
 
 

Delft University of Technology

Polarization contrast optical diffraction tomography

van Rooij, Jos; Kalkman, Jeroen

DOI
10.1364/BOE.381992
Publication date
2020
Document Version
Final published version
Published in
Biomedical Optics Express

Citation (APA)
van Rooij, J., & Kalkman, J. (2020). Polarization contrast optical diffraction tomography. Biomedical Optics
Express, 11(4), 2109-2121. https://doi.org/10.1364/BOE.381992

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1364/BOE.381992
https://doi.org/10.1364/BOE.381992


Research Article Vol. 11, No. 4 / 1 April 2020 / Biomedical Optics Express 2109

Polarization contrast optical diffraction
tomography

JOS VAN ROOIJ AND JEROEN KALKMAN*

Department of Imaging Physics, Lorentzweg 1, 2628 CJ, Delft, The Netherlands
*j.kalkman@tudelft.nl

Abstract: We demonstrate large scale polarization contrast optical diffraction tomography
(ODT). In cross-polarized sample arm detection configuration we determine, from the amplitude
of the optical wavefield, a relative measure of the birefringence projection. In parallel-polarized
sample arm detection configuration we image the conventional phase projection. For off-axis
sample placement we observe for polarization contrast ODT, similar as for phase contrast ODT,
a strongly reduced noise contribution. In the limit of small birefringence phase shift δ we
demonstrate tomographic reconstruction of polarization contrast images into a full 3D image of
an optically cleared zebrafish. The polarization contrast ODT reconstruction shows muscular
zebrafish tissue, which cannot be visualized in conventional phase contrast ODT. Polarization
contrast ODT images of the zebrafish show a much higher signal to noise ratio (SNR) than the
corresponding phase contrast images, SNR=73 and SNR=15, respectively.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

3D imaging in the life sciences is of great importance for studying fundamental biology and
performing (pre-) clinical studies. For these studies, label free optical imaging methods play an
important role. There are various label-free contrast mechanisms such as scattering, absorption,
or refractive index (RI). However, in some cases these contrast mechanisms are not sufficiently
sensitive to observe the relevant information, hence, there is a need for imaging with alternative
types of intrinsic contrast.
Optical diffraction tomography (ODT) has shown to be an effective tool for 3D imaging of

RI contrast on the scale of cells [1] or small organisms [2]. More recently, phase contrast ODT
was applied on a millimeter scale, where different structural features of a zebrafish larva and a
cryo-injured heart could be distinguished in 3D using RI contrast [3]. However, some types of
tissue are not visible in conventional phase contrast ODT.
An alternative form of contrast is given by the polarization change of the optical wavefield

caused by tissue birefringence. Birefringent samples are not described by a single scalar RI
value per voxel that contributes to the optical path length, but the RI value experienced by the
wavefield depends on its polarization state. Polarization contrast has been widely applied in
microscopy [4,5], digital holography [6], optical coherence tomography [7], and optical projection
tomography [8]. Birefringence provides a high-constrast label-free mechanism for imaging
fibrous structures such as muscle (collagen) or brain (myelin) tissue. Muscle tissue has been
imaged in 3D using polarization sensitive optical projection tomography (OPT), as an extension
of brightfield OPT using a white light source [8]. However, with OPT phase information is lost
and refractive index contrast cannot be determined.

In this work we show that in addition to phase contrast also polarization contrast is compatible
with large scale ODT and offers a significantly higher signal to noise ratio (SNR) compared to
conventional phase contrast ODT. We determine under what conditions a birefringent sample
can be properly reconstructed using conventional filtered backprojection (FBP). Furthermore,
we show that off-axis sample placement, which has been used in conventional ODT [9] for
noise reduction, also for polarization ODT offers significant noise reduction and that the same
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steps of numerical refocusing to correct for defocus can be applied. Finally, we demonstrate 3D
multi-contrast imaging of a zebrafish larva using two orthogonal components of the transmitted
wavefield, from which a conventional phase contrast and polarization contrast ODT image are
reconstructed.

