(0, t ) = Ei

Eh
u′

2(1+ Li

Lh
, t )λ, (3.21)

and with the propagation constant λ= e i kL . A non-trivial solution to the system of equa-
tions can be found if λ is a solution to the characteristic equation

λ2 +q(ω̂)λ+1 = 0, (3.22)

with

q(ω̂) =−2cos(ω̂)cos(τω̂)+
(
κ+ 1

κ

)
sin(ω̂)sin(τω̂), (3.23)

where τ = lich/lhci is the ratio of propagation times, and κ = Eich/Ehci is the ratio of
impedances of the two materials. Looping over ω̂ and solving for λ, the analytic solution
can be computed.

The numerical results are obtained using two different approaches:

• standard FEM using matching meshes;

• IGFEM using meshes that do not match to the PUC edges nor to the material in-
terfaces.

We define the error with respect to the analytic solution as

ε=
√√√√ 1

|K |N

∑
k∈K

∑
n(ωk,n − ω̂k,n)2

∑
k∈K

∑
n ω̂

2
k,n

n = 1,2, . . . , N , (3.24)
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Figuur 3.5: (a) Dispersion curve (band structure) and bandgap for the 1-D phononic crystal, where the IGFEM
result on a 5-element background mesh is compared to a matching mesh with a comparable number of DOFs;
(b) Mesh convergence for the relative error in the first two bands given by Eq. (3.24).

where K is the set of wave numbers in the Brillouin zone, K = {Γ, . . . , X }, with cardinality
|K |, ω̂k,n denotes the nth analytic frequency for a given wave number k and ωk,n is the
numerical counterpart. In other words, Eq. (3.24) is the relative error in the L2-norm of
the first N bands evaluated at |K | wave numbers.

The first two bands of the band structure are shown in Figure 3.5a for the analytical
solution and the two numerical results that were obtained on a fixed mesh size with mes-
hes composed of 5 elements. Both FEM and IGFEM give more accurate results for lower
frequencies, so more deviation from the analytic result is expected in the higher bands.
Figure 3.5b considers mesh refinement and shows the convergence for the error (3.24)
as a function of the number of DOFs, with N = 5 and |K | = 100. It is shown that IGFEM
has the same rate of convergence as the standard FEM on matching meshes.

3.3.2. 2-D UNIFORM MATERIAL
To investigate the performance of the enriched boundary conditions in 2-D, we consider
the velocity of pressure and shear waves through a uniform polycarbonate slab, with a
Poisson ratio ν = 0.37 and, as in the previous example, E = 2.3GPa and ρ = 1200kg/m3.
It should be noted that this is not a PnC, and as such, no dispersion is expected. This
material is analyzed using a square PUC with a side length L = 0.025m, so that the lattice
vectors ai and reciprocal lattice vectors bi are given by

a1 =
[

0.025
0

]
m, a2 =

[
0

0.025

]
m, b1 =

[
251.33

0

]
m−1, b2 =

[
0

251.33

]
m−1. (3.25)

The vertices of the irreducible Brillouin zone are therefore located at Γ = [
0 0

]ᵀ
m−1,

X = [
125.66 0

]ᵀ
m−1 and M = [

125.66 125.66
]ᵀ

m−1. The PUC is analyzed using
standard FEM and IGFEM using a 60 × 60 structured mesh with triangular elements
for both cases, and results are reported in Figure 3.6. The nature of each band, which
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Figuur 3.6: Band structure for a PUC of uniform polycarbonate, obtained on a 60×60 matching mesh (a), and
on a 60× 60 non-matching mesh with enriched Bloch-Floquet boundary conditions (b). The nature of each
wave in the uniform material is investigated in more detail: the color of each line signifies whether the wave
is an s-wave (blue), a p-wave (yellow), or a combination thereof. Both matching and non-matching meshes
recover the same wave types for each band.

is found by projecting the normalized displacements in the vibration mode onto the
wave vector using a dot product and averaging the nodal results, is plotted in Figu-
res 3.6a and 3.6b, for standard FEM and IGFEM, respectively. Blue refers to a pure shear
wave and yellow refers to a pure pressure wave. It is clear that both methods recover the
same wave types for each band.

The velocities of shear and pressure waves are now recovered numerically as

vs =
2π fs

‖k‖ and vp = 2π fp

‖k‖ . (3.26)

The numerical wave velocities, computed using IGFEM (or FEM) as vs = 836.53m/s and
vp = 1841.53m/s, are in close agreement with the exact velocities,

v̂s =
√

G

ρ
= 836.37ms−1 and v̂p =

√
M

ρ
= 1841.18ms−1, (3.27)

where the shear modulus G and pressure wave modulus M are given, respectively, by

G = E

2(1−2ν)
and M = E (1−ν)

(1+ν) (1−2ν)
. (3.28)

To study the convergence of the wave velocities, we define an error norm for the shear
and pressure waves:

εs =
√

(vs − v̂s )2

v̂2
s

, εp =

√√√√
(
vp − v̂p

)2

v̂2
p

. (3.29)

In the results of Figure 3.7 it is shown that IGFEM and standard FEM converge towards
the exact solution at the same terminal convergence rate. Furthermore, the absolute
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Figuur 3.7: Convergence of the shear wave velocity (a) and pressure wave velocity (b) for a uniform material.
Both the shear wave velocity and the pressure wave velocity converge at the same rate for standard FEM and
IGFEM.

value of the error is similar for FEM and IGFEM. Therefore, it can be concluded that the
enriched boundary conditions do not influence the solution in 2-D.

3.3.3. 2-D PHONONIC CRYSTAL WITH A CIRCULAR INCLUSION

A 2-D phononic crystal containing a circular inclusion of radius r in a square lattice
is now analyzed. A PUC of size L × L can be defined, as illustrated in Figure 3.8. The
same materials as for the 1-D phononic crystal are used for the host and inclusion; po-
lycarbonate and lead (E1 = 2.3GPa, E2 = 16GPa, ν1 = 0.37, ν2 = 0.44, ρ1 = 1200kg/m3,
ρ2 = 11340kg/m3). The dimensions of this PnC are L = 25mm and r = 7mm. The lattice
vectors and reciprocal lattice vectors for this problem are the same as in the previous
example, as the unit cell is of the same dimensions. Therefore, the locations of the Bril-
louin zone vertices are also the same, located at Γ= [

0 0
]ᵀ

m−1, X = [
125.66 0

]ᵀ
m−1

and M = [
125.66 125.66

]ᵀ
m−1.

The numerical results, obtained using IGFEM on different mesh sizes, are compa-
red to the results obtained using standard FEM on a very fine (overkill) matching mesh,
which we will regard to be the correct result. From the band structure in Figure 3.8c,
it can be seen that a bandgap opens in the range 18 kHz to 28 kHz. Some propagation
bands appear in the bandgap for very coarse meshes, but with mesh refinement, the
bandgap converges towards that of the reference matching mesh. The error for each
band n with respect to the reference solution is defined by

εn =
√√√√ 1

|K |

∑
k∈K (ωk,n −ω∗

k,n)2

∑
kω

∗2
k,n

, (3.30)

where K defines a set of wave vectors k along the irreducible Brillouin zone (X → Γ→
M → X ). Furthermore, an error norm is defined for the frequencies that define the band-
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Figuur 3.8: (a) Schematic of a square PUC with lattice vectors a1 and a2 and a circular inclusion of radius r ;
(b) the PUC is immersed in a 10×10 non-matching structured mesh; (c) Band structure for a square PUC with
a circular inclusion, obtained by multiple non-matching meshes consisting of 5×5×2 ( ), 10×10×2
( ), 20×20×2 ( ), 40×40×2 ( ), 80×80×2 ( ), and 160×160×2 ( )
triangular elements and a very fine matching mesh ( ). The bandgap is plotted for the finest matching
mesh. Clearly, a coarse representation of a non-matching mesh results in propagation bands inside the gap.
However, the bandgap converges with mesh refinement.

gap between the third and the fourth propagation bands:

εlow =

√√√√√
(
max(ωk,3)−max(ω∗

k,3)
)2

max(ω∗
k,3)2 and εhigh =

√√√√√
(
min(ωk,4)−min(ω∗

k,4

)2

min(ω∗
k,4)2 . (3.31)

The convergence of the first 5 bands is shown in Figure 3.9a. The error increases slightly
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Figuur 3.9: Convergence for the PnC with a circular inclusion in a square lattice. In (a), the error for the first
five propagation bands as defined in Eq (3.30) is shown to have the same rate of convergence. In (b) the con-
vergence of the error defined in Eq. (3.31) is shown for the frequencies that define the bandgap.

(a) (b) (c)

Figuur 3.10: Snapshot of a traveling wave on the lowest band between Γ and M on (a) a fine matching mesh;
(b) a 10× 10 non-matching structured mesh; the non-matching mesh is also shown in (c). The same mode
shapes are obtained for both analyses.

for the higher bands, which is to be expected in eigenvalue analysis because the higher
frequencies correspond to shorter wave lengths which are not captured accurately by
the relatively coarse discretizations. Nonetheless, all bands converge at the same rate. In
Figure 3.9b it is shown that the frequencies that define the bandgap converge at a slightly
higher rate (1.5).

The motion of a wave traveling between Γ and X (k = [
62.83 62.83

]ᵀ
m−1) on the

first propagation band, obtained from a coarse IGFEM mesh and a fine FEM mesh, are
now compared. Figure 3.10a shows a snapshot of a traveling wave for the very fine mat-
ching mesh, while Figures 3.10b and 3.10c show the same wave at the same time on a
non-matching mesh defined over a 10×10 grid. The same mode is indeed resolved on
both meshes.
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Figuur 3.11: General periodic unit cell for the phononic crystal with a varying lattice: the angle α between
lattice vectors a1 and a2 is varied while the inclusion with radius r is kept the same.

Tabel 3.1: Lattice vectors ai and reciprocal lattice vectors bi for the different lattice anglesα that were analyzed
on the same structured meshes.

Lattice angle α
Lattice vectors Reciprocal lattice vectors

a1 (m) a2 (m) b1 (m−1) b2 (m−1)

60◦ (Triangular lattice)

[
0.027
0.000

] [
0.013
0.023

] [
233.89
−135.03

] [
0.00

270.07

]

70◦ (Rhombic lattice)

[
0.026
0.000

] [
0.009
0.024

] [
243.63
−88.67

] [
0.00

259.27

]

80◦ (Rhombic lattice)

[
0.025
0.000

] [
0.004
0.024

] [
249.41
−43.98

] [
0.00

253.26

]

90◦ (Square lattice)

[
0.025
0.000

] [
0.000
0.025

] [
251.33

0.00

] [
0.00

251.33

]

3.3.4. 2-D PHONONIC CRYSTAL WITH A VARYING LATTICE

In previous examples, the combinations of PUC and background mesh were chosen such
that enriched nodes, placed at intersections of the background elements with the PUC
edge, were separated by exactly one lattice vector. This means that only certain configu-
rations of PnCs could be analyzed within a given mesh. However, to achieve true mesh-
geometry decoupling this requirement is now removed. Additional enriched DOFs are
placed on either side of the PUC to ensure that each enriched node has a periodic coun-
terpart. In this numerical example, phononic crystals with different lattices, with a va-
riable angle α between both lattice vectors, are analyzed on the same square structured
mesh, for which the general PUC is illustrated in Figure 3.11. The different PnCs, with
a circular inclusion (r = 7 mm), are chosen such that the volume fraction of the inclu-
sion versus the host material is the same (φ = 0.2463). Furthermore, for each phononic
crystal, the magnitude of both lattice vectors are chosen to be the same (‖a1‖ = ‖a2‖),
such that the lattices are triangular (α= 60◦), square (α= 90◦), or rhombic (α= 70◦ and
α = 80◦). The lattice vectors that were used for the four cases, and their corresponding
reciprocal lattice vectors, are given in Table 3.1.

The material properties of the inclusion and host are the same as in previous
examples. In the discretization of these PUCs, extra enriched nodes are placed along the
PUC edge, such that all enrichments are spaced exactly one lattice vector apart. Only
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(a) (b)

(c) (d)

Figuur 3.12: Integration meshes for the four periodic unit cells, analyzed on the coarsest structured mesh
defined on a 10×10 grid.

then can Bloch-Floquet periodic boundary conditions be applied as described in § 3.2.1.
Figure 3.12 illustrates the coarsest integration mesh for each periodic unit cell.

Each layout is analyzed on a square grid of 10× 10× 2, 20× 20× 2, 40× 40× 2, and
80×80×2 triangular elements, and on a fine matching mesh. Figure 3.13 summarizes
the results of the different PnCs. On the left, the PUC and corresponding irreducible Bril-
louin zone are illustrated. The middle figures show the band structures for the different
PnCs, computed on different mesh sizes. The results given on the right in Figure 3.13
show that the convergence rates of these dispersion bands are the same as those in pre-
vious examples. In Figure 3.14, snapshots of waves are given for the same wave vector in
different phononic crystals: Figure 3.14(a-d) correspond to the Brillouin zone vertex M
of the triangular lattice, and Figure 3.14(e-f) correspond to the Brillouin zone vertex M
of the square lattice. For the rhombic lattices, neither wave vector corresponds to a sym-
metry point. Therefore, Figures 3.14a and 3.14h correspond to standing waves, whereas
the other figures represent traveling waves. This is confirmed by the fact that the modes
in Figures 3.14a and 3.14h are symmetric, and the rest are not.

3.3.5. 3-D PHONONIC CRYSTAL

To demonstrate the method in 3-D, we analyze a cubic PUC with a popcorn-shaped in-
clusion. This geometry is described by the function

φ (x) =
√
‖x‖− r −

11∑
k=0

A exp

[
−

∥∥x −x (k)
∥∥

ς2

]
, (3.32)
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Figuur 3.13: Phononic crystals with the same volume fractions but with different lattice types (i.e., with
PUCs of different shapes) are analyzed on structured meshes. In (a), (d), (g), and (j) periodic unit cells
and their corresponding (irreducible) Brillouin zones are shown. Their corresponding dispersion curves
are shown in (b),(e),(h), and (k), where results of structured meshes consisting of 10 × 10 × 2 ( ),
20× 20× 2 ( ), 40× 40× 2 ( ), 80× 80× 2 ( ) triangular elements, and a matching
mesh ( ) are compared. The convergence rates of the first seven bands, as defined in (3.30), are plot-
ted in (c),(f),(i), and (l).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figuur 3.14: Snapshots of a wave with wave vector [116.94,67.52]ᵀm−1, i.e., M for the triangular lattice (a)-(d),
and with wave vector [125.67,125.67]ᵀm−1, i.e., M for the square lattice (e)-(h). Figures (a) and (h) correspond
to standing waves, whereas the others to traveling waves. This illustrates the different behavior of the same
wave vector in different periodic media.

where r = 0.6, ς= 0.2, A = 4, and

x (k) =





rp
5

[
2cos

(
2kπ

5

)
2sin

(
2kπ

5

)
1
]ᵀ

for 0 ≤ k ≤ 4,

rp
5

[
2cos

(
(2(k−5)−1)π

5

)
2sin

(
(2(k−5)−1)π

5

)
−1

]ᵀ
for 5 ≤ k ≤ 9,

[
0 0 r

]ᵀ
for k = 10,

[
0 0 −r

]ᵀ
for k = 11.

(3.33)

The PUC has volume L×L×L, where L = 25mm, and is immersed in a larger background
mesh. The PUC is illustrated in Figure 3.15a. As constituent materials, we again use poly-
carbonate (lead) for the host (inclusion). The vertices of the 3-D irreducible zone are lo-
cated at Γ = [

0 0 0
]ᵀ

m−1, X = [
125.66 0 0

]ᵀ
m−1, M = [

125.66 125.66 0
]ᵀ

m−1

and R = [
125.66 125.66 125.66

]ᵀ
m−1. The resulting band structure is obtained on

non-matching tetrahedral meshes defined on 6×6×6, 8×8×8, 10×10×10 and 12×12×12
grids (with 6 tetrahedra per cubic unit in the grid), and on a matching mesh composed of
33610 tetrahedral elements. Figure 3.16 illustrates the results, where it is shown that even
on coarse meshes, reasonable approximations can be made on non-matching meshes in
3-D.

3.4. SUMMARY AND CONCLUSIONS
In this paper we achieved, for the first time, full decoupling of mesh and geometry in
the analysis of phononic crystals in 1-D, 2-D, and 3-D by means of immersed analysis
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Figuur 3.15: Three dimensional phononic crystal: (a) Schematic of the cubic PUC with lattice vectors a1, a2
and a3 and a popcorn-shaped inclusion. The host material is polycarbonate, and the inclusion is made of
lead; (b) The deformed PUC is completely immersed in a non-matching background mesh. In this snapshot, a
traveling wave in Γ→ R is illustrated.
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Figuur 3.16: Dispersion curve for a cubic PUC with a popcorn-shaped inclusion, obtained by multiple non-
matching meshes and a matching mesh. The bandgap is plotted for the matching mesh. In different colors,
IGFEM solutions for different mesh sizes are shown. The irreducible Brillouin zone of the cubic lattice is plot-
ted to the right. It is found that even for coarse meshes, a reasonable prediction of the bandstructure can be
obtained.
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of periodic unit cells using the Interface-enriched Generalized Finite Element Method.
Both the inclusion and the outer edges of the PUC are allowed to be defined indepen-
dently from the background mesh, either explicitly (by line segments) or implicitly (by
means of a level set function). Bloch-Floquet periodic boundary conditions are applied
in a strong manner using multiple point constraints, reminiscent of the strong applica-
tion of Dirichlet boundary conditions proposed recently in van den Boom et al. (2019b).
As the IGFEM operations are restricted to lower-dimensional manifolds (i.e., the ma-
terial interfaces and PUC boundaries), they do not dominate the computational costs
for sufficiently refined meshes; the computational costs are dominated by solving the
eigenvalue problem. The resulting formulation provides considerable flexibility in the
analysis of phononic crystals with varying inclusions and/or lattices.

The method’s convergence properties were compared to standard FEM. This was
done by means of two numerical examples: a 1-D phononic crystal, where the methods
were compared against an analytic solution proposed in Kushwaha et al. (1994), and a
2-D uniform material, where the numerical band structures were used to compute velo-
cities for shear and pressure waves that were compared to analytical velocities. In both
1-D and 2-D examples, the convergence rates of IGFEM and standard FEM were found
to be the same. Therefore, the results obtained on a very fine matching mesh were used
as reference solution for the following examples.

Several 2-D phononic crystals were analyzed. First, the strong enforcement of Bloch-
Floquet periodic boundary conditions on non-matching edges was demonstrated on ca-
refully chosen combinations of PUC and background mesh (§ 3.3.2); they were chosen
such that enriched nodes on either side of the PUC matched up exactly, so that no extra
steps were required for the enforcement of BCs. In the example of § 3.3.4, this require-
ment was released, and 2-D phononic crystals of different non-matching lattice shapes
were analyzed. To that end, extra enriched nodes where added along the PUC edges to
ensure periodicity could be enforced properly. In both cases, the results were shown to
converge to those of the fine matching mesh at the same rate that was previously found.
Lastly, a 3-D phononic crystal with a popcorn-shaped inclusion was analyzed. In the
examples shown in this paper, the inclusions and PUC boundaries never intersect the
same background element. Through the use of HIFEM (Soghrati, 2014), it is also pos-
sible to analyze unit cells where the inclusion crosses the PUC boundary. However, the
boundary conditions would also need to be implemented hierarchically, as described for
Dirichlet boundary conditions elsewhere (van den Boom et al., 2019b).

As other enriched methods, IGFEM also has a number of drawbacks. For example,
as shown in (Nagarajan and Soghrati, 2018; Soghrati et al., 2017), IGFEM overestimates
stresses in integration elements with bad aspect ratios. Although it has been shown that
this effect is less prominent near Dirichlet boundaries (van den Boom et al., 2019b), and
in the context of DE-FEM near traction-free cracks (Zhang et al., 2019a), the approxi-
mation of stresses in elements with bad aspect ratios is still an open research question.
Furthermore, as in standard FEM, the higher bands are approximated less accurately.
Higher order interpolation functions and enrichment functions could be investigated to
mitigate this drawback.

To the best of our knowledge, this is the first work in which complete decoupling of
the mesh and geometry in the analysis of phononic crystals with the same accuracy as
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that of standard FEM with matching meshes is demonstrated. The advantage of decou-
pling the mesh from the geometry is most apparent in cases where the geometry of the
PUC is not known a priori, such as during the design or optimization of the phononic
crystal PUC. Using this method, a range of phononic crystals can readily be analyzed
without the need for remeshing, and the immersed optimization of phononic crystals is
a matter of computing sensitivities and including an optimization loop. As the geome-
try of the inclusion may be defined implicitly by a level set, the level-set based enriched
topology optimization introduced by van den Boom et al. (2021b) may be employed. In
fact, the topology optimization of PnCs using IGFEM is the subject of an incoming pu-
blication. Following Veres et al. (2013) it is also possible to extend the enriched method
in a k (ω)-formulation, which can be used to also obtain the evanescent waves. In this
method, dynamic condensation is used to reduce the problem to its boundary nodes.
The properties of the wave vectors along the irriducible Brillouin zone are then used to
write the problem as palindromic quadratic and quartic eigenvalue problems (polyno-
mial eigenvalue problems where the coefficient matrices form a palindrome). For arbi-
trary wave vectors it is more challenging to solve. Finally, the proposed method may also
be used for the analysis of locally resonant acoustic metamaterials. However, as their be-
havior does not depend on the lattice type, the benefit of being able to modify the outer
boundary of the PUC is lost in this case.

The use of additional IGFEM nodes to prescribe periodic boundary conditions on
non-conforming and immersed edges extends beyond the procedure described here for
PnCs. In fact, a similar approach is used for the coupling between non-conforming mes-
hes and contact, which is the subject of an incoming publication (Liu et al., 2022).

APPENDIX: CONSTRUCTING A TRANSFORMATION MATRIX FOR

A SIMPLE 1-D PUC

a

N2,U2N1,U1 N3,U3 N4,U4

ψm ,αm ψs ,αs

Figuur 3.17: One-dimensional mesh that is non-matching to the PnC on the outer boundaries for the demon-
stration of the construction of the T matrix.

