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1
Introduction

This report provides the reader with an article and a literature review, focusing on the use of Control
Barrier Functions (CBFs) to handle collision constraints in Model Predictive Control (MPC) for unmanned
multicopters. The literature review identifies gaps in the current research and forms the basis for the article.
The goal of the article is to answer the research questions arising from the literature review. The purpose
of this introduction is to provide a concise motivation, define the research objective and questions, and
outline the report’s structure.

1.1. Motivation
The use of unmanned aerial vehicles (UAVs) has seen a significant growth in the field of inspection applica-
tions [1]. An example of this is an A-check, a visual aircraft inspection, which takes about 3-4 hours when
performed manually. By using an automated drone this time can be decreased by up to 75%1. In their
survey on fully autonomous drones Elmokadem and Savkin noted that the development of robust planning
and execution algorithms for safe UAV trajectories, particularly in complex and dynamically changing en-
vironments, remains a challenge. This challenge is primarily caused by non-perfect sensors, non-perfect
state estimation and limited hardware capabilities.

In the realm of trajectory generation and tracking, the conventional approach for UAVs involves a de-
coupled process. In this approach, a high-level trajectory planner plans a collision-free path, which is
subsequently tracked by a controller. For instance, in [3], this involves employing an RRT* path planner
to create a collision-free path, which is then tracked using an MPC. However, in unknown environments,
the integration of these two steps can be more efficient (kinodynamic planning), enabling real-time trajec-
tory planning and tracking. Yet, incorporating collision constraints can complicate real-time solutions and
introduce convergence challenges [2].

In [4], the authors employ Nonlinear MPC (NMPC) with Euclidean Signed Distance Fields (ESDFs) for
collision avoidance in dense, unknown environments, achieving real-time navigation within a forest envi-
ronment without the need for obstacle segmentation. Addressing the limitations of previous deterministic
kinodynamic planning, Zhu and Alonso-Mora propose a Chance Constrained Nonlinear MPC (CCNMPC)
in [5]. This introduces probabilistic collision risk constraints based on state estimator mean and stan-
dard deviation values. While this approach improves robustness, it comes at the cost of computational
complexity, mainly arising from integrating probability densities.

Another emerging area of research focuses on the fusion of MPCwith Control Barrier Functions (CBFs).
The primary objective here is to combine the non-greedy nature of MPC with the safety guarantees offered
by CBFs. However, research in this field is, to the best of the authors’ knowledge, limited to just a few
papers. Two of these papers present simulation experiment results using MPC with a CBF collision con-
straint applied in the context of a racing car, i.e., [6] and [7]. Additionally, there is one paper that applies
CBFs as an MPC constraint for foot placement on a walking robot on real hardware [8]. Recently Li et al.
published the arXiv preprint [9]. This paper focused on incorporating CCNMPC with CBF for collision
avoidance using a 2D double integrator model with moving obstacles. The authors aimed to harness the
strengths of both MPC-CBF and the robustness of CCNMPC in their approach. Their findings indicate that

1https://mainblades.com/wing-inspections/
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CC-MPC-CBF delivers significant enhancements over deterministic MPC-CBF when dealing with noise,
although they do not discuss the potential increase in computational complexity. It is worth noting that all
four papers assumed an analytical function for the safe set of the CBFs. This assumption might not hold in
scenarios involving collision avoidance, for example when the environment is at least partially unknown.

Despite the limited amount of research and the dependency on analytical functions to describe the
surroundings, the results look promising. In all three papers, the use of CBFs as constraints provided a
significant improvement in performance.

1.2. Research Formulation
The goal of this research is to study the feasibility of MPC-CBF combined with ESDFs that encode the
obstacles in the Optimal Control Problem (OCP). Specifically, the research objective is defined as follows:

The primary objective of this thesis is to develop and validate a control framework for UAVs
that combines MPC and CBF collision constraints using ESDFs. The research aims to demon-
strate the effectiveness, robustness, and practicality of this novel control approach in real-time
trajectory planning, tracking, and obstacle avoidance scenarios, ultimately enhancing the capa-
bilities of UAVs for complex missions in challenging environments.

Research Objective

This research objective has been made more concrete by subdividing it into three research questions.
The three research questions are as follows:

What is the effect of applying first-order and second-order CBFs to ESDF-based collision con-
straints in MPC for UAVs on the trajectory planning and tracking?