2. Polarization contrast imaging

In conventional ODT, refractive index differences in the sample cause a change in optical path
length of the transmitted light wave. Assuming an isotropic medium, each voxel in the sample
gives a fixed contribution to the optical path length of a ray traveling through it regardless of its’
polarization. However, when a sample is birefringent this contribution generally depends on the
orientation of the polarization of the wave with respect to the medium.
Here we use Jones calculus to calculate light interactions. We assume that the birefringent

tissue locally can be described as uniaxial, where the optical axis corresponds to the predominant
fiber direction. The birefringent tissue is modeled as a wave retarder that introduces a relative
phase shift δ along the fast axis with respect to the slow axis, and introduces a common phase
shift ε (i.e. the average phase of the two components) for both polarization components. The
relative phase shift δ between the two components is then defined as [10]

δ = k∆ cos2(α(β)) , with∆ =
∫
[ne(s) − no(s)] ds , (1)

where α is the fiber inclination angle relative to the x-y plane of the polarizers as indicated in
Fig. 1(a-b). The wavenumber k is given by k = 2π

λ and ∆ is the optical path difference integrated
over the sample. As indicated in Fig. 1(a-b), the angle ϕ indicates the angle of rotation of the
optic axis of the uni-axial sample with respect to the x-axis projected onto the x − y plane. The
rotation angle of the polarizers is given by ρ, which is the angle of the cross/parallel polarizers
to the x-axis. The birefringent object is assumed to rotate around the x-axis for tomographic
measurement with angle β, which is shown in Fig. 1(c). We define the tilt angle of the object
with respect to the x axis as γ as show in Fig. 1(a-b). During tomographic measurements, the tilt
angle γ stays constant. The tomographic rotation causes α and ϕ to change for each projection
according to

α = γ sin β and ϕ = γ cos β (2)

respectively.
We assume an incoming beam polarized along the x-axis that travels through the sample in the

z-direction. Both the x and y components are extracted by placing an analyzer in the sample arm
that can be rotated to align with the parallel x or cross-polarized y-axis. The complex wavefield of
an incoming wave polarized along the x-axis after transmission through the birefringent medium
is

U = ©«
e− 1

2 i(δ−2ε ) (sin2(ρ − ϕ) + eiδ cos2(ρ − ϕ)
)

−ieiε sin
(
δ
2
)
sin(2ρ − 2ϕ)

ª®¬ , (3)

with ε defined as the average phase

ε =
2π
λ

∫
ne(s) + no(s)

2
ds . (4)

2.1. Parallel-polarization output

The first component in Eq. (3) is the x-component of the transmitted field with a polarization
parallel to that of the input field. It can be extracted by placing a polarizer aligned along the
x-axis after the sample. The x-component in Eq. (3) contains phase contributions of both the
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Fig. 1. Schematic of the ODT sample arm geometry. (a) The orientation of the uniaxial
sample is defined by the inclination angle α and the direction angle ϕ. The sample is rotated
around the x-axis for tomographic measurement. The input polarization state is along the
x-axis, after which the parallel polarized x-component (a) or the cross-polarized y-component
(b) of the complex wave is measured for each projection angle. The tomographic angle β is
defined with respect to the fiber orientation in the y-z plane. The angle of the polarizers ρ is
defined with respect to the x axis.

conventional phase contrast ε and the birefringence contrast δ. The phase of this component is
defined as the inverse tangent of the imaginary part divided by the real part

φUx = tan−1
(
cot

(
δ
2
)
sin(ε) sec(2ρ − 2ϕ) + cos(ε)

cot
(
δ
2
)
cos(ε) sec(2ρ − 2ϕ) − sin(ε)

)
. (5)

The derivative of φUx with respect to ε is equal to unity and thus the measured phase of the
x-component is a linear function of the phase contrast projection ε . There is however also a
contribution to the phase of the birefringence δ, which is in general non-linear. This can be seen
by taking the derivative of Eq. (5) with respect to δ, i.e.,