The construction of the T matrix for a simple 1-D PUC as in Figure 3.17 is explained
in detail in this section. For simplicity, a very coarse mesh is used that is matching to
the internal material interfaces. However, the extension to more complex problems in
higher dimensions is straightforward.

In order to apply Bloch-Floquet boundary conditions on the two nodes shown as ,
the general condition

u(xs) = e i k·au(xm), (3.34)

has to be satisfied, where u(xm) and u(xs) are displacements corresponding to the left
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and right enriched nodes, respectively. These nodes are separated by the lattice constant
a. Using the IGFEM approximation, u(xm) and u(xs) are found as:

u(xm) = N1(xm)U1 +N2(xm)U2 + smψm(xm)αm

u(xs) = N3(xs)U3 +N4(xs)U4 + ssψs(xs)αs
(3.35)

Substituting Equation (3.35) into Equation (3.34) yields

N3(xs)U3 +N4(xs)U4 + ssψs(xs)αs = e i k·a (
N1(xm)U1 +N2(xm)U2 + smψm(xm)αm

)
,

(3.36)
which can then be rewritten as

αs =
e i k·a

ssψs(xs)

(
N1(xm)U1 +N2(xm)U2 + smψm(xm)αm

)− 1

ssψs(xs)
(N3(xs)U3 +N4(xs)U4) .

(3.37)
Written in the form U = T Ū , using a transformation matrix T , the enriched subordinate
DOF αs can be eliminated:




U1

U2

U3

U4

αm

αs



=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

e i k·a N1(xm)
ssψs(xs) e i k·a N2(xm)

ssψs(xs)
N3(xs)

ssψs(xs)
N4(xs)

ssψs(xs) e i k·a smψm(xm)
ssψs(xs)







U1

U2

U3

U4

αm




. (3.38)



4
LEVEL SET-BASED TOPOLOGY

OPTIMIZATION USING IGFEM

Whereas previous chapters concentrate on immersed analysis, this chap-
ter focuses on immersed design using topology optimization. A level set
based topology optimization framework using IGFEM is developed in Sec-
tion 4.2.1, and applied to the design of minimum compliance structures in
Section 4.3. The most challenging aspect of the formulation—the sensitivity
analysis—is detailed in Section 4.2.3.
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An Interface-enriched Generalized Finite Element
Method for Level Set-based Topology

Optimization

Abstract During design optimization, a smooth description of the geometry is

important, especially for problems that are sensitive to the way interfaces are re-

solved, e.g., wave propagation or fluid-structure interaction. A level set descrip-

tion of the boundary, when combined with an enriched finite element formula-

tion, offers a smoother description of the design than traditional density-based

methods. However, existing enriched methods have drawbacks, including ill-

conditioning and difficulties in prescribing essential boundary conditions. In

this work we introduce a new enriched topology optimization methodology that

overcomes the aforementioned drawbacks; boundaries are resolved accurately

by means of the Interface-enriched Generalized Finite Element Method (IGFEM),

coupled to a level set function constructed by radial basis functions. The enriched

method used in this new approach to topology optimization has the same level

of accuracy in the analysis as the standard finite element method with matching

meshes, but without the need for remeshing. We derive the analytical sensitivities

and we discuss the behavior of the optimization process in detail. We establish

that IGFEM-based level set topology optimization generates correct topologies for

well-known compliance minimization problems.

4.1. INTRODUCTION
The use of enriched finite element methods in topology optimization approaches is not
new; the eXtended/Generalized Finite Element Method (X/GFEM) (Aragón et al., 2010;
Belytschko et al., 2009; Moës et al., 1999, 2003; Oden et al., 1998), for example, has been
explored in this context. However, the Interface-enriched Generalized Finite Element
Method (IGFEM) has been shown to have many advantages over X/GFEM (van den
Boom et al., 2019b; Soghrati et al., 2012a). In this work we extend IGFEM to be used
in a level set based topology optimization framework.

Topology optimization, first introduced by Bendsøe and Kikuchi (1988), has been
widely used to obtain designs that are optimized for a certain functionality, e.g., mini-
mum compliance. In the commonly-used density-based methods, a continuous design
variable that represents a material density is assigned to each element in the discretiza-
tion. The design is pushed towards a black and white design by means of an interpola-
tion function, e.g., the Solid Isotropic Material with Penalisation (SIMP) (Bendsøe, 1989),
that disfavors intermediate density values (also referred to as gray values). A filter is then
required to prevent checkerboard-like density patterns, and to impose a minimum fea-
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ture size. However, due to the filter, gray values are introduced. Density based topology
optimization is straightforward to implement and widely available in both research and
commercial software. However, because the topology is described by a density field on a
(usually) structured mesh, material interfaces not only contain gray values but also suf-
fer from pixelization or staircasing—staggered boundaries that follow the finite element
mesh. Although a post-processing step can be performed to smoothen the final design,
the analysis during optimization is still based on gray density fields and a staircased re-
presentation. This may be detrimental to the approximate solution’s accuracy, especially
in cases that are sensitive to the boundary description, such as flow problems (Villa-
nueva and Maute, 2017). Furthermore, because the location of the material boundary
is not well defined, it is difficult to track the evolving boundary during optimization, for
example to impose contact constraints.

The aforementioned drawbacks could be alleviated by the use of geometry-fitted dis-
cretization methods, which have been widely used in shape optimization (Staten et al.,
2012). In these methods, the location of the material interface is known throughout the
optimization, and the analysis mesh is modified to completely eliminate the pixaliza-
tion and gray values. Mesh-morphing methods such as the deformable simplex method
(Christiansen et al., 2014, 2015; Misztal and Bundefinedrentzen, 2012; Zhou et al., 2018),
level set-based mesh evolution (Allaire et al., 2014), anisotropic elements (Jensen, 2016),
and r -refinement (Yamasaki et al., 2017), have been demonstrated for topology optimi-
zation. Nevertheless, adapting the mesh in every design iteration remains a challenge.
Not only is it an extra computational step, the changing discretization also introduces
another complication in the optimization procedure because design variables need to
be mapped to the new discretization (van Dijk et al., 2013).

A more elegant option is to define material interfaces independently from the fi-
nite element discretization, e.g., implicitly by means of the zero-contour of a level set
function. In level set methods, the material boundary is moved by evolving the level
set function, and new holes can be nucleated by means of topological derivatives (Am-
stutz and Andrä, 2006). Although the required mapping between the geometry and the
discretization mesh can be done with an Ersatz method using material density inter-
polation (Allaire et al., 2004), this again introduces gray values and staircasing into the
analysis. Similarly, NURBS-based topology optimization using the Finite Cell Method
(FCM) (Gao et al., 2019) provides a higher resolution boundary description, that is howe-
ver, still staircased. Alternatively, there are methods that allow for a one-to-one mapping
of the topology to the analysis mesh, resulting in a non-pixalized boundary description.
These methods combine the advantages of clearly defined material interfaces with the
benefits of a fixed discretization mesh used in density-based methods. In the literature,
level set-based topology optimization has been established using for the analysis Cut-
FEM (Burman et al., 2018; Villanueva and Maute, 2017), where the basis functions are
restricted to the physical domain, and X/GFEM (Belytschko et al., 2003; Liu et al., 2016a;
Villanueva and Maute, 2014), where the approximation space is enriched.

In enriched finite element methods such as X/GFEM, the standard finite element
space is augmented by enrichment functions that account for a priori knowledge of
the discontinuity of the field or its gradient at cracks or material interfaces, respecti-
vely. Although X/GFEM has been shown to be advantageous in many applications, e.g.,
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fluid-structure interaction (Mayer et al., 2010) and fracture mechanics (Fries and Belyt-
schko, 2010), the method has also weaknesses: degrees of freedom (DOFs) correspon-
ding to original mesh nodes do not automatically retain their physical meaning, and
non-zero essential boundary conditions mostly have to be prescribed weakly. More-
over, X/GFEM may result in ill-conditioned matrices, in which case Stable Generalized
FEM (SGFEM) (Babuška and Banerjee, 2012; Gupta et al., 2013; Kergrene et al., 2016) or
advanced preconditioning schemes (Lang et al., 2014) are needed. Furthermore, the ap-
proximation of stresses can be highly overestimated near material boundaries (Noël and
Duysinx, 2017; Sharma and Maute, 2018; Van Miegroet and Duysinx, 2007). Finally, as
the enriched functions are associated with original mesh nodes, the accuracy of the ap-
proximation may degrade in blending elements, i.e. elements that do not have all nodes
enriched (Fries, 2008).

The Interface-enriched General Finite Element Method (IGFEM) (Soghrati et al.,
2012a) was first introduced as a simplified generalized FEM to solve problems with weak
discontinuities, i.e., where the gradient field is discontinuous. The method overcomes
most issues of X/GFEM for this kind of problems: In IGFEM, enriched nodes are pla-
ced along interfaces, and enrichment functions are non-zero only in cut elements, i.e.,
elements that are intersected by a discontinuity. Furthermore, enrichment functions
are exactly zero at original mesh nodes. Therefore, original mesh nodes retain their
physical meaning and essential boundary conditions can be enforced directly on non-
matching edges (Aragón and Simone, 2017; van den Boom et al., 2019b; Cuba Ramos
et al., 2015). It was shown that IGFEM is optimally convergent under mesh refine-
ment for problems without singularities (Soghrati and Geubelle, 2012; Soghrati et al.,
2012a). Moreover, IGFEM is stable by means of scaling enrichment functions or a sim-
ple diagonal preconditioner (Aragón et al., 2020; van den Boom et al., 2019b), meaning
it has the same condition number as standard FEM. The method has been applied to
the modeling of fibre-reinforced composites (Soghrati and Geubelle, 2012), multi-scale
damage evolution in heterogeneous adhesives (Aragón et al., 2013), microvascular mate-
rials with active cooling (Soghrati and Geubelle, 2012; Soghrati et al., 2012a,b, 2013), and
the transverse failure of composite laminates (Shakiba et al., 2019; Zhang et al., 2019b).
IGFEM was later developed into the Hierarchical Interface-enriched Finite Element Me-
thod (HIFEM) (Soghrati, 2014), that allows for intersecting discontinuities, and into the
Discontinuity-Enriched Finite Element Method (DE-FEM) (Aragón and Simone, 2017),
which provides a unified formulation for both strong and weak discontinuities (i.e., dis-
continuities in the field and its gradient, respectively). DE-FEM, which inherits the same
advantages of IGFEM over X/GFEM, has successfully been applied to problems in frac-
ture mechanics (Aragón and Simone, 2017; Zhang et al., 2019a) and fictitious domain
or immersed boundary problems with strongly enforced essential boundary conditi-
ons (van den Boom et al., 2019b). A drawback of IGFEM is that quadratic enrichment
functions are needed when the method is applied to background meshes composed of
bilinear quadrangular elements (Aragón et al., 2020). Another disadvantage of IGFEM,
which is also shared by X/GFEM, is that it may yield inaccurate field gradients depending
on how the enriched finite element space is constructed (Nagarajan and Soghrati, 2018;
Soghrati et al., 2017). Depending on the aspect ratio of integration elements, stresses
may be overestimated, and the issue is more prominent near material interfaces. This
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is not an issue along Dirichlet boundaries, where a smooth reaction field can be reco-
vered (van den Boom et al., 2019a,b), nor along traction-free cracks where stresses are
negligible (Zhang et al., 2019a).

In the context of optimization, IGFEM has been explored for NURBS-based shape
optimization (Najafi et al., 2017), the shape optimization of microvascular channels (Tan
and Geubelle, 2017) and their combined shape and network topology optimization (Pe-
jman et al., 2019), the optimization of microvascular panels for nanosatellites (Tan et al.,
2018a), and optimal cooling of batteries (Tan et al., 2018b). Nevertheless, IGFEM has
not yet been used for continuum topology optimization. In this paper we show topology
optimization based on a level set function, parametrized with Radial Basis Functions
(RBFs) (Wang and Wang, 2006; Wendland, 1995), in combination with IGFEM. We de-
monstrate the method on benchmark compliance problems. The sensitivities are deri-
ved and the method is compared to density-based topology optimization and to the level
set-based Ersatz method. It should be noted that no significant performance improve-
ment is expected for these cases, as they are not sensitive to the way the boundaries are
discretized. Cases that would benefit from our approach to topology optimization com-
pared to density-based methods—and which may be shared among other methods that
provide clearly defined interfaces—include those where the location of the boundary
has to be known throughout the entire optimization. Examples include contact, pro-
blems where boundary conditions need to be enforced on evolving boundaries, or pro-
blems where an accurate boundary description is fundamental for resolving the fields
at interfaces, such as fluid-structure interaction or wave scattering problems. Although
no significant improvement in performance is expected for the compliance minimiza-
tion cases in this paper, they should be seen as the necessary proof of concept before
considering more complex cases.

4.2. FORMULATION

4.2.1. IGFEM-BASED ANALYSIS

In this work we focus on elastostatics and heat conduction problems on solid domains,
as represented in Figure 4.1. A design domain Ω⊂ Rd is referenced by a Cartesian coor-
dinate system spanned by base vectors {ei }d

i=1. This domain is decomposed into a solid
material domain and a void domain, denoted by Ωm and Ωv, respectively, such that the
domain closure is Ω=Ωm ∪Ωv, and Ωm ∩Ωv =;. The boundary of the design domain,
∂Ω ≡ Γ =Ω \Ω, is subjected to essential (Dirichlet) boundary conditions on ΓD, and to

natural (Neumann) boundary conditions on ΓN, such that Γ= ΓD ∪ΓN
and ΓD ∩ΓN =;.

The material boundary, Γm =
(
Ωm ∩Ωv

)
\Γ, is defined implicitly by a level set function,

φ (x) = 0, that is a function of the spatial coordinate x .
For any iteration in the elastostatic optimization procedure, the boundary value

problem is solved with prescribed displacements ū : ΓD → Rd , prescribed tractions
t̄ : ΓN → Rd , and body forces bi defined as the restriction of b to domain Ωi as bi ≡
b|Ωi :Ωi → Rd , where i = m,v. Similarly, we denote the field ui as the restriction of u to
domain Ωi , i.e. ui ≡ u|Ωi . Note that here the field is defined on both material and void
domains. However, following the techniques described in van den Boom et al. (2019b),
it is also possible to completely remove the void regions from the analysis.
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Figuur 4.1: Mathematical representation of a topology optimization design domain Ω. Essential and natural
boundary conditions are prescribed on the part of the boundary denotedΓD andΓN, respectively. The material
domain is referred to as Ωm, while the void region is denoted Ωv. The inset shows the discretization with a
material interface, defined by the zero-contour of the level set function φ, that is non-matching to the mesh.
Original mesh nodes and enriched nodes are denoted with and symbols, respectively.

We define the vector-valued function space

V0 =
{

v ∈ [
L2 (Ω)

]d
, v |Ωi ∈

[
H1(Ωi )

]d
,

v |ΓD
i
= 0, i = m, v

}
,

(4.1)

where L2 (Ω) is the space of square-integrable functions and H1(Ωi ) is the first-order
Sobolev space. In this work we only focus on problems with homogeneous Dirichlet
boundary conditions. For problems with non-homogeneous essential boundary condi-
tions, the reader is referred to Aragón and Simone (2017). The weak form of the elasto-
statics boundary value problem can be written as: Find u ∈V0 such that

B (u, v ) = L (v ) ∀v ∈V0, (4.2)

where the bilinear and linear forms can be written as

B (u, v ) =
∑

i=m,v

∫

Ωi

εi (vi ) :σi (ui ) dΩ, (4.3)

and

L (v ) =
∑

i=m,v

∫

Ωi

vi ·bi dΩ+
∫

ΓN
vi · t̄ dΓ, (4.4)

respectively, where the stress tensor σi ≡ σ|Ωi follows Hooke’s law for linear elastic ma-
terials,σi =Ci : εi , and Ci is the elasticity tensor. Small strain theory is used for the strain
tensor, i.e., ε (u) = 1

2 (∇u +∇uᵀ).
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For heat conduction the variational problem is

B (u, v) = L (v) ∀v ∈V0, (4.5)

where trial and weight function are taken from the space V0 ={
v ∈L2 (Ω) , v |Ωi ∈H1(Ωi ), v |ΓD

i
= 0, i = m, v

}
. For a prescribed temperature u : ΓD → R,

prescribed heat flux q : ΓN → R, heat source fi : Ωi → R, and conductivity tensor
κi ≡ κ|Ωi →Rd ×Rd , the bilinear and linear forms for each iteration in heat compliance
problems are given by

B (u, v) =
∑

i=m,v

∫

Ωi

∇vi · (κi ·∇ui ) dΩ (4.6)

and

L (v) =
∑

i=m,v

∫

Ωi

vi fi dΩ+
∫

ΓN
vi q̄ dΓ. (4.7)

It is worth noting that interface conditions that satisfy continuity of the field and its
tractions (or fluxes) do not appear explicitly in (4.3) or in (4.6), because they drop out
due to the weight function v (or v) being continuous along the interface.

The design domain is discretized without prior knowledge of the topology as Ω
h =⋃

i∈ιE e i , where e i is the i th finite element and ιE is the index set corresponding to all
elements in the original mesh. Similarly, we define the mesh nodes

{
x j

}
j∈ιh , where ιh is

an index set corresponding to all the original nodes of the mesh. A partition of unity is
defined by standard Lagrange shape functions N j , associated to the mesh nodes. The
result is a mesh that is non-matching to material boundaries. The level set function,
whose zero contour defines the interface between void and material, is then evaluated
on the same mesh. This is done for efficiency, as the mapping needs to be computed
only once, and results in discrete nodal level set values. New enriched nodes are placed
at the intersection between element edges and the zero contour of the level set. As il-
lustrated in Figure 1, the locations of these enriched nodes, denoted xn , are found by
linear interpolation between two nodes of the original mesh. Given two mesh nodes x j

and xk with intersecting supports (i.e., supp
(
N j

)∩supp(Nk ) 6= ;) and level set values of
different sign (i.e., φ

(
x j

)
φ (xk ) < 0), the enriched node is found as:

xn = x j −
φ j

φk −φ j

(
xk −x j

)
, (4.8)

where we adopt the notation φ j ≡ φ
(
x j

)
. The material interface Γm is defined as the

piece-wise linear representation of the zero contour of the level set function, discretized
with enriched nodes {xn}n∈ιw , where ιw is the index set corresponding to all enriched no-
des. Elements that are intersected by Γm, indexed by the index set ιc , are then subdivided
into integration elements by means of a constrained Delaunay algorithm. The index set
referring to all integration elements is denoted ιe . The complexity of finding intersecti-
ons and creating integration elements is O (|ιE |), where |·| denotes set cardinality, since
each element has to be processed only once per iteration.
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ψi

αi

Figuur 4.2: Schematic representation of enrichment function ψi corresponding to enriched DOFs αi , where
enriched nodes are shown with symbols. This enrichment function is constructed from standard Lagrange
shape functions in integration elements.

x1
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ξe,2

ξp,1

ξp,2

reference integration
element

reference parent
element

x

ξe
ξp

Figuur 4.3: Schematic of an integration element (shaded), whose local arrays are obtained by using an isopa-
rametric mapping. Integration points in integration elements (ξe ) and parent elements (ξp ) are mapped to
global coordinate x .

Following a Bubnov-Galerkin procedure, the resulting finite dimensional problem is
then solved by choosing trial and weight functions from the same enriched finite ele-
ment space. The IGFEM approximation can then be written as

uh(x) =
∑

i∈ιh
Ni (x)Ui

︸ ︷︷ ︸
standard FEM

+
∑

i∈ιw
ψi (x)αi

︸ ︷︷ ︸
enrichment

, (4.9)

for elastostatics, or

uh(x) =
∑

i∈ιh
Ni (x)Ui

︸ ︷︷ ︸
standard FEM

+
∑

i∈ιw
ψi (x)αi

︸ ︷︷ ︸
enrichment

, (4.10)

for heat conduction problems. The first term in (4.9) and (4.10) corresponds to the
standard finite element approximation, with shape functions Ni (x) and corresponding
standard degrees of freedom Ui (or Ui ), and the second term refers to the enrichment,
characterized by enrichment functions ψi (x) and associated enriched DOFs αi (or αi ).
Enrichment functions ψi can be conveniently constructed from Lagrange shape functi-
ons of integration elements, as illustrated in Figure 4.2, while the underlying partition of
unity shape functions are kept intact.
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Subsequently, the local stiffness matrix ke and force vector fe are obtained nume-
rically; elements that are not intersected follow standard FEM procedures. An isopara-
metric procedure is used in integration elements to obtain the local arrays. Figure 4.3
shows a schematic of a triangular integration element (shaded) within an original cut
element—the parent element—in global coordinates. The reference triangular domains
for both integration and parent elements are also shown. Each reference domain shows
the master coordinate associated to a given global coordinate x . In elastostatics (heat
conductivity follows an analogous procedure), ke and fe are computed on each integra-
tion element’s reference triangle as

ke =
∫

je BᵀDBdξ,

and

fe =
∫

je

[
N
ψ

]
b dξ+

∫

∩ΓN
je

[
N
ψ

]
t̄ d∂ξ

(4.11)

where B =
[
∆ᵀ
ξ

Nᵀ J−ᵀ ∆ᵀ
ξ
ψᵀ J−ᵀe

]
and D is the constitutive matrix. The parental shape

functions vector N and enrichment functions ψ are stacked together. Note that je and
J−1

e are the determinant and the inverse of the Jacobian of the isoparamatric mapping of
the integration element respectively, and J−1 is the inverse of the Jacobian of the map-
ping of the parent element. The isoparametric mapping is a standard procedure in FEM;
however, as the steps are important for the derivation of the sensitivites in §4.2.3, it is
explained in more detail in Appendix B. The differential operator∆ξ is defined as:

∆ξ ≡
[

∂
∂ξ1

0 ∂
∂ξ2

0 ∂
∂ξ2

∂
∂ξ1

]>
,

∆ξ ≡




∂
∂ξ1

0 0 ∂
∂ξ2

0 ∂
∂ξ3

0 ∂
∂ξ2

0 ∂
∂ξ1

∂
∂ξ3

0

0 0 ∂
∂ξ3

0 ∂
∂ξ2

∂
∂ξ1




>

,

(4.12)

for elastostatics in 2-D and 3-D, respectively, and

∆ξ ≡
[

∂
∂ξ1

∂
∂ξ2

]>
, ∆ξ ≡

[
∂
∂ξ1

∂
∂ξ2

∂
∂ξ3

]>
, (4.13)

for heat conductivity in 2-D and 3-D, respectively.
In this work, we are concerned with linear triangular elements, for which a single

integration point in standard and integration elements is sufficient. The discrete system
of linear equations KU = F is finally obtained through standard procedures, where

K =A
i∈ιA

ki , F =A
i∈ιA

fi , (4.14)

where ιA = (ιE \ ιc )∪ ιe andA denotes the standard finite element assembly operator.
For a more detailed description on IGFEM, the reader is referred to Soghrati et al.