Research Question 1

What is the effect of changing the variable parameters γ on the trajectory planning and track-
ing when using ESDF-based CBF collision constraints for UAVs in MPC?

Research Question 2

How do noise and delays influence trajectory planning and collision avoidance in UAVs, and
how do these effects compare between baseline ESDF-based distance constraints and CBF
collision constraints in MPC?

Research Question 3

1.3. Structure of the Report
The report is structured as follows: Part I contains a stand-alone scientific article titled ”Application of
Control Barrier Functions to Euclidean Signed Distance Field based Collision Constraints in Model Pre-
dictive Control”. This article covers key aspects including an introduction that sets the context, background
information to provide essential context, the design of the controller, details of the experiment setup, pre-
sentation and analysis of results, and a concluding section that summarizes the insights gained. Part II
contains the literature review, which has been assessed in AE4020.
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Application of Control Barrier Functions to Euclidean Signed
Distance Field based Collision Constraints in Model Predictive

Control

R.C. de Vries, Ir. T.S. Horstink, Dr. Ir. E.J.J. Smeur
Delft University of Technology, Faculty of Aerospace Engineering, Department of Control & Simulation,

Micro-Air-Vehicle Laboratory (MAVLab)

Recent literature in real-time trajectory planning has proposed using Control Barrier
Functions (CBFs) as collision constraints in Model Predictive Control (MPC) for
efficient guidance, a concept referred to as MPC-CBF. This concept has been explored
for both first and second-order CBFs. However, these approaches relied on an analytical
description of the environment. Building upon this, we propose combining MPC-CBF
with Euclidean Signed Distance Fields (ESDFs), eliminating the need for such an
analytical model of the environment. Notably, we extend this approach to a new
field by applying it to Unmanned Aerial Vehicles (UAVs). Through simulations, we
compare flown trajectories and noise robustness for distance constraints, first-order CBF
constraints and second-order CBF constraints. First-order CBF constraints outperform
distance constraints, excelling in path planning and noise resilience. Second-order CBF
constraints face challenges due to numerical approximations of the hessian of the ESDF
and stricter dependency on an accurate acceleration model, limiting their practicality
for UAVs. The proposed control framework was tested by safely maneuvering an
enterprise inspection drone around a Boeing 787-9 aircraft inside an aircraft hangar,
confirming its effectiveness in collision avoidance and real-world scenarios.

I. Introduction

The field of unmanned aerial vehicles (UAVs) has
seen a significant growth in recent years due to

their potential applications in various fields such as
search and rescue [1], precision agriculture [2], and
inspection purposes [3]. One of the key challenges
in the development of UAVs is the ability to plan and
execute safe and efficient trajectories in complex and
dynamic environments [4].

Usually, this trajectory generation and tracking is
achieved in a decoupled manner where a high-level
trajectory planner is used to create a feasible collision-
free path that is to be tracked by a controller. An
example of such a workflow is [5], the approach ini-
tially involves devising a collision-free path using
an RRT* path planner. Subsequently, it employs a
minimum snap trajectory generator using the gener-
ated path that is then tracked by a Model Predictive
Controller (MPC).

In unknown environments it can be more efficient to
combine these two steps to achieve real-time trajectory
planning and tracking. This is called kinodynamic
planning. However, factoring in collision constraints
in planning complicates real-time solutions and intro-
duces possible convergence issues [4].

In [6] the authors use NMPC with Euclidean Signed
Distance Fields (ESDFs) collision constraints for ob-
stacle avoidance with local exploration to escape
local minima. The authors manage to navigate in
the unknown environment of a dense forest using
fully onboard mapping and planning at 4 Hz. The
use of ESDFs eliminates the need for segmenting the
obstacles.

Zhu and Alonso-Mora note in [7] that trajecto-
ries generated by previous deterministic kinodynamic
planning studies are not robust to state estimation or
localization errors. The authors propose a Chance
Constrained Nonlinear MPC (CCNMPC). Rather than
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using strict collision constraints, a constraint is put on
the probability of the risk of a collision. This is done
by taking into account the mean and standard deviation
of the state estimator. The authors show in a position
swap experiment between two quadcopters a signifi-
cant improvement over a deterministic NMPC while
using a motion capture system with injected noise on
the state. However, the authors note that numerically
integrating collision probabilities is computationally
very expensive.

