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A B S T R A C T

In this paper, compressive material tests on unconfined/confined resin and steel reinforced resin were experi-
mentally evaluated in order to validate the numerical results. The uniaxial model which combines damage
mechanics and Ramberg-Osgood relationship is proposed in this paper to describe the uniaxial compressive
behaviour of resin and steel reinforced resin. Numerical homogenization is conducted to predict the tensile and
shear behaviour of steel reinforced resin after validated by compressive material test results. The friction angle ,
the ratio of the yield stress in triaxial tension to the yield stress in triaxial compression K, and the dilation angle
of the linear drucker-prager plastic model are obtained based on experiments and numerical homogenization
simulation. The confinement effects on resin and steel reinforced resin could be effectively simulated by combing
above parameters and uniaxial compressive model. Finite element simulations on unconfined/ confined resin
and steel reinforced resin material tests were conducted to validate the material parameters proposed in this
paper. A good agreement is observed, indicating the model and parameters proposed in this paper could be
effectively used in the finite element simulation of injected bolts.

1. Introduction

Injected bolts are regarded as a suitable alternative for a renovation
of fitted bolts, riveted or preloaded connections of large span structures
[1–3]. As shown in Fig. 1, a hole is included in the head of the bolt in
order to inject with resin/steel reinforced resin. After injection and
curing of the resin, the connection is slip resistant. Recently, the in-
jected material, epoxy resin is modified at TU Delft by adding the steel
shots [4]. The shots serve as a reinforcement while epoxy resin serving
as a matrix. The increase of compressive strength and the expected
improvement of creep characteristics of the reinforced injected mate-
rials, especially in a bolt hole serving as nature confinement environ-
ment, will improve the performance of connections exposed to mono-
tonic and cyclic loading.

In addition to experimental research, numerical simulations could
play an important role in the qualification and certification of short-
and long-term behaviour of injection bolts. The material models of
resin/steel reinforced resin should be investigated before conducting
finite element simulation on injection bolts. However, the material
behaviour of reinforced resin depends on the type of resin, type of the
reinforcing material and the volume fraction. It is important to adopt a
multi-scale analysis to determine the mechanical properties of the steel-
reinforced resin. Numerical homogenization methods [5], which could

accurately consider the geometry and spatial distribution of the phases,
and also could precisely estimate the propagation of damage to accu-
rately predict the failure strength, is considered to be an effective
modeling tool to analyze steel reinforced resin. Fish et al. [6–8] suc-
cessfully use the statistically computational homogenization methods to
predict the macroscopic behaviour of different materials. Xin et al.
[9–12] adopted a multi-scale analysis in determining mechanical
properties of pultruded GFRP laminates and successfully predict the
mechanical behaviour of a pultruded GFRP bridge deck. Gonzalez and
LLorca [13] analyzed the mechanical response of a unidirectional FRP
subjected to transverse compression. Vaughan and McCarthy [14] in-
vestigate the effect of fiber-matrix debonding and thermal residual
stress on the transverse damage behavior of unidirectional FRP.

Computational homogenization methods of fine scale models pro-
vide a pathway to use high fidelity models to predict macroscopic
mechanical responses of steel reinforced resin. However, the high fi-
delity numerical homogenization methods are reported computation-
ally expensive [7,8,15–17]. The hierarchical strategy, where experi-
mental results and high fidelity model (HFM) are employed to train a
low fidelity model (LFM) and to supplement experimental database is
adapted to model the material behavior of steel reinforced resin [7].
The performance of the steel reinforced resin is effectively predicted by
an elaborate but computationally inexpensive low fidelity model
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identified by a more fundamental but computationally taxing high fi-
delity model, which has been calibrated to the experimental results.

In this paper, compressive material tests on unconfined/confined
resin and steel reinforced resin were experimentally evaluated. The
uniaxial model which combines damage mechanics and the Ramberg-
Osgood relationship is proposed to describe the uniaxial compressive
behavior of resin and steel reinforced resin. First-order numerical
homogenization is employed as high fidelity model, where combined
non-linear isotropic/kinematic cyclic hardening model is employed to
define the steel plasticity, the linear Drucker-Prager plastic criterion
was used to simulate resin damage, and the cohesive surfaces reflecting
the relationship between traction and displacement at the interface.
The linear Drucker-Prager plastic model is used as a low fidelity model.
The friction angle , the ratio of the yield stress in triaxial tension to the
yield stress in triaxial compression K, and the dilation angle of the
linear Drucker-Prager plastic model are obtained based on experiments
and numerical homogenization simulation. Finite element simulations
on unconfined/ confined resin and steel reinforced resin material tests
were conducted to validate the proposed material parameters. This
research may contribute to numerical simulation and practical design of
injection bolts.