(2012a).
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RELATION TO X/GFEM
IGFEM is closely related to X/GFEM: The general X/GFEM approximation can be written
as

uh(x) =
∑

i∈ιh
Ni (x)Ui

︸ ︷︷ ︸
standard FEM

+
∑

i∈ιh
Ni (x)

∑
j∈ιg

Ei j (x)Ûi j

︸ ︷︷ ︸
enrichment

, (4.15)

where enrichment functions Ei j are associated to generalized DOFs Ûi j —the latter as-
signed to nodes of the mesh. While the X/GFEM approximation uses partition of unity
shape functions to localize the effect of enrichment functions, in IGFEM this is not ne-
cessary because enrichment functions are local to cut elements by construction. In ad-
dition, enriched nodes in IGFEM are collocated along the discontinuities, resulting in
less DOFs than required by (4.15).

It is worth noting, however, that IGFEM is not only closely related to X/GFEM, it can
actually be derived from it by means of a proper choice of enrichment functions Ei j and
by clustering enriched DOFs (Duarte et al., 2007). Appendix A shows this with a simple
1-D example.

IGFEM has several benefits over X/GFEM:

• Enrichment functions in IGFEM are local by construction, i.e., they are non-zero
only in elements cut by the interface and exactly zero elsewhere. Therefore, IG-
FEM has no issues with blending elements, which is an issue for X/GFEM for some
choices of enrichment functions (Fries, 2008);

• In IGFEM the enrichment functions vanish at the nodes of background elements.
Therefore, the original mesh node conserve the Kronecker property, and the DOFs
associated to these nodes maintain their physical interpretation;

• In X/GFEM, prescribing non-zero Dirichlet boundary conditions is usually done
weakly by means of penalty, Lagrange, or Nitsche methods (Cuba Ramos et al.,
2015). In IGFEM, on the contrary, these boundary conditions can be prescribed
strongly, both on original nodes and, by means of a multipoint constraint, on en-
riched edges (Aragón and Simone, 2017; van den Boom et al., 2019b);

• Smooth traction profiles can be recovered when Dirichlet boundary conditons are
prescribed on enriched edges (van den Boom et al., 2019a,b; Cuba Ramos et al.,
2015). This is currently not possible in X/GFEM even with stabilization techni-
ques (Haslinger and Renard, 2009);

• IGFEM is stable, i.e., the condition number of the system matrix grows as O
(
h−2

)
,

which is the same order as that of standard FEM. This is accomplished by means
of a proper scaling of enrichment functions or by using a simple diagonal precon-
ditioner (Aragón et al., 2020);

• The computer implementation is simpler: data structures of standard FEM can
be reused to store enriched DOFs, post-processing is required for enriched DOFs
only, and no special treatment of Dirichlet boundary conditions is needed (Aragón
and Simone, 2017).
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Figuur 4.4: Compactly supported RBF given by (4.16) with coordinates x = [0 0]ᵀ and radius of influence rs = 1.

4.2.2. RADIAL BASIS FUNCTIONS
Although it is possible to directly use the level set valuesφ j on original nodes of the finite
element mesh as design variables, we choose to use compactly supported radial basis
functions for the level set parametrization for a number of reasons (Wang and Wang,
2006):

• RBFs give control over the complexity of the designs, and as such, they act similarly
to a filter in density-based topology optimization;

• By decoupling the finite element analysis mesh from the RBF grid, the design
space can be restricted without deteriorating the finite element approximation.
This can be used to mitigate approximation errors discretizations that are too
coarse; and

• By tuning the radius of support of RBFs, we can ensure that the influence of each
design variable extends over multiple elements. This allows the optimizer to move
the boundary further and therefore converge faster, while using fewer design va-
riables. This effect is similar to that of a filter radius in standard density-based
topology optimization.

Figure 4.4 illustrates a compactly supported RBF θ (Wendland, 1995) described by

θi (ri ) = (1− ri )4 (4ri +1) , (4.16)

where the radius ri is defined as

ri (x , xi ) =
p‖x −xi‖

rs
, (4.17)

and rs is the radius of support. In (4.17) ‖·‖ denotes the Euclidian norm, and xi is the
center coordinates corresponding to RBF θi .
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The scalar-valued level set function φ (x) is found as a summation of every non-zero
RBF θi , scaled with its corresponding design variable si :

φ (x) =Θ (x)ᵀ s =
∑
i∈ιs

θi (x) si , (4.18)

where ιs is the index set corresponding to all design variables, and

s ∈D= {
s| s ∈R|ιs |,−1 ≤ si ≤ 1

}
(4.19)

is a vector of design variables, with lower and upper bounds −1 and 1 that prevent the
level set from becoming too steep. Finally, evaluating this function at the original nodes
of the finite element mesh results in the level set vector

φ= θᵀs, (4.20)

where θ is a matrix that needs to be computed only once, as the original mesh nodes do
not move throughout the optimization.

4.2.3. OPTIMIZATION
The optimization problem is chosen as a minimization of the compliance C with respect
to the design variables s that scale the RBFs. It needs to be emphasized that compliance
minimization is merely a demonstrator problem, and the method is not limited to it.
The minimization problem is subject to equilibrium and to a volume constraint Vc . This
problem can be written as

s? = argmin
s∈D

C =UᵀKU ,

subject to KU = F ,

VΩm ≤Vc .

(4.21)

The Method of Moving Asymptotes (MMA) (Svanberg, 1987)1, a method commonly used
in density-based topology optimization, is employed to solve this optimization problem.

SENSITIVITY ANALYSIS

The compliance minimization problem is self-adjoint (Bendsøe and Sigmund, 2004), re-
sulting in the sensitivity of the compliance C with respect to the design variables s as

∂C

∂s
=−Uᵀ ∂K

∂s
U +2Uᵀ ∂F

∂s
. (4.22)

Applying the chain rule, the sensitivity of the compliance C with respect to design varia-
ble si can be written at the level of integration elements in terms of the nodal level set
values φ j :

∂C

∂si
=

∑
j∈ιi

∑
e∈ι j

∑
n∈ιn

(
−uᵀ

e
∂ke

∂xn

∂xn

∂φ j
ue +2uᵀ

e
∂ fe

∂xn

∂xn

∂φ j

)
∂φ j

∂si
. (4.23)

In (4.23), a summation is done over all the nodes in the index set ιi which contains all the
original mesh nodes that are in the support of the RBF corresponding to design variable

1The author would like to thank Krister Svanberg for providing us with the MMA implementation.
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si . Then, a summation is done over ι j , which refers to the index set of all integration ele-
ments e in the support of original mesh node j , i.e., the region where the original shape
function N j is nonzero. Lastly, a summation is done over the index set ιn , which con-
tains all the enriched nodes n in integration element e. The location of these enriched
nodes is denoted xn . Note that a number of terms can be identified in the sensitivity
formulation: the derivatives of nodal level set values with respect to the design variables,
∂φ j /∂si , the design velocities ∂xn/∂φ j , and the sensitivity of the element stiffness ma-
trix and force vector with respect to the location of the nth enriched node, ∂ke /∂xn and
∂ fe /∂xn , respectively.

First, the sensitivity of the nodal level set values with respect to the design variables
is simply computed by taking the derivative of (4.20) with respect to s as

∂φ

∂s
= θᵀ. (4.24)

The design velocities ∂xn/∂φ j also remain straightforward as they are computed by ta-
king the derivative of (4.8) as

∂xn

∂φ j
=− φk(

φ j −φk
)2

(
x j −xk

)
. (4.25)

Note that the enriched nodes remain on the element edges of the finite element mesh,
and thus the direction of the design velocity is known a priori.

More involved is the sensitivity of the eth integration element stiffness matrix ke with
respect to the location of enriched node n, which can be computed on the reference
domain as:

∂ke

∂xn
=

∫ (
∂ je

∂xn
BᵀDB + je

∂Bᵀ

∂xn
DB + je BᵀD

∂B

∂xn

)
dξ, (4.26)

where B =
[
∆ᵀ
ξ

Nᵀ J−ᵀ∆ᵀ
ξ
ψᵀ J−ᵀe

]
as defined in §4.2.1. In this work, a single integration

point is used for numerical quadrature, with ξe = [1/3,1/3] and wg = 1/2. Recall that the
material within each integration element remains constant, and therefore ∂D/∂xn = 0.
The first term in (4.26) contains the sensitivity of the Jacobian determinant, and repre-
sents the effect of the changing integration element area; the second and third terms
contain the sensitivity of the element B matrix, and represent the effect of the changing
shape and enrichment functions. The latter is computed as

∂B

∂xn
=

[
0 ∆ᵀ

ξ
ψᵀ ∂J−ᵀe

∂xn

]
. (4.27)

Observe that only the enriched part of the formulation has an influence, as for linear
elements the background shape function derivatives are constant throughout the inte-
gration element, and thus

∂∆ξN

∂xn
=
�
�
���

0
∂∆ξN

∂ξp

∂ξp

∂x

∂x

∂xn
= 0. (4.28)
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The Jacobian of the parent element is not influenced by the enriched node location ei-
ther (∂J /∂xn = 0). Similarly to (4.28), the enrichment functions are constant throughout
the integration element, so that

∂∆ξψ

∂xn
=
�
�
���

0
∂∆ξψ

∂ξe

∂ξe

∂x

∂x

∂xn
= 0. (4.29)

Appendix C describes how to compute the derivative of the Jacobian inverse and deter-
minant, ∂J−1

e /∂xn and ∂ je /∂xn , respectively, by straightforward differentiation.
Finally, the sensitivity of the design-dependent force vector fe is evaluated. Due to

the IGFEM discretization, enriched nodes whose support is subjected to a line or body
load contribute to the force vector, implying that the derivatives of the force vector are
nonzero for cases with line loads or body forces. Similarly to the sensitivity of the ele-
ment stiffness matrix, each integral in the sensitivity of the element force vector consists
of two terms, one related to the Jacobian derivative, and another containing the function
derivatives:

∂ fe

∂xn
=

∫ (
∂ je

∂xn

[
N
ψ

]
b + je

[
∂N /∂xn

0

]
b
)

dξ

+
∫

∩ΓN

(
∂ je

∂xn

[
N
ψ

]
t̄ + je

[
∂N /∂xn

0

]
t̄
)

d∂ξ.

(4.30)

In the second term of the integrals, only the parent shape functions have a contribu-
tion. This is because enrichment functions in reference coordinates are not influenced
by the enriched node in global coordinates, i.e., ∂ψ/∂xn = 0. However, as the mapping
to the parent reference domain is influenced by the enriched node location, ∂N /∂xn is
nonzero, and can be evaluated as

∂N

∂xn
= ∂N

∂ξp

∂ξp

∂x

∂x

∂xn
= ∂N

∂ξp
A−1

p
∂xe

∂xn
Ne , (4.31)

where A−1
p is the inverse isoparametric mapping that maps global coordinates to the

local master coordinate system of the parent element as explained in Appendix B.
Although the sensitivity analysis seems involved, the partial derivatives are relatively

straightforward to compute on local arrays.

4.3. NUMERICAL EXAMPLES
The enriched method outlined above is demonstrated on a number of classical compli-
ance optimization problems. The results generated by this approach are compared to
those generated by open source optimization codes, and the influence of the design dis-
cretization is investigated. A 3-D compliance optimization case and a heat sink problem
are also considered. It should be noted that no holes can be nucleated in the method
presented in this paper. Therefore, initial designs containing a relatively large number of
holes are used for the numerical examples. However, the method could be extended to
also nucleate holes by means of topological derivatives (Amstutz and Andrä, 2006).

In this section, no units are specified; therefore, any consistent unit system can be as-
sumed. For the MMA optimizer (Svanberg, 1987), the following settings are used unless
otherwise specified:
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t̄

Figuur 4.5: Test problem for the finite difference check of the analytical sensitivities. The relative differences
δi as per (4.32) are illustrated in Figure 4.6.

• The lower and upper bounds on the design variables si are given by −1 and 1, as
defined in the design variable space in (4.19)

• The move limit used by MMA is set to 0.01;

• A value of 10 is used for the Lagrange multiplier on the auxiliary variables in the
MMA sub-problem that controls how aggressively the constraints are enforced.

4.3.1. NUMERICAL VERIFICATION OF THE SENSITIVITIES
The analytically computed sensitivities ∂C /∂si are checked against central finite diffe-
rences C ′

i for a small test problem as illustrated in Figure 4.5. This test problem consists
of a beam of size 2L ×L that is clamped on the left, and subjected to a downward force∣∣t

∣∣= 1 on the bottom right. The material phase of this beam has Young’s modulus E1 = 1.
We consider the initial design with three holes, as shown in Figure 4.5, with Young’s mo-
dulus E2 = 10−6. The problem is solved on a symmetric mesh of 12×6×2 triangles. The
RBFs are defined on a 13×7 grid, and have a radius of 0.15L.

The relative differences of the non-zero design variable sensitivities are computed as

δi =
C ′

i −∂C /∂si

∂C /∂si
, (4.32)

and illustrated in Figure 4.6 for different finite different step sizes ∆si . For a step size of
∆si = 10−5 the relative difference is minimized and takes a value of δ ≈ 5 × 10−6.

4.3.2. CANTILEVER BEAM
Our approach to enriched level set-based topology optimization is compared to the fol-
lowing open source codes:

• the 99-line SIMP-based code by Sigmund (2001);

• an 88-line code for parameterized level set optimization using radial-basis functi-
ons and density mapping, proposed by Wei et al. (2018); and

• a code for discrete level set topology optimization with topological derivatives by
Challis (2010).
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Figuur 4.6: Relative difference δi between the analytically computed sensitivities for node i and central finite
differences, as a function of the step size ∆si .
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Figuur 4.7: Problem description and initial design for the cantilever beam example in §4.3.2. The domain is
clamped on the left and a downward force is applied in the middle of the right side.
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The optimization problem for this comparison is the widely-used cantilever beam
problem, as illustrated in Figure 4.7. It consists of a 2L ×L rectangular domain that is
clamped on the left and subjected to a downward point load t̄ in the middle of the right
side. We set L equal to 1, the volume constraint to 55% of the design domain volume,
and use

∣∣t̄
∣∣= 1. The material domain Ωm is assigned a Young’s modulus E1 = 1, whereas

the void domain Ωv has Young’s modulus E2 = 10−6. Both domains have a Poisson ratio
ν1 = ν2 = 0.3. Note that it is also possible to give the void regions a stiffness of exactly
zero by removing DOFs (van den Boom et al., 2019b). However, this would entail extra
overhead, and to ensure a fair comparison with the other models, in this work it is chosen
to use a small value for the void stiffness.

Figure 4.7 shows the initial design that is used for the IGFEM-based optimization,
which is the same as that used in the paper describing the 88-line code (Wei et al., 2018).
The other two codes do not require an initial design, as they are able to nucleate holes.
The optimization problem is solved on meshes defined on rectangular grids of 21×11,
41×21, 61×31, 81×41, and 101×51 nodes. Our proposed method makes use of triangular
meshes, whereas the other methods use quadrilateral meshes. The RBF mesh used in
the IGFEM-based solutions is the same as the analysis mesh, and a radius of influence
of rs =

p
2 ·a is used, where a is the distance between two RBFs.

The results for each code are illustrated in Figure 4.8. For all methods, the design
becomes more detailed when the mesh resolution is increased. Furthermore, the topo-
logies obtained by each method are roughly the same. It is observed that the resulting
designs are similar to those given by the code of Wei et al., especially for the finer mes-
hes. Indeed, our proposed method yields results that have clearly defined (black and
white) non-staircased boundaries. It should be noted, however, that the coarsest IGFEM
result shows jagged boundaries. This zigzagging effect reduces with mesh refinement
and is investigated in detail in §4.4.2. Figure 4.9a shows the convergence behavior of the
different codes for the finest mesh. It is observed that our method leads to the lowest
objective function value, which again is similar to that obtained by the code by Wei et al.,
while initially converging faster in the volume fraction.

Figure 4.9b shows the final compliance as a function of the number of DOFs. Initially,
the different methods all find lower compliance values as the mesh is refined, but the
method by Wei et al. and our method find slightly higher values for the finest mesh sizes.
This may be explained by the optimizer converging to a local optimum. For each mesh
size, the proposed method finds the lowest compliance value at the cost of adding some
enriched DOFs.

4.3.3. MBB BEAM

The influence of the number of radial basis functions is investigated on the well-known
MBB beam2, which is illustrated in Figure 4.10. The optimization problem consists of
a 3L ×L domain with symmetry conditions on the left. On the bottom right corner, the
domain is simply supported, and a downward force t̄ is applied on the top left corner. As

2The original Messerschmitt-Bölkow-Blohm (MBB) beam problem, as introduced by Olhoff et al. (1991), also
specified that the upper and lower surfaces have to remain planar, in addition to a maximum allowable deflec-
tion and maximum stress. Over the years a more free interpretation of the problem formulation has become
commonplace.
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Figuur 4.9: Results of the cantilever beam problem for the different methods considered in §4.3.2; (a) shows
the compliance and volume ratio convergence during optimization, (b) illustrates the final compliance as a
function of the number of DOFs.
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Figuur 4.10: Problem description and initial design for the MBB beam example in §4.3.3. Symmetry conditions
are applied on the left of the domain, and the bottom-right corner is simply supported. A downward force is
applied at the top-left side on the domain, in the middle of the beam.

in the previous example, the volume constraint is set to 55% of the volume of the total
design domain. The initial design is also indicated in Figure 4.10, and the same material
properties as in the previous example are used.

This optimization problem is solved on a triangular analysis mesh defined on a grid
of 151×51 nodes, using a discretization of the design space consisting of 61×21, 91×31,
121×41 and 151×51 radial basis functions, so that only for the finest design space dis-
cretization, both resolutions match, and an RBF is assigned to every node in the analysis
mesh. The support radius rs is changed together with the design grid so that the overlap
of RBFs is the same in each case: rs =

p
2 ·a, where a is again the distance between two

RBFs.
Figure 4.11 shows the optimized designs. As expected, the level of detail in the design

can be controlled by the RBF discretization. However, it is noted that in the finest RBF
mesh, artifacts appear on the design boundary. This behavior will be further analysed in
§4.4.2. In Figure 4.12a the convergence behavior of the different RBF meshes is shown.
Although the coarsest RBF mesh shows some initial oscillations, the overall convergence
behavior is similar in all cases. Moreover, as shown in Figure 4.12b, the compliance no
longer significantly improves for the finest RBF discretization.

4.3.4. 3-D CANTILEVER BEAM
To show that the method is not restricted to 2-D, a 3-D cantilever beam example is also
considered. The material properties are the same as those of previous examples. The
size of this cantilever beam is 2L×L×0.5L, and a structured mesh with 40×20×10×6 te-
trahedral elements is used to discretize the model. The design space is discretized using
a grid of 21×11×6 RBFs, with rs =

p
2 ·a. Figure 4.13 shows the initial design, along with

the boundary conditions; the right surface is clamped, and a distributed line load with∣∣t̄
∣∣ = 0.2 per unit length is applied on the bottom-left edge. The move limit for MMA in

this example is set to 0.001 to prevent the optimizer from moving the boundaries too fast,
as only a small number of RBFs is used with a large rs compared to the analysis mesh.
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Figuur 4.11: Influence of the RBF mesh on the final design. Using symmetry conditions, only half of the MBB-
beam is considered in the optimization. For each optimization, a structured mesh consisting of 150×50×2
triangular finite elements is used. From top to bottom, final designs are shown obtained with design meshes
consisting of 61×21, 91×31, 121×41 and 151×51 RBFs.
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Figuur 4.12: Subfigure (a) shows the convergence of the compliance C and volume fraction VΩm /VΩ of the
MBB beam using different discretizations of the design space; (b) shows the final compliance of the MBB beam
as a function of the number of design variables.

The objective function is again the structural compliance, and the volume constraint is
set to 40% of the total design domain.

Figure 4.14a displays the optimized design; the corresponding convergence plot is
shown in Figure 4.14b, where it can be seen that the volume satisfied the constraint, and
the objective function converges smoothly.

4.3.5. HEAT SINK

Lastly, we consider a heat compliance minimization problem, illustrated in Figure 4.15.
In this two-material problem, a highly conductive material (κ1 = 1) is distributed within
an L ×L square domain with a lower conductivity (κ2 = 0.01). The bottom-right corner
of the domain has a heat sink, with u = 0, whereas the domain edges are adiabatic boun-
daries, i.e., q̄ = 0. The entire domain is subjected to uniform heat source f = 1. The
problem is solved on a 41×41 node analysis mesh, using 31×31 RBFs with rs =

p
2 ·a.

As this problem considers a case with a body load, the load vector also contains enri-
ched degrees of freedom that depend on the locations of the enriched nodes. Therefore,
the right hand side is design dependent, i.e., ∂F /∂s 6= 0, even though the body load is
constant throughout the entire domain.

