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Abstract. Citizen contributions to science have been suc-
cessfully implemented in many fields, and water resources
is one of them. Through citizens, it is possible to collect
data and obtain a more integrated decision-making process.
Specifically, data scarcity has always been an issue in flood
modelling, which has been addressed in the last decades by
remote sensing and is already being discussed in the citizen
science context. With this in mind, this article aims to re-
view the literature on the topic and analyse the opportuni-
ties and challenges that lie ahead. The literature on monitor-
ing, mapping and modelling, was evaluated according to the
flood-related variable citizens contributed to. Pros and cons
of the collection/analysis methods were summarised. Then,
pertinent publications were mapped into the flood modelling
cycle, considering how citizen data properties (spatial and
temporal coverage, uncertainty and volume) are related to its
integration into modelling. It was clear that the number of
studies in the area is rising. There are positive experiences re-
ported in collection and analysis methods, for instance with
velocity and land cover, and also when modelling is con-
cerned, for example by using social media mining. However,
matching the data properties necessary for each part of the
modelling cycle with citizen-generated data is still challeng-
ing. Nevertheless, the concept that citizen contributions can
be used for simulation and forecasting is proved and fur-
ther work lies in continuing to develop and improve not only
methods for collection and analysis, but certainly for integra-
tion into models as well. Finally, in view of recent automated
sensors and satellite technologies, it is through studies as the
ones analysed in this article that the value of citizen contri-
butions, complementing such technologies, is demonstrated.

1 Introduction

The necessity to understand and predict the behaviour of
floods has been present in societies around the world. This
comes from the fact that floods impact their surroundings – in
negative or positive ways. The most common way used cur-
rently to better understand and often predict flood behaviour
is through modelling and, depending on the system at hand,
a variety of models can be used (Teng et al., 2017).

In order to have adequate representation of floods, most
models require large amounts of data, both for model build-
ing and model usage. This is especially true for pluvial flood
modelling, where flooding may not occur in gauged rivers
and hence, flow gauging stations outside of flooded zones
may be of little use. Remote sensing technologies are a part
of the solution, as they offer spatially distributed information.
However, their availability may be limited, also in terms of
space and time, and their uncertainties often are not quan-
tifiable (Di Baldassarre et al., 2011; Grimaldi et al., 2016;
Jiang et al., 2014; Li et al., 2017). Thus, acquiring the neces-
sary data for simulations and predictions can still be expen-
sive, particularly for rapidly changing systems that require
frequent model updates.

In this context, sources of abundant data at low cost are
needed, together with modified modelling approaches that
can use these data and can adapt to changes as fast as they
occur. Citizen observatory (CO) is an emerging concept in
which citizens monitor the environment around them (Mon-
targil and Santos, 2017). It is often considered under the um-
brella of citizen science (including citizen participation up
to the scientist level) and it is also related to the concept
of crowdsourcing (distributing a task among many agents).
With technology at hand, it is possible to empower citizens
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to not only participate in the acquisition of data but also
in the process of scientific analysis and even in the con-
sequent decision-making process (Evers et al., 2016). Citi-
zen observatories have been researched in several EU-funded
projects. Finished projects (CITI-SENSE, Citclops, COB-
WEB, OMNISCIENTIS and WeSenseIt) have already re-
sulted in valuable contributions to the field (Alfonso et al.,
2015; Aspuru et al., 2016; Friedrichs et al., 2014; Higgins
et al., 2016; Uhrner et al., 2013). For example, the CITI-
SENSE project managed to simultaneously collect percep-
tion data and acoustic measurements in an approach that can
be used to develop citizen empowerment initiatives in case of
noise management (Aspuru et al., 2016), while in COBWEB
project processes of quality assurance, data conflation and
data fusion were studied and recommendations were made
(Friedrichs et al., 2014). The currently running CO projects
(Ground Truth 2.0, LANDSENSE, SCENT and GROW Ob-
servatory) propose to investigate this concept further.

Citizen science concepts have been researched and ap-
plied in various fields such as ecology and galaxy inspec-
tion (Lintott et al., 2008; Miller-Rushing et al., 2012). Vol-
unteer geographic information (VGI), as one of the most ac-
tive citizen science areas, has developed over the past decade
and several researchers have reviewed the state of the art of
citizen science in the field of geosciences (Heipke, 2010;
Klonner et al., 2016). There is also a part of the scientific
community dedicated to investigating damage data crowd-
sourced after flood emergencies (Dashti et al., 2014; Oxen-
dine et al., 2014) and evaluating the cycle of disaster man-
agement (Horita et al., 2013). In the context of water re-
sources, Buytaert et al. (2014) reviewed and discussed the
contribution of citizen science to hydrology and water re-
sources, addressing the level of engagement, the type of data
collected (e.g. precipitation, water level) and case studies
where more participatory approaches are being implemented.
Le Coz et al. (2016) provided examples and reflections from
three projects related to flood hydrology and crowdsourcing,
which involve the derivation of hydraulic information from
pictures and videos in Argentina, France and New Zealand.

The present review aims to look at studies that used citi-
zen science connected to floods. Specifically, it focusses on
the data collected by citizens that are relevant in a flood mod-
elling context, benchmarking difficulties and benefits of their
collection and integration into models. Integration is consid-
ered for the purposes of model set up, calibration, validation,
simulation and forecasting.

The review process involved defining web platforms, key-
words and criteria for searching and selecting publications.
The main platforms used were Scopus and Google Scholar.
The keywords are a combination of words related to citi-
zen science (e.g. “citizen science” and “crowdsourcing”) and
to flood-related variables (e.g. “water level” and “flood ex-
tent”). The obtained articles were scanned for their content.
Articles were selected mainly if crowdsourced data were ob-
tained for quantitative use in monitoring, mapping or mod-

elling. There were studies that were not selected because they
just mention the use of crowdsourced data and do not pro-
vide more relevant information on collection, analysis, use
and quantity of data, such as Merkuryeva et al. (2015). The
same was the case for studies that evaluate variables qual-
itatively, in ways that could not be directly associated with
modelling (Kim et al., 2011). This review included articles
published up to April 2017.