∂φUx

∂δ
=

csc2
(
δ
2
)
sec(2ρ − 2ϕ)

2 cot2
(
δ
2
)
sec2(2ρ − 2ϕ) + 2

, (6)

where csc is the cosecant or the reciprocal of the sine function. For small values of δ, Eq. (5) can
be expanded (in zeroth and first order) as

φUx ≈ tan−1(tan(ε)) +
1
2
δ cos(2ρ − 2ϕ) . (7)

For small values of δ, the measured phase of the x-component will thus be dominated by the
average phase ε , where tan−1(tan(ε)) is the wrapped average phase.
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2.2. Cross-polarization output

The vertical y-component is the second component of the field in Eq. (3) and is perpendicular to
the input polarization. The amplitude of this component is given by

|Uy | =

����sin (
δ

2

)���� |sin(2ρ − 2ϕ)| . (8)

Similar to what is done in polarimetry it can be measured using crossed polarizers. The
presence of birefringence causes modulation in the amplitude of the wavefield as δ appears
in the y-component as sin

(
δ
2
)
in the amplitude. The amplitude modulation is utilized to

generate qualitative birefringence contrast projections in 2D. However, this is problematic for 3D
tomographic reconstruction as tomographic reconstruction algorithms usually assume a linear
relation between contrast and projection. The projection function δ is thus not measured directly
and must be retrieved. Taking the inverse sine of the modulation term we obtain

sin−1
(����sin (

δ

2

)����) = 
δ
2 − mπ if 0 ≤ δ

2<
π
2 mod π

− δ
2 + mπ if π

2 ≤
δ
2<π mod π

, (9)

with m and integer. In Eq. (9) the absolute value in the inverse sine is taken since the amplitude
is the square root of the intensity and is thus always positive. The inverse sine changes the sign
of the original δ

2 function for values π
2 ≤

δ
2<π mod π, making the inverse sine of the signal not

directly suitable as a linear input projection for FBP reconstruction. Moreover, to reconstruct for
arbitrary large δ, the signal needs to be unwrapped using phase unwrapping.

However, from Eq. (9) it follows that in case the maximum value of δ in the projection does not
exceed π, the signal can be directly retrieved by taking the inverse sine and no further processing
is necessary. Even more, if δ is small, the amplitude of the y-component of Eq. (3) can be
approximated as a linear function of δ, since for small values of δ it holds that

|Uy | ≈
1
2
δ |sin(2ρ − 2ϕ)| . (10)

To demonstrate the general approach of tomographic birefringence tomography a polarization
contrast calculation for the case of a uniaxial birefringent cylinder of 10 mm radius with a
maximum projected phase shift of δ = 18 radians is shown in Fig. 2. The blue line indicates the
original phase shift as a function of position after a plane wavefront travels through the cylinder
and this is the signal that has to be retrieved.
The red line shows two times the inverse sine of the measured |sin(δ/2)| term. The green

line is obtained by flipping the inverse sine function in the appropriate domains and adding π
according to Eq. (9). The function δ can then be retrieved with standard phase unwrapping and is
plotted in magenta and corresponds with the original birefringence distribution. Thus, in theory
the projection function δ can be retrieved. However, in practice this may not be possible, for
example, when the data is noisy or the jumps in the sinusoidal signal of the transmitted field Uy
are not properly sampled due to large increase of δ.

2.3. Polarization tomography

In 3D polarization sensitive tomographic imaging, the sample is rotated and the x (parallel) and y
(cross) components of the wave are recorded for each angle for phase and polarization contrast
respectively. Due to the small contribution of the birefringence contrast in the x-component
phase it can be used for conventional ODT. However, it should be noted that in order to preserve
the linear relationship between the projection and the y-component, it can be seen from Eq. (10)
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Fig. 2. Phase shift δ between the two orthogonal polarizations in the case of a uniaxial
birefringent cylinder with maximum projected phase shift δ = 18 radians as quantified with
polarization contrast imaging.

that not the intensity (amplitude squared) of the wavefield should be taken as the projection, but
the square root of the intensity (amplitude).