The results of this optimization problem are shown in Figure 4.16. In the optimized
design, narrow features can be distinguished that follow the edges of original elements
in the background mesh. This is an effect caused by how the intersections are detected,
and is investigated in more detail in §4.4.1. The convergence plot shows that, although
there are initially some oscillations in both the objective and constraint (also investiga-
ted further in §4.4.1), they converge in the end.
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Figuur 4.13: Initial design of the 3-D example with a schematic illustration of the boundary conditions: the
right side is fixed and a vertical downward line load is applied on the bottom-left edge.
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Figuur 4.14: Optimized design for the 3-D cantilever beam optimization example (a), and the convergence of
the compliance C and volume fraction VΩm /VΩ (b).
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Figuur 4.15: Problem description and initial design for the heat sink. A fixed temperature is applied to the
bottom right corner, and a uniform heat source is applied throughout the entire square domain.
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Figuur 4.16: Subfigure (a) shows the optimized design of the heat sink problem, where narrow features are
created along the edges of the original mesh element. The convergence plot in (b) shows initially some small
oscillations that can be prevented by the use of a smaller move limit.
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4.4. DISCUSSION

4.4.1. OSCILLATIONS: THE LEVEL SET DISCRETIZATION

Oscillations in the objective functions are visible in the convergence of the heat sink
problem in Figure 4.16, and in the coarsest RBF mesh of the MBB beam in Figure 4.12. As
these oscillations might point to inaccurate modeling or sensitivities, the phenomenon
is discussed here in more detail.

Recall that intersections between the zero contour of the level set function and ele-
ment edges are found using a linear interpolation of nodal level set values. Because the
level set function is discretized, no intersections can be found if two adjacent nodes have
the same sign, as (4.8) does not hold for φ jφk ≥ 0. This effect is illustrated in Figure 4.17.
On the left, the zero-contour of a level set function is shown in red, which defines a
design shown in white/gray. The white arrows indicate the movement of the material
boundary during the next design update. On the right, the updated level set contour is
shown in red. As the level set valuesφ j andφk on the two adjacent original nodes x j and
xk now have the same sign, the two intersections between them, shown as cannot be
found.

The sudden disconnection of the structure due to the level set discretization is a dis-
continuous event that cannot be captured by the sensitivity information. Therefore, as
soon as such discontinuous event occurs, the sensitivities and the modeling deviate, and
oscillations may occur.

This problem can be alleviated by using a smaller move limit, as was done in the 3-D
MBB example. Another approach that could mitigate this issue is to evaluate the para-
metrized level set function on a finer grid, so that multiple intersections are found on
an element edge. However, the procedure that creates integration elements would also
need to allow for these more complex intersections. It should be noted that neither of
these methods completely eliminates the problem of discontinuous events. Rather, the
methods alleviate the problem by limiting their chance of occurrence. On the contrary,
the use of a length scale control could eliminate this issue completely by enforcing mate-
rial and void features to be larger than the element size. Besides eliminating the issue of
numerical oscillations, length scale control can also ensure the mesh is sufficiently fine
with respect to the design’s features to properly describe its physical behavior. Methods
for length scale control in parametrized level set methods have recently been propo-
sed (Dunning, 2018; Jansen, 2019).

A related observation can be made in the zigzagged features in the heat sink design
of Figure 4.16. As illustrated in Figure 4.18, this pattern occurs when the optimizer tries
to make a narrow diagonal feature in the opposite direction of the mesh diagonals. The
red intersections cannot be detected, and therefore the structure is disconnected. As a
result, the optimizer can only create diagonal narrow features by zigzagging them along
element edges, as illustrated in Figure 4.18 on the right.

4.4.2. ZIGZAGGING: APPROXIMATION ERROR

In the final designs of some of the numerical examples, zigzagging of the edges occurred
where the zero contour of the level set function is not perfectly smooth, as detailed in
Figure 4.19. To investigate the cause of this artifact, the test problem of a clamped beam
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φk

φ j

Figuur 4.17: Illustration of the structure disconnecting due to the level set discretization. On the left the zero-
contour of the level set, shown in red, defines the design shown in gray. The white arrows indicate the update
of the level set in the next iteration. On the right, the next iteration is shown, where the narrowest part of
the zero-contour lies within a single element, and the nodal level set values φ j and φk have the same sign.
Therefore, the two intersections shown as are not found, and the structure disconnects, as shown by the new
gray design.

Figuur 4.18: Illustration of the zigzagged pattern that appears in Figure 4.16. When a narrow diagonal line is
desired in the opposite direction of the diagonal lines of the mesh, the problem illustrated in Figure 4.17 results
in a disconnected line, as shown on the left. Instead, the optimizer will create narrow features along element
edges, as illustrated on the right.

Figuur 4.19: Detail of zigzagging that might occur when the design space is not reduced with respect to the FE
mesh.
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α

Figuur 4.20: Schematic for the zigzagging approximation error. A beam with zigzagging angle β is clamped on
the left, while a concentrated axial loading is applied on the right. The angle β is varied without changing the
material volume, and the compliance is evaluated.
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Figuur 4.21: The compliance of the test case, illustrated in Figure 4.20, as a function of the zigzagging angle β.
The compliance for this coarse test case is non-symmetric with respect to 0.

loaded axially shown in Figure 4.20 was investigated. The compliance was computed for
a varying zigzagging angle β while keeping the material volume constant.

The results in Figure 4.21 show that the minimum compliance is not found at β= 0,
as one would expect, but instead it is found at a negative value of β. Furthermore, the
compliance is not symmetric with respect to β = 0 due to the asymmetry of the ana-
lysis mesh. The cause of this zigzagging is an approximation error, as the mesh is too
coarse to accurately describe the deformations and stresses in the structure, similarly to
the effect described for nodal design variables in Braibant and Fleury (1984). This ef-
fect can be resolved by reducing the design space with respect to the analysis mesh, for
example with the use of RBFs, or by increasing the element order. Furthermore, as the
non-smoothness is confined to a single layer of background elements, mesh-refinement
makes the issue less pronounced.

4.5. SUMMARY AND CONCLUSIONS
In this work we introduced a new enriched topology optimization approach based on the
Interface-enriched Generalized Finite Element Method (IGFEM). The technique yields
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non-pixelized black and white designs, that do not require any post-processing. We
have derived an analytic expression for the sensitivities for compliance minimization
problems in elastostatics and heat conduction, and have shown that they can be compu-
ted with relatively low computational effort. Furthermore, the method was compared to
a number of open source topology optimization codes, based on SIMP, the Ersatz appro-
ach, and discrete level sets. The influence of decoupling the design discretization from
the analysis mesh was investigated using the classical MBB beam optimization problem.
A 3-D cantilever beam and a heat sink problem were also demonstrated. The conver-
gence behavior was provided for each numerical example. Any numerical artifacts, such
as approximation errors and discretization errors of the level set, as discussed in §4.4,
can be mitigated by means of suitable move limits and radial basis functions, where the
latter serve as a sort of filter because they can control the design complexity.

A number of conclusions can be drawn from this work:

• The combination of IGFEM with the level set topology optimization based on RBFs
results in crisp boundaries in both the design representation and the modeling.
Because the RBF mesh and analysis mesh are completely decoupled, the resolu-
tion of the design and the modeling can be chosen independently, as is the case
in any parametrized level set optimization. In addition, the radial basis functi-
ons help in reducing numerical artifacts, as they act like a black-and-white filter.
Lastly, as the RBFs may extend over multiple elements, they allow the boundary to
move further and the optimizer to converge faster;

• As only one intersection can be detected per element edge, due to the mapping
of the level set to the original mesh nodes, features smaller than a single element
might not be described correctly. As discussed in §4.4.1, this may lead to oscil-
lations in the convergence. Using a finer grid for evaluating the level sets, more
intersection may be found, allowing for narrower features. However, this will re-
quire a more involved procedure for creating integration elements. Similarly, the
method may be extended to be used on quadrilateral elements, which also requi-
res more involved integration element procedures. Furthermore, for quadrilateral
elements, higher order enrichment functions are needed (Aragón et al., 2020);

• Due to approximation error, numerical artifacts may occur that may be exploi-
ted by the optimizer when the RBF mesh is too fine with respect to the analysis
mesh. Another known issue in IGFEM and other enriched methods, which may be
exploited by the optimizer, is the fact that the computation of stresses near mate-
rial interfaces may yield inaccurate results (Nagarajan and Soghrati, 2018; Soghrati
et al., 2017);

• In this work, we chose to model the void together with the material domain for a
number of reasons, including ease of implementation, and ease of comparing to
other methods. However, we could have chosen to completely remove the void
from the analysis (van den Boom et al., 2019b), which would reduce computation
times and eliminate the artificial stiffness in the void.

Compared to the commonly-used density-based methods, our proposed approach
does not introduce staircasing nor gray values. The location of the boundary is there-
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fore known throughout the entire optimization, and no post-processing of the design
is required. However, additional complexity is introduced in the creation of integration
elements. Furthermore, the extra enriched nodes slightly increase the size of system ma-
trices, which is an effect that diminishes with mesh refinement. Lastly, in density-based
methods for linear elasticity, the local element arrays can simply be scaled with the den-
sity, and need to be computed only once. In our approach, local arrays for integration
elements have to be computed at every iteration.

In an optimization context, IGFEM has a number of advantages:

• The IGFEM formulation provides a natural distinction between original mesh no-
des, which are stationary and on which the level set is evaluated, and enriched
nodes, which define the material boundary and are allowed to move during opti-
mization. Enriched DOFs are directly related to the discontinuity in the gradient
of the field;

• As the background mesh does not change during optimization, the mapping of the
design variables to nodal level set values has to be computed only once; and

• As the location of enriched nodes is known to remain on the background element
edges, and the enriched node location is computed as a linear interpolation bet-
ween background mesh nodes, the direction of the design velocities is known a
priori. This simplifies the sensitivity computations;

Regarding the benefits of IGFEM with respect to X/GFEM, in addition to those regar-
ding the analysis phase described in §4.2.1, the first item above must also be added. In
X/GFEM the distinction is less clear, as enrichments are associated to nodes of the back-
ground mesh.

As mentioned in §4.1, the benefits of using an enriched formulation are expected to
be more pronounced for problems that rely heavily on an accurate boundary descrip-
tion, such as fluid-structure interaction and wave scattering. In fact, the optimization of
the latter is the subject of an incoming publication.

4.6. REPLICATION OF RESULTS
This manuscript is self-contained, in that it contains all necessary theory to reproduce
the results, including the preliminaries, i.e., the IGFEM approximation and the theory
on radial basis functions. The sensitivity computation is described in detail, and all pa-
rameters for the numerical examples are provided. Furthermore, the sensitivities are ve-
rified using central finite differences, and appendices detailing the relation of IGFEM to
X/GFEM, the isoparametric mapping of integration elements, and the derivatives of the
Jacobian inverse and determinant have been included. Lastly, designs of intermediate
iterations are supplied in the supplementary material.

APPENDIX A: DERIVATION OF IGFEM FROM X/GFEM
Here we derive the IGFEM formulation from the X/GFEM approximation for a single 1-D
linear finite element with nodes x1 and x2 that contains a weak discontinuity at xn . For
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this element, the X/GFEM approximation can be written as

uh (x) =
2∑

i=1
Ni (x)Ui

︸ ︷︷ ︸
std. FEM

+
2∑

i=1
Ni (x)Ei (x)Ûi

︸ ︷︷ ︸
enrichment

, (4.33)

where Ei denotes the enrichment functions and Ûi are the generalized DOFs. In order
to derive the IGFEM formulation, the key is to select appropriate enrichment functions
Ei . We use scaled Heaviside enrichments, as shown in Figure 4.22.

By clustering DOFs, i.e., Û1 = Û2 = α, we reduce the number of enriched
DOFs (Duarte et al., 2007). The enrichment term is then given by

2∑
i=1

Ni EiÛi = (N1E1 +N2E2)α,

= [N1c1H (x −xn)+N2c2H (xn −x)]︸ ︷︷ ︸
ψ

α
(4.34)

where H is the Heaviside function and the constants c1 = 1/(1−w) and c2 = 1/w , with
w = xn/(x2 −x1), yield a C 0–continuous function that attains a maximum value of one
regardless of the discontinuity location within the element. The final approximation is
therefore

uh (x) =
2∑

i=1
Ni (x)Ui +ψα, (4.35)

which is equivalent to the IGFEM approximation for a 1-D bar containing a weak dis-
continuity. Similar considerations can be made for higher-dimensional problems.

APPENDIX B: ISOPARAMETRIC MAPPING OF INTEGRATION ELE-
MENTS
In order to make this manuscript self-contained, here we describe the isoparametric
mapping and numerical integration of an IGFEM integration element, as explained in
more detail in §4.2.1 and illustrated in Figure 4.3.

The integration element’s stiffness matrix ke can be computed in terms of the refe-
rence integration element as

ke =
∫

Ωe

[
∆x N
∆xψ

]
D

[
∆ᵀ

x Nᵀ ∆ᵀ
xψ

ᵀ]dx ,

=
∫

je BᵀDBdξ,

(4.36)

with B =
[
∆ᵀ
ξ

Nᵀ J−ᵀ ∆ᵀ
ξ
ψᵀ J−ᵀe

]
, and the element force vector fe is computed in terms

of the reference integration element as

fe =
∫

Ωe

[
N
ψ

]
b dx +

∫

Γe

[
N
ψ

]
t̄ dx

=
∫

je

[
N
ψ

]
b dξ+

∫

∩ΓN
je

[
N
ψ

]
t̄ d∂ξ.

(4.37)
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Figuur 4.22: Construction of IGFEM enrichment function from X/GFEM formulation.
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A global coordinate x , in terms of the isoparametric mappings of the integration and
parent elements, can be written as

x = xᵀ
e Ne (ξe ) = xᵀ

p N (ξp ), (4.38)

where Ne are the linear Lagrange shape functions associated to the nodes of the integra-
tion element, with global coordinates xe . Similarly, N are the shape functions associated
to the parent’s nodes with global coordinates xp .

The Jacobians of these mappings and their determinants are computed as

Je =
∂x

∂ξe
= xᵀ

e
∂Ne (ξe )

∂ξe
, je = det(Je ) , (4.39)

and

J = ∂x

∂ξp
= xᵀ

p
∂N (ξp )

∂ξp
, j = det(J ) , (4.40)

respectively, where xe contains the integration element nodes and xp contains the
parent element nodes.

Numerical integration is performed in the reference integration element by means of
Gauss quadrature. Using (4.38) it is straightforward to map the Gauss integration point’s
reference coordinates ξe to its corresponding global coordinates x . The inverse mapping
from x to the location in the parent reference coordinate system ξp is more involved. For
a 2-D triangular element the procedure can be written as

x =
[

xi ,1 x j ,1 xk,1

xi ,2 x j ,2 xk,2

]


1−ξ1 −ξ2

ξ1

ξ2




x =
[

xi ,1 +ξ1(x j ,1 −xi ,1)+ξ2(xk,1 −xi ,1)
xi ,2 +ξ1(x j ,2 −xi ,2)+ξ2(xk,2 −xi ,2)

]
,

x −
[

xi ,1

xi ,2

]
=

[
x j ,1 −xi ,1 xk,1 −xi ,1

x j ,2 −xi ,2 xk,2 −xi ,2

]

︸ ︷︷ ︸
A

[
ξ1

ξ2

]
(4.41)

Inverting this isoparametric mapping leads to the following equation for the integra-
tion point in parent coordinates ξp

ξp =
[
ξ1

ξ2

]
= A−1x − A−1

[
xi ,1

xi ,2

]
. (4.42)

APPENDIX C: DERIVATIVES OF THE JACOBIAN INVERSE AND DE-
TERMINANT
In the sensitivity computation discussed in §4.2.3, the derivative of the Jacobian inverse
and determinant are required. According to Jacobi’s formula (Magnus and Neudecker,
2007), the derivative of the determinant of a matrix can be computed as the trace of the
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adjugate of the matrix (adj(Je ) = je J−ᵀe ), multiplied by the derivative of the matrix. For
the Jacobian determinant je , the derivative can thus be computed as:

∂ je

∂xn
= tr

(
adj(Je )

∂Je

∂xn

)
, (4.43)

The sensitivity of the Jacobian inverse can be computed by realizing that Je J−1
e = I :

∂Je J−1
e

∂xn
= ∂Je

∂xn
J−1

e + Je
∂J−1

e

∂xn
= ∂I

∂xn
= 0, (4.44)

and solving for ∂J−1
e /∂xn :

∂J−1
e

∂xn
=−J−1

e
∂Je

∂xn
J−1

e . (4.45)

For both (4.43) and (4.45), the sensitivity of the Jacobian is required; as the Jacobian of
the integration element is computed as Je = xᵀ

e ∂Ne /∂ξe it can be computed as

∂Je

∂xn
= ∂xᵀ

e

∂xn

∂Ne

∂ξe
+xᵀ

e
�
�
��>

0
∂2Ne

∂ξe∂xn
, (4.46)

where ∂xe /∂xn is simply a selection array consisting of zeros except for a one on the
entries of interest for enriched node n.





5
TOPOLOGY OPTIMIZATION OF

PHONONIC CRYSTALS

In this chapter, the theory developed in previous chapters is brought
together for the computational design of phononic crystals—architected
bandgap materials that interact with mechanical waves. In this chapter it
is demonstrated how the enriched analysis of phononic crystals, introduced
in Chapter 3, shows superior accuracy compared to density-based methods
that are generally used in topology optimization. Furthermore, it is shown
how the level set-based topology optimization using IGFEM, introduced in
Chapter 4, can be used for the computational design of phononic crystals.

This chapter will be submitted for publication
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On the importance of boundary smoothness for
the computational design of phononic crystals

Abstract Phononic crystals can be designed to show bandgaps—ranges of fre-

quencies whose propagation is strongly attenuated in the material. In essence,

their working principle is based on destructive interference of waves reflecting

from the periodic arrangement of material interfaces (i.e Bragg scattering). Con-

sequently, capturing accurately the behavior at material interfaces requires ap-

propriate numerical modeling and computational design techniques. However,

the commonly used density-based representation in popular topology optimiza-

tion methods results in a diffuse staircased boundary. The heavily refined finite

element meshes required to compensate for this boundary description results in

exceedingly large and expensive optimization problems. In this paper, we de-

monstrate the adverse effect of the density-based boundary description. Further-

more, we propose a level set-based topology optimization procedure with an en-

riched finite element method that shows improved performance when compared

to the density-based approach.

5.1. INTRODUCTION

Since their introduction in the seminal papers by Sigalas and Economou (1993); Siga-
las and Economou (1992) and Kushwaha et al. (1993), phononic crystals have gained
increased attention due to their peculiar effect on traveling waves. Because bandgaps
can be tuned to any mechanical wavelength, applications can vary from thermal control
by operating on the nano scale (Davis and Hussein, 2014), to seismic engineering (Yan
et al., 2015) on the other side of the wavelength spectrum. These materials can be de-
signed for vibrationless environments (Hussein et al., 2014), and for specialized control
over the traveling waves, which can be used for energy harvesting (Park et al., 2019; Tol
et al., 2019) and for efficient sound radiation (Jung et al., 2019). For instance, these pe-
riodic media can be used to develop new sensing technology for the characterization of
biological samples and sensitive chemicals (Lucklum and Li, 2009; Lucklum et al., 2021;
Oseev et al., 2013), and are sometimes also combined with photonics to form phoxonic
sensors (Pennec et al., 2019). For an overview of the historical development of phono-
nic crystal research, see the review by Hussein et al. (2014), the more recent reviews by
Vasileiadis et al. (2021) and Muhammad and Lim (2021), and the review that focusses on
tunable and active PnCs by Wang et al. (2020).

To design these materials for specific functionality, ad hoc trial-and-error design pro-
cedures based on intuition are not an option due to the complexity of the structure in
these bandgap materials. Instead, systematic computational procedures are needed
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for their design that can generate candidate solutions and quantitatively discriminate
among them. Topology Optimization (TO) (Bendsøe and Kikuchi, 1988; Eschenauer and
Olhoff, 2001; Rozvany, 2009; Sigmund, 1994) is a powerful numerical tool widely used for
designing complex materials and structures that can be used to unlock the full potential
of phononic crystals (PnCs). A first categorization of TO procedures can be made on
whether or not gradient information is used during a numerical optimization process.
Single- and multi- objective optimization of phononic crystals is successfully demon-
strated using Non-Gradient-based Topology Optimization (NGTO) techniques, such as
Genetic Algorithms (GAs). GAs have been used for maximizing absolute and relative
bandgaps (Bilal and Hussein, 2011, 2017; Gazonas et al., 2006; Hedayatrasa et al., 2016a,
2017; Hussein et al., 2007; Qian et al., 2020; ?), for designing tunable PnCs (Bortot et al.,
2018; Hedayatrasa et al., 2016b), PnCs with prestress (Pascalis et al., 2020), PnCs with
seperate bandgaps with different polarizations (Liu et al., 2016b), and PnCs with redu-
ced symmetry (Dong et al., 2014, 2015). It has also be used for multiobjective optimi-
zation (Xu et al., 2020), including the optimization for bandgaps and thermal expan-
sion (Zhang et al., 2021). It has been used in a two-scale approach (Liang and Du, 2020),
and in combination with Kriging (Zhang et al., 2021). As an alternative for NGTO, in re-
cent years machine learning techniques have been introduced for the design of PnCs (Li
et al., 2019a, 2020; Liu et al., 2019; Sadat and Wang, 2020). NGTO methods can handle
discrete design variables, and can therefore be used to assign a material to each element.
Although this avoids diffuse boundaries, these methods generally still suffer from stair-
casing. Furthermore, NGTO methods are usually population-based, and as such, they
require vast computational resources despite being embarrassingly parallel.

Gradient-based Topology Optimization (GTO), on the other hand, has the advantage
of requiring considerably less function evaluations, although it generally cannot handle
discrete design variables. Consequently, simply assigning a discrete material to each
element is not possible, and other means of describing the geometry are required. Most
commonly, the material properties in each element are continuously interpolated to en-
sure differentiability. Sigmund and Jensen (Sigmund and Jensen, 2002, 2003) were the
first to propose density-based topology optimization designing both PnC unit cells and
finite sized phononic crystals. Density-based TO has been used for maximizing the abso-
lute or relative width of bandgaps (Li et al., 2019c, 2018; Lu et al., 2017; Rupp et al., 2007;
Yuksel and Yilmaz, 2020), the spatial decay of evanescent waves (Chen et al., 2017a), and
the wave attenuation in viscoelastic materials (Chen et al., 2018). It has also been used to
design PnCs that show self-collimation of elastic waves (Park et al., 2015), piezoelectric
PnCs (Vatanabe et al., 2014), PnCs with different properties in different directions(Chen
et al., 2017b; He and Kang, 2018), and PnCs that are robust to imperfections (Ma et al.,
2021; Xie et al., 2017, 2018; Zhang et al., 2018, 2019c). Extensive reviews on the develop-
ments of topology optimization of PnCs were written by Yi and Youn (2016) and Li et al.
(2019b), where the latter also includes works on the topology optimization of Photonic
Crystals (PtCs). Despite its popularity, GTO with a density approach leads to boundary
descriptions that are both staircased and diffuse, i.e. they have intermediate (gray) va-
lues in the design.