Further in this section, we introduce the concept of cit-
izen science and related classification systems. In Sect. 2
of the article, we overview studies on citizen contributions
for flood modelling, classifying them according to the cor-
responding flood-related variables, followed by a summary
of the pros and cons of measurement and analysis methods.
Section 3 aggregates the studies that involve flood modelling
and analyses the contributions considering the component of
the modelling process where they were used, also including
a discussion of the factors that affect flood modelling. Sec-
tion 4 describes the challenges and opportunities of using
data contributed by citizens in flood modelling, and finally,
Sect. 5 presents the conclusions and recommendations.

1.1 Citizen science

Buytaert et al. (2014) defined citizen science as “the partic-
ipation of the general public (i.e. non-scientists) in the gen-
eration of new knowledge”. In the same manner that the in-
volvement of citizens can be diverse, such is the way their
participation is found in the scientific literature:

– citizen science (Buytaert et al., 2014);

– citizen observatory (Degrossi et al., 2014);

– citizen sensing (Foody et al., 2013);

– trained volunteers (Gallart et al., 2016);

– participatory data collection methods (Michelsen et al.,
2016);

– crowdsourcing (Leibovici et al., 2015);

– participatory sensing (Kotovirta et al., 2014);

– community-based monitoring (Conrad and Hilchey,
2011);

– volunteered geographic information (Klonner et al.,
2016);

– eyewitnesses (Poser and Dransch, 2010);

– non-authoritative sources (Schnebele et al., 2014);

– human sensor network (Aulov et al., 2014);

– crowdsourced geographic information (See et al.,
2016).

Hydrol. Earth Syst. Sci., 22, 1473–1489, 2018 www.hydrol-earth-syst-sci.net/22/1473/2018/
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Figure 1. Levels of participation and engagement in citizen science
projects. Adapted from Haklay (2013).

Some of the terms used by the above-mentioned articles have
specific definitions that are used to delineate debates on the
social mechanisms of citizen participation. Others are just
the best form the researcher found to characterise the contri-
bution or the citizen (e.g. eyewitnesses). Citizen science and
adjacent areas have become fields of research in themselves
that, for instance, focus on understanding the motivation of
citizens or their interaction with public institutions (Gharesi-
fard and Wehn, 2016).

In this field, one of the classifications of citizen science is
by level of engagement. Haklay (2013) built a model that has
four levels (Fig. 1), in which the first one refers to the par-
ticipation of citizens only as data collectors, passing through
a second level in which citizens are asked to act as inter-
preters of data, going towards the participation in definition
of the problem in the third level and finally, being fully in-
volved in the scientific enterprise at hand. The review pre-
sented in this current article is focused on the contribution to-
wards flood modelling only, coming most prominently from
the two lowest levels of engagement. We do not discuss top-
ics related to engagement for the generation of (quantitative)
data. Further in this article, for readability, only the term
crowdsourced data is used to refer to data from these two
levels of engagement.

Another way to classify citizen science initiatives (within
the context of VGI) is by organising them as implic-
itly/explicitly volunteered and implicitly/explicitly geo-
graphic (Craglia et al., 2012). In this classification system,
geographic refers to the main information conveyed through
the contributed data; therefore, geo-tagged data are not nec-
essarily geographic. For example, in the Degree Confluence
Project (Iwao et al., 2006), citizens were instructed to go
to certain locations, take pictures, make notes and deliber-
ately make available their material on the project’s website.
In this case, the information is explicitly volunteered and
geographic. Most land use/cover projects related to citizen
science collect geographic information. Differently, in the
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Figure 2. SCENT project represented in the typology of VGI (vol-
unteered geographic information).

study conducted by Lowry and Fienen (2013) citizens would
also willingly send text messages to the researchers, in this
case providing water level readings from installed water level
gauges. Although explicitly volunteered, the message was
non-geographic (just geo-tagged). Another type of implicitly
geographic information was derived from Twitter by Smith
et al. (2015) to obtain flood water level, flow rate and flood
inundation estimates. As the citizens did not make the infor-
mation public with the specific purpose to provide estimates,
it is implicitly volunteered.

The concepts defined by Craglia et al. (2012) can be graph-
ically represented as in Fig. 2. The SCENT project1 (Smart
Toolbox for Engaging Citizens in a People-Centric Obser-
vation Web) is one of the four projects funded by Horizon
2020 focussing on citizen observatories. It lies in the mid-
dle of this quadrant as it encourages citizens to participate
in gaming to collect land cover/use data, in field campaigns
to collect other implicitly geographic information (e.g. water
level), and also aims to obtain implicitly volunteered contri-
butions through a CAPTCHA2 plug-in, in which citizens tag
images of, for example, land cover/use or water level in or-
der to access online content. Tagging images is uncorrelated
to the CAPTCHA, it is a task performed after the test, on the
same platform.

1https://scent-project.eu/
2CAPTCHA stands for “Completely Automated Public Turing

test to tell Computers and Humans Apart”. It is a test to evaluate
whether the subject is human, which is used in websites to provide
security. After the test is done the user can be asked to perform extra
tasks, for example, tag images.

www.hydrol-earth-syst-sci.net/22/1473/2018/ Hydrol. Earth Syst. Sci., 22, 1473–1489, 2018
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2 Flood-related crowdsourced data

There are many types of flood-related data that can be col-
lected by citizens. Likewise, there are many ways to collect,
analyse and use them (for monitoring, mapping and mod-
elling). In the next subsections we address how these as-
pects were explored in the scientific literature. Each subsec-
tion discusses a data type corresponding to a flood modelling
variable: water level, velocity, flood extent, land cover and
topography. Depending on the type of flooding, other vari-
ables are relevant, such as precipitation. The scientific litera-
ture already shows that citizen contributions could be useful
for observation of this variable (Muller et al., 2015; De Vos
et al., 2017). However, rainfall is not included in this sec-
tion because it was already covered by the review of Muller
et al. (2015). Moreover, in general it is a variable of greater
importance for hydrological models, whilst the present re-
view is focussed on a hydrodynamic representation of floods.
Regarding the presented articles, there are some mentioned
and reviewed in more than one section because they evalu-
ated more than one variable, as in, for example, the case of
Smith et al. (2015).