A novel promising subfield of kinodynamic plan-
ning is the combination of MPC and Control Barrier
Functions (CBFs). In [8] the authors show that CBFs
on distance are a more general case of Artificial Poten-
tial Fields (APFs) and solve the problem of oscillatory
behavior common in APF methods. APF is inspired
by the repulsive and attractive force of charged parti-
cles and a common technique for collision avoidance
first introduced in 1986 by Khatib. Stastny et al. show
the first combination of MPC and APF on a UAV
for collision avoidance, repeated many times, e.g., in
[11]. More background information about CBFs is
provided in subsection II.B.

The general idea of combining MPC with CBF is
to combine the safety guarantees of CBFs with the
non-greedy nature of MPC to plan and track robust
trajectories. In both [12] and [13] the authors com-
bine MPC with a CBF constraint for a car simulation
and show increased driving performance over con-
ventional MPC. In [14] the authors demonstrate the
performance improvement achieved by incorporating
both a first-order CBF constraint in an MPC planner
and a safety filter in the low-level tracking controller
for a legged robot. Li et al. recently published an
arXiv preprint [15] on chance constrained MPC with
CBF for moving obstacle collision avoidance using a
2D double integrator model. The authors conclude
that CC-MPC-CBF offers a significant improvement
over deterministic MPC-CBF in the presence of noise,
but make no mention of the added computational
cost. Note that all these papers rely on an analytical
description of the environment.

We aim to investigate and analyze the effects of
this combined methodology specifically for trajectory
planning and obstacle avoidance applied to quadcopter
scenarios when combined with ESDFs. The contribu-
tions of this work are as follows:

• Novel Control Design: MPC-CBF Integration

with ESDFs. This work presents, to the best
of the authors’ knowledge, the first combination
of MPC-CBF with ESDFs. The use of ESDFs
eliminates the need to segment obstacles and a
specific obstacle model (e.g., modeling objects
as spheres). Specifically, a comparison of the
mission duration and collision avoidance perfor-
mance between a distance constraint, first-order
CBFs and second-order CBFs, all using ESDFs
is given.

• Noise and Delay Analysis: This research also
includes an investigation into the influence of
delays and noise on the state of the deterministic
MPC-CBF controller. By subjecting the con-
troller to various challenging scenarios, the study
evaluates its robustness, reaffirming its reliability
and practicality in real-world applications.

• New Context: This work presents, to the best
of the authors’ knowledge, the first-ever com-
bination of MPC and CBF for real-time trajec-
tory planning and tracking onboard a UAV. The
proposed controller is thoroughly tested on two
simulators. Additionally, the resulting frame-
work is validated using an aircraft inspection in a
GPS-denied hangar using lidar inertial odometry.

The article is organized as follows: section II pro-
vides background information about the quadcopter
model used and CBFs. In section III, the controller de-
sign is described. In section IV the methodology and
results of the first simulation experiment are presented:
flying a multi-waypoint trajectory around a machine
hall. In section V the second simulation experiment
is laid out: the inspection of an aircraft under the
influence of a fixed delay and varying noise levels on
the state. After that, section VI describes the practical
experiment of an aircraft inspection, which serves
to validate the previously acquired results. Finally,
in section VII, the paper is concluded, and potential
future work is discussed.

II. Background

This section provides the reader with background
information on the quadcopter model used in subsec-
tion II.A and on CBFs in subsection II.B.
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A. Quadcopter Model
Note that this model assumes a low-level controller for
the roll angle, pitch angle, yaw rate and throttle. This
is (among others) available for Parrot multicopters1,
DJI multicopters2 and PixHawk controllers [16]. It is
also assumed that the user performed a throttle-thrust
mapping, e.g., as in [17].