Yera et al. (2021) achieve a better description of the boundaries by combining a le-
vel set-based approach with local mesh refinements during the topology optimization.
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However, this method only improves the mesh resolution near the boundaries, it does
not remove the staircasing or intermediate densities. Alternatively, to avoid staircased
boundaries, enriched finite element methods can be used in combination with a level-
set topology optimization approach. The enriched analysis of PnCs was demonstrated
by Zhao et al. (2015) and van den Boom et al. (2021a), but to the best of our knowledge,
topology optimization of PnCs using an enriched finite element method has not yet been
described in literature despite its great potential. The Interface-enriched Generalized
Finite Element Method (IGFEM) Soghrati et al. (2012a), is such an enriched finite ele-
ment method that has advantages over the well known eXtended/Generalized Finite Ele-
ment Method (X/GFEM) (Belytschko et al., 2003; Liu et al., 2016a; Villanueva and Maute,
2014). In IGFEM, the standard finite element approximation is enriched with an additi-
onal term which accounts for a priori knowledge about the kinematics of material inter-
faces.Contrary to X/GFEM, where enrichment functions are associated to nodes of the
standard FEM mesh, IGFEM place enrichments to nodes collocated along discontinui-
ties, providing considerable benefits over X/GFEM with respect to the enforcement of
boundary conditions on non-matching edges (Aragón and Simone, 2017; van den Boom
et al., 2019b, 2021a; Cuba Ramos et al., 2015). IGFEM has been shown to converge op-
timally with mesh refinement (Soghrati and Geubelle, 2012; Soghrati et al., 2012a), and
has previously been demonstrated for the topology optimization for compliance mini-
mization (van den Boom et al., 2021b), and for the immersed design of PnC (van den
Boom et al., 2021a).

In this work we study the importance of smooth and non-diffuse boundaries in the
analysis and design of phononic crystals. To that end, the governing equations, simu-
lation techniques, and boundary representation methods are described briefly in §5.2.
The influence of a staircased and diffuse boundary description is investigated in detail
in §5.3 and it is demonstrated that highly refined meshes are needed to reach the same
level of accuracy in staircased and diffuse cases. Therefore, a level-set based topology op-
timization procedure is proposed in combination with IGFEM in order to find optimized
unit cell topologies for bandgap maximization without staircased boundaries. The topo-
logy optimization problem and corresponding sensitivity analysis are then specified in
§5.4. Finally, the procedure is employed to generate optimized phononic crystal topolo-
gies with non-staircased boundaries in 2-D and 3-D for bandgap maximization in §5.5.
We show that the method can generate designs with bandgaps between desired bands,
despite numerical challenges. These challenges are discussed in detail in §5.6.

5.2. COMPUTATIONAL ANALYSIS OF PHONONIC CRYSTALS
The computational analysis of the effect that phononic crystals have on traveling waves
can be divided into two categories: approaches considering the full finite sized phononic
crystal, and approaches using a periodic unit cell (PUC), where the PnC is assumed to
be infinite. In this paper, the latter approach is used, using the governing equations,
modeling approach, and boundary representations described in this section.

Figure 5.1 illustrates a 3-D finite-sized PnC and its corresponding PUC. The phono-
nic crystal consists of a periodic array of inclusions Ωi inside a host material Ωh, where
material interfaces are denoted Γi. To obtain this phononic crystal, the PUC is repeated
along the lattice vectors ai , i = {1, . . .3}.
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a1

a2

a3

e1
e2

e3

Periodic unit cell (PUC)

Finite-sized PnC

Figuur 5.1: Schematic representation of a PnC: the finite-sized phononic crystal consists of a periodic array of
periodic unit cells. The PUC itself is a cube with lattice vectors a1, a2 and a3. The domainΩ consists of a host
phase Ωh and an inclusion Ωi. The boundary between the two is denoted Γi, and Γo is the boundary of the
PUC.

5.2.1. GOVERNING EQUATION AND FORMULATION

On both the host domain (Ωh) and the inclusion (Ωi ), the behavior is governed by the
elastodynamic wave equation:

ρ j ü j −∇·σ j = 0 , j = h, i , (5.1)

where material density is denoted ρ j , u j (x , t ) ≡ u|Ω j is the restriction of the displa-
cement field u to the domain Ω j , x indicates spatial coordinate, t indicates time,
σ j = λ j tr

(
ε j

)
ε j + 2µ jε j is the stress tensor, ∇· is the divergence operator, and ε j =

1
2

(
∇u j +∇uᵀ

j

)
is the linearized strain tensor. Boundary and initial conditions depend

on the analysis approach.

For band structure analysis of PnCs a periodic unit cell is used as illustrated in
Figure 5.1. Bloch-Floquet periodic boundary conditions are prescribed on the outer
boundary Γo of this PUC:

u (x +ai , t ) = e i (k·ai )u (x , t ) , (5.2)

where ai is the lattice vector between two periodic edges and k is a wave vector. These
boundary conditions enforce periodicity on the displacement field while accommoda-
ting the phase difference of the traveling wave on the two sides of the PUC. The band
structure can then be evaluated by performing an eigenvalue analysis for all the wave
vectors along the irreducible Brillouin zone (Brillouin, 1930).
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DensityFitted Immersed
Figuur 5.2: The three boundary representations used in this paper: the left figure shows a fitted mesh, the
middle figure illustrates the density-based approach, and the figure on the right shows an immersed boundary
representation.

5.2.2. BOUNDARY REPRESENTATIONS
Three types of boundary representation are considered in this work, as illustrated in Fi-
gure 5.2 for a 2-D PUC:

• Fitted meshes In these discretizations the material boundary is piece-wise linearly
represented by the edges of elements in the mesh. This method would require
remeshing in every design iteration in an optimization setting;

• Density-based meshes In these meshes, boundaries are represented based on a
pseudo-density ρ of the material within each element. A density of 0 is used to
represent the host material, while a density of 1 represents the inclusion material.
Intermediate density values are assigned to elements that are intersected by the
boundary, corresponding to the volume percentage of the element that lies inside
the inclusion. For this boundary representation no remeshing is needed during
optimization, but the resulting boundaries are staircased and diffuse;

• Immersed boundaries The material boundary is decoupled from the analysis
mesh by means of the Interface-enriched Generalized Finite Element Method (IG-
FEM). This leads to a non-staircased black-and-white piece-wise linear boundary
representation. The use of IGFEM for analysis of phononic crystals is described in
mode detail in the next section and in van den Boom et al. (2021a)

5.2.3. ENRICHED BAND STRUCTURE ANALYSIS
For the enriched analysis of PnCs, IGFEM is used. In IGFEM, both the trial an weight
functions in the weak form of (5.1) are chosen from the same enriched finite element
space, where the enriched part of the approximation reproduces the kinematics of a ma-
terial interface Γi , i.e. a discontinuity in the field gradient (a weak discontinuity). The
IGFEM approximation is written as

uh(x) =
∑

i∈ιh
Ni (x)Ui

︸ ︷︷ ︸
standard FEM

+
∑

i∈ιw
ψi (x)αi

︸ ︷︷ ︸
enrichment

. (5.3)

The enriched DOFs αi are associated to new enriched nodes collocated along material
interfaces, at the intersection with element edges in the mesh. The material interface is



5.3. COMPARISON OF BOUNDARY REPRESENTATIONS

5

99

located at the zero contour of a level set function φ, that is discretized on the nodes of
the background mesh. The location of the intersection xl between the node locations x j

and xk , with level-set values φ j and φk , respectively, is found as

xl = x j −
φ j

φk −φ j

(
xk −x j

)
. (5.4)

Standard FEM procedures can then be employed to obtain the element mass matrix
me and stiffness matrix ke . For elements that are intersected by a material interface,
standard shape functions N and enrichment functionsψ are stacked as

ke =
∫

e

[
∆N
∆ψ

]
[D]

[
∆Nᵀ ∆ψᵀ]dΩ, and

me =
∫

∂e
ρe

[
N
ψ

][
Nᵀ ψᵀ]dΩ,

(5.5)

where [D] is the constitutive matrix, ρe is the element mass density, and the differential
operator∆ is defined as:

∆ξ ≡
[

∂
∂ξ1

0 ∂
∂ξ2

0 ∂
∂ξ2

∂
∂ξ1

]>
,

∆ξ ≡




∂
∂ξ1

0 0 ∂
∂ξ2

0 ∂
∂ξ3

0 ∂
∂ξ2

0 ∂
∂ξ1

∂
∂ξ3

0

0 0 ∂
∂ξ3

0 ∂
∂ξ2

∂
∂ξ1




>

,

(5.6)

for 2-D and 3-D respectively. The global mass matrix M and stiffness matrix K are sub-
sequently assembled using the standard FEM procedure.

Finally, Bloch-Floquet periodicity, as described in (5.2) is enforced by a transforma-
tion matrix T as

K̃ (k) = T (k)HK T (k), and

M̃(k) = T (k)HMT (k),
(5.7)

where T is complex valued and dependent on the wave vector k. A series of eigenvalue
analysis is performed to find the band structure, where wave vectors along the edge of
the irreducible Brillouin zone are considered:

(
K̃ (k)−ω2

k j M̃(k)
)

Ṽk j = 0. (5.8)

For more details on IGFEM, the reader is referred to Soghrati et al. (2012a) and Aragón
et al. (2020). The IGFEM analysis of immersed phononic crystals is described in more
detail in van den Boom et al. (2021b).

5.3. COMPARISON OF BOUNDARY REPRESENTATIONS
To illustrate that the benefits of piece-wise linear representations in an immersed set-
ting, IGFEM is compared to staircased meshes for a band structure analysis. The effect
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of these boundary approximations is investigated in Figure 5.3, which shows the predic-
ted band structure for a coarse staircased unit cell (green) and a unit cell with an immer-
sed representation, analyzed on the same discretization mesh (blue). Both methods are
compared to the results of a very fine standard FEM mesh (black). As apparent from the
figure, the bandgap obtained by the IGFEM procedure is much closer to the real bandgap
than the staircased approximation.

Noteworthy, the result given by the enriched formulation requires marginally more
DOFs than the result of the density-based approach, because additional enriched no-
des are used. However, as these enriched nodes are placed only along the boundary,
the number of enriched nodes relative to the number of standard nodes reduces with
mesh refinement. To better assess the performance with respect to computational cost,
Figure 5.4 shows the rate of convergence, where the error in the bands that define the
band gap is defined by

ε=
√√√√ 1

|K |N

∑
k∈K

∑
j (ωk j −ω∗

k j )2

∑
k∈K

∑
j ω

∗2
k j

, (5.9)

where K is the set of wave vectors in the Brillouin zone, with cardinality |K | ,ω∗
k j is the j th

frequency for wave vector k , obtained by a matching mesh and ωk j is the approximated
frequency. As apparent from Figure 5.4, not only does the IGFEM analysis provide better
accuracy, the rate of convergence is also higher. In fact, for some levels of accuracy, the
density-based approach requires almost an order of magnitude more DOFs.

To conclude, the use of piece-wise linear representations of the material boundary
results in a more accurate solution in the band structure analysis. As a result, much
coarser meshes may be used in the analysis and computational design of PnCs when
piece-wise linear representations are used. In the context of topology optimization, this
does not only drastically reduce the computational effort for the analysis part of the op-
timization, but it also reduces the number of design variables, as in the density-based
topology optimization, the number of design variables is directly coupled to the number
of finite elements. Therefore, level set-based topology optimization using IGFEM may
help to mitigate the curse of dimensionality in the computational design of phononic
crystals.

5.4. OPTIMIZATION PROBLEM
Now that the importance of using a non-staircased and non-diffuse boundary is demon-
strated a level set based topology optimization using IGFEM for the boundary descrip-
tion is formulated. In this work we aim to maximize the width of the bandgap between
the nth and (n +1)th propagation bands, on a set of wave vectors K . Henceforward we
denote the frequencies corresponding to the nth band that defines the bandgap from be-
low f̂k , and the (n +1)th, that defines the bandgap from above f̌k , where fk = ωk /(2π).
The optimization problem is now formally stated as

s? argmin
s∈D

F= max
(

f̂k
)−min

(
f̌k

)

such that
(
K̃ (s)−ω2

k j M̃ (s)
)

Ṽk j = 0

smin ≤ s ≤ smax,

(5.10)
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Figuur 5.3: Comparison of band structures computed with a stair-cased boundary representation (green) and a
crisp description of the boundary (blue) to the band structure computed on a very fine matching mesh (black).
The bandgap for a matching mesh is shown in gray. Clearly, the two approximations show propagation bands
within the bandgap. For a comparable number of DOFs, the crisp representation performs considerably better
than the staircased boundary. On the left, the irreducible Brillouin zone is illustrated.
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Figuur 5.4: Convergence of the staircased representation, compared to an enriched formulation. Not only is
the enriched representation more accurate, a higher rate of convergence is found.
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where k ∈ K . The level set function is parametrized using a number of radial basis func-
tions (RBFs) (van den Boom et al., 2021b; Wang and Wang, 2006), that are scaled using
the design variables s (see also §4.2.2). The value of s is bounded between smin =−1 and
smax = 1. Note that the optimization problem is self-constrained in the sense that the
optimal design does not correspond to a fully empty or a fully filled domain. Therefore,
this formulation does not require a volume constraint. It was found that this formulation
where the bandgap is optimized using f̌k and f̂k (or ω̌k and ω̂k ), scales better than using
ω̌2

k and ω̂2
k (see Appendix A). A bandgap has opened up when the objective function is

negative.
The maximum operator is implemented as the α-smoothmax function,

Sα
(

f̂k
)=

∑
k∈K f̂k eα f̂k

∑
k∈K eα f̂k

, (5.11)

which has the property Sα
(

f̂k
) → max for α→∞. Similarly, it tends to a minimum for

α→−∞, and thus, the smooth minimum is implemented analogously. In this work we
use α= 40 and α=−40 for smooth maximum and minimum functions, respectively.

This optimization problem is solved using the Method of Moving Asymptotes
(MMA) (Svanberg, 1987)1, which is a widely used optimizer in topology optimization. It
requires information of the response function values, as well as their gradients or sen-
sitivities. The derivation of the sensitivities for bandgap maximization can be found
in §5.4.1. The move limit for MMA that is suitable for the optimization of PnCs depends
on the design resolution compared to the mesh resolution.

5.4.1. SENSITIVITY ANALYSIS
The objective function described in this paper can be written as a function of the smooth
minimum and maximum function as

F= Sα
(

f̂k
)−S−α

(
f̌k

)
. (5.12)

The derivative of this objective function with respect to the design variables s can be
expressed as

∂F

∂si
=

(
∂Sα

∂ f̂k

∂ f̂k

∂ω̂2
k

∂ω̂2
k

∂xl
− ∂S−α

∂ f̌k

∂ f̌k

∂ω̌2
k

∂ω̌2
k

∂xl

)
∂xl

∂φ j

∂φ j

∂si
, (5.13)

where the chain rule is applied. Here, the partial derivative ∂Sα/∂ fk corresponds to the
sensitivity of the smooth maximum/minimum function when an eigenfrequency in the
band is changed, ∂ fk /∂ω2

k = 1/(4πω) describes the sensitivity of the eigenfrequency fk

with respect to the eigenvalue ω2
k , ∂ω2

k /∂xl denotes the change in eigenfrequency when
an enriched node is moved, ∂xl /∂φ j are the design velocities, and ∂φ j /∂si are the deri-
vatives of the nodal level set values to the design parameters.

First, the derivative of the smooth maximum function can be computed simply as
the derivative of Eq. (5.11):

∂Sα

∂ f̂k
= eα f̂k

∑
k e f̂k?

(
1+α(

f̂k −Sα
))

, (5.14)

1The author would like to thank Krister Svanberg for providing us with the MMA implementation.
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where k? 6= k . The derivative of the smooth minimum function is computed analo-
gously.

The derivative of the eigenfrequencies with respect to the enriched node locations xl

can be written as
∂ω2

k j

∂xn
= 1

m j j
Ṽ H

k j T H
k

(
∂K

∂xl
−ω2

k j

∂M

∂xl

)
Tk Ṽk j , (5.15)

where the modal mass m j j = Ṽ H
ki T H

k MTk Ṽk j = 1 due to mass orthogonality of the eigen-
vectors. Note that Vk j = Tk Ṽk j , and ∂K /∂xl and ∂M/∂xl are independent of the wave
vector k . Omitting the index j and the dependence on wave vector k for clarity, this
derivative can now be computed element-wise as

∂ω2

∂xl
=

∑
e∈ιl

vH
e

(
∂ke

∂xl
−ω2 ∂me

∂xl

)
ve , (5.16)

where ιl denotes the set of integration elements in the support of enriched node xl , and
ve .

The derivative of the element stiffness matrix can be computed as

∂ke

∂xn
= ∂ je

∂xn
Bᵀ

e De Be + je

(
∂Bᵀ

e

∂xn
De Be +Bᵀ

e De
∂Be

∂xn

)
. (5.17)

For the element mass matrix, following a similar approach, the derivative is written as:

∂me

∂xn
= ∂ je

∂xn
ρe Nᵀ

e Ne + jeρe

(
∂Nᵀ

e

∂xn
Ne +Nᵀ

e
∂Ne

∂xn

)
. (5.18)

For details on the remaining terms in the sensitivity analysis see Appendix B and van den
Boom et al. (2021b).

5.5. OPTIMIZED PHONONIC CRYSTAL DESIGNS
The previously described topology optimization procedure is now used to design of pho-
nonic crystals in 2-D and 3-D with maximized bandgaps.

5.5.1. BANDGAP MAXIMIZATION IN 2-D PNCS
First, the maximization of bandgaps between different bands in a 2-D PnC is conside-
red. To that end, a square periodic unit cell is optimized with an arbitrary topology that
has 8-fold symmetry. The periodic unit cell has dimensions of 25mm×25mm, and con-
sists of polycarbonate (E1 = 2.3GPa, ν1 = 0.37, ρ1 = 1200kg/m3) and lead (E2 = 16GPa,
ν2 = 0.44, ρ2 = 11340kg/m3). The phononic crystal is optimized for maximized bandgap
between the 3rd and 4th, and 6th and 7th bands. Because the method cannot nucleate in-
clusions, initial designs with a number of inclusions are defined. Two types of initial
designs are used: lead inclusions in a polycarbonate matrix, and polycarbonate inclu-
sions in a lead matrix. Each optimization problem is solved on two sizes of symmetric
triangular analysis meshes, consisting of 20×20×2 and 40×40×2 triangular elements,
respectively.
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Figuur 5.5: Initial designs for the 2-D phononic crystal optimization. On the left (right), 20×20×2 (40×40×2) tri-
angular elements are used. The top row shows initial conditions with a lead matrix (black) and polycarbonate
inclusions(gray). In the bottom row the inclusions (black) are made of lead and the matrix is polycarbonate
(gray). The red triangle indicates the reduced design area due to symmetry.
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Figuur 5.6: Optimized results for a bandgap maximization between the 3rd and 4th bands starting from the
initial designs shown in Figure 5.5. A large bandgap has opened up in all four optimizations, and the designs
have a similar shape.
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Figuur 5.7: Optimized results for a bandgap maximization between the 6th and 7th bands starting from the
initial designs shown in Figure 5.5. A large bandgap has opened up between these bands for two optimization
cases, while in the other two cases no bandgap was created.
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Figuur 5.8: Convergence of the optimization problems of Figures 5.6, and 5.7. The figure on the left shows the
convergence for a bandgap between the 3rd and 4th bands, the figure on the right show the convergence for a
bandgap between the 6th and 7th bands.
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The initial designs and their corresponding band structures, without a bandgap, are
shown in Figure 5.5. The red triangles indicate the reduced design area due to the 8-fold
symmetry in which the inclusion can be optimized. The full PUC topology is recovered
by unfolding the design in this red area. In these figures, the polycarbonate is shown in
gray, and lead is shown as black.

Figures 5.6, and 5.7 show the optimized designs for maximized bandgap between
band 3-4, and 6-7, respectively. For the bandgap between the 3rd and 4th band, both
mesh sizes and both initial designs result in a design that roughly resembles a single cir-
cular lead inclusion in a polycarbonate matrix. The band structures show that a large
bandgap has indeed opened up between the 3rd and 4th bands. As demonstrated earlier
in Figures 5.3 and 5.4, this design would be poorly represented by a density-based appro-
ach. Although all four designs are very similar, they are not exactly the same, indicating
that the optimizer has found a local optimum.

The effect of local optima is more clearly observed in the results for bandgaps bet-
ween the 6th and 7th bands. In two of the four cases, the optimizer did not succeed in
opening up a bandgap. This effect of local optima will be further discussed in §5.6. In
the two cases where the optimizer succeeded to create a bandgap between the 6th and
7th bands, top right and bottom left, it did so by creating a total of two inclusions in the
unit cell. In the case of the top right figure, four halves of the inclusion are visible in the
unit cell. The figure on the bottom left has a full inclusion in the center and four quarters
in the corners. In both cases, large bandgaps open up between the 6th and 7th bands, as
was the objective of the optimization.

Figure 5.8 illustrates the convergence of the optimization cases. It is observed that
the optimizer converges quickly in all cases, albeit sometimes to a local optimum. Note
that the two cases without a bandgap still appear to have a negative objective value,
which would indicate a bandgap. This can be explained by the fact that the smooth
minimum and smooth maximum functions that are used in the optimization are ap-
proximations of the actual minimum and maximum functions respectively (see (5.11)).
Increasing the value of α in (5.11) would improve this approximation, but it would si-
multaneously increase the nonlinearity of the problem, which could lead to instabilities.