2. Computational homogenization

2.1. Computational homogenization and periodic boundary condition

The link between micro-scale and macro-scale behavior could be
established based on Hill-Mandel computational Homogenization
method. The macro-scale Cauchy stress ij is obtained by averaging the
microscale Cauchy stress, ij, in the unit cell domain, expressed as below
[5]:

d1
| |ij ij= (1)

where: ij is the macro-scale Cauchy stress, ijis the micro-scale Cauchy
stress, is the domain of the unit cell. The unit cell problem could be
solved for the leading order translation-free micro-scale displacement.
The micro-scale displacement u x y( , )i

f is expressed in the following
form [5]:

u x y y u x y( , ) ( , )i
f

ij
c

j i
(1)= + (2)

where: x is the macro-scale position vector in the macro-scale domain, y
is the micro-scale position vector in the unit cell domain; ij

c is the strain
tensors in the macro-scale domain, u x y( , )i

(1) is the perturbation dis-
placement of the micro-scale.

If two nodes, M and S, located at the opposite faces of the unit cell,
with M and S being the master and slave nodes respectively, the fine-
scale displacement at the two nodes is given as [5] Eq. (3) and Eq. (4)
based on expression in Eq. (2).

u x y y u x y( , ) ( , )i
f M

ij
c

j
M

i j
M(1)= + (3)

u x y y u x y( , ) ( , )i
f S

ij
c

j
S

i j
S(1)= + (4)

where: yM , and yS are the fine-scale coordinates.
Considering the periodic boundary conditions [5] in the unit cell

domain gives:

u x y u x y( , ) ( , )i j
M

i j
S(1) (1)= (5)

Thus, above two equations yield to the following relation [5]:

u x y u x y y y( , ) ( , ) ( )i
f

j
M

i
f

j
S

ij
c

j
M

j
S= (6)

This could be implemented by so-called “mixed boundary conditions”
via constraint equations, is expressed by the following equations [5,17]:

u x y y N d( ( , ) ) 0i
f

ik
c

k j Y
Y

= (7)

u x y y N Tol| ( , ) |i
f

ik
c

k j (8)

where: N j is the unit normal to the unit cell boundary y.

2.2. Material constitutive law

The microscale material model generally include individual sub-
materials components constitutive law and steel-resin interface beha-
vior. Each constitutive model is detailed explained as below section.

2.2.1. Steel
The combined non-linear isotropic/kinematic cyclic hardening

model is employed to define the steel plasticity [18]. The yield surface
generally consists of two components, (i) a nonlinear kinematic hard-
ening component, which describe the translation of the yield surface in
stress space through the back-stress; and (ii) an isotropic hardening
component, which describe the change of the equivalent stress defining
the size of the yield surface as a function of plastic deformation. As is
shown in Fig. 2, the pressure-independent yield surface is defined as Eq.

(a) Injection bolts [3] 

(b) steel reinforced resin [4] 
Fig. 1. Schematic of injected bolts and steel reinforced resin.

Fig. 2. Hardening of the nonlinear isotropic/kinematic model in π-plane.
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(9).

F f ( ) 01
0= = (9)

where 0 is the yield stress and f ( ) is the equivalent Mises stress
with respect to the back stress .

The equivalent Mises stress is shown below:

f S S( ) 3
2

( ): ( )ij ij
dev

ij ij
dev=

(10)

where Sij is deviatoric stress tensor, ij
dev is the deviatoric part of the

backstress tensor. The associated plastic flow rule is used in the kine-
matic hardening models, given by:

F
ij
p

ij

1=
(11)

where ij
p is the plastic strain and is the equivalent plastic strain. The

evolution of the equivalent plastic strain is obtained by assuming
equivalent plastic work between isotropic plasticity and combined
isotropic/kinematic plasticity same as below:

2
3

: :ij
p

ij
p

ij ij
p0 =

(12)

The non-linear kinematic/isotropic hardening is employed to de-
scribe the translation of the yield surface in stress space. The kinematic
hardening is specified by half-cycle input material data. For each input
material data point ( , )i i

pl based on Eurocode EN 1993-1-1 [19], a
value of backstress i is obtained from the input data as:

i i i
0= (13)

where i
0 is the user-defined size of the yield surface at the corre-

sponding plastic strain for the isotropic hardening component. In-
tegration of the backstress evolution laws over a half cycle yields the
expression:

C e(1 )
k

N
k

k1

k i
pl=

= (14)

where N is the number of back stresses, Ck and k are material para-
meters and calibrated through material data by Eq. (13).

2.2.2. Resin
The epoxy resin is assumed to behave as isotropic material. The

plastic behavior of resin was assumed to be governed by the linear
Drucker-Prager model. The yield surface of the linear Drucker-Prager
model [18] is given in Eq. (15).

F t p dtan 02 = = (15)

t q
K K

r
q

1
2

1 1 1 1 3

= +
(16)

where is the slope of the linear yield surface and is commonly referred
as the friction angle of the material, d is the cohesion of the material, K
is the ratio of the yield stress in triaxial tension to the yield stress in
triaxial compression, and controls the dependence of the yield surface
on the value of the intermediate principal stress. p is the hydrostatic
stress:

p 1
3 ij ij= (17)

q is the Mises equivalent stress:

q S S3
2 ij ij=

(18)

r is the third invariant of deviatoric stress:

r S S S9
2

· :ij ij ij
1/3

=
(19)

The cohesion d of the material is related to the input material data
as:

(i) if hardening/softening is defined by the uniaxial compression
yield stress c:

d (1 1
3

tan ) c= (20)

(ii) if hardening/softening is defined by the uniaxial tension yield
stress t :

d
K

( 1 1
3

tan ) t= + (21)

(ii) if hardening/softening is defined by the uniaxial shear yield
stress :

d
K

3
2

(1 1 )= + (22)

The flow potential of linnear drucker-prager model is choosen as
below equations.