However, in general δ itself depends on the tomographic rotation angle β through α in Eq. (1)
and Eq. (2). Furthermore, the angle ϕ in Eq. (10) depends on β as well through Eq. (2). Using
these dependencies we find that for small δ the y-component of the field is

|Uy |(β) ≈
1
2

k∆ cos2(γ sin(β)) |sin(2ρ − 2γ cos(β))| . (11)

Thus, even though the amplitude of Uy is linear with respect to ∆, the signal is non linear
with respect to the rotation angle β. The first non-linearity occurs due to the cos2(γ sin(β))
term in Eq. (11). In Appendix A we show that this term causes an angular modulation
across the projections in the Radon transform, which translates to a slowly varying angular
background modulation in the tomographic reconstruction, that leaves the object contrast intact.
The second term |sin(2ρ − 2γ cos(β))| in Eq. (11) modulates the amplitude as a function of
the tomographic angle β. This can be compensated for by taking the cross-polarization angle
ρ such that |sin(2ρ − 2γ cos(β))| is maximum. Experimentally, this implies that tomographic
image acquisition should be done for a sufficient number of cross-polarizer angles ρ, and for
each projection angle β the maximum amplitude projection is subsequently selected [8]. Thus,
despite the angular dependency of the phase shift δ, a linear reconstruction algorithm can be
used for polarization contrast tomography.
The question arises whether the phase of the crossed-polarizer component can be used to

do the conventional phase reconstruction, so that capturing of Ux is not necessary. In cross
polarization, the phase ε of the transmitted y-component is defined for any path through the
birefringent sample where the field amplitude is not zero. Hence, this component cannot be used
to reconstruct the conventional RI contrast ε across the whole sample. However, the phase of the
y-component can be used in order to propagate the wavefield. This can be used to numerically
refocus the wavefield if necessary, for example in the case of off-axis placement of the sample for
noise suppression [3,9], or to extend the depth of field of the imaging system [2].

3. Materials and methods

3.1. Acquisition of projections

In ODT, the scattered field is recorded from multiple angles using digital holography. The digital
holography setup is shown in Fig. 3 and consists of a Mach-Zehnder interferometer operated
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in transmission. The light source is a HeNe laser with a wavelength of 633 nm and an output
power of 3 mW. Two lenses (Thorlabs, LD2568 and LA1979) are used to expand and collimate
the illuminating laser beam to a full width at half maximum (FWHM) of approximately 15 mm.

Fig. 3. Experimental setup for acquiring the digital holograms. HeNe: Helium Neon laser,
BE: Beam expander, BS: Beam splitter, IML: Index matching liquid, S: Sample rotated
around the z-axis, MO: Microscope objective, M: Mirror, TL: Tube lens, PZT: Mirror
mounted on piezo stage, C: Camera, P: Polarizer, WP: Half-wave plate.

In the object arm a 10X objective lens (NA=0.3) is used in combination with a 200 mm focal
length tube lens (Thorlabs) to image the sample in close proximity to the detector of a CMOS
camera, (Basler beA4000-62kc) with 4096 × 3072 pixels and a pixel pitch of 5.5 µm. A rotation
mount (Thorlabs CR1) rotates the sample stepwise over 360◦. One polarizer is placed in front of
the sample (P1), and a second one is placed behind the sample (P2). For acquisition of the regular
phase contrast projections, the optical axes of the polarizers are made parallel and a acquisition
of 720 projections over 360◦ is performed. For the polarization contrast projections, the relative
angle between both polarizers is kept constant at 90◦. The complete tomographic measurement
is then carried out as before. The polarization contrast measurement is then repeated after
simultaneous rotation of both the polarizers by 30◦ and 60◦, respectively. In the reference arm, a
polarizer (P3) is placed in order to maximize the fringe contrast at the detector; this polarizer
is rotated simultaneously with the polarizers in the object arm. A half-wave plate is placed
behind the beam expander in order to maximize the signal at the detector. In the reference arm, a
10X Olympus microscope objective partly compensates for the object wave curvature to avoid
the presence of too high spatial frequencies on the camera. The mirror in the reference arm
is mounted onto a piezoelectric transducer (Thorlabs, KPZ 101) controlled by a computer for
phase-shifting the digital hologram. We capture four holograms with reference arm phase shift
increments of π/2 between each subsequent hologram. From a linear combination of these
holograms a complex hologram is formed where the zeroth and out of focus conjugate orders are
removed [11]. In this way we maximize the lateral resolution in the reconstructed image. This is
specifically important for large scale ODT where magnification is low but an as high as possible
NA is desired.