5.5.2. BANDGAP MAXIMIZATION IN 3-D PNCS

To demonstrate the method for the design of 3-D phononic crystals, a bandgap maxi-
mization between the 6th and 7th bands is performed for a 3-D periodic unit cell with
16-fold symmetry. This example uses the same material properties and sizes, i.e. a
25×25×25 mm unit cell, as the previous numerical example. Figure 5.9 shows the initial
design with polycarbonate inclusions inside a lead matrix, and its corresponding band
structure without a bandgap. The same figure also shows the final design after 50 iterati-
ons and the corresponding bandgap between the 6th and 7th bands. The final design has
8 sections of a single spherical inclusion. In Figure 5.10 the convergence of this optimi-
zation is shown. Initially, the optimization converges slowly, but after about 15 iterations
it rapidly converges to form a large bandgap. This figure also shows an alternative repre-
sentation of the optimized design that more clearly shows that the result resembles a
spherical inclusion.
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Figuur 5.9: 3-D results for bandgap maximization; on the left the initial design, irreducible Brillouin zone,
and corresponding bandstructure are shown, the right shows the optimized design and bandstructure with
bandgap.
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Figuur 5.10: On the right this figure shows the convergence of the 3D bandgap maximization problem, the left
shows an alternative representation of the optimized design.
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5.6. DISCUSSION AND CONCLUSIONS
In this work we have shown that the numerical analysis and design of phononic crystals
relies heavily on the boundary description of material interfaces. The popular density-
based topology optimization method results in staircased and diffuse boundaries that
are detrimental for the analysis accuracy in periodic unit cell-based phononic crystals.
As shown in this work, highly refined analysis meshes are needed when using a density-
based approach to compensate for the loss of accuracy. These highly refined meshes
lead to prohibitively expensive optimization problems.

The level set-based topology optimization that uses IGFEM for phononic crystals
design proposed in this paper provides an alternative optimization method in which
coarser meshes can be used to achieve the same level of accuracy compared to density
methods. Furthermore, in this method the design variables are decoupled from the ana-
lysis mesh, which further reduces computational costs. The method was demonstrated
for full bandgap maximization in 2-D and 3-D. However, there are still challenges.

The first observation is the fact that there are many local optima to which the optimi-
zer may converge that may not even show a band gap at all. Small changes in the initial
design or the move limit that is used in the MMA may result in a completely different
optimized design. To illustrate this, Figure 5.11 shows the optimization for a bandgap
between the 6th and 7th bands. On the left it shows the optimized result that converged
to a solution without a bandgap. The right shows the same optimization problem, that
started from the same initial design, but was optimized using a larger move limit. Star-
ting from an initial design with slightly larger inclusions also has a similar effect in that it
also results in the desired bandgap. This problem may therefore be partially alleviated by
using a method to nucleate inclusions in the design, such as topological derivatives (Am-
stutz and Andrä, 2006).

The initial design and move limit are not the only factors for local optima to occur
in the topology optimization of phononic crystals. Figure 5.12 shows on the left a 2×2
phononic crystal based on the unit cell that was optimized for a bandgap between the
6th and 7th bands. The unit cell with a green outline is the result of a topology optimiza-
tion as presented in this work. The unit cell that is outlined in blue describes the exact
same PnC, and therefore has the exact same performance. The unit cell shown with
the red outline cannot be achieved during the optimization due to the symmetry cons-
traints, but it would also have the same performance. In fact, any unit cell of the same
dimensions would perform the same. Therefore, the number of local optima is ampli-
fied significantly when the symmetry is released. Additionally, reducing the symmetry
would lead to another—larger—irreducible Brillouin zone, so more wave vectors should
be considered during the optimization, increasing computation time.

Another observation that can be made is that there are small oscillations in the ob-
jective function. These oscillations are especially visible in Figure 5.8. Several explanati-
ons for these oscillations exist. First, as observed in the optimization of lattice-based
PnCs in Quinteros et al. (2021), the oscillations may be caused by the MMA optimi-
zer, in which case implementing a Globally Convergent Method of Moving Asymptotes
(GCMMA) (Svanberg, 2002) in future work would help.

Another possible explanation is found in the fact that the sensitivities are not always
accurate during the optimization. As described in van den Boom et al. (2021b) and Chap-
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Figuur 5.11: Bandgap optimization for a bandgap between the 6th and 7th band. On the left the results as
obtained in §5.5.1 are shown. The right shows the results for the same optimization problem with a larger
move limit. The red circles on the left highlight mode switching in the band structure.

Figuur 5.12: Illustration of a few periodic unit cells that describe the same PnC, and cause the problem to have
many local optima. Due to the symmetry constraint, the unit cell with a red outline cannot be achieved during
optimization.
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Figuur 5.13: Small 1D test problem to illustrate the scaling of the objective as a function of the interface loca-
tion.

ter 4, this can be attributed to the discretization of the level set function. Figure 4.17 illu-
strates that in some cases enriched locations cannot be detected when a narrow feature
falls within a single element. As suggested in §4.4.1, these oscillations can be allevia-
ted by using a smaller move limit, using a finer grid for the level set discretization, or
imposing a minimum length scale.

Another reason for inaccurate sensitivities is found in the multiplicity of eigenmodes
and mode switching, which occurs often in the highly symmetric unit cells of the PnC.
As discussed in Seyranian et al. (1994), these multiple eigenvalues are not differentiable
in the normal sense. Instead they require a sensitivity analysis based on a perturbation
technique to compute directional derivatives. For simplicity, this was not done in this
work, but it could prove beneficial in further developments. Indeed, mode switching
is observed in Figure 5.11 as illustrated with red circles. Alternatively, Quinteros et al.
(2021) suggest that mode switching may be avoided when all the lower and upper bands
are included in the approximation of the maximum and minimum, respectively.

Despite these challenges, this computational design procedure enables efficient ge-
neration of phononic crystal arrangements for specialized functionalities. Furthermore,
the computational procedure may be extended to other problems that require a smooth
description of the boundaries, such as fluid-structure interaction.

APPENDIX A: OBJECTIVE SCALING
The objective function for the maximization of absolute and relative bandgaps in litera-
ture is sometimes described in terms of ω2, and sometimes in terms of ω or f . In this
appendix it is illustrated why the optimizer converges better when using f (orω) instead
of ω2. Figure 5.13 shows a small 1D PnC that is used for this purpose. It consists of a
L = 25mm unit cell with lead and polycarbonate constituents (as also used in §5.5). It is
meshed with a single 1D element and the material is described with an IGFEM enrich-
ment at location b. Bloch-Floquet periodic boundary conditions are prescribed to both
standard nodes, and the band structure is computed.

Figure 5.14 illustrates the scaling of the objective value in terms of ω2 and f as a
function of the location b. In the figure the absolute values of the objective function is
shown, and the objective is scaled to 1 for an interface in the middle of the unit cell,
b = L/2 = 12.5mm. The scaled objective value in terms of ω2 crosses more than an order
of magnitude, while the scaled objective value in terms of f has a less extreme curve.
Therefore, in optimization it is preferred to remove the square from the objective func-
tion.
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APPENDIX B: SENSITIVITY ANALYSIS
The sensitivity of the B-matrix with respect to the enriched node location is

∂Be

∂xn
=

[
0 δψe

∂J−1
e

∂xn

]
, (5.19)

and the derivative of the Jacobian determinant can be written as:
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∂xn
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∂xn

)
, (5.20)

where the adjugate is the transpose of the cofactor matrix of Je . The sensitivity of the
Jacobian inverse is computed as
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and the sensitivity of the Jacobian itself is defined as:
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The derivatives of the N-matrix are found as:

∂Ne

∂xn
=δNe A

∂xe

∂xn
Ne , (5.23)

where A is the inverse isoparametric mapping.
Finally, the design velocities can straightforwardly be found as

∂xn

∂φ j
=− φk(

φ j −φk
)2

(
x j −xk

)
, (5.24)

and the derivative of the nodal level set values with respect to the design variables s are
computed as

∂φ

∂s
= θᵀ. (5.25)

For more information about the use of RBFs in the level set based topology optimization
using IGFEM, see van den Boom et al. (2021b).





6
DISCUSSION AND CONCLUSIONS

The aim of this thesis was to develop a method for the analysis and systematic computa-
tional design of phononic crystals. This was achieved by using the Interface-enriched
Generalized Finite Element Method in combination with a level set method, which al-
lows material interfaces not to conform to the analysis mesh. This is an advantageous
feature in computational design, where the optimized interfaces are unknown at the mo-
ment of mesh creation. In contrast to density-based topology optimization methods, the
level set-based topology optimization using IGFEM developed in Chapter 5 of this thesis
therefore does not suffer from staircasing. It has been shown in this thesis that stairca-
sing is detrimental for the accuracy with which bandgaps are resolved.

A large part of the work presented in this thesis consisted of developing the methodo-
logy for immersed analysis and topology optimization using IGFEM. A procedure for the
strong enforcement of Dirichlet and Bloch-Floquet boundary conditions on enriched
nodes was developed and demonstrated in Chapters 2 and 3, respectively. Furthermore,
a framework for level set-based topology optimization using IGFEM was established in
Chapter 4. In Chapter 5, the developed methods were combined and applied to the to-
pology optimization of PnCs.

6.1. SMOOTH BOUNDARIES IN PHONONIC CRYSTAL DESIGN
The present work showed that the analysis of phononic crystals is heavily dependent on
the type of boundary description of the material interface. In Chapter 5, it was shown
that the staircased and diffuse boundary description, that is often used in density-based
topology optimization, is detrimental for the accuracy of the results. Consequently,
highly refined meshes are needed for density-based topology optimization of PnCs, lea-
ding to prohibitively expensive optimization problems.

Chapter 5 also demonstrated that IGFEM requires significantly less refined meshes
near interfaces to obtain the same level of accuracy. Moreover, the proposed IGFEM-
based topology optimization method uses level sets to decouple the design variables
from the mesh, which reduces the computational costs as well. The resulting computa-
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tional design procedure facilitates efficient generation of optimized phononic crystal de-
signs.

6.2. BOUNDARY CONDITIONS IN ENRICHED FORMULATIONS
Chapter 2 demonstrated that in contrast to other enriched methods it is straightforward
to prescribe Dirichlet boundary conditions strongly in discontinuity-enriched finite ele-
ment methods. More importantly, the method was also shown to recover a smooth re-
action field. Thereby, this chapter established IGFEM/DE-FEM as an immersed finite
element method.

Compared to other immersed methods, such as the finite cell method, the geometric
operations in IGFEM/DE-FEM are more involved (they are of the same complexity as
those in X/GFEM). This slight downside is counterbalanced by the tremendous versati-
lity that interface-enriched finite element methods provide. Through the use of DE-FEM,
both weak and strong discontinuities, e.g. material interfaces and cracks, can be hand-
led. Additionally, using the hierarchical HIFEM implementation, discontinuities of dif-
ferent types are allowed to lie arbitrarily close to one another or even intersect. Further-
more, it has been shown that discontinuity-enriched methods are optimally convergent.
They are also stable in the sense that the conditioning number grows with the same rate
as in standard FEM, provided that a suitable preconditioner or scaling of the enrichment
functions is chosen. These properties combined make IGFEM/DE-FEM very suitable as
an all-purpose immersed analysis method for complex configurations of discontinuities
and geometries.

Chapter 3 highlighted the versatility of IGFEM by using the immersed approach pro-
posed in Chapter 2, and extending it to the analysis of phononic crystals. To that end, the
formulation for boundary conditions on immersed edges is further developed to handle
Bloch-Floquet periodic boundary conditions. It was demonstrated that fully immersed
analysis of phononic crystals, where both the inclusion and the lattice type are decou-
pled from the mesh, is possible without loss of accuracy.

Despite the versatility, there are still open questions. For example, it is known that
discontinuity-enriched finite element methods overestimate gradients in integration
elements with bad aspect ratios (Nagarajan and Soghrati, 2018; Soghrati et al., 2017).
Although there are some cases where this has been shown not to be a problem (van den
Boom et al., 2019b; Zhang et al., 2019a), this issue should be addressed to make the me-
thod truly general. Furthermore, in the analysis of phononic crystals, the higher bands
are resolved less accurately than the lower bands, as is the case with standard FEM as
well.

6.3. TOPOLOGY OPTIMIZATION USING IGFEM
This thesis introduced a framework for topology optimization using IGFEM and radial
basis functions for compliance minimization problems, and later extended it to band-
gap maximization of PnCs. In Chapter 4 the optimization procedure was described and
investigated in detail. By combining IGFEM with a level set method, the proposed me-
thod yields black and white designs that do not suffer from staircasing, and the location
of the material interface is clearly described throughout the entire optimization process.
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It was also shown that the sensitivities, that are required to update the design, can be
derived analytically and be computed with relatively low computational effort.

The influence of decoupling the analysis mesh from the design discretization was
investigated by means of the classical MBB beam optimization problem. Because the
design discretization and the analysis mesh are decoupled, the resolution of the de-
sign can be chosen independently from the mesh resolution (as is the case for any RBF-
parametrized level set method). The resolution of the design should be sufficiently low
compared to the resolution of the analysis to ensure that the designs are modelled accu-
rately. In a way, the radial basis functions act similar to a filter in density-based topology
optimization.

Chapter 4 also discussed two issues that are encountered when using IGFEM in a
topology optimization setting: design oscillations, and “zig-zagging” of the material in-
terfaces. Both issues were studied in detail and found to be caused by numerical artifacts
due to the discretization. Strategies to mitigate these issues include using a finer grid to
evaluate the intersections between the level set and the background mesh, and using a
smaller move limit.

The use of IGFEM in a level set-based topology optimization framework has a num-
ber of advantages. Firstly, by virtue of the level set approach, the mapping of design
variables to nodal level set values only needs to be computed once, as the background
mesh is stationary during the entire optimization process. Secondly, IGFEM provides a
natural distinction between nodes of the background mesh, whose locations are fixed
during the optimization, and enriched nodes, which are defined by the location of the
level set and move during the optimization. Because of this reason, the majority of the
mesh undergoes no changes during optimization, and only the enrichments in elements
that are intersected by an interface need to be updated in every iteration. Thirdly, as
the enriched nodes are known (by definition) to only move along the edges of the back-
ground element, the direction of the design velocities is trivially computed. At the same
time, as the original nodes are stationary, their design velocities are zero. This signi-
ficantly simplifies the sensitivity computations. Lastly, using the immersed procedure
described in Chapter 2, it is possible to completely remove void regions from the topo-
logy optimization. This would reduce computation time and remove artificial stiffness
from the void regions. However, to achieve a fair comparison the other topology optimi-
zation methods this was not done in Chapter 4. In Chapter 5, this possibility does not
apply, as PnCs consisting of two materials were optimized, and therefore there were no
void regions.

The method proposed in this thesis also has some drawbacks and challenges. A
drawback of the level set approach is the fact that it requires an initial design with a
large number of holes. This choice of initial design can have a large influence on the
final optimized design and its performance, due to non-convexity of the optimization
problem at hand. However, it should be noted that the problem of non-convexity and
local optima in topology optimization is not unique to level set-based approaches (Pa-
padopoulos et al., 2021; Zhang and Norato, 2018). Furthermore, topological derivatives
may be used to nucleate new inclusions in level set methods (Amstutz and Andrä, 2006).
Another drawback of the proposed approach compared to density-based methods is,
the additional complexity that IGFEM introduces by requiring the creation of integra-
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tion elements. As these integration elements change in every iteration, the local arrays
for integration elements need to be reconstructed, whereas in density-based methods
for linear elasticity, the element matrices can simply be scaled with density. Enriched
degrees of freedom also cause a slight increase in the size of the system matrices, but the
relative effect of this decreases with mesh refinement.

6.4. RELATED RESEARCH
The concepts described and developed in this thesis are useful in applications beyond
the analysis and design of phononic crystals. This section briefly highlights some related
topics that have been explored in collaboration with other researchers from our group:

• The foundation for any discontinuity-enriched finite element method is a fast,
user-friendly, and robust tool for mesh interactions—a geometric engine. Consid-
erable collaborative effort was put into creating such a versatile and robust geo-
metric engine, which resulted in an object-oriented implementation. Zhang et al.
(Submitted) have prepared a paper describing the geometric engine, investigating
its complexity, and showcasing its capabilities. The geometric engine described in
the paper can be used for research in discontinuity-enriched finite element meth-
ods, as well as other enriched and immersed methods, such as X/GFEM and Cut-
FEM. Note that although this versatile geometric engine is relatively complex, for
most applications only a small subset of the functionality is needed;

• The use of a NURBS-based discontinuity-enriched method to exactly represent
the geometry of both weak and strong discontinuities was investigated by De Laz-
zari et al. (2021). It was found that although only slight modifications are required
to the formulation to account for the spline-based discontinuities, the benefits in
lower-order elements are only slight. The true potential of using NURBS to de-
scribe the discontinuities will therefore only be achieved when using higher-order
interpolations;

• Finally, inspired by the recovery of smooth reaction fields described in Chap-
ter 2, IGFEM enrichment functions have been investigated for contact problems
and the coupling of non-matching meshes. Using IGFEM enrichments, the non-
matching problem is transformed into an enriched problem that allows the use
of multi-point constraints and standard node-to-node contact formulations. Liu
et al. (2022) study this application of IGFEM enrichment functions. They show that
the method works for linearized kinematics and frictionless contact, and properly
transfers tractions from one mesh to the other.

6.5. RECOMMENDATIONS FOR FUTURE WORK
In addition to addressing the open challenges in discontinuity-enriched finite element
methods and the IGFEM-based topology optimization procedure, there are more inter-
esting directions for further development of this work. For instance, the methods de-
scribed here can be used for topology optimization of other structures that consider
wave propagation. One example is found in the computational design of locally reso-
nant acoustic metamaterials (LRAMs). These metamaterials are also periodic materials
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that interact with mechanical waves, and they provide sub-wavelength bandgaps. As
LRAMs can also be analyzed using a PUC, the same procedure can be followed as for
the analysis of PnCs. However, LRAMs are often made of more than two constituent ma-
terials, so this would entail extending the optimization procedure to a multi-material
formulation.

Another type of problem that could benefit from an enriched approach is the com-
putational design of structures with (self-) contact and large deformations. In such op-
timization procedures, it is important to track the boundary properly in every design it-
eration, such that contact can be detected and a contact formulation may be employed.
More importantly, the use of IGFEM for such cases will ensure that tractions are trans-
ferred correctly, as is demonstrated in Liu et al. (2022).

Finally, other examples of optimization problems that may benefit from the proce-
dure developed in this thesis are found in fluid-structure interaction problems, and the
inverse analysis of material interfaces and/or fractures.





REFERENCES

Alberdi R, Zhang G, Khandelwal K (2018) An isogeometric approach for analysis of
phononic crystals and elastic metamaterials with complex geometries. Comput Mech
62(3):285–307

Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis
and a level-set method. Journal of Computational Physics 194(1):363 – 393

Allaire G, Dapogny C, Frey P (2014) Shape optimization with a level set based mesh evo-
lution method. Computer Methods in Applied Mechanics and Engineering 282:22 –
53

Amstutz S, Andrä H (2006) A new algorithm for topology optimization using a level-set
method. Journal of Computational Physics 216(2):573 – 588

Annavarapu C, Hautefeuille M, Dolbow JE (2012) A robust nitsche’s formulation for inter-
face problems. Computer Methods in Applied Mechanics and Engineering 225-228:44
– 54

Aragón AM, Simone A (2017) The discontinuity-enriched finite element method. Inter-
national Journal for Numerical Methods in Engineering 112(11):1589–1613

Aragón AM, Duarte CA, Geubelle PH (2010) Generalized finite element enrichment func-
tions for discontinuous gradient fields. International Journal for Numerical Methods
in Engineering 82(2):242–268

Aragón AM, Soghrati S, Geubelle PH (2013) Effect of in-plane deformation on the cohe-
sive failure of heterogeneous adhesives. Journal of the Mechanics and Physics of Solids
61(7):1600 – 1611

Aragón AM, Liang B, Ahmadian H, Soghrati S (2020) On the stability and interpolating
properties of the hierarchical interface-enriched finite element method. Computer
Methods in Applied Mechanics and Engineering 362(112671)

Auricchio F, Brezzi F, Lefieux A, Reali A (2015) An “immersed” finite element method
based on a locally anisotropic remeshing for the incompressible stokes problem.
Computer Methods in Applied Mechanics and Engineering 294:428 – 448

Babuška I, Banerjee U (2012) Stable Generalized Finite Element method (SGFEM). Com-
puter Methods in Applied Mechanics and Engineering 201–204:91–111

Babuška I, Melenk JM (1997) The partition of unity method. Int J Numer Methods Eng
40:727–758

119



120 REFERENCES

Babuška I, Banerjee U, Osborn JE (2003) Survey of meshless and generalized finite ele-
ment methods: A unified approach. Acta Numerica 12:1–125

Barrett JW, Elliot CM (1987) Fitted and unfitted finite-element methods for elliptic equa-
tions with smooth interfaces. IMA J Numer Anal 7(3):283–300

Basting S, Weismann M (2014) A hybrid level set/front tracking approach for finite ele-
ment simulations of two-phase flows. Journal of Computational and Applied Mathe-
matics 270:471 – 483

Belytschko T, Xiao SP, Parimi C (2003) Topology optimization with implicit functions
and regularization. International Journal for Numerical Methods in Engineering
57(8):1177–1196

Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized finite element
methods for material modeling. Modelling and Simulation in Materials Science and
Engineering 17(043001)

Bendsøe M, Sigmund O (2004) Topology optimization. Theory, methods, and applica-
tions. 2nd ed., corrected printing

Bendsøe MP (1989) Optimal shape design as a material distribution problem. Structural
optimization 1(4):193–202

Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a
homogenization method. Computer Methods in Applied Mechanics and Engineering
71(2):197 – 224

Bilal OR, Hussein MI (2011) Ultrawide phononic band gap for combined in-plane and
out-of-plane waves. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
84(6)