G p t tan= (23)

where is the dilation angle.

2.2.3. Steel-Resin interface
The cohesive surfaces reflecting the relationship between traction

and displacement at the interface were employed to simulate the steel-

(a) Bilinear constitutive law 

Fig. 3. Illustration of interface behavior [12]
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resin interface. As is shown in Fig. (3-a), the bilinear traction-separation
model, which assumed to be linear elastic (point “a”) followed by the
damage initiation (point “b”), the evolution of damage (point “c”), and
finally the fully damaged state (point “d”), is employed in this paper. In
the elastic stage, the traction increased linearly along the displacement
with an initial slope of K0. At point “b”, the damage of cohesive element
is initiated. The cohesive element is always subjected to complicated
loading condition; the quadratic stress failure criterion [18] is used to
evaluate the initial damage, as is shown in Fig. (3-b).

t
t

t
t

t
t

1n

n

s

s

t

t
0

2

0

2

0

2

+ + =
(24)

where: tn, ts and tt are traction components related to pure modes I, II
and III, tn

0, ts
0and tt

0 are the interfacial strength of pure modes I, II and III.
In the damage evolution period, the interfacial stiffness degraded

from initial K0 to (1-d) K0, where d is a damaged variable. The
Benzeggagh-Kenane fracture criterion (BK Law) [18,20] described in
Eq. (25) is particularly used to predict damage propagation of mixed-
mode loadings in terms of the critical fracture energies during de-
formation purely along the first and the second shear directions are the
same.

G G G G G G
G G G

( )C
n
C

s
C

n
C s t

n s t
= + +

+ + (25)

where: Gn, Gs, and Gt are the corresponding energy release rates under
pure modes I, II, and III, the additional subscript “C” denotes critical
case, which can be determined based on a standard fracture toughness
test and η is a material parameter.

2.3. Matching Mohr-Coulomb parameters to the Drucker-Prager model

Sometimes, experimental data are not directly available to get the
triaxial parameters of resin and steel reinforced resin. In this case, a
simple way to proceed is to match the Mohr-Coulomb parameters to the
Drucker-Prager model. The Mohr-Coulomb failure model is based on
plotting Mohr's circle for states of stress at failure in the plane of the
maximum and minimum principal stresses [18]. The linear Drucker-
Prager flow potential defines the plastic strain increment as:

d d t p1
1 tan /3

( tan )pl pl=
(26)

where: d pl is the equivalent plastic strain increment. Due to match the
behavior in one plane, K is assumed to be 1. Then:

d d q p1
1 tan /3

tanpl pl=
(27)

Writing this expression in terms of principal stresses provides:

d d
q

1
1 tan /3

1
2

(2 ) 1
3

tanpl pl
1 1 2 3= +

(28)

Assume plain strain is in the 11-direction. At limit load, we have
d 0pl

1 = . Then, above equation provides below relationship:

q1
2

( ) 1
3

tan1 2 3= + (29)

Then, the Drucker-Prager yield surface can be written in terms of 2
and 3 as:

9 tan tan
2 3(9 tan )

( ) 1
2

tan ( ) - d 0
2 2 3 2 3+ + =

(30)

The Mohr-Coulomb yield surface in the 2–3 principal stress plane is

( ) sin ( ) - 2c cos 02 3 2 3+ + = (31)

where: is friction angle of Mohr-Coulomb model, c is the cohesion
of Mohr-Coulomb model.

By comparison [18],

sin
tan 3(9 tan )

9 tan tan

2
=

(32)

c d1
cos

3(9 tan )
9 tan tan

2
=

(33)

Consider the two extreme cases of plastic flow definition: associated
flow, = , and nondilatant flow 0= .

(i) For associated flow:

tan 3 sin

1 sin1
3

2
=

+ (34)

d
c

3 cos

1 sin1
3

2
=

+ (35)

(ii) For nondilatant flow:

tan 3 sin= (36)

d
c

3 cos= (37)

The parameters of Mohr-Coulomb yield surface could be determined
from its tensile and compressive strengths, t and c, expressions as
follows:

c2 cos
1 sint =

+ (38)

c2 cos
1 sinc =

(39)

By combing Eqs. (20)–(22), (32), (33) and (38), (39), the ratio of the
yield stress in triaxial tension to the yield stress in triaxial compression
K is expressed as Eq. (40). The value of K in the linear Drucker-Prager
model is restricted to K≥0.778 for the yield surface to remain convex.