2.1 Water level

Table 1 gives an overview of the articles about collection of
water level data. The studies presented started to involve citi-
zens in the collection of water level data with the explicit goal
of improving flood management. This is due to the ease of
collecting such data, which mostly consists of comparing the
water level with a clearly defined reference. In some cases,
the reference is a water level gauge, the comparison is made
by the citizen, and readings are submitted to the researchers
(Alfonso et al., 2010; Degrossi et al., 2014; Fava et al., 2014;
Lowry and Fienen, 2013; Walker et al., 2016). Such kinds of
reading practically do not require further analysis, although
they entail the installation of water level gauges.

In other cases, the citizen provides qualitative data that
will be compared to references by researchers. Citizens pro-
vide pictures (Fohringer et al., 2015; Kutija et al., 2014;
Li et al., 2017; McDougall, 2011; McDougall and Temple-
Watts, 2012; Smith et al., 2015; Starkey et al., 2017) or
videos (Le Boursicaud et al., 2016; Le Coz et al., 2016;
Michelsen et al., 2016), mostly during flooding situations.
In the case of pictures/images, the water level is compared
with objects in the images that have known or approximately
known dimensions. For videos, although water level was esti-
mated, the main goal was to obtain discharge values, via esti-
mates of flow velocity. In two cases, texts from citizens were
used (e.g. water over the knee) to calculate water level val-
ues or to assume a certain value when no value was provided
(Li et al., 2017; Smith et al., 2015). This sort of data (text,
pictures and videos) was mostly collected through social me-
dia and public image repositories. Gathering data from such
sources requires mining of the relevant material (i.e. extrac-

tion of specific data from a dataset) and dealing with uncer-
tainties in the spatio-temporal characterisation of the data of
interest.

One aspect that varies across the studies is the level of de-
tail in the comparison method used for determining the water
level measurement. For example, McDougall (2011) and Mc-
Dougall and Temple-Watts (2012) explicitly state that field
visits to the selected photo locations are required in order
to properly analyse the image and extract water level values.
On the other hand, Fohringer et al. (2015), Smith et al. (2015)
and Starkey et al. (2017) do not mention any method.

In most cases, crowdsourcing was used to monitor water
level, followed by the use of such data for modelling and
lastly for mapping. In the case of Starkey et al. (2017), al-
though hydrological modelling was done and water levels
were converted into discharge to allow for comparisons, only
qualitative comparisons were made.

2.2 Velocity

As velocities and discharges traditionally require more com-
plex measuring methods, the collection of this type of data by
citizens has not been explored on a scientific basis. However,
it is common to include direct measurements of velocity in
protocols to monitor the environment and water quality, as
it is the case of Hoosier Riverwatch (IDEM, 2015). In these
cases, the citizens perform measurements that involve more
processing (e.g. definition of transects to measure flow, use
of formulas).

To the best of the authors’ knowledge, only three studies
were found that make use of velocity data collected by cit-
izens, all for the study of floods, as presented in Table 2.
Le Boursicaud et al. (2016) evaluated the surface velocity
field in a channel from a YouTube video, using the LSPIV
methodology (large-scale particle image velocimetry), an es-
tablished method to obtain velocity from a sequence of im-
ages. Ïn order to do this analysis, several visible elements are
required, such as fixed reference points and both river banks.
It is also necessary to know information about the camera
model and lens type. Although the method calculates the ve-
locity in two dimensions, in Table 2 we referred to it as 1-D
because it was carried out in a channel considered to be a 1-D
domain in the context of flood modelling. A complementary
project was discussed by Le Coz et al. (2016), in which the
same technique is applied to a video crowdsourced by a cit-
izen, this time using the result to estimate discharge and the
latter to calibrate a 1-D hydraulic model. For this, a visit to
the location was needed to extract cross-sectional data. In
this context, Yang and Kang (2017) developed a method for
crowd-based velocimetry of surface flows, based on particle
image velocimetry, in which citizens mark features in the pic-
ture. The method has not been tested with citizen-collected
data yet.

The third study, conducted by Smith et al. (2015), selected
Twitter messages that include terms of semantic value re-

Hydrol. Earth Syst. Sci., 22, 1473–1489, 2018 www.hydrol-earth-syst-sci.net/22/1473/2018/
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Table 1. Scientific literature on citizen contributions to measurement and analysis of water level

Study Measurement/analysis methods Type Purpose Flood type Location

Alfonso et al. (2010) citizen reading of water level gauges
sent by text message

1-D monitoring no flooding the Netherlands

Lowry and Fienen
(2013)

citizen reading of water level gauges
sent by text message

1-D monitoring no flooding USA

Degrossi et al. (2014) citizen reading of water level gauge
sent through app/website

1-D monitoring no flooding Brazil

Walker et al. (2016) citizen reading of water level gauge
collected and provided by the
community

1-D monitoring no flooding Ethiopia

Fava et al. (2014) citizen reading of water level gauge
sent through app/website

1-D modelling flood forecasting Brazil

Le Boursicaud
et al. (2016)

LSPIV analysis of video collected from
social media (YouTube)