3.2. Phase and polarization projections

Autofocus correction is applied on the digital hologram in order to obtain the wavefield in the
object region. The object position is determined by calculating a focus metric (grayscale variance)
as a function of the reconstruction distance. For transparent objects the gray scale variance has
a minimum value when the reconstruction distance is located at the object. For polarization
contrast projections, the gray scale variance has a maximum value when reconstructed in focus.
For both cases separately the minimum/maximum is determined for ten samples of a full rotation
acquisition (i.e. 0◦, 36◦, 72◦, etc.). A sinusoidal function is then fitted to the minimum/maximum
as a function of the projection angle to determine the object distance as a function of projection
angle. For every angle the hologram is reconstructed for both the phase and polarization contrast
data, with the object in focus by propagating the field to the object plane using the angular
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spectrum method for diffraction calculation, which is exact and valid for small propagation
distances. In case of the phase projections, the phase is then calculated by taking the argument of
the reconstructed wavefield. The phase projections are unwrapped using a least squares phase
unwrapping algorithm [12].
For the polarization contrast projections, the amplitude of the cross-polarized component is

calculated. This amplitude then gives a direct, but scaled measure for the birefringence: scaled
ne − no. For the different (cross) polarizations, the projections are misaligned horizontally by a
few pixels. This is corrected by determining the center of rotation from the maximum variance of
the tomographic reconstruction as a function of the shift for each polarization contrast sinogram
individually. The projections are then shifted to the correct location using the circular shift
function of MATLAB. The wavefield amplitude of the projections for the three angles are stacked,
and the maximum value for each camera coordinate is extracted to form a single maximum
birefringence projection sinogram. Tomographic imaging is performed with 720 projections over
360◦ (steps of 0.5◦) with four phase steps per projection. At every projection angle and phase
step, four measurements are taken (one for phase, three for polarization contrast) in total. The net
acquisition time for a full 3D measurement is approximately 7 minutes with the total acquired
data around 160 GB.

3.3. Tomographic image reconstruction and visualization

For reconstruction of the phase contrast, assuming that RI variation in the sample is sufficiently
small so that refraction does not occur, a phase projection is a scaled integral over the RI variation
with respect to the background medium along the illumination direction. The average refractive
index difference ∆navg is calculated from the phase by using the system magnification and the
pixel pitch [9]. Subsequently, the ∆navg object is reconstructed using the FBP algorithm on a
slice by slice basis. For polarization contrast, the maximum birefringence projection sinogram
δ is reconstructed using the FBP algorithm as ne − no. We used the Drishti software package
[13] to visualize and merge the phase and polarization contrast reconstructions with a non-linear
transfer function.

3.4. Noise suppression in polarization sensitive ODT

The sample is displaced from the center of rotation by approximately 0.5 mm. Figure 4 shows
the noise distribution, in standard deviation σ, in a tomographic ODT reconstruction of both the
polarization contrast (a) and (b) and the phase contrast (c) and (d). The polarization contrast
ODT reconstruction suffers from increased noise in the region of the center of rotation, similar to
what has been shown to be the case with phase contrast ODT. The noise at the center of rotation
is approximately a factor 7 higher than outside of the center. This also shows that the on-axis
noise reduction is even more significant in the case of polarization contrast ODT than in phase
contrast ODT, where the noise reduction by off-axis placement was found to be in the order of a
factor 2 for 720 projections [3].