K  min( 3 - sin
3 sin

,0.778)=
+ (40)

3. Experimental results and discussion

3.1. Specimens and material tests

The epoxy resin used in the tests is made of RenGel SW 404 with
hardener HY 2404 in the room temperature. Reinforcing steel particles
were chosen as steel shot S330 with nominal diameter 0.84mm.
Compression testes on both unconfined and confined conditions are
carried out. As is shown in Figs. 4 and 5, the dimension of the un-
confined specimen is Φ26mm×50mm. The nominal dimension of the
confined specimen is Φ22mm×22mm, confined by S235 steel tube
with a dimension of Φ30mm×50mm×4mm and loaded by a S355
steel cylinder with a dimension of Φ22mm×40mm. Five specimens of
each type, totally 20 specimens, were prepared and tested in order to
investigate the compressive behavior of resin and steel reinforced resin.
The load is applied with a displacement speed of 0.01mm/s. Two GS-
551 linear variable displacement transformers (LVDTs) were employed
to measure the axial deformation of the specimens.

3.2. Experimental results

3.2.1. Unconfined specimens
For nominal stress ¯ and nominal strain ¯, the original dimensions of

the specimen are employed. However, length and cross-sectional area
change in plastic region. True stress and true strain are used for the
accurate definition of the plastic behaviour of ductile materials by
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considering the actual dimensions. True stress is the force divided by
the actual area. The true strain is a change in length with respect to
the instant length. Due to large deformation of specimens, the nominal
stress ¯ and nominal strain ¯ were converted to true stress and true
strain based on Eqs. (41)–(44).

For compression:

 - ln(1 ¯)= (41)

¯ (1 ¯)= (42)

For tension:

ln(1 ¯)= + (43)

¯ (1 ¯)= + (44)

The compressive results of unconfined resin and steel reinforced
resin specimens are summarized in Tables 1–4. Based on nominal stress
and strain, the average elastic modulus Ēof resin and steel reinforced
resin is 5.64 Gpa and 15.70 Gpa respectively, while the average ulti-
mate strength ¯ uof resin and steel reinforced resin is 169.8Mpa and
120.30 Mpa respectively. Based on true stress and strain, the average
elastic modulus E of resin and steel reinforced resin is 5.53 Gpa and
15.29 Gpa respectively, while the average ultimate strength u of resin
and steel reinforced resin is 140.7 Mpa and 119.43 Mpa respectively. It
is noted that the true ultimate strength of unconfined resin is 17.6%
smaller than the nominal ultimate strength. Attention should be paid on

  

(a) Unconfined                                               (b) Confined 

Fig. 4. Schematic of unconfined/confined specimens.

Fig. 5. Experimental set-up [1]

Table 1
Results of unconfined resin specimen from norminal stress/strain.

Specimen Young’s
Modulus

Ultimate
Strength

Fracture initiation
Strain

Fracture
Strain

Ē (GPa) ¯ u(MPa) ¯ f
0 (%) ¯u

f (%)

U-R-1 5.30 171.7 18.20 21.59
U-R-2 6.15 168.9 18.34 21.86
U-R-3 5.83 173.2 18.20 20.24
U-R-4 5.45 168.7 17.34 22.31
U-R-5 5.49 166.6 17.96 24.84
Average 5.64 169.8 18.01 22.17
S.D. 0.34 2.62 0.40 1.68

Table 2
Results of unconfined resin specimen from true stress/strain.

Specimen Young’s
Modulus

Ultimate
Strength

Fracture initiation
Strain

Fracture
Strain

E (GPa) u(MPa) f
0 (%) u

f (%)

U-R-1 5.20 141.69 19.70 24.66
U-R-2 6.02 139.23 19.43 24.72
U-R-3 5.72 142.43 19.78 24.34
U-R-4 5.33 141.47 18.64 24.51
U-R-5 5.38 138.72 19.71 26.58
Average 5.53 140.71 19.45 24.96
S.D. 0.33 1.63 0.47 0.92

Table 3
Results of unconfined steel reinforced resin specimen from nominal stress/
strain.

Specimen Young’s
Modulus

Ultimate
Strength

Fracture initiation
Strain

Fracture
Strain

Ē (GPa) ¯ u(MPa) ¯ f
0 (%) ¯u

f (%)

U-SR-1 15.90 117.97 0.97 3.86
U-SR-2 16.30 119.52 1.01 4.87
U-SR-3 15.50 124.13 0.94 3.97
U-SR-4 15.60 119.48 1.08 4.84
U-SR-5 15.10 122.14 1.03 4.98
Average 15.70 120.30 1.01 4.51
S.D. 0.41 2.72 0.054 0.54
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large differences between nominal and true ultimate compressive
strength of resin during finite element simulation. The stress-strain re-
lationship of unconfined resin and steel reinforced resin specimens were
shown in Figs. 6 and 7. The stress-strain curve of unconfined resin
generally consisted of three stages: (i) the stress increased linearly with
strain increasing; (ii) yielding occurred, the stress increased nonlinearly
with strain increasing; (iii) fracture initiated when the load reached the
peak, the stress decreased with the strain increasing. The stress-strain
curve of unconfined steel reinforced resin generally included two
stages: (i) the stress increased almost linearly with strain increasing; (ii)
damage occurred when the maximum strength is reached, the stress
decreased gradually with strain increasing.