1-D monitoring flash flood France

Le Coz et al. (2016) LSPIV analysis of video sent through
website

2-D modelling fluvial flood Argentina

Michelsen
et al. (2016)

analysis of images extracted from
videos collected from social media
(YouTube) and photographs

neither monitoring no flooding Saudi Arabia

Li et al. (2017) analysis of texts and pictures collected
from social media (Twitter)

2-D monitoring flood map USA

Starkey et al. (2017) citizen reading of water level gauge
and analysis of pictures and videos
collected from social media (Twitter)
and crowdsourced (email, website and
mobile app)

2-D monitoring flood UK

McDougall (2011),
McDougall and
Temple-Watts (2012)

analysis of texts and pictures collected
from social media (Twitter, Facebook)
and crowdsourced (email, text message,
Ushahidi, Flickr and Picasa)

2-D mapping flood map Australia

Kutija et al. (2014) analysis of pictures collected by the
university and city council

2-D modelling pluvial and
drainage flood

UK

Aulov et al. (2014) visual analysis of texts and pictures
collected from social media (Twitter
and Instagram)

2-D modelling coastal flood USA

Fohringer
et al. (2015)

visual analysis of pictures collected
from social media (Twitter) and
crowdsourced (Flickr)

2-D mapping flood Germany

Smith et al. (2015) analysis of texts and pictures collected
from social media (Twitter)

2-D modelling pluvial and
drainage flood

UK

lated to the citizen’s location, water depth (e.g. knee-deep)
and velocity. The terms were then associated with quantita-
tive values/ranges. The authors did not go into detail on the
reliability and uncertainty in such data, even though the issue
is recognised.

2.3 Flood extent

Flood extent, similarly to water level, is a variable that is sim-
ple to measure as it consists of binary values: flooded or non-
flooded area. As a 2-D variable, it needs a lot of spatial infor-
mation, which is the main reason related studies gather flood

www.hydrol-earth-syst-sci.net/22/1473/2018/ Hydrol. Earth Syst. Sci., 22, 1473–1489, 2018
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Table 2. Scientific literature on citizen contributions to measurement and analysis of velocity.

Study Measurement/analysis methods Type Purpose Flood type Location

Le Boursicaud
et al. (2016)

LSPIV analysis of video collected from
social media (YouTube)

1-D monitoring flash flood France

Le Coz et al. (2016) LSPIV analysis of video sent through
website

2-D modelling fluvial flood Argentina

Smith et al. (2015) analysis of texts and pictures collected
from social media (Twitter)

2-D modelling pluvial and
drainage flood

UK

Table 3. Scientific literature on citizen contributions to measurement and analysis of flood extent.

Study Measurement/analysis methods Purpose Flood type Location

Cervone et al. (2016),
Schnebele et al. (2014),
Schnebele and Cervone
(2013)

analysis of pictures and videos collected from
social media (Facebook and YouTube) and
crowdsourced (Flickr)

mapping flood map USA and Canada

Li et al. (2017) analysis of texts and pictures collected from
social media (Twitter)

mapping flood map USA

Rosser et al. (2017) analysis of crowdsourced pictures (Flickr) mapping∗ flood map UK

Aulov et al. (2014) visual analysis of texts and pictures collected
from social media (Twitter and Instagram)

modelling coastal flood USA

Smith et al. (2015) analysis of texts and pictures collected from
social media (Twitter)

modelling pluvial and
drainage flood

UK

Yu et al. (2016) citizen visual identification of flooded
location collected by Chinese government
website

modelling pluvial and
drainage flood

China

Padawangi et al. (2016) citizen information monitoring flood Indonesia

∗ A statistical model is created, but in this study we consider only physical models in the modelling category.

extent estimates in data rich environments, through social
media/photo sharing services mining, as shown in Table 3.
In some cases, the citizens act only as sensors, providing pic-
tures to be analysed by the research team, while in other cases
they also act as interpreters by providing the flooded/non-
flooded information. As can be expected, all studies found
were carried out in urban areas.

In some of the studies the text and images indicate if the
location where they are taken was flooded (georeferenced or
inferred; Aulov et al., 2014; Smith et al., 2015; Yu et al.,
2016), whilst in others further processing is used to infer
surrounding inundated areas (Cervone et al., 2016; Li et al.,
2017; Rosser et al., 2017; Schnebele et al., 2014; Schnebele
and Cervone, 2013). Additionally, the last group of studies

mentioned fused flood extent data from citizens with satel-
lite data or with gauge data.

2.4 Land cover/land use

Land cover is not a variable in flood-related models but we
include it in this review for its importance in inferring rough-
ness (i.e. the parameter representing momentum loss due to
friction, to the ground resistance encountered by the flow).
Other valuable aspects of land use data are the information
on roads and structures that can be obstacles to floods, which
can be incorporated in the model structure, as well as the in-
formation on vulnerability (e.g. hospitals, dense residential
areas, industrial zones), which can be used to obtain flood
risk maps. According to Klonner et al. (2016), when review-

Hydrol. Earth Syst. Sci., 22, 1473–1489, 2018 www.hydrol-earth-syst-sci.net/22/1473/2018/
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ing the literature on VGI for natural hazard analysis, there are
few studies for vulnerability analysis. The aspects of land use
related to vulnerability and risk are complex and study topics
onto themselves, so these aspects are not discussed further in
this article.

Table 4 presents the articles considered for this review.
Compared to previously discussed variables, the contribu-
tion of citizens to land cover map generation has already
been proven as a concept (Albrecht et al., 2014; Fritz et al.,
2012), and is currently being researched further for data qual-
ity (Salk et al., 2016) and fusion of maps (Lesiv et al., 2016).

One of the first publications on the subject was from Iwao
et al. (2006), in which they describe the Degree Confluence
Project. The objective was to generate a global land cover
map, which implies obtaining ground truth data from around
the globe. For obvious reasons, it was unfeasible to make
field campaign or analyse low-resolution images with suffi-
cient resolution. Thus, they launched a website that invited
citizens to visit integer coordinates (e.g. 25◦ N, 25◦W) loca-
tions, take photos from the four cardinal directions and pro-
vide comments on the region. They discovered that citizen-
generated data had similar quality to those provided by spe-
cialists.