Bilal OR, Hussein MI (2017) Topology optimization of lattice materials

van den Boom SJ, Zhang J, van Keulen F, Aragón AM (2019a) Cover image. International
Journal for Numerical Methods in Engineering 120(10):i–i

van den Boom SJ, Zhang J, van Keulen F, Aragón AM (2019b) A stable interface-
enriched formulation for immersed domains with strong enforcement of essential
boundary conditions. International Journal for Numerical Methods in Engineering
120(10):1163–1183

van den Boom SJ, van Keulen F, Aragón AM (2021a) Fully decoupling geometry from
discretization in the bloch–floquet finite element analysis of phononic crystals. Com-
puter Methods in Applied Mechanics and Engineering 382(113848)

van den Boom SJ, Zhang J, van Keulen F, Aragón AM (2021b) An interface-enriched gen-
eralized finite element method for level set-based topology optimization. Structural
and Multidisciplinary Optimization 63:1–20



REFERENCES 121

Bortot E, Amir O, Shmuel G (2018) Topology optimization of dielectric elastomers for
wide tunable band gaps. International Journal of Solids and Structures 143:262–273

Braibant V, Fleury C (1984) Shape optimal design using b-splines. Computer Methods in
Applied Mechanics and Engineering 44(3):247 – 267

Brillouin L (1930) Les électrons dans les métaux et le classement des ondes de de broglie
correspondantes. Comptes Rendus Hebdomadaires des Seances de l’Academie des
Sciences p 191:192

Burman E, Hansbo P (2010) Fictitious domain finite element methods using cut ele-
ments: I. A stabilized Lagrange multiplier method. Comput Methods Appl Mech Eng
199(41-44):2680–2686

Burman E, Hansbo P (2012) Fictitious domain finite element methods using cut ele-
ments: II. A stabilized Nitsche method. Appl Numer Math 62(4):328–341

Burman E, Claus S, Hansbo P, Larson MG, Massing A (2015) CutFEM: Discretizing geom-
etry and partial differential equations. Proc 2011 Am Control Conf (104):472–501

Burman E, Elfverson D, Hansbo P, Larson MG, Larsson K (2018) Shape optimization us-
ing the cut finite element method. Computer Methods in Applied Mechanics and En-
gineering 328:242 – 261

Challis VJ (2010) A discrete level-set topology optimization code written in matlab. Struc-
tural and Multidisciplinary Optimization 41(3):453–464

Chaunsali R, Toles M, Yang J, Kim E (2017) Extreme control of impulse transmission by
cylinder-based nonlinear phononic crystals. Journal of the Mechanics and Physics of
Solids 107:21 – 32

Chen Y, Huang X, Sun G, Yan X, Li G (2017a) Maximizing spatial decay of evanescent
waves in phononic crystals by topology optimization. Computers & Structures 182:430
– 447

Chen Y, Meng F, Sun G, Li G, Huang X, Huang X (2017b) Topological design of phononic
crystals for unidirectional acoustic transmission. Journal of Sound and Vibration 410

Chen Y, Guo D, Li YF, Li G, Huang X (2018) Maximizing wave attenuation in viscoelastic
phononic crystals by topology optimization. Ultrasonics 94:419–429

Chern IL, Shu YC (2007) A coupling interface method for elliptic interface problems.
Journal of Computational Physics 225(2):2138 – 2174

Chessa J, Smolinski P, Belytschko T (2002) The extended finite element method (XFEM)
for solidification problems. International Journal for Numerical Methods in Engineer-
ing 53(8):1959–1977

Christiansen AN, Nobel-Jørgensen M, Aage N, Sigmund O, Bærentzen JA (2014) Topol-
ogy optimization using an explicit interface representation. Structural and Multidisci-
plinary Optimization 49(3):387–399



122 REFERENCES

Christiansen AN, Bærentzen JA, Nobel-Jørgensen M, Aage N, Sigmund O (2015) Com-
bined shape and topology optimization of 3d structures. Computers & Graphics 46:25
– 35

Cuba Ramos A, Aragón AM, Soghrati S, Geubelle PH, Molinari JF (2015) A new formula-
tion for imposing dirichlet boundary conditions on non-matching meshes. Interna-
tional Journal for Numerical Methods in Engineering 103(6):430–444

Davis BL, Hussein MI (2014) Nanophononic metamaterial: Thermal conductivity reduc-
tion by local resonance. Physical Review Letters 112(5)

De Lazzari E, van den Boom SJ, Zhang J, van Keulen F, Aragón AM (2021) A critical view
on the use of non-uniform rational b-splines to improve geometry representation in
enriched finite element methods. International Journal for Numerical Methods in En-
gineering 122(5):1195–1216

van Dijk NP, Maute K, Langelaar M, van Keulen F (2013) Level-set methods for struc-
tural topology optimization: a review. Structural and Multidisciplinary Optimization
48(3):437–472

Dong HW, Su XX, Wang YS, Zhang C (2014) Topology optimization of two-dimensional
asymmetrical phononic crystals. Physics Letters A 378(4):434 – 441

Dong HW, Dong HW, Wang YS, Wang YF, Zhang C (2015) Reducing symmetry in topology
optimization of two-dimensional porous phononic crystals. AIP Advances 5

Duarte CA, Babuška I, Oden JT (2000) Generalized finite element methods for three-
dimensional structural mechanics problems. Computers & Structures 77(2):215 – 232

Duarte CA, Hamzeh ON, Liszka TJ, Tworzydlo WW (2001) A generalized finite element
method for the simulation of three-dimensional dynamic crack propagation. Com-
puter Methods in Applied Mechanics and Engineering 190:2227–2262

Duarte CA, Liszka TJ, Tworzydlo WW (2007) Clustered generalized finite element meth-
ods for mesh unrefinement, non-matching and invalid meshes. International Journal
for Numerical Methods in Engineering 69(11):2409–2440

Dunning P (2018) Minimum length-scale constraints for parameterized implicit func-
tion based topology optimization. Struct Multidiscip Optim 58(1):155–169

Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional
problems of solid mechanics. Comput Methods Appl Mech Eng 197(45-48):3768–3782

Economou EN, Sigalas MM (1993) Classical wave propagation in periodic structures:
Cermet versus network topology. Phys Rev B 48:13,434–13,438

Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: A re-
view*. Applied Mechanics Reviews 54(4):331–390



REFERENCES 123

European Parliament Council of the European Union (2002) Directive 2002/44/ec of the
european parliament and of the council of 25 june 2002 on the minimum health and
safety requirements regarding the exposure of workers to the risks arising from physi-
cal agents (vibration). Tech. Rep. 2002/44/EC

Frei S, Richter T (2014) A locally modified parametric finite element method for interface
problems. SIAM Journal on Numerical Analysis 52(5):2315–2334

Fries TP (2008) A corrected xfem approximation without problems in blending elements.
International Journal for Numerical Methods in Engineering 75(5):503–532

Fries TP, Belytschko T (2010) The extended/generalized finite element method: An
overview of the method and its applications. International Journal for Numerical
Methods in Engineering 84(3):253–304

Gangl P, Langer U (2018) A local mesh modification strategy for interface problems with
application to shape and topology optimization. In: Langer U, Amrhein W, Zulehner
W (eds) Scientific Computing in Electrical Engineering, Springer International Pub-
lishing, Cham, pp 147–155

Gao Y, Guo Y, Zheng S (2019) A nurbs-based finite cell method for structural topology
optimization under geometric constraints. Computer Aided Geometric Design 72:1 –
18

Gazonas GA, Weile DS, Wildman R, Mohan A (2006) Genetic algorithm optimization of
phononic bandgap structures. International Journal of Solids and Structures 43(18-
19):5851–5866

Glowinski R, Pan TW, Periaux J (1994) A fictitious domain method for Dirichlet problem
and applications. Comput Methods Appl Mech Eng 111:283–303

Gupta V, Duarte CA, Babuška I, Banerjee U (2013) A stable and optimally convergent
generalized FEM (SGFEM) for linear elastic fracture mechanics. Computer Methods
in Applied Mechanics and Engineering 266:23–39

Hansbo A, Hansbo P (2002) An unfitted finite element method, based on Nitsche’s
method, for elliptic interface problems. Comput Methods Appl Mech Eng 191(47-
48):5537–5552

Hansbo P (2005) Nitsche’s method for interface problems in computational mechanics.
GAMM-Mitteilungen 28(2):183–206

Haslinger J, Renard Y (2009) A new fictitious domain approach inspired by the extended
finite element method. SIAM Journal on Numerical Analysis 47(2):1474–1499

Hautefeuille M, Annavarapu C, Dolbow JE (2012) Robust imposition of dirichlet bound-
ary conditions on embedded surfaces. International Journal for Numerical Methods
in Engineering 90(1):40–64



124 REFERENCES

He J, Kang Z (2018) Achieving directional propagation of elastic waves via topology opti-
mization. Ultrasonics 82:1–10

Hedayatrasa S, Abhary K, Uddin M, Ng CT (2016a) Optimum design of phononic crystal
perforated plate structures for widest bandgap of fundamental guided wave modes
and maximized in-plane stiffness. Journal of the Mechanics and Physics of Solids 89:31
– 58

Hedayatrasa S, Abhary K, Uddin MS, Guest JK (2016b) Optimal design of tunable
phononic bandgap plates under equibiaxial stretch. Smart Materials and Structures
25(055025)

Hedayatrasa S, Kersemans M, Abhary K, Uddin M, Guest JK, Paepegem WV (2017) Max-
imizing bandgap width and in-plane stiffness of porous phononic plates for tailoring
flexural guided waves: Topology optimization and experimental validation. Mechan-
ics of Materials 105:188–203

Heinze S, Joulaian M, Düster A (2015) Numerical homogenization of hybrid metal
foams using the finite cell method. "Computers & Mathematics with Applications"
70(7):1501 – 1517

Hu R, Oskay C (2019) Multiscale nonlocal effective medium model for in-plane elastic
wave dispersion and attenuation in periodic composites. Journal of the Mechanics
and Physics of Solids 124:220 – 243

Hussein MI, Hamza K, Hulbert GM, Saitou K (2007) Optimal synthesis of 2d phononic
crystals for broadband frequency isolation. Waves in Random and Complex Media
17(4):491–510

Hussein MI, Leamy MJ, Ruzzene M (2014) Dynamics of Phononic Materials and Struc-
tures: Historical Origins, Recent Progress, and Future Outlook. Applied Mechanics Re-
views 66(040802)

Isakari H, Takahashi T, Matsumoto T (2016) Periodic band structure calculation by the
sakurai-sugiura method with a fast direct solver for the boundary element method
with the fast multipole representation. Engineering Analysis with Boundary Elements
68:42–53

Jansen M (2019) Explicit level set and density methods for topology optimiza-
tion with equivalent minimum length scale constraints. Struct Multidiscip Optim
59(5):1775–1788

Jensen KE (2016) Anisotropic mesh adaptation and topology optimization in three di-
mensions. Journal of Mechanical Design, Transactions of the ASME 138(6)

Jung J, Jeong CH, Jensen JS (2019) Efficient sound radiation using a bandgap structure.
Applied Physics Letters 115(041903)



REFERENCES 125

Kergrene K, Babuška I, Banerjee U (2016) Stable generalized finite element method and
associated iterative schemes; application to interface problems. Computer Methods
in Applied Mechanics and Engineering 305:1 – 36

Kushwaha MS, Halevi P, Dobrzynski L, Djafari-Rouhani B (1993) Acoustic band structure
of periodic elastic composites. Phys Rev Lett 71:2022–2025

Kushwaha MS, Halevi P, Martínez G, Dobrzynski L, Djafari-Rouhani B (1994) Theory of
acoustic band structure of periodic elastic composites. Phys Rev B 49:2313–2322

Kutsenko A, Shuvalov A, Norris A (2013) On the quasistatic effective elastic moduli for
elastic waves in three-dimensional phononic crystals. Journal of the Mechanics and
Physics of Solids 61(11):2260 – 2272

Kutsenko AA, Shuvalov AL, Norris AN (2011) Evaluation of the effective speed of sound in
phononic crystals by the monodromy matrix method (l). The Journal of the Acoustical
Society of America 130(6):3553–3557

Lang C, Makhija D, Doostan A, Maute K (2014) A simple and efficient preconditioning
scheme for heaviside enriched xfem. Comput Mech 54(5):1357–1374

Li FL, Wang YS, Zhang C, Yu GL (2013a) Bandgap calculations of two-dimensional solid–
fluid phononic crystals with the boundary element method. Wave Motion 50(3):525 –
541

Li FL, Wang YS, Zhang C, Yu GL (2013b) Boundary element method for band gap calcula-
tions of two-dimensional solid phononic crystals. Engineering Analysis with Bound-
ary Elements 37(2):225 – 235

Li M, Cheng Z, Jia G, Shi Z (2019a) Dimension reduction and surrogate based topology
optimization of periodic structures. Composite Structures 229(111385)

Li W, Meng F, Chen Y, Li Yf, Huang X (2019b) Topology optimization of photonic and
phononic crystals and metamaterials: A review. Advanced Theory and Simulations
2(7)

Li W, Meng F, Li YF, Huang X (2019c) Topological design of 3d phononic crystals for
ultra-wide omnidirectional bandgaps. Structural and Multidisciplinary Optimization
60:2405–2415

Li X, Ning S, Liu Z, Yan Z, Luo C, Zhuang Z (2020) Designing phononic crystal with antici-
pated band gap through a deep learning based data-driven method. Computer Meth-
ods in Applied Mechanics and Engineering 361(112737)

Li YF, Meng F, Li S, Jia B, Zhou S, Huang X (2018) Designing broad phononic band gaps
for in-plane modes. Physics Letters A 382:679–684

Liang X, Du J (2020) Design of phononic-like structures and band gap tuning by concur-
rent two-scale topology optimization. Structural and Multidisciplinary Optimization
61:943–962



126 REFERENCES

Liu CX, Yu GL, Zhao GY (2019) Neural networks for inverse design of phononic crystals.
AIP Advances 9(085223)

Liu D, van den Boom SJ, Simone A, Aragón AM (2022) An interface-enriched generalized
finite element formulation for locking-free coupling of non-conforming discretiza-
tions and contact. Computational Mechanics accepted for publication

Liu P, Luo Y, Kang Z (2016a) Multi-material topology optimization considering interface
behavior via xfem and level set method. Computer Methods in Applied Mechanics and
Engineering 308:113 – 133

Liu ZF, Wu B, He C (2016b) Systematic topology optimization of solid-solid phononic
crystals for multiple separate band-gaps with different polarizations. Ultrasonics
65:249–257

Lu Y, Yang Y, Guest JK, Srivastava A (2017) 3-d phononic crystals with ultra-wide band
gaps. Scientific Reports 7(43407)

Lucklum R, Li J (2009) Phononic crystals for liquid sensor applications. Measurement
Science and Technology 20(12)

Lucklum R, Mukhin N, Rouhani BD, Pennec Y (2021) Phononic crystal sensors: A new
class of resonant sensors—chances and challenges for the determination of liquid
properties. Frontiers in Mechanical Engineering 7

Ma M, Wang L, Wang L (2021) Reliability-based topology optimization framework of two-
dimensional phononic crystal band-gap structures based on interval series expan-
sion and mapping conversion method. International Journal of Mechanical Sciences
196(106265)

Magnus JR, Neudecker H (2007) Matrix Differential Calculus with Applications in Statis-
tics and Econometrics

Manktelow KL, Leamy MJ, Ruzzene M (2013) Topology design and optimization of non-
linear periodic materials. Journal of the Mechanics and Physics of Solids 61(12):2433 –
2453

Mayer UM, Popp A, Gerstenberger A, Wall WA (2010) 3d fluid–structure-contact interac-
tion based on a combined xfem fsi and dual mortar contact approach. Computational
Mechanics 46(1):53–67

Melenk JM, Babuška I (1996) The partition of unity finite element method: Basic theory
and applications. Comput Methods Appl Mech Eng 139:289–314

Misztal MK, Bundefinedrentzen JA (2012) Topology-adaptive interface tracking using the
deformable simplicial complex. ACM Trans Graph 31(3)

Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without
remeshing. International Journal for Numerical Methods in Engineering 46(1):131–
150



REFERENCES 127

Moës N, Cloirec M, Cartraud P, Remacle JF (2003) A computational approach to handle
complex microstructure geometries. Computer Methods in Applied Mechanics and
Engineering 192(28):3163 – 3177

Mokhtari AA, Lu Y, Srivastava A (2019) On the emergence of negative effective density
and modulus in 2-phase phononic crystals. Journal of the Mechanics and Physics of
Solids 126:256 – 271

Muhammad, Lim CW (2021) From photonic crystals to seismic metamaterials: A review
via phononic crystals and acoustic metamaterials. Archives of Computational Meth-
ods in Engineering 29:1137–1198

Nagarajan A, Soghrati S (2018) Conforming to interface structured adaptive mesh refine-
ment: 3d algorithm and implementation. Computational Mechanics 62(5):1213–1238

Najafi AR, Safdari M, Tortorelli DA, Geubelle PH (2015) A gradient-based shape optimiza-
tion scheme using an interface-enriched generalized fem. Computer Methods in Ap-
plied Mechanics and Engineering 296:1–17

Najafi AR, Safdari M, Tortorelli DA, Geubelle PH (2017) Shape optimization using a
nurbs-based interface-enriched generalized fem. International Journal for Numerical
Methods in Engineering 111(10):927–954

Nassar H, He QC, Auffray N (2016) A generalized theory of elastodynamic homogeniza-
tion for periodic media. International Journal of Solids and Structures 84:139 – 146

Nassar H, Xu X, Norris A, Huang G (2017) Modulated phononic crystals: Non-reciprocal
wave propagation and willis materials. Journal of the Mechanics and Physics of Solids
101:10 – 29

Nielsen RB, Sorokin SV (2015) Periodicity effects of axial waves in elastic compound rods.
Journal of Sound and Vibration 353:135 – 149

Noël L, Duysinx P (2017) Shape optimization of microstructural designs subject to lo-
cal stress constraints within an xfem-level set framework. Structural and Multidisci-
plinary Optimization 55(6):2323–2338

Oden JT, Duarte CAM, Zienkiewicz OC (1998) A new cloud-based hp finite element
method. Computer Methods in Applied Mechanics and Engineering 153(1):117 – 126

Olhoff N, Bendsøe MP, Rasmussen J (1991) On cad-integrated structural topology and
design optimization. Computer Methods in Applied Mechanics and Engineering
89(1):259 – 279

Oseev A, Zubtsov M, Lucklum R (2013) Gasoline properties determination with phononic
crystal cavity sensor. Sensors and Actuators B: Chemical 189:208 – 212

Papadopoulos IPA, Farrell PE, Surowiec TM (2021) Computing multiple solutions of
topology optimization problems. SIAM J Sci Comput 43(3):A1555–A1582



128 REFERENCES

Park CS, Shin YC, Jo SH, Yoon H, Choi W, Youn BD, Kim M (2019) Two-dimensional octag-
onal phononic crystals for highly dense piezoelectric energy harvesting. Nano Energy
57

Park JH, Ma PS, Kim YY (2015) Design of phononic crystals for self-collimation of elas-
tic waves using topology optimization method. Structural and Multidisciplinary Opti-
mization 51(6):1199–1209

Parvizian J, Rank E (2012) Topology optimization using the finite cell method. Optim Eng
13:57–78

Parvizian J, Düster A, Rank E (2007) Finite cell method h- and p-extension for embedded
domain problems in solid mechanics. Comput Mech 41:121–133

Pascalis RD, Donateo T, Ficarella A, Parnell WJ (2020) Optimal design of phononic me-
dia through genetic algorithm-informed pre-stress for the control of antiplane wave
propagation. Extreme Mechanics Letters 40(100896)

Pejman R, Aboubakr SH, Martin WH, Devi U, Tan MHY, Patrick JF, Najafi AR (2019)
Gradient-based hybrid topology/shape optimization of bioinspired microvascular
composites. International Journal of Heat and Mass Transfer 144(118606)

Peng C, Zhao X, Liu G (2015) Noise in the sea and its impacts on marine organisms. Int J
Environ Res Public Health 12(10):12,304–23

Pennec Y, Jin Y, Djafari-Rouhani B (2019) Phononic and photonic crystals for sensing
applications 52:105–145

Qian C, Hui G, Yuan T, Pei S, Guo F, Yansong W (2020) Topological design of square lattice
structure for broad and multiple band gaps in low-frequency range. Extreme Mechan-
ics Letters 35(100632)

Quinteros L, Meruane V, Cardoso E (2021) Phononic band gap optimization in truss-like
cellular structures using smooth p-norm approximations. Structural and Multidisci-
plinary Optimization 64:113–124

Rangarajan R, Lew AJ (2014) Universal meshes: A method for triangulating planar curved
domains immersed in nonconforming meshes. International Journal for Numerical
Methods in Engineering 98(4):236–264

Rozvany GIN (2009) A critical review of established methods of structural topology opti-
mization. Structural and Multidisciplinary Optimization 37(3):217–237

Ruess M, Schillinger D, Bazilevs Y, Varduhn V, Rank E (2013) Weakly enforced essential
boundary conditions for NURBS-embedded and trimmed NURBS geometries on the
basis of the finite cell method. Int J Numer Methods Eng 95:811–846

Rupp CJ, Evgrafov A, Maute K, Dunn ML (2007) Design of phononic materials/structures
for surface wave devices using topology optimization. Structural and Multidisci-
plinary Optimization 34



REFERENCES 129

Rupp CJ, Dunn ML, Maute K (2010) Switchable phononic wave filtering, guiding, har-
vesting, and actuating in polarization-patterned piezoelectric solids. Applied Physics
Letters 96(11):111902

Sadat SM, Wang RY (2020) A machine learning based approach for phononic crystal
property discovery. Journal of Applied Physics 128:025,106

Sanders JD, Dolbow JE, Laursen TA (2009) On methods for stabilizing constraints over
enriched interfaces in elasticity. International Journal for Numerical Methods in Engi-
neering 78(9):1009–1036

Schillinger D, Dede L, Scott MA, Evans JA, Borden MJ, Rank E, Hughes TJR (2012) An iso-
geometric design-through-analysis methodology based on adaptive hierarchical re-
finement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Com-
put Methods Appl Mech Eng 249-252:116–150

Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization
problems. Structural optimization 8:207–227

Shakiba M, Brandyberry DR, Zacek S, Geubelle PH (2019) Transverse failure of carbon
fiber composites: Analytical sensitivity to the distribution of fiber/matrix interface
properties. International Journal for Numerical Methods in Engineering 120:650–665