3.5. Zebrafish sample preparation

The sample is a 3 day old zebrafish embryo (wild type). The eggs are grown on a petridish and
subsequently placed in PTU (1-phenyl 2-thiourea) to prevent pigment formation. At 72 hours,
the eggs are dechorionated and fixated in 4% paraformaldehyde. Then, the eggs are washed with
Phosphate buffered saline three times, after which it is replaced with 100% MeOH in two cycles
for dehydration. The embryos are placed in small cylinders (4 mm diameter) and mixed with
agarose (2% mass-percentage). After the agarose is dry, the agarose containing the embryo’s
is removed from the cylinders and as a whole placed in BABB, a mixture of benzyl alcohol
(Sigma B-1042) and benzyl benzoate (Sigma B-6630) in a 1:2 ratio, which makes the sample
completely transparent [14]. During this process, the RI of the sample becomes almost that of the
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Fig. 4. (a) Logarithm of the standard deviation σ(ne − no) of a single polarization contrast
reconstructed slice. (b) Cross-section along the dashed line in figure (a) and the average
standard deviation over all slices of the stack (red). (c) Logarithm of the standard deviation
σ(∆navg) of the phase contrast reconstructed slice. (d) Cross-section along the dashed line
in figure (c) and the average standard deviation over all slices of the stack (red).

BABB clearing solution. We used a clearing time of 3 hours (similar to [3]) that ensures that the
sample is transparent enough for optical phase tomography, while at the same time maximizing
remaining RI contrast in order to keep a good signal (RI contrast in the reconstruction) to noise
(background) ratio in the final reconstruction.

4. Results

The polarization and phase contrast projections of a 3 day old zebrafish tail are shown in
Fig. 5(a)-(b) and (d)-(e), respectively. The phase contrast projections are similar to our earlier
work on ODT applied to zebrafish larvae [3]. In the polarization contrast projections most of the
larva appears dark, due to the absence of birefringent tissue, except in the tail where the developing
highly birefringent muscle tissue (myotome) is located. The polarization contrast results are
found to be similar in comparison with 2D polarization contrast measurements of Jacoby et al.
[15]. The histograms of the 3D polarization and phase contrast reconstructions are shown in
Fig. 5(c) and (f) respectively. The polarization contrast histogram of the scaled birefringence
shows two components, namely the background and the myotome tissue. In the phase contrast
histogram of the polarization averaged refractive index multiple peaks, corresponding to different
organs, are visible [3].
A 3D visualization of the phase contrast, the polarization contrast, the merged datasets and

transverse cross-sections after tomographic reconstruction using FBP are shown in Fig. 6. It can
be clearly seen from the visibility of the developing muscle tissue (myotome) that the phase and
polarization contrast offer complementary contrasts, even though they spatially overlap. The
anatomical structures are annotated based on reference data from microscopy [15] and OPT [16].
A striking result is the high contrast obtained in the polarization contrast projections compared to
the phase projections. We quantify this by calculating the standard deviation of a background
region outside of the center (since the level of noise is lower there), and estimate the mean of the
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Fig. 5. Reconstructed amplitude (a) and (b) and phase projections (d) and (e) from two
different angles of a 3 day old optically cleared zebrafish larva, illustrating the different
contrasts obtained through polarization and phase contrast respectively. In (c) and (f) the
histograms of the full 3D data set are plotted for the polarization and phase contrasts,
respectively. The background contribution is indicated in both histograms, and the myotome
and interstitial tissue for the polarization and phase contrast respectively.