The failure mode of resin and steel reinforced resin specimens were
shown in Fig. 8. The longitudinal and diagonal cracks of resin initiated
with the loading increasing. The final failure of resin occurred after the
long cracks propagated through the whole specimen and the specimen
was split into two parts. The diagonal cracks of steel reinforced speci-
mens initiated on the bottom half specimens. The steel reinforced
specimen failed when the diagonal cracks propagated to the bottom of
the specimen.

The tensile tests of the same resin were conducted by Wedekamper
in 2017 [21]. The stress-strain curve of unconfined resin is reproduced
[21] and showed in Fig. 9. Based on nominal stress and strain, the
average elastic modulus Ēof resin is 5.14 Gpa and the average ultimate
strength ¯ uof resin is 63.30 Mpa. Based on true stress and strain, the
average elastic modulus E of resin 5.25 Gpa and the average ultimate
strength u of resin is 64.47MPa. It indicated that the difference be-
tween tensile elastic modulus (5.25 GPa) and compressive elastic
modulus (5.53 Gpa) is very small (See Table 5).

3.2.2. Confined specimens
The compressive elastic modulus of confined resin and steel re-

inforced resin specimens were summarized in Table 6. It is noted that
the confined specimen is not loaded to completely failure and the ul-
timate strength of the confined specimen is not obtained. Based on
nominal stress and strain, the average elastic modulus Ēof confined
resin and the steel reinforced resin is 7.32 Gpa and 18.40 Gpa

Table 4
Results of unconfined steel reinforced resin specimen from true stress/ strain.

Specimen Young’s
Modulus

Ultimate
Strength

Fracture initiation
Strain

Fracture
Strain

E(GPa) u(MPa) f
0 (%) u

f (%)

U-SR-1 15.63 116.74 0.98 3.90
U-SR-2 15.72 118.32 1.02 4.98
U-SR-3 15.03 122.88 1.01 4.12
U-SR-4 15.16 118.27 1.09 4.92
U-SR-5 14.91 120.92 1.02 5.18
Average 15.29 119.43 1.03 4.62
S.D. 0.36 2.45 0.04 0.57

     
(a)                                                                        (b)   

U-R-1 U-R-2 U-R-3 U-R-4 U-R-5
  Ramberg–Osgood (Without damage)
  Ramberg–Osgood (With damage)
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Fig. 6. Stress-strain relationship of unconfined resin specimens.
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Fig. 7. Stress-strain relationship of unconfined steel reinforced resin specimens.
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respectively. Based on true stress and strain, the average elastic mod-
ulus E of resin and the steel reinforced resin is 7.09 Gpa and 18.09 Gpa
respectively. The stress-strain relationship of confined resin and steel
reinforced resin were shown in Figs. 10 and 11. The stress-strain curve
of confined specimens consisted of two stages: (i) the stress increased
linearly with strain increasing; (ii) yielding occurred, the stress in-
creased nonlinearly with strain increasing. The non-linear branch of the

stress-strain curve of confined specimen is due to (i) the nonlinear be-
havior of material itself: the yield surface of resin and steel reinforced
resin is hydrostatic pressure dependent; (ii) yielding of the confining
steel tube: this leads to the situation where the resin is restrained less in
lateral direction.

The deformation of the confined specimen is shown in Fig. 12.
Obvious yielding is observed at the half bottom of the confined steel
tube. The steel tube yielding of confined resin specimen is larger than
the confined steel reinforced resin specimen, indicating that the Pois-
son's ratio of resin is larger than the steel reinforced resin. Small slip is
observed at the bottom of the specimens. The slip of steel reinforced
resin specimen is smaller than the confined resin specimen because
steel reinforced resin has larger hardness but smaller Poisson’s ratio.

3.2.3. Results discussion
The apparent Young’s modulus increased 29.7% of confined resin

specimens and increased 7.5% of confined steel reinforced resin spe-
cimens. An explanation for different increasement of elastic modulus is

(a) Resin 

(b) Steel reinforced resin 
Fig. 8. Typical failure mode for resin and steel-reinforced resin.
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Fig. 9. Tensile stress-strain relationship of unconfined resin specimens [21].

Table 5
Tensile elastic modulus and strength of resin.

Specimen Nominal stress- nominal strain True stress- true strain

Ē (GPa) ¯ u(MPa) E (GPa) u(MPa)

U-R-T-1 5.13 59.41 5.27 60.24
U-R-T-2 5.37 61.91 5.52 62.78
U-R-T-3 5.08 66.35 5.18 67.42
U-R-T-4 5.30 65.56 5.37 66.35
U-R-T-5 4.82 63.26 4.91 65.56
Average 5.14 63.30 5.25 64.47
S.D. 0.21 2.81 0.22 2.92

Table 6
Elastic modulus of confined resin and steel reinforced resin.

Specimen Confined Resin Confined Steel Reinforced Resin

Ē (GPa) E (GPa) Ē (GPa) E (GPa)

C-1 6.84 6.66 17.99 17.61
C-2 6.84 6.52 19.56 19.36
C-3 7.15 6.91 19.59 19.43
C-4 7.66 7.59 18.66 18.45
C-5 8.09 7.78 16.18 15.96
Average 7.32 7.09 18.40 18.16
S.D. 0.54 0.56 1.41 1.44
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that the Poisson's ratio of resin is larger than the steel reinforced resin.
The strength of confined specimens is obviously increased. The yield
strength increased by 95.6% of confined resin specimens, and the yield
strength increased 189% of confined steel reinforced resin.