Formally, the control input vector is represented
as u =

[
𝜙𝑐, 𝜃𝑐, 𝑇𝑐, ¤𝜓𝑐

]𝑇 ∈ R4, where 𝜙𝑐, 𝜃𝑐, 𝑇𝑐,
¤𝜓𝑐 are the commanded roll angle, pitch angle, mass
normalized thrust (total thrust divided by UAV mass)
and yaw rate, respectively. The model is proposed by
[18] and modified by adding first-order dynamics to
the mass normalized thrust, introducing an extra state.
The model is as follows:

¤p(𝑡) = v(𝑡)

¤v(𝑡) = R(𝜓, 𝜃, 𝜙)
©«

0
0
𝑇

ª®®¬ +
©«

0
0
−𝑔

ª®®¬
−
©«
𝐴𝑥 0 0
0 𝐴𝑦 0
0 0 𝐴𝑧

ª®®¬ v(𝑡)

¤𝑇 (𝑡) = 1
𝜏𝑇

(𝑇𝑐 (𝑡) − 𝑇 (𝑡))

¤𝜙(𝑡) = 1
𝜏𝜙

(𝜙𝑐 (𝑡) − 𝜙(𝑡))

¤𝜃 (𝑡) = 1
𝜏𝜃

(𝜃𝑐 (𝑡) − 𝜃 (𝑡))

¤𝜓(𝑡) = ¤𝜓𝑐 (𝑡),

where p and v are the three-dimensional position
and velocity vectors in the global frame, respectively.
The model assumes first-order dynamics for the roll
angle, pitch angle and the mass normalized thrust, no
time delay for the commanded control inputs and a
linear relationship between the velocity and the air
resistance.

R(𝜓, 𝜃, 𝜙) is the rotation matrix from the body
frame of reference to the global frame of reference. 𝑔 is
the gravitational acceleration. 𝐴𝑥 , 𝐴𝑦 and 𝐴𝑧 indicate
the mass normalized drag coefficients, and 𝜏𝜙, 𝜏𝜃 and

1https://www.parrot.com/assets/s3fs-public/
2022-01/whitepaperanafiai.pdf

2https://developer.dji.com/onboard-sdk/
documentation/introduction/homepage.html

𝜏𝑇 indicate the time constants for the roll angle, pitch
angle and mass normalized thrust, respectively.

B. Control Barrier Functions
Throughout this subsection the following dynamic
control-affine system is assumed:

¤x = 𝑓 (x) + 𝑔(x)u, (1)

where 𝑓 and 𝑔 are locally Lipschitz functions, x ∈
𝑋 ⊂ R𝑛 is the state in the state space and u ∈ 𝑈 ⊂ R𝑚
is the control input in the space of control inputs.

The goal is to be forward invariant inside a user
defined safe set. I.e., starting in the set, means staying
inside of it. This set is usually denoted by 𝑆(x) for all
x ∈ 𝑋 where ℎ(x) ≥ 0. An example of the function ℎ

in the context of collision avoidance is the distance to
the nearest obstacle. This implies a safe set of every
state with a non-collision position. For a system of
relative degree 1, this can be guaranteed by:

sup
u∈𝑈

[ ¤ℎ(x)] = sup
u∈𝑈

[
𝐿 𝑓 ℎ(x) + 𝐿𝑔ℎ(x)𝑢

]
≥ −𝛾(ℎ(x)).

(2)
If a function ℎ satisfies this property, it is called a

CBF. Intuitively this makes sense: −𝛾(ℎ(x)) is zero
near the borders and is negative in the set. 𝐿 𝑓 ℎ(x) +
𝐿𝑔ℎ(x)u is the Lie derivative of ℎ(x). In other words,
the derivative is forced to be at least 0 at the borders
but can decrease in the safe set S. Given the definition
of the safe set as the region where the CBF is greater
than zero, if a starting point is within this set, it implies
that the trajectory remains within the safe set [19].

In the context of collision avoidance, where 𝑑 (p)
is the distance to the nearest object given a certain
position p, the function 𝛾 dictates what the maximum
velocity towards an object ¤𝑑 (p) can be given a distance
function 𝑑 and a certain position p. Note that 𝛾 can
be seen as a trade-off between feasibility and safety.
This is extensively described in [12].

These results can also be extended to systems with
a higher relative degree by nesting CBFs, as described
in [20]. For a system of relative degree 2 this results
in applying the CBF condition Equation 2: 𝑔(x) =
( 𝑑
𝑑𝑡

+ 𝛾) ◦ ℎ(x) resulting in:

¤𝑔(x) ≥ −𝛾(𝑔 (x)) . (3)
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Note that ◦ stands for function composition. This
CBF condition guarantees 𝑔(x) ≥ 0, which on itself
is a CBF that guarantees ℎ(x) ≥ 0.

III. Control Design
This section describes the use of ESDFs, defines
the optimal control problem, and finally lays out the
control architecture.