Sharma A, Maute K (2018) Stress-based topology optimization using spatial gradient sta-
bilized xfem. Structural and Multidisciplinary Optimization 57(1):17–38

Shi L, Liu N, Zhou J, Zhou Y, Wang J, Liu QH (2016) Spectral element method for band-
structure calculations of 3d phononic crystals. Journal of Physics D: Applied Physics
49(455102)

Sigalas M, Economou EN (1993) Band structure of elastic waves in two dimensional sys-
tems. Solid State Communications 86(3):141 – 143

Sigalas MM, Economou EN (1992) Elastic and acoustic wave band structure. Journal of
Sound Vibration 158:377–382

Sigmund O (1994) Design of material structures using topology optimization. PhD thesis,
Department of Solid Mechanics, Technical University of Denmark

Sigmund O (2001) A 99 line topology optimization code written in matlab. Structural and
Multidisciplinary Optimization 21(2):120–127

Sigmund O, Jensen JS (2002) Topology optimization of phononic bandgap materials and
structures. In: Fifth World Congress on Computational Mechanics

Sigmund O, Jensen JS (2003) Systematic design of phononic band-gap materials and
structures by topology optimization. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences 361(1806):1001–1019



130 REFERENCES

Soghrati S (2014) Hierarchical interface-enriched finite element method: An automated
technique for mesh-independent simulations. Journal of Computational Physics
275:41 – 52

Soghrati S, Geubelle PH (2012) A 3d interface-enriched generalized finite element
method for weakly discontinuous problems with complex internal geometries. Com-
puter Methods in Applied Mechanics and Engineering 217-220:46 – 57

Soghrati S, Aragón AM, Armando Duarte C, Geubelle PH (2012a) An interface-enriched
generalized FEM for problems with discontinuous gradient fields. Int J Numer Meth
Eng 89:991 – 1008

Soghrati S, Thakre PR, White SR, Sottos NR, Geubelle PH (2012b) Computational mod-
eling and design of actively-cooled microvascular materials. International Journal Of
Heat And Mass Transfer 55:5309–5321

Soghrati S, Najafi AR, Lin JH, Hughes KM, White SR, Sottos NR, Geubelle PH (2013) Com-
putational analysis of actively-cooled 3d woven microvascular composites using a sta-
bilized interface-enriched generalized finite element method. International Journal
Of Heat And Mass Transfer 65:153–164

Soghrati S, Duarte CA, Geubelle PH (2015) An adaptive interface-enriched generalized
fem for the treatment of problems with curved interfaces. International Journal for
Numerical Methods in Engineering 102(6):1352–1370

Soghrati S, Nagarajan A, Liang B (2017) Conforming to interface structured adaptive
mesh refinement: New technique for the automated modeling of materials with com-
plex microstructures. Finite Elements in Analysis and Design 125:24 – 40

Sridhar A, Kouznetsova VG, Geers MGD (2018) A general multiscale framework for the
emergent effective elastodynamics of metamaterials. Journal of the Mechanics and
Physics of Solids 111:414 – 433

Staten ML, Owen SJ, Shontz SM, Salinger AG, Coffey TS (2012) A comparison of mesh
morphing methods for 3d shape optimization. In: Quadros WR (ed) Proceedings of
the 20th International Meshing Roundtable, Springer Berlin Heidelberg, Berlin, Hei-
delberg, pp 293–311

Su XX, Li JB, Wang YS (2010) A postprocessing method based on high-resolution spectral
estimation for {FDTD} calculation of phononic band structures. Physica B: Condensed
Matter 405(10):2444 – 2449

Sukumar N, Pask JE (2009) Classical and enriched finite element formulations for bloch-
periodic boundary conditions. International Journal for Numerical Methods in Engi-
neering 77(8):1121–1138

Svanberg K (1987) The method of moving asymptotes—a new method for structural op-
timization. International Journal for Numerical Methods in Engineering 24(2):359–373



REFERENCES 131

Svanberg K (2002) A class of globally convergent optimization methods based on con-
servative convex separable approximations. SIAM J on Optimization 12(2):555–573

Tan MHY, Geubelle PH (2017) 3d dimensionally reduced modeling and gradient-based
optimization of microchannel cooling networks. Computer Methods in Applied Me-
chanics and Engineering 323:230–249

Tan MHY, Safdari M, Najafi AR, Geubelle PH (2015) A nurbs-based interface-enriched
generalized finite element scheme for the thermal analysis and design of microvascu-
lar composites. Computer Methods in Applied Mechanics and Engineering 283:1382–
1400

Tan MHY, Bunce D, Ghosh ARM, Geubelle PH (2018a) Computational design of mi-
crovascular radiative cooling pasonels for nanosatellites. Journal of Thermophysics
and Heat Transfer 32(3):605–616

Tan MHY, Najafi AR, Pety SJ, White SR, Geubelle PH (2018b) Multi-objective design of
microvascular panels for battery cooling applications. Applied Thermal Engineering
135:145 – 157

Tanaka Y, Tomoyasu Y, Tamura Si (2000) Band structure of acoustic waves in phononic
lattices: Two-dimensional composites with large acoustic mismatch. Phys Rev B
62:7387–7392

Tol S, Degertekin FL, Erturk A (2019) 3d-printed phononic crystal lens for elastic wave
focusing and energy harvesting. Additive manufacturing 29(100780)

Tur M, Albelda J, Nadal E, Ródenas JJ (2014) Imposing dirichlet boundary conditions
in hierarchical cartesian meshes by means of stabilized lagrange multipliers. Interna-
tional Journal for Numerical Methods in Engineering 98(6):399–417

Van Miegroet L, Duysinx P (2007) Stress concentration minimization of 2d filets us-
ing x-fem and level set description. Structural and Multidisciplinary Optimization
33(4):425–438

Vasileiadis T, Varghese J, Babacic V, Gomis-Bresco J, Urrios DN, Graczykowski B
(2021) Progress and perspectives on phononic crystals. Journal of Applied Physics
129(160901)

Vatanabe SL, Paulino GH, Silva ECN (2014) Maximizing phononic band gaps in piezo-
composite materials by means of topology optimization. Journal of the Acoustical So-
ciety of America 136:494

Veres IA, Berer T, Matsuda O (2013) Complex band structures of two dimensional
phononic crystals: Analysis by the finite element method. Journal of Applied Physics
114(083519)

Villanueva CH, Maute K (2014) Density and level set-xfem schemes for topology opti-
mization of 3-d structures. Computational Mechanics 54(1):133–150



132 REFERENCES

Villanueva CH, Maute K (2017) CutFEM topology optimization of 3D laminar incom-
pressible flow problems. Comput Methods Appl Mech Eng 320:444–473

Wang L, Zheng H, Lu X, Shi L (2019) A petrov-galerkin finite element interface method
for interface problems with bloch-periodic boundary conditions and its application
in phononic crystals. Journal of Computational Physics 393:117 – 138

Wang S, Wang MY (2006) Radial basis functions and level set method for structural
topology optimization. International Journal for Numerical Methods in Engineering
65(12):2060–2090

Wang YF, Wang YZ, Wu B, Chen W, Wang YS (2020) Tunable and active phononic crystals
and metamaterials. Applied Mechanics Reviews 72:040,801

Wei C, Jing X (2017) A comprehensive review on vibration energy harvesting: Modelling
and realization. Renewable and Sustainable Energy Reviews 74:1 – 18

Wei P, Li Z, Li X, Wang MY (2018) An 88-line matlab code for the parameterized level
set method based topology optimization using radial basis functions. Structural and
Multidisciplinary Optimization 58(2):831–849

Wendland H (1995) Piecewise polynomial, positive definite and compactly supported ra-
dial functions of minimal degree. Advances in Computational Mathematics 4(1):389–
396

Witarto W, Wang SJ, Yang CY, Wang J, Mo YL, Chang KC, Tang Y (2019) Three-dimensional
periodic materials as seismic base isolator for nuclear infrastructure. AIP Advances
9(4):045,014

Xie L, Xia B, Huang G, Lei J, Liu J (2017) Topology optimization of phononic crystals with
uncertainties. Structural and Multidisciplinary Optimization 56:1319–1339

Xie L, Xie L, Liu J, Huang G, Zhu W, Xia B (2018) A polynomial-based method for topology
optimization of phononic crystals with unknown-but-bounded parameters. Interna-
tional Journal for Numerical Methods in Engineering 114:777–800

Xu W, Ning J, Lin Z, Qi W, Liu H, Wang W (2020) Multi-objective topology optimization
of two-dimensional multi-phase microstructure phononic crystals. Materials today
communications 22:100,801

Yamasaki S, Yamanaka S, Fujita K (2017) Three-dimensional grayscale-free topology op-
timization using a level-set based r-refinement method. International Journal for Nu-
merical Methods in Engineering 112(10):1402–1438

Yan Y, Cheng Z, Menq F, Mo YL, Tang Y, Shi Z (2015) Three dimensional periodic founda-
tions for base seismic isolation. Smart Materials and Structures 24(7)

Yera R, Forzani L, Méndez CG, Huespe AE (2021) A topology optimization algorithm
based on topological derivative and level-set function for designing phononic crys-
tals. Engineering Computations 39:354–379



REFERENCES 133

Yi G, Youn BD (2016) A comprehensive survey on topology optimization of phononic
crystals. Structural and Multidisciplinary Optimization 54(5):1315–1344

Yuksel O, Yilmaz C (2020) Realization of an ultrawide stop band in a 2-d elastic metama-
terial with topologically optimized inertial amplification mechanisms. International
Journal of Solids and Structures 203:138–150

Zhang J, van den Boom SJ, van Keulen F, Aragón AM (2019a) A stable discontinuity-
enriched finite element method for 3-d problems containing weak and strong discon-
tinuities. Computer Methods in Applied Mechanics and Engineering 355:1097–1123

Zhang J, Zhebel E, van den Boom SJ, Liu D, Aragón AM (Submitted) An object-oriented
geometric engine for the use in enriched finite element formulations and immersed
domain methods

Zhang S, Norato JA (2018) Finding Better Local Optima in Topology Optimization via
Tunneling. International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, vol Volume 2B: 44th Design Automation
Conference

Zhang X, Zhang X, He J, Takezawa A, Kang Z (2018) Robust topology optimization of
phononic crystals with random field uncertainty. International Journal for Numerical
Methods in Engineering 115:1154–1173

Zhang X, Brandyberry DR, Geubelle PH (2019b) Igfem-based shape sensitivity analysis
of the transverse failure of a composite laminate. Computational Mechanics 64:1455–
1472

Zhang X, Zhang X, Takezawa A, Kang Z (2019c) A phase-field based robust topology opti-
mization method for phononic crystals design considering uncertain diffuse regions.
Computational Materials Science 160:159–172

Zhang X, Xing J, Liu P, Luo Y, Kang Z (2021) Realization of full and directional band
gap design by non-gradient topology optimization in acoustic metamaterials. Extreme
Mechanics Letters 42:101,126

Zhao J, Li Y, Liu WK (2015) Predicting band structure of 3d mechanical metamaterials
with complex geometry via xfem. Computational Mechanics 55(4):659–672

Zheng H, Zhang C, Wang Y, Sladek J, Sladek V (2016) A meshfree local rbf collocation
method for anti-plane transverse elastic wave propagation analysis in 2d phononic
crystals. Journal of Computational Physics 305:997 – 1014

Zhou M, Lian H, Sigmund O, Aage N (2018) Shape morphing and topology optimization
of fluid channels by explicit boundary tracking. International Journal for Numerical
Methods in Fluids 88(6):296–313





CURRICULUM VITÆ

Sanne Jolene VAN DEN BOOM

01-06-1989 Born in Bergen op Zoom, the Netherlands.

EDUCATION
2015-2022 PhD in Mechanical Engineering

Delft University of Technology, Delft
Thesis: A discontinuity-enriched finite element method for

the computational design of phononic crystals
Promotor: Prof. dr. ir. A. van Keulen
Copromotor: Dr. A.M. Aragón

2012–2014 Master in Mechanical Engineering
Delft University of Technology, Delft
Internship: Topology optimization of metallic grids on photo-

voltaic cells, internship at TNO
Thesis: Topology optimization including buckling analysis

cum laude

2007–2012 Bachelor in Industrial Design
Delft University of Technology, Delft
Minor: Mechanical engineering

2001–2007 VWO / Gymnasium
R.K. Gymnasium Juvenaat H. Hart, Bergen op Zoom

PROFESSIONAL
2019-present Research scientist at TNO
2009-2018 Teaching assistant

135





LIST OF PUBLICATIONS

JOURNAL PAPERS
8. van den Boom, S.J., Abedi, R., van Keulen, F. and Aragón, A.M., ‘On the importance of

boundary smoothness in the computational design of phononic crystals’, in preparation

7. Zhang, J., Zhebel, E., van den Boom, S.J., Liu, D.and Aragón, A.M. ‘An Object Oriented Ge-
ometric Engine for the use in Enriched Finite Element Formulations and Immersed Domain
Methods’, submitted

6. Liu, D., van den Boom, S.J., Simone, A. and Aragón, A.M., ‘An interface-enriched generalized
finite element formulation for locking-free coupling of non-conforming discretizations and
contact’, accepted for publication

5. van den Boom, S.J., van Keulen, F. and Aragón, A.M., ‘Fully decoupling geometry from
discretization in the Bloch-Floquet finite element analysis of phononic crystals’, Computer
Methods in Applied Mechanics and Engineering. 2021 (382) 113848

4. De Lazzari, E., van den Boom, S.J., Zhang, J., Aragón, A.M., ‘A critical view on the use of
NURBS to improve geometry representation in enriched finite element methods’, Interna-
tional Journal for Numerical Methods in Engineering. 2021

3. van den Boom, S.J., Zhang, J., van Keulen, F. and Aragón, A.M., ‘An Interfaced-enriched
Generalized Finite Element Method for level set based topology optimization’, Structural and
Multidisciplinary Optimization. 2021

2. van den Boom, S.J., Zhang, J., van Keulen, F. and Aragón, A.M., ‘A stable interface-enriched
formulation for immersed domains with strong enforcement of essential boundary condi-
tions’, International Journal for Numerical Methods in Engineering. 2019 (120) 1163 – 1183

1. Zhang, J., van den Boom, S.J., van Keulen, F. and Aragón, A.M.,‘A Stable Discontinuity-
Enriched Finite Element Method for 3-D Problems containing Weak and Strong Disconti-
nuities’, Computer Methods in Applied Mechanics and Engineering. 2019 (355) 1097-1123

CONFERENCE PAPERS
1. van den Boom, S.J., Aragón, A.M. and van Keulen, F., ‘Mesh-independent design of phononic

crystals using an advanced finite element formulation’, Proceedings of the ASME 2016
IMECE.

JOURNAL COVERS
1. van den Boom, S.J., Aragón, A.M. and van Keulen, F., ‘Cover Image’, International Journal

for Numerical Methods in Engineering. 2019 (120)

137

https://doi.org/10.1016/j.cma.2021.113848
https://doi.org/10.1016/j.cma.2021.113848
https://doi.org/10.1002/nme.6532
https://doi.org/10.1002/nme.6532
https://doi.org/10.1007/s00158-020-02682-5
https://doi.org/10.1007/s00158-020-02682-5
https://doi.org/10.1002/nme.6139
https://doi.org/10.1002/nme.6139
https://doi.org/10.1016/j.cma.2019.05.018
https://doi.org/10.1115/IMECE2016-66928
https://doi.org/10.1115/IMECE2016-66928
https://doi.org/10.1002/nme.6267
https://doi.org/10.1002/nme.6267




ACKNOWLEDGEMENTS

The fact that this dissertation only has one author should not be misinterpreted as that I
could have done it alone. During the writing of this thesis, I have received support from
many people, for which I am very grateful.

First, I would like to thank my supervisors: Fred van Keulen and Alejandro Aragón.
Fred, thank you for giving me the opportunity to pursue a PhD, and for the insightful
comments and questions during our meetings. Alejandro, thank you for the many dis-
cussions we have had over the years. It is safe to say we did not always agree but we
always managed to find common ground eventually. I really enjoyed our pair program-
ming sessions on the Hybrida framework, especially in the beginning of my PhD. There
is no doubt in my mind that I could not have written this thesis without your help. Fred,
Alejandro, I hope our paths will cross in the future.

I would also like to thank my fellow Hybrida team members and co-authors Jian
Zhang, Dongyu Liu, Elena Zhebel, and Elena De Lazzari. Collaborating on the Geometric
Engine was sometimes challenging because of the different requirements for the differ-
ent research projects, but it certainly paid of. More importantly, this collaboration meant
that there was always somebody around to discuss bugs and “features” with.

Somebody was also always around near the whiteboard at the coffee machine on the
PME square. This quickly became one of my favourite spots in the building, because
an interesting discussion was never far away. The topic for these discussions could be
anything: a problem a colleague recently encountered, a topic from a recent Charles
meeting, or great ideas for future research. For this I am grateful for everybody in the de-
partment of Precision and Microsystems engineering and in the Structural Optimization
and Mechanics group. I particularly want to thank Roy, Emiel, and Jian, for sharing their
experiences on the final stages of finalizing and defending a dissertation.

I should also mention all my colleagues in TNO, where I’ve worked for the past three
years. Thank you for giving me the opportunity to continue to work on my thesis, and for
keeping me motivated by allowing me to work on many interesting projects. Your slight
teasing about the not-yet-finished-state of my thesis was certainly encouraging.

A sincere appreciation goes out to all of my (former-) colleagues that made sure that
my time at the university was not only productive, but also a lot of fun. Over the years
there were many colleagues in the SOM group and in PME, with whom I enjoyed lunch,
coffee, and drinks. People who made me feel at home, and who offered much needed
help, discussions, and distractions from the inevitable problems and setbacks I encoun-
tered in my research. At the very beginning when I just joined the department it were
Evert, Michael, Maarten, and Cristina, who quickly included me in social activities. Over
time, the group of people who joined for dinner and drinks in the city center changed,
but what remained were the many fun nights, for which I need to thank Dirk, Stijn, Emiel,
Floris, Arnoud, Max, and many others.

139



140 ACKNOWLEDGEMENTS

Besides the coffee and drinks in Delft, there were also opportunities to travel to con-
ferences, and—most memorably—the wedding of Laura in Sicily. Rob, I will never for-
get our epic hike in the burning heat on mount Etna, after which spaghetti with (only!)
canned tuna tasted like the best thing ever. Banafsheh, our adventures did not only take
us to Italy, but even all the way to the USA, where you took me to San Diego to attend a
Persian dinner party. I have made some very good friends during my years in the univer-
sity, and I hope to stay in touch with all of you, not only on a professional level, but also
for bouldering, dinners, and drinks.

I am lucky to also have good friends outside of work. Crystel, thank you for being
my friend since the very beginning of our lives in Delft. While designing the cover of
this thesis it became clear once again that we are a great design team. Thank you for
being my paranymph! Has, thank you for the dinners with port. Mira, Wouter, and all
of the other friends from the Koornbeurs, thank you for understanding when I missed
events because I was working on my thesis. A thanks also goes to Marieke, who as my
friend from “back home” gave me some welcomed non-Delft perspectives, to Ellen for
the occasional but long tea drinking sessions, and to Ilona for the dinners while watching
movies or the songfestival.

Of course I also want to thank my family for all their love and support. My parents,
Jos and Conny, have never once doubted that I would finish this thesis, even when I was
not so sure myself. Sofie, thank you for wanting to be my paranymph from the very
beginning, sorry to have had you waiting for so long. Last but not least I want to thank
my beloved Max. I am so glad I met you during the course of this research. Thank you
for understanding the frustrations of doing research, for all the proof-reading, and for
giving me much needed support. I cannot count the number of times that you have
encouraged me to continue working on my thesis when I was ready to give up.


	Summary
	Samenvatting
	Introduction
	Phononic crystals
	Decoupling the design from the analysis mesh
	Research aim and scope
	Main contributions of this thesis
	Thesis outline

	An Interface-enriched Finite Element Method for Immersed Problems
	Abstract
	Introduction
	DE-FEM as an immersed method
	Discretization
	Treatment of boundary conditions

	Numerical examples
	The ``Ultimate'' discontinuity patch test
	Convergence: immersed Eshelby inclusion problem
	Stability: slightly rotated mesh
	A 3-D immersed thermo-mechanical ``popcorn''

	Summary and conclusions
	Appendix: Pseudo code for hierarchical implementation

	Immersed Analysis of Phononic Crystals using IGFEM
	Abstract
	Introduction
	Problem formulation
	Bloch-Floquet periodicity on enriched nodes

	Numerical results
	1-D phononic crystal
	2-D uniform material
	2-D phononic crystal with a circular inclusion
	2-D phononic crystal with a varying lattice
	3-D phononic crystal

	Summary and Conclusions
	Appendix: Constructing a transformation matrix for a simple 1-D PUC

	Level set-based topology optimization using IGFEM
	Abstract
	Introduction
	Formulation
	IGFEM-based analysis
	Radial basis functions
	Optimization

	Numerical examples
	Numerical verification of the sensitivities
	Cantilever beam
	MBB beam
	3-D cantilever beam
	Heat sink

	Discussion
	Oscillations: the level set discretization
	Zigzagging: approximation error

	Summary and Conclusions
	Replication of results
	Appendix A: Derivation of IGFEM from X/GFEM
	Appendix B: Isoparametric mapping of integration elements
	Appendix C: Derivatives of the Jacobian inverse and determinant

	Topology Optimization of Phononic Crystals
	Abstract
	Introduction
	Computational analysis of phononic crystals
	Governing equation and formulation
	Boundary representations
	Enriched band structure analysis

	Comparison of boundary representations
	Optimization problem
	Sensitivity analysis

	Optimized phononic crystal designs
	Bandgap maximization in 2-D PnCs
	Bandgap maximization in 3-D PnCs

	Discussion and conclusions
	Appendix A: Objective scaling
	Appendix B: Sensitivity analysis

	Discussion and conclusions
	Smooth boundaries in phononic crystal design
	Boundary conditions in enriched formulations
	Topology optimization using IGFEM
	Related research
	Recommendations for future work

	titleReferences
	Curriculum Vitæ
	List of Publications
	Acknowledgements