Fig. 6. 3D visualization of the phase (a) and polarization (b) contrast, and combined (c)
ODT reconstructions of a 3 day old zebrafish larva tail. In phase contrast, the tail (in red) and
the spinal cord (in purple) appear, but not the developing muscle tissue (myotome), which is
birefringent. In the polarization contrast reconstruction the structure of the myotome can be
clearly discerned. Insets show transverse cross sections in linear intensity scale taken at the
dashed line. Scalebar for 3D reconstruction corresponds to 200 µm.

signal in the tail at the same location for both the polarization and phase contrast reconstructions.
For polarization contrast ODT, this yields an SNR of approximately SNR=73, and for the phase
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contrast ODT we obtain an SNR of approximately SNR=15. Polarization contrast ODT thus
yields significantly higher SNR than phase contrast ODT for imaging the zebrafish tail.

5. Discussion and conclusion

We demonstrate 3D polarization contrast ODT, which has previously only been achieved only
with OPT. Applying it within the framework of ODT makes it possible to image both phase and
polarization contrast and make use of the benefits of ODT such as numerical refocusing and
extended depth of field, due to the fact that both phase and amplitude of the polarization contrast
field are measured.

5.1. Polarization ODT contrast

Coherent speckle causes increased noise levels close to the center of rotation in polarization
contrast ODT similar as in conventional phase contrast ODT and the same strategy of off-axis
placement and numerical refocusing can be applied to reduce the noise level up to a factor of 7.
The polarization contrast ODT reconstruction yields a significantly higher signal to noise ratio
compared to the phase contrast reconstruction. We attribute this to the fact that in phase contrast
ODT the refractive index differences decrease during clearing, leading to a reduction of the signal
to noise ratio in the reconstructed images. For polarization contrast ODT, the background is zero
(no transmission in the absence of birefringence) and consequently leads to a relatively high
contrast when birefringent tissue is present. Besides this qualitative argument, also quantitatively,
the value of the average refractive index, which is proportional to ne + no, and the birefringence
ne − no may vary during the clearing process [17] and thus influence the image contrast in both
ODT modes.

5.2. Limit on maximum projected δ

Straightforward tomographic reconstruction only yields valid results for polarization contrast
ODT in case δ is small. In phase projections of highly birefringent materials, such as a FEP
(fluorinated ethylene propylene) tube, phase wrapping is clearly visible as a dense amplitude
modulation. For cleared biological samples we have not observed dense amplitude modulation
and, for all practical purposes, the wrapping problem is absent. Even for uncleared samples
with 0.5 mm of birefringent tissue, phase wrapping is absent for birefringence lower than
ne − no = 6 · 10−4, which is still smaller than the typical birefringence of uncleared tissue [7].
For application outside of biomedicine, the wrapping of δ places a practical limitation on

the amount of birefringence and/or the maximum sample thickness that can be imaged using
conventional reconstruction. In principle, the correct projection and reconstruction can be
retrieved in case the linearity requirement is violated using a modified unwrapping procedure
based on the forward model. However, further research is needed for application of this procedure
on experimental data.

5.3. Absolute quantification of birefringence

A limitation of the current method is that the polarization contrast is qualitative. Absolute
quantification of the birefringence is challenging as the magnitude of the signal is dependent
on the incident field distribution, sample optical absorption, the light to electron conversion,
and the fiber orientation. In principle the first three factors can be divided out using a reference
measurement, e.g., from the amplitude of the parallel polarization state projection.
A further complication comes from the tomographic angle dependence of δ that causes a

modulation outside of a continuous region of birefringence. In case themacroscopic assumption of
uniform birefringence across a region does not apply, but the fiber orientation changes significantly
on small length scales this may cause reconstruction artifacts. The case for quantitative
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birefringence tomography (quantification of optic axis, ne, and no) is more complicated as it
requires more information per projection angle and a non-linear inversion scheme. This is outside
of the scope of the current work.

5.4. Applicability of the uniaxial model

The analysis and simulations in this paper are based on the assumption of uniaxial birefringence.
The uniaxial model is a simple and widely used model in polarization microscopy, and applicable
to fibrous structures such as myelin, elastin, and collagen. The well-defined fiber orientation as is
present in the uniaxial model would be of importance to extract from the data. Further research is
needed to determine whether fiber orientation can be retrieved in 3D, for example by performing
more measurements under different input polarizations and using a full vectorial reconstruction
[18].
Although the uniaxial model works for a large class of tissues, some types of tissues exhibit

biaxial birefringence [19]. In addition, in some voxels there may be overlapping tissue fibers.
Incorporating this in the tomographic reconstruction requires a more elaborate birefringence
model.