A. Euclidean Signed Distance Field
ESDFs are data structures in computer graphics, en-
abling efficient distance calculations from any point to
the nearest obstacle. Negative distance values signify
that the point is located inside a closed shape.

The authors of [21] introduced Voxblox, an open-
source library facilitating real-time 3D environment
modeling and mapping through discrete voxel-based
ESDF maps, with each voxel storing proximity dis-
tance. Voxblox’s effectiveness lies in seamless voxel
grid updating and querying, employing incoming
depth maps, and calculating distance gradients using
the finite difference method across adjacent voxels.
In this paper, static ESDFs are created from avail-
able OctoMaps [22]. This process is described in
Appendix A.

B. Optimal Control Problem
The optimal control problem for an iteration at
timestep 𝑡 is defined as follows:

min
u𝑡:𝑡+𝑁−1|𝑡

𝐽 =

𝑁−1∑︁
𝑘=0

𝑞
(
u𝑡+𝑘 |𝑡

)
+𝑝

(
x𝑡+𝑁 |𝑡

)
+

𝑁∑︁
𝑘=0

𝑟
(
s𝑡+𝑘 |𝑡

)
𝑠.𝑡. x𝑡+𝑘+1 |𝑡 = 𝑓

(
x𝑡+𝑘 |𝑡 , u𝑡+𝑘 |𝑡

)
, 𝑘 = 0, . . . , 𝑁 − 1

u𝑡+𝑘 |𝑡 ∈ U, 𝑘 = 0, . . . , 𝑁 − 1
x𝑡+𝑘 |𝑡 + s𝑥,𝑡+𝑘 |𝑡 ∈ X, 𝑘 = 0, . . . , 𝑁

s𝑥,𝑡+𝑘 |𝑡 ≥ 0, 𝑘 = 0, . . . , 𝑁
ℎ
(
x𝑡+𝑘 |𝑡

)
+ sℎ,𝑡+𝑘 |𝑡 ≥ 0, 𝑘 = 0, . . . , 𝑁
sℎ,𝑡+𝑘 |𝑡 ≥ 0, 𝑘 = 0, . . . , 𝑁,

where 𝑞 is the control input stage cost, 𝑝 is the
terminal state cost, 𝑟 is the slack cost, ℎ is the collision

constraint and 𝑓 is the model (which was described in
section II). The slack vectors s are used to soften the
state and collision constraints at a high cost. Slightly
violating the constraint is preferred over a controller
that fails to solve the control optimization problem.
The state x ∈ R10 is as follows: x = [p, v, 𝜙, 𝜃, 𝜓, 𝑇]𝑇 .

After every iteration, the optimal first control input
u0 is sent to the UAV interface, as shown in Figure 1.

In this paper three different collision constraints of
increasing dynamic order will be compared, namely:

ℎ1 = 𝑑 (p)

ℎ2 = ¤ℎ1 + 𝛾1ℎ1 =
𝑑ℎ

𝑑p
· v + 𝛾1𝑑 (p)

ℎ3 = ¤ℎ2 + 𝛾2ℎ2 =
𝑑ℎ

𝑑p
· a + 𝑑2ℎ

𝑑p2 · v2

+ (𝛾1 + 𝛾2)
𝑑ℎ

𝑑p
· v + 𝛾1𝛾2𝑑 (p),

where ℎ1 is a distance constraint, ℎ2 is a first-order
CBF constraint on the distance and ℎ3 is a second-
order CBF constraint on the distance. Note that ℎ1 is
only dependent on the positions, ℎ2 is dependent on
the positions and the velocities and ℎ3 is dependent
on the accelerations, the velocities and the positions.

Please note that the distance to the nearest obstacle,
denoted as 𝑑 (p), as well as its respective derivatives,
are computed using ESDFs.

C. Control Architecture
The complete control architecture can be summarized
in Figure 1. Details of each process (block in diagram)
can be found below:

1. Optimizer
For the optimization solver in this study, we selected
the widely used HPIPM solver implemented by the
acados software package [23, 24].

2. Model
The model is described in subsection II.A.

3. UAV Interface
For both simulation experiments the 3DR Iris Quadro-
tor PX4 Gazebo Software In The Loop was used3.

3https://docs.px4.io/v1.12/en/simulation/
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Figure 1. Control diagram of the proposed controller.