Another significant project in the area is GeoWiki. It
started in 2009 as a platform for people to validate global
land cover maps, by comparing their classification to high-
resolution images (Fritz et al., 2009). The project has grown
since and has recently achieved its main goal: to generate
a hybrid global land cover map by fusing existing maps
and performing calibration and validation using the analy-
ses made by citizens (See et al., 2015a). Current initiatives
in the GeoWiki project include gamification and analysis of
pictures uploaded onto the platform (See et al., 2015b). Many
studies stemmed from the data collected, generally focused
on specific land cover types. A similar approach is taken by
Dong et al. (2012) that analyses pictures uploaded by citizens
using a different web application. The research conducted by
Dorn et al. (2014) goes one step further, as it attributes rough-
ness values to multiple land cover maps, including Open-
StreetMap3.

2.5 Topography

The digital elevation model (DEM) is one of the most impor-
tant components of flood modelling, as it generally heavily
influences flood propagation. It is particularly important in
urban settings, where spatial variability in refined scales has
a considerable effect on the direction of water flows. Unfor-
tunately, this is a complex variable to measure that so far re-
lies either on fully trained professionals going into the field,
or on expensive airborne technologies. The use of drones,
also called unmanned aerial vehicles (UAVs), is potentially a

3OpenStreetMap (OSM) is an online platform that provides
street maps and other information. The maps provided can be edited
by the users (including citizens) at any time.

low-cost alternative that is increasingly studied (Hamshaw
et al., 2017); however, so far studies on citizen-generated
drone data are limited to evaluating the spatial distribution of
contributions (Hochmair and Zielstra, 2015) or to the analy-
sis of repositories for image sharing (Johnson et al., 2017).
However, recently, Shaad et al. (2016) studied a terrain cap-
turing low-cost alternative to lidar remote sensing images and
other expensive methods. The low-cost technique is ground-
based close-range photogrammetry (CRP) that consists of
collecting images/videos from the ground, post-processing
them and obtaining terrain information. Volunteers made the
videos in a designated location, where even UAVs would not
be able to collect data. After comparing the results to other
methods, they concluded that the result had acceptable qual-
ity.

2.6 Summary analysis

By classifying the discussed studies according to Craglia
et al. (2012), there is an overall similarity in the number
of studies that crowdsource data implicitly and explicitly
(Fig. 3). It is however apparent that this aspect does not trans-
late into a homogeneous distribution of flood-related vari-
ables, as most implicitly volunteered contributions are re-
lated to flood extent and most explicitly volunteered contri-
butions are related to water level. There is a slightly higher
concentration of modelling studies that are explicitly volun-
teered, but not enough to be able to draw any conclusions.

Considering the temporal distribution of studies evaluated
in this review, it is evident that there is a trend: the rise in
number of studies from 2014 onwards (Fig. 4). This relates
to the initial barrier in acknowledging citizen data as being
of high enough quality for scientific studies (Buytaert et al.,
2014). This resistance has reduced over time as such data are
being proven useful, protocols are being designed and the
data uncertainty is being better understood and quantified.

If the analysed studies are aggregated into categories
(Fig. 5), it can be seen that modelling studies have approx-
imately the same quantity as monitoring ones, but they are
only about a third of all studies reviewed. This is expected
because using data in models requires monitoring them first.
Also, monitoring and mapping applications involve more
general end uses; for example, water levels can be monitored
for water allocation planning and flood modelling. Specifi-
cally for land cover, there is an unexplored field in modelling
(there are more mapping studies than the ones in the graph;
see Sect. 2.4). The reason may be that modellers do not
tend to validate their own land cover maps and thus will not
do it with citizen science data. What can be noted, though,
is the lack of exploration of velocity and topography vari-
ables, which, as mentioned, could be due to the complexity
in analysing and setting up the experiment.

Related to this, previous subsections discussed in detail
the methods for collection and analysis of flood-related data
obtained through crowdsourcing. For example, water level
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Table 4. Scientific literature on citizen contributions to measurement and analysis of land cover/land use.

Study Measurement/analysis methods Purpose Flood type Location

Iwao et al. (2006) visual interpretation of crowdsourced tagged
pictures sent through app/website (Degree
Confluence Project website)

mapping no flooding global land cover map

See et al. (2015b)∗ visual interpretation of Google Earth and
pictures sent through app/website (GeoWiki)

mapping no flooding global land cover map

Dong et al. (2012) analysis of tagged pictures from Global
Geo-Referenced Field Photo Library (DCP
citizen pictures+field trip pictures)

mapping no flooding forest cover map in Asia

Dorn et al. (2014) use of OpenStreetMap modelling fluvial flood Austria

∗Many other articles related to crowdsourcing through GeoWiki.

Studies using social media
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Walker et al. (2016)
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Figure 3. Selected studies represented in the typology of VGI (volunteered geographic information).
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Figure 5. Number of studies analysed per flood-related variable per
category: mapping, monitoring and modelling.