In the linear Drucker-Prager model, the confinement effects are
controlled by the friction angle , the ratio of the yield stress in triaxial
tension to the yield stress in triaxial compression K, and the dilation
angle . The hardening/softening of the materials is controlled by the
cohesion d related to the input uniaxial material data. The relationship
between cohesion in the linear Drucker-Prager model and uniaxial

compressive stress is shown in Eq. (20). This paper assumed that the
uniaxial compressive behavior is described by combining the damage
mechanics and Ramberg-Osgood Relationship [22], as shown in Eqs.
(45) and (46).

D(1 ) ( )R O= (45)

E
K

E
R O R O n

= +
(46)

where: D is damage variable.
The parameters of Ramberg-Osgood Relationship is fitted based on

the experimental results before damage occurred. The fitted material
parameters were listed in Table 7. The comparisons of stress-strain re-
lationship from Ramberg-Osgood Relationship and experimental results
is shown in Figs. 6, 7 and 10, 11. A good agreement is observed when
no damage occurred. It is assumed that the fracture initiation occurred
when the load reached the peak value. The damage variable is defined
as below:

D
0 f

f

0

0
f

u
f f

0

0

=
<

(47)

where: f
0 is plastic strain at fracture initiation, u

f is the plastic strain at
the failure. The fracture initiation strain f

0 is assumed to be the
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Fig. 10. Stress-strain relationship of confined resin specimens.
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Fig. 11. Stress-strain relationship of confined steel reinforced resin specimens.

(a) Resin                      (b) Steel reinforced resin 

Fig. 12. Deformation of confined specimens.
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corresponding strain at the peak load while the failure strain is obtained
by extended the softening stage. The values of f

0 and u
f are listed in

Tables 1–4 based on the experimental results. The comparisons between
combined damage Ramberg-Osgood Relationship and experimental
results is shown in Figs. 5–7. A good agreement is observed.

4. Numerical simulation of resin

4.1. Unconfined resin simulation

The unconfined resin compressive tests were simulated numerically
using the commercial finite element software ABAQUS/Standard [18].
The specimen was simulated by solid element C3D8R. As is shown in
Fig. 13, the vertical displacement UY of one end is fixed, and the ver-
tical displacement load is applied on the other end of the specimen.
Linear Drucker-Prager model described in Section 2.2.2 is employed to
model the resin behavior. The true stress and strain relationship is
calculated based on Eqs. (45), (46) and material parameters in Tables 2
and 7. The friction angle , the ratio of the yield stress in triaxial ten-
sion to the yield stress in triaxial compression K, and the dilation angle
is calculated based on Eqs. (34)–(40). The resin material parameters

of the the linear Drucker-Prager model are summarized in Table 8. It is
noted that the yield compressive strength and yield tensile strength is
used during calculating the material parameters of the the linear
Drucker-Prager model. The nominal stress-strain of unconfined resin
comparisons between finite element simulation and experimental re-
sults is shown in Fig. 14. A good agreement is observed, indicating the
material model could effectively model the uniaxial loading of un-
confined resin. The difference between “associated flow” material
parameters and “nondilatant flow” parameters is very small on the
uniaxial behavior of unconfined resin. Fig. 13 showed the principal
plastic strain of resin. The maximum principal plastic strain is 0.01174
when the specimen is loaded to failure.

4.2. Confined resin simulation

As is shown in Fig. 15, finite element model on confined resin tests
was built to validate the efficiency of the the linear Drucker-Prager
model when predicting resin behavior with confinement. Steel and
resin were both simulated by solid element C3D8R [18]. All translation
degrees of freedom on the bottom surface of the steel base was fixed,
and vertical displacement is applied on the top surface of the steel cy-
linder to load the specimen until failure. Same material model and
parameter used in the unconfined resin simulation is employed during
modeling confined resin tests. The combined non-linear isotropic/ki-
nematic cyclic hardening model, as described in Section 2.2.1, is em-
ployed to define the steel plasticity. The true stress and strain re-
lationship is calculated based on Eurocode EN 1993-1-1 [19], where
S235 grade steel is used in steel tube simulation and S355 grade steel is
used in steel loading cylinder. The nominal stress-strain of confined
resin comparisons between finite element simulation and experimental
results is shown in Fig. 16. A good agreement is observed, indicating the
Drucker-Prager model could effectively model the confinement effects

Fig. 13. Finite element model of unconfined resin specimen.

Table 8
Material Parameters of the linear Drucker-Prager model.

Material Associated flow Non-dilatant flow

K K

Resin 12.160 0.92 12.160 12.180 1.00 00

Steel reinforced resin 49.800 0.78 49.800 52.040 1.00 00
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  Finite element simulation (Associated flow)
  Finite element simulation (Nondilatant flow)
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Fig. 14. Stress-strain relationship comparisons between FEM and experiments
of unconfined resin.

Fig. 15. Finite element model of confined material tests.

Table 7
Ramberg-Osgood Relationship Parameters of Resin and Steel-reinforced Resin.