This open-source 3D simulator simulates both the
physics and the resulting MAVLink messages4. The
interfacing to the simulator is done via MAVROS5.

For the practical experiment a DJI M300 RTK drone
equipped with a custom companion computer was
used. This is visualized in Figure 2. This computer
features an Intel i5-8365UE processor with 8GB of
RAM and is responsible for onboard control. The
interaction with the drone is facilitated through the DJI
PSDK. During the development phase of the project,
DJI’s Hardware In the Loop Flight Simulator6 was
employed.

4. Odometry
In simulation, both UAV interfaces provide ground
truth odometry. In the experimental setting, odometry
is generated by combining lidar and IMU data. The
localization process uses a known static point cloud
of the aircraft and an iterative closest point method
for localization [25]. Scan-to-scan matching is per-
formed using a tightly coupled lidar inertial odometry
algorithm. Both the localization and scan-to-scan
matching are run onboard on the companion computer
and combined with the localization results to provide
accurate UAV position and velocity information. The

4https://mavlink.io/en/
5https://github.com/mavlink/mavros
6https://www.dji.com/nl/simulator

Figure 2. A DJI M300 RTK equipped with a
camera, Ouster OS0 lidar and a custom companion
computer.

lidar used is an Ouster OS0, which has a 90◦𝐹𝑂𝑉 7.

IV. Simulation Experiment: Machine Hall

A. Methodology
The objective of this simulation experiment is to test
and compare the behavior of the different constraints
in a confined flight space. Additionally, the goal is to
describe the effect of the choice of 𝛾1 and 𝛾2, which
are the variable parameters in the CBF constraint.

7https://ouster.com/products/scanning-
lidar/os0-sensor/
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(a) The mesh of the machine hall visualized with the
waypoints and one of the flown paths (constraint ℎ2,
𝛾1 = 2 s−1).

(b) The mesh of a Boeing 747-400F visualized with the
waypoints and one of the flown paths (constraint ℎ2,
𝛾1 = 2 s−1) under 100 ms delay and no noise.

Figure 3. Visualized voxblox meshes and flown flight paths.

The experiment is to fly a multi-waypoint trajectory
in a machine hall. The ESDF of the machine hall
is generated onboard a micro aerial vehicle using a
RealSense D415 depth camera8 and the open-source
Voxblox library [21]. The waypoints and one of the
flown routes are visualized in Figure 3a.

The simulation experiment was repeated for the
three different collision constraints (ℎ1, ℎ2 and
ℎ3) for different values of 𝛾. Specifically, 𝛾1 ∈
{0.5, 1, 2, 4, 6} s−1 for constraint ℎ2. For constraint
ℎ3, we will perform a cross-search on these same val-
ues for both 𝛾1 and 𝛾2. This results in fifteen unique
combinations for the product and sum since the order
of 𝛾1 and 𝛾2 is irrelevant for producing a product and
a sum (as they appear in ℎ3).

The controller was run at 20 Hz with a time horizon
of 1 s. The control inputs are constrained to 30◦ in roll
and pitch angle, and 30◦/s for the yaw rate. The dif-
ferent settings were compared based on their Mission
Duration (MD) and the number of near crashes (num-
ber of data points within 5 cm of the lower threshold
on the distance constraint). The minimum distance
to keep is set to 30 cm from the center of the drone.
For the CBF constraints, the minimum distance is 30
centimeters given that ¤ℎ = 0 and ¥ℎ = 0. The simula-
tion was stopped if the time between two waypoints is
longer than 30 s.

8https://www.intelrealsense.com/depth-camera-
d415/

B. Results
The average computational time of one iteration on a
laptop (Intel i7-8750H processor, 32GB RAM) is 3.7
ms with a standard deviation of 2.1 ms across all runs.
The maximum computational time observed is 12.1
ms. No significant difference in the computational
time was observed between the three constraints.

The MD and the number of near crashes (within
5 cm of distance threshold) are provided in Table 1.
For readability, only the configurations that reached
the final waypoint (with maximum 30 s between
the waypoints) and did not violate the distance
constraint of the total 21 configurations are shown.
The constraint ℎ1 violated the minimum distance
constraint but was still provided since the constraint
only has one configuration and forms a baseline for
the other two constraints.

Firstly, it was observed that lower values of
𝛾1