Hydrol. Earth Syst. Sci., 22, 1473–1489, 2018 www.hydrol-earth-syst-sci.net/22/1473/2018/



T. H. Assumpção et al.: Citizen observations contributing to flood modelling: opportunities and challenges 1481

Water level Reading water level gauge

Collection of data from 
social media/Flickr/Picasa

Visual analysis of tagged images

Open treet ap  editing

Crowdsourced data

Collection of data from You ube

Collection Analysis

Measurement (+)
Insta lation of gauges (-) Analysis (+)

Social media/Flickr/Picasa mining (-) 
Location and time (-)

Flood extent analysis (+)
Water level and velocity analysis (-)

Field visit for water level (-)

 mining (-) 
Location and time (-)

Established method (+)
Field visit (-)

Camera and other set ups (-)
Measurement (+)
App/website (-) Analysis (+)

Analysis (+)
App/website (-)

Measurement (+)
OSM land cover types (-) Analysis (+)

Measurement (+)
App/website or  mining (-) Established method (+)Crowdsourced video

Velocity

Flood extent

Topography

Land cover

T You ubeT

You ubeT

l

MS

Figure 6. Pros and cons of collection and analysis methods used to collect flood-related data by citizens.

data obtained by reading a water level gauge is easy to col-
lect and easy to analyse. On the other hand, it requires the
installation of gauges (Fig. 6). In summary, whenever data
are collected from the internet, there is the disadvantage of
needing social media/photo sharing services mining, entail-
ing computational efforts and dealing with a high percentage
of data that is not georeferenced or time-stamped. Further, in
the case of water level and velocity, some studies suggest that
field visits are also necessary and the methods for analysing
data are complex. Considering crowdsourced data on land
cover and topography, it is straightforward to measure and
analyse them, although their delivery to the interested parties
may require a smartphone app or a website to be set up and
maintained (with the exception of OpenStreetMap).

3 Crowdsourced data in flood modelling

By concentrating on the studies in which modelling was per-
formed, we explore in detail how crowdsourced data were
integrated into each component of flood models.

There is a variety of flood models developed to deal with
different types of floods, including fluvial, pluvial, coastal
and drainage floods. The main driver of fluvial, pluvial and
coastal floods is respectively upstream river discharge, pre-
cipitation and storm surges. In urban drainage floods, the
flows inside, through and outside of drainage systems are
pivotal for flood representation. Moreover, there are com-
plex cases where more than one flood process needs to be
represented. Although in physically based flood models wa-
ter flow is computed by the same principles, different sets of
data are needed for different types of flood models. We focus
on a general hydrodynamic model definition and its common
inputs but present the flood types evaluated in the scientific
literature (Table 5).

The flood modelling process typically has two parts:
model building and model usage (Fig. 7). Model building

starts by defining the model setup (boundary conditions, pa-
rameters, schematisation, input data), followed by calibration
and validation of the water level and velocity fields (depen-
dent variables) with observed values. Calibration and vali-
dation can be performed for both simulation and forecast-
ing models. Once the model is ready, simulations can be run
by using different boundary conditions or introducing mea-
sures designed for better flood management; also, forecasts
can be made by using forecasted water levels or discharges
as boundaries. In a simulation setting, model parameters are
assumed to be constant in time, while in a forecasting setting
the parameters, inputs or states (water levels) can be updated
while the model is in use, using data assimilation.

In the studies analysed (Table 5), three consider 1-D chan-
nels and the others worked in a 2-D setting. Most of them
analyse only one variable, except Smith et al. (2015), who
evaluate water level and velocity. Moreover, most of them
model urban floods, some in a pluvial or fluvial context.

Considering model building, specifically the model setup,
citizens contributed to improving/updating land cover (and
consequently roughness) and topography information. Dorn
et al. (2014) used the land cover information contained in
OpenStreetMap for modelling a fluvial flood. They do not
analyse how many observations were made by the citizens,
and data processing is restricted to attributing land cover
classes to the features displayed in the maps. In the study
of Shaad et al. (2016), which addresses topography, there is
only one citizen contribution (low-cost alternative) in one se-
lected location that is merged with an existing DEM and then
used in the model. In both cases, the objective was to com-
pare the performance of this low-cost alternative against the
performance of consolidated technologies when used for hy-
drodynamic simulations.

Crowdsourced data have also been used to calibrate and
validate flood models in four studies. One study gathered
such data through social media and public image reposito-
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Table 5. Scientific literature on crowdsourced data used in flood modelling.

Use in
modelling

Study Measurement method Type Variable Flood type Location

Model setup Dorn
et al. (2014)

use of OpenStreetMap 2-D land cover fluvial flood Austria

Shaad
et al. (2016)

analysis of pictures captured
by volunteers at selected
location

2-D topography fluvial flood Indonesia

Calibration Smith
et al. (2015)∗

analysis of pictures and tweets
collected from social media
(Twitter)

2-D water level
and veloc-
ity

pluvial and
drainage flood

UK

Le Coz
et al. (2016)

LSPIV analysis of videos sent
through website

1-D velocity fluvial flood Argentina

Yu
et al. (2016)

citizen visual identification
of flooded location provided
through Chinese website

2-D flood extent pluvial and
drainage flood

China

Validation Kutija
et al. (2014)

analysis of pictures collected
from the university and city
council

2-D water level pluvial and
drainage flood

UK

Yu
et al. (2016)

citizen visual identification
of flooded location provided
through Chinese website

2-D flood extent pluvial and
drainage flood

China

Data
assimilation

Aulov
et al. (2014)

visual analysis of texts and
pictures collected from social
media (Twitter and Instagram)

2-D water level
and flood
extent

coastal flood USA

Mazzoleni
et al. (2015,
2017)

simulated citizen reading of
water level gauge sent through
app

1-D water level flood forecasting
without flood
model

Italy and USA

Fava
et al. (2014)

citizen reading of a water
level gauge sent through app or
website

1-D water level flood forecasting
without flood
model

Brazil

∗ It is classified as calibration because, in the classical sense, it improves the model according to observations. However, what actually is done is the fine-tuning selection of
the precipitation field that fits the observations better.

ries mining and the others through data uploaded by citizens
on specific platforms. Smith et al. (2015) identified storm
events through social media, triggering shock-capturing hy-
drodynamic model runs with various rainfall intensities. The
results were compared with social media data on water
level/velocity. The comparison consisted of defining a buffer
zone around the crowdsourced observation location, built
a histogram of simulated cell values within it and evaluating
the overlap of crowdsourced value/range and the histogram
70th–95th percentile range. As most citizen contributions did
not have a water level/velocity value, they received a mini-
mum water level value. Because of that, the selected simu-
lation was the one with more “overlaps” and would not per-
form better than a simulation with slightly higher rainfall. Yu
et al. (2016) collected flooded data through a Chinese web-

site and divided it into calibration and validation data sets
for pluvial flood model verification. There is no mention-
ing on how these data are provided (e.g. text or image). Le
Coz et al. (2016) obtained a discharge value for calibration of
a hydraulic model based on the surface velocity data obtained
by a video uploaded to a specific website. Kutija et al. (2014)
collected pictures uploaded by citizens and extracted water
levels from them by comparison with reference objects, such
as cars (no further detailing on the method of extraction is
made). Water level data are then used to validate a pluvial
flood model.