Item K n R2

Unconfined Resin Nominal Stress 6.07× 1011 8.27 0.98
True Stress 1.62× 1016 10.62 0.95

Unconfined steel reinforced resin Nominal Stress 7.81× 1015 8.83 0.99
True Stress 4.43× 1016 9.15 0.94

Confined Resin Nominal Stress 1.82× 105 4.55 0.90
True Stress 3.28× 106 5.27 0.85

Confined steel reinforced resin Nominal Stress 5.68× 106 4.99 0.97
True Stress 2.00× 1011 7.59 0.89
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of resin. The fracture initiation strain at the peak load from “non-
dilatant flow” model is a little larger than it from “associated flow”
model. Fig. 17 showed deformation comparisons of confined resin be-
tween FEM and experiments. A good agreement is observed.

5. Numerical simulation of steel reinforced resin

5.1. Unconfined steel reinforced resin

Due to the limit of the manufacture process of steel reinforced resin,
it is difficult to make dog-shaped tensile specimens to obtain tensile
behavior experimentally. The computational homogenization method
provides an alternative way to obtain the tensile and shear behavior
numerically after validating the multiscale model with compressive test
results. The unit cell is shown in Fig. 18. Same material model and
parameter used in Section 4 is employed to simulate the resin behavior
in the computational homogenization modeling. S235 grade steel is
employed to describe the behavior of steel shot based on Eurocode EN
1993-1-1[19]. The “mixed periodic boundary conditions” is applied to

the unit cell via constraint equations as expressed in Eqs. (7) and (8).
Surface cohesive model, as detailed explained in Section 2.2.3, is used
to describe the interface behavior between steel and resin.

The interface parameters are calibrated based on compressive test
results. Below are the calibration procedures:

(i) as is shown in Eq. (48), the normal interface stiffness kn is assumed
to be the elastic modulus of resin Erdivide the interface thickness
twhile the shear interface stiffness ksis assumed to be the shear
modulus of resin Grdivide the interface thickness t . The thickness of
the interface is calibrated by comparing the linear stage of the stress-
strain curve between experimental and numerical homogenization.
The interface thickness is determined to be 1%. The normal inter-
face stiffness is calibrated as 5.53×105 N/mm3, and the shear in-
terface stiffness is calibrated as 2.01×105 N/mm3.

k E
t

k G
t

,n
r

s
r= = (48)
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Fig. 16. Stress-strain relationship comparisons between FEM and experiments
of confined resin.

Fig. 17. Deformation comparisons between FEM and experiments of confined resin.

Fig. 18. Unit cell of steel reinforced resin.
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(ii) The normal interface strength is assumed to be a parameter 1 times
the ultimate compressive strength c

u of resin in Eq. (49). The shear
interface strength is assumed to be a parameter 2 times the ulti-
mate shear strength uof resin in Eq. (50). The ultimate shear
strength u is further expressed as a function of compressive
strength c

u based on Eqs. (20) and (22). After comparing the peak
compressive strength of steel reinforced resin between experi-
mental and numerical homogenization, the parameter 1 is de-
termined as 0.29 and the parameter 2 is determined as 0.57. The
normal interface strength is calibrated as 40.8 Mpa. The shear in-
terface strength is calibrated to be 41.5 Mpa.

tn c
u0

1= (49)

t t
K

2
3

1 tan /2
1 1/s t

u
c
u0 0

2 2= = =
+ (50)

(iii) The critical fracture energies are calibrated by comparing the
softening stage of steel reinforced resin between experimental and
numerical homogenization. The normal critical fracture energies
Gn

c is determined as 0.04 kJ.mm−1, and the shear critical fracture
energies Gs

c and Gt
c is determined as 0.45 kJ.mm−1. The material

parameter is assumed to be 1.8 based on references [11,12]. The
viscosity coefficient for the cohesive surface is assumed to be
0.001 s.

Compressive stress-strain relationship comparisons between nu-
merical homogenization and experiments of unconfined steel reinforced
resin are shown in Fig. 19. The macro scale stress is obtained based on
Eq. (1), so the homogenization results are compared with true stress
and strain relationship. A good agreement is observed, indicating it is
reliable to use computational homogenization method to predict the
tensile and shear behavior of steel reinforced resin. The uniaxial stress
and strain relationship, shear stress and strain relationship based on
numerical homogenization method is shown in Fig. 20. The ultimate
tensile strength of steel reinforced resin is 39.8 Mpa. The mises stress
distribution and deformation of the unit cell is shown in Figs. 21 and 22
at different stages in Fig. 20. The principal plastic strain at the failure of
the unit cell is shown in Fig. 23. The numerical multiscale simulation
indicated that the damage and failure of steel reinforced resin is gov-
erned by the resin and interface while the steel is in the elastic stage
during uniaxial and shear loading. The friction angle , the ratio of the
yield stress in triaxial tension to the yield stress in triaxial compression
K, and the dilation angle are calculated based on Eqs. (34)–(40) and
multiscale simulation results. The steel reinforced resin material para-
meters of the linear Drucker-Prager model are summarized in Table 8.