5.5. Conclusion

We demonstrated 3D polarization contrast ODT. The developing muscle tissue in the tail of the
zebrafish larva is known to be birefringent and cannot be discerned in conventional phase contrast
ODT reconstruction. By illuminating the sample with a single polarization input state and
measuring both the parallel (for the phase) and the orthogonal component (for the polarization
contrast) with digital holography a conventional and polarization contrast ODT reconstruction of
the same object can be obtained.

A. Appendix

Here we demonstrate the effect of the angular dependency in the amplitude projection on the
tomographic reconstruction. The object we consider is a cylinder according to the orientation
outlined in the theory section of this paper. The cylinder has radius R, and birefringence
ne − no = δn. For a plane wave traveling along the z-axis linearly polarized along the x-axis, the
polarization contrast is retrieved from the cross-polarized transmitted component after traveling
through the sample. This component Uy is given by the y component of Eq. (A2). Using the
relations δ = k∆ cos2(α(β)), α = γ sin(β) and ϕ = γ cos(β), the full expression for Uy on β
becomes

Uy(β) = −ieiε sin(2ρ − 2γ cos(β)) sin
(
1
2

k∆ cos2(γ sin(β))
)
, (A1)

and the amplitude of Uy(β) is

|Uy(β)| = |sin(2ρ − 2γ cos(β))|
����sin (

1
2

k∆ cos2(γ sin(β))
)���� . (A2)

For a cylinder located at the origin with a tilt γ with respect to the x-axis of tomographic rotation,
the cross-section seen by a wave traveling along the z-axis is an ellipse f (y, z), with semi-major
and semi-minor axes a = R sec(γ) and b = R, respectively. The Radon transform<(f ) for a 2D
slice of the ellipse gives the path length experienced by the probing wave per projection angle β
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and is given by [20]

<(f ) =

{
2R2 sec(γ)

√
A−p2

A p2 ≤ A
0 otherwise

(A3)

where
A = R2 cos2(β) sec2(γ) + R2 sin2(β) , (A4)

and p is the transverse coordinate along the projection. Replacing ∆ in Eq. (A2) with<(f )δn,
the effective amplitude projection function measured at the detector becomes

|Uy(p, β)| =

����sin(2ρ − 2γ cos(β)) sin

(
R2 δn k sec(γ) cos2(γ sin(β))

√
A−p2

A

)���� p2 ≤ A

0 otherwise
(A5)

The projection functions |Uy(p, β)| along with the resulting tomographic reconstructions are

Fig. 7. Plot of the projection functions |Uy(p, β)| along with the resulting tomographic
reconstructions for tilt angles γ = 0◦ (a-b) and γ = 54◦ (c-d). The simulation parameters are
cross-polarizer angle ρ = 27◦, δn = 1 · 10−5, R = 1 mm and λ = 633 · 10−9. For comparison,
the case for γ = 54◦ for a non-birefringent cylinder is shown (e-f).

plotted in Fig. 7 for tilt angles γ = 0◦ (a-b) and γ = 54◦ (c-d). The simulation parameters are
cross-polarizer angle ρ = 27◦, δn = 1 · 10−5, R = 1 mm and λ = 633 · 10−9. For comparison, the
case for a non-birefringent cylinder at γ = 54◦ is shown (e-f). It can be seen that the angular
dependency of the amplitude projections results in a modulation along the horizontal projection
angle axis in Fig. 7(c). Since this does not cause modulation along the transverse coordinate axis
and the amplitude is zero outside of the projection of the birefringent object, the contrast inside
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the birefringent sample is not modulated (Fig. 7(d)). Instead, it gives a slowly varying angular
modulation in the background.
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