The described approaches so far consider citizen data for
model building and their possible extension for recalibra-
tion and revalidation. Four studies went one step further,
integrating crowdsourced data in model usage. Mazzoleni
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Figure 7. Flood models data requirements. Orange-coloured tiles correspond to data that citizens have contributed to in a flood modelling
context and gridded tiles correspond to data citizens cannot contribute to (forecasted water levels and discharges).

et al. (2015, 2017) used synthetically generated data to rep-
resent citizen observations, which were incorporated in the
model through data assimilation algorithms, adapted to deal
with the intermittent nature of crowdsourced data. Aulov
et al. (2014) and Fava et al. (2014) also used the data for
simulation/data assimilation, but the methods used are not
detailed in the studies. However, the studies of Mazzoleni
et al. (2015, 2017) and Fava et al. (2014) were made for flood
forecasting through hydrological models and not using hy-
drodynamic models.

3.1 Crowdsourced data information content

If we aim to integrate data into a model, data accuracy, vol-
ume and temporal and spatial coverage should be at certain
levels. When these data properties are inadequate, data inte-
gration will not provide useful results (i.e. the model perfor-
mance can be low). Although most modelling variables vary
in time and space, the data does not need to cover all dimen-
sions in all parts of the modelling process. For instance, in
model setup, topographic data are not needed every 15 min,
hour or day; they can be provided with discrete time cover-
age, from months to years. We analyse four data properties:
temporal coverage, spatial coverage, volume and uncertainty
(Table 6). Although the same for all parts, the last two prop-
erties vary significantly when analysing the information con-
tent of crowdsourced data, which is why these properties are
included (Table 6).

Analysing crowdsourcing studies by their information
content, it is possible to draw the following conclusions:

– Model setup: for integration of topographic and land
cover data, it is necessary to have spatially distributed
data. While this has been achieved within land cover
studies, there is only one study involving topography
and the data obtained so far have discrete spatial cover-
age.

– Calibration and validation: through mining and crowd-
sourcing of water level and flood extent estimates, spa-
tially distributed crowdsourced data have already been
obtained for calibration/validation of simulation mod-
els. The accuracy of the time stamp was considered vital
(Kutija et al., 2014), and results in time have a prelimi-
nary good level of agreement with citizen observations
(Yu et al., 2016). However, even though these studies
compare the results with citizen observations in time,
this is done qualitatively and there is no focus on re-
porting and evaluating the temporal coverage.

– Simulation: traditional modelling efforts require time
series of data at specific frequencies, which has only
been achieved through crowdsourcing in the realm of
community-based approaches, in which water levels are
measured at 06:00 and 18:00 in agreement with the
community (Walker et al., 2016). However, this type of
data has been only monitored and not used in a mod-
elling context so far.
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Table 6. Data properties currently required in the modelling process.

Setup Calibration and validation∗ Simulation Data assimilation Data assimilation

topography
land cover

water level
velocity
flood extent

water level
velocity

water level
velocity

flood extent

Temporal coverage discrete discrete/continuous continuous variable variable

Spatial coverage distributed discrete/distributed discrete discrete unknown

Uncertainty the lower the better

Volume the higher the better

∗ Dependent on purpose of the model.

– Data assimilation: it generally assimilates data provided
with a fixed time frequency, but there are a few studies
that consider intermittent data to be assimilated (Maz-
zoleni et al., 2015, 2017). However, similarly to simu-
lation, the temporal coverage of crowdsourced data is
insufficient for data assimilation efforts.

Considering uncertainty, this is highly dependent on the col-
lection/analysis method. For example, obtaining water level
values from pictures of flooded areas (2-D) is uncertain, as it
mostly involves selecting what constitutes a good reference
point, decided by the citizen. Flood extent, on the other hand,
tends to be less uncertain to measure, due to its binary nature.
The collection through data mining (and sometimes crowd-
sourcing) has, in general, more sources of uncertainty: from
geotagging, time stamping and the observed value. To deal
with the first two, Aulov et al. (2014) used only data that con-
tained proper geotags and time stamps. Kutija et al. (2014)
classified non-time-stamped data as during or after the event,
based on picture visual inspection, defining an observation
time range. Smith et al. (2015) dealt with uncertainty in loca-
tion by generating a histogram of simulated values around the
observed point. Yu et al. (2016) acknowledged these sources
of uncertainty. Regarding uncertainty in value, existent in all
sources of crowdsourced data, most studies used the (pro-
cessed) observations as they were, without indication of un-
certainty. Smith et al. (2015) defined ranges, although these
are not discussed. Mazzoleni et al. (2015, 2017), used uncer-
tain synthetic crowdsourced data with variable uncertainty.

Regarding volume of data collected, this is an issue for all
modelling processes, although data mining has again been
able to provide better coverage. Despite this positive aspect,
data mining is so far limited to certain variables (water level,
flood extent and velocity) and to data generated on public in-
terest, such as extreme conditions. Some of the studies were
proof of concepts and integrated up to three crowdsourced
observations each (Le Coz et al., 2016; Fava et al.; 2014;
Shaad et al., 2016). Others ranged from 12 to 298 observa-
tions (Kutija et al., 2014; Smith et al., 2015; Yu et al., 2016),

and in some cases it was not possible to define the exact num-
ber of observations (Aulov et al., 2014; Dorn et al., 2014).