As is shown in Fig. 24, the unconfined steel reinforced resin com-
pressive tests were simulated numerically using solid element C3D8R
[18]. The uniaxial true stress and strain relationship and material
parameters of the linear Drucker-Prager model are obtained based on
multiscale simulation. The nominal stress-strain relationship of un-
confined steel reinforced resin comparisons between finite element si-
mulation and experimental results is shown in Fig. 25. A good agree-
ment is observed.

         (a)                                                                          (b) 

-0.02 -0.01 0.00 0.01 0.02
-160

-120

-80

-40

0

40

80

B4

A3

St
re

ss
 (M

Pa
)

Strain

B3

B2

B1

A4A1

A2

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03
-60

-40

-20

0

20

40

60

D4

C3

Sh
ea

r S
tr

es
s 

(M
Pa

)

Shear Strain

D3

D2

D1

C4C1

C2

Fig. 20. Stress-strain relationship of steel reinforced resin from numerical homogenization.
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Fig. 19. Stress-strain relationship comparisons between numerical homo-
genization and experiments of unconfined steel reinforced resin.
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                        (a) A1                                                          (b) B1 

                                 (c) A2                                                            (d) B2 

  (e) A3                                                            (f) B3 

                      (g) A4                                                            (h) B4
Fig. 21. Mises stress distribution of unit cell under unaxial loading.
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                        (a) C1                                                          (b) D1

(c) C2                                                            (d) D2

(e) C3                                                            (f) D3

  (g) C4                                                            (h) D4
Fig. 22. Mises stress distribution of unit cell under shear loading.
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5.2. Confined steel reinforced resin

Similar to confined resin tests, finite element model on confined
steel reinforced resin tests was built to validate the efficiency of the
linear Drucker-Prager model when predicting steel reinforced resin
behavior with confinement. Same material model and parameter used
in the unconfined steel reinforced resin simulation is employed during

modeling confined tests. Same steel material model used in Section 4.2
is employed during modeling confined steel reinforced resin tests. The
nominal stress-strain of confined steel reinforced resin comparisons
between finite element simulation and experimental reuslts is shown in

 
(a) A4                                                            (b) B4 

 
(a) C4                                                            (b) D4 

Fig. 23. Principal plastic strain of unit cell at failure.

Fig. 24. Finite element model of unconfined steel reinforced resin specimen.
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Fig. 25. Stress-strain relationship comparisons between FEM and experiments
of unconfined steel reinforced resin.
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Fig. 26. The finite element simulation results from “associated flow”
model agreed well with the experimental results, but the simulation
finite element simulation results from “nondilatant flow” tended to be
smaller than the experimental results in the hardening stages. The
Drucker-Prager models with “associated flow” rules could predict the
confinement effects of steel reinforced resin efficiently. Fig. 27 showed
deformation comparisons of confined steel reinforced resin tests be-
tween FEM and experiments. A good agreement is observed.

6. Conclusions

Compressive material tests on unconfined/confined resin and steel
reinforced resin were experimentally evaluated in order to validate
the numerical results. Finite element simulation and multiscale

homogenization methods were successfully used in this study to effec-
tively model the material properties of resin and steel reinforced resin.
Based on the results of this study, the following conclusions are drawn:

(1) A combined damage mechanics and Ramberg-Osgood
Relationship is proposed in this paper to describe the uniaxial com-
pressive behavior of resin and steel reinforced resin. Related material
parameters were fitted based on experimental results. The proposed
uniaxial compressive model could effectively describe the uniaxial
hardening/softening behavior of resin and steel reinforced resin during
finite element simulation.

(2) Numerical homogenization is necessary for an accurate predic-
tion of the non-linear behavior of steel reinforced resin in the situation
that tensile and shear experiments are difficult to be conducted. A
multiscale computational homogenization simulation is conducted to
predict the tensile and shear behavior, Combined non-linear isotropic/
kinematic cyclic hardening model is employed to define the steel
plasticity, the linear Drucker-Prager plastic criterion was used to si-
mulate resin damage. The cohesive surfaces, reflecting the relationship
between traction and displacement at the interface, were employed to
simulate the steel-resin interface. A good correlation between numer-
ical homogenization results and test results was achieved. The damage
of steel reinforced resin is mainly due to the plasticity of resin and in-
terface damage.

(3) The friction angle , the ratio of the yield stress in triaxial tension
to the yield stress in triaxial compression K, and the dilation angle of
the linear Drucker-Prager plastic model are obtained based on experi-
ments and numerical homogenization to efficiently consider the con-
finment effects on resin and steel reinforced resin. The confinement
effects on resin and steel reinforced resin could be effectively simulated
by combing above parameters and uniaxial compressive model. Finite
element simulations on unconfined/ confined resin and steel reinforced
resin material tests were conducted to validate the linear Drucker-
Prager plastic model and material parameters proposed in this paper. A
good agreement is observed, indicating the model and parameters
proposed in this paper could be effectively used in the numerical si-
mulation of injected bolted connections.
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Fig. 26. Stress-strain relationship comparisons between FEM and experiments
of confined steel reinforced resin.

Fig. 27. Deformation comparisons between FEM and experiments of confined steel reinforced resin.
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