4 Opportunities and challenges

In recent years, the interest in citizen science and the num-
ber of citizen science studies in the water resources context
has risen considerably. The main factors affecting its use in
flood modelling are the degree of how difficult it is to acquire
and evaluate these data and their integration into the models.
Our analysis of the existing literature allows for pointing out
a number of positive experiences from which we can derive
opportunities to

– explore and improve the existing methods to obtain wa-
ter velocity and topography from videos;

– explore calibration and validation employing data col-
lected through social media in urban environments;

– explore the possibilities of setting up the models with
the use of land cover maps validated with citizen sci-
ence;

– make use of apps/websites already developed for citizen
science.

The first one is based on small-scale but successful stud-
ies related to using well-developed techniques in citizen sci-
ence scenarios. The relevant experience in data gathering and
analysis can be updated to fit the needs of flood modelling.
Also, the mining of social media and public image repos-
itories has proved to be successful in calibration and vali-
dation in modelling studies, proving the concept and allow-
ing for investigation into how large this contribution is. As
mentioned previously, in the field of land cover map gener-
ation, citizen data have been used to validate maps and this
successful example could be used to obtain new roughness
maps in a modelling context. Lastly, technological develop-
ment of apps, websites and techniques could be shared and
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put to public use, to be tested further and to avoid duplicated
work.

There are aspects of the integration of crowdsourced data
into flood modelling that are still challenging. These are as
follows:

– exploring the use of citizens as data interpreters;

– improving methods to estimate water level from pic-
tures;

– harmonising the time frequency and spatial distribution
of models with the ones of crowdsourced data;

– quantifying uncertainty;

– increasing the volume of data gathered, mainly in non-
urban environments.

Most of the studies analysed treat the citizen as a sensor,
with the exception of studies about land-cover-related data,
in which the citizen also acts as an interpreter. For other vari-
ables, some studies have already started evaluating the ability
of citizens to provide interpreted information (Degrossi et al.,
2014), but these are few. Regarding water levels, readings
from rulers and extraction from pictures are described differ-
ently in the literature, with varying degrees of thoroughness,
indicating a need for development and testing of water level
measurement methodologies in the context of citizen contri-
butions. The third point brings up a challenge that concerns
not only citizen science but also modelling: what is the neces-
sary temporal and spatial distribution? Is the traditional mod-
elling approach definitive in terms of data requirements and
should citizen science approaches adapt to it, or can the mod-
elling process be adapted to receive citizen science data? The
fourth challenge relates to the quality of data and, again, in
the area of global land cover maps some articles have already
discussed the subject (Foody et al., 2013); however, when
modelling is concerned, the crowdsourced data are treated as
traditional data and the issue of quality is recognised as an is-
sue but is hardly addressed. To what extent does this assump-
tion hold? What is the uncertainty in citizen science data?
Lastly, there is a challenge mentioned by many studies but
not really addressed directly: the volume of data. Although
the volume of data necessary depends on the objective of the
modelling effort, the volume of crowdsourced data tends to
be low, lacking temporal/spatial coverage for integration into
models. This leads to the question of how to increase the vol-
ume of data. Considering this limitation, it is also natural to
move towards the question of how much data are needed to
improve the model significantly.

Application of citizen science in modelling brings the ex-
tra challenge of being interdisciplinary. Among similar tech-
nical fields (e.g. geosciences and hydrodynamic modelling)
there is the issue of technology transfer to be addressed, and
there are discussions on underlying assumptions and uncer-
tainties that need to be considered. Additionally, hard and

soft sciences are very linked, as the quality and value of the
citizen observations and their temporal/spatial coverage are
intrinsically related to social drivers such as why citizens en-
gage, for how long, with which frequency and what is the
role of various stakeholders.

5 Conclusions and recommendations

Citizen science has successfully made its way into many sci-
entific domains, and it is only fair that the contribution of cit-
izens to modelling floods is also investigated, due to related
intensive data needs. Analysis of literature clearly shows
an increasing number of scientific studies in this area. Suc-
cessful examples of using existing measurement and analy-
sis methods (e.g. velocity and land cover) and of modelling
floods with citizen science data (e.g. social media mining)
have been published and are seen as a good basis for further
exploration. There is a clear need to standardise and consol-
idate methodologies and there are challenges involving tem-
poral and spatial distribution of data, uncertainty and volume.

It can be observed that the role of citizen contributions is
not only to provide information about the current state of the
environment, in monitoring and mapping studies; it is also to
provide data that can be used in modelling and forecasting.
Studies reviewed in this article show that crowdsourced data
can be integrated: in model building to improve their overall
performance, and directly into models (by data assimilation)
to improve immediate forecasts. These are promising studies,
though still too few, and they highlight the need for further
work in this direction. The integration of crowdsourced data
into flood models is a viable way to help solve issues of data
scarcity, with greater potential in ungauged catchments and
systems subject to change (e.g. climate change).

One of the challenges worth mentioning is the integration
of citizen data with other more traditional data sources like
gauging and remote sensing. It is also necessary to analyse
cases in which citizens are involved at higher levels of en-
gagement (e.g. participating in the problem definition, analy-
sis of results and even in the decision-making process) and to
evaluate the trade-off between model data needs and levels of
engagement. The active involvement of citizens may lead to
more data collected, which in turn may lead to more involve-
ment and subsequently, to improved modelling of floods.

Finally, there is the challenge of making citizen contribu-
tions valuable at a time when automation is gaining increas-
ing space. One may say that citizens are not needed because
of automated sensors. At the same time, there are situations
where crowdsourced data are very valuable. One of the non-
technical challenges that we see here is to demonstrate such
situations and increase acceptance of crowdsourced data by
water managers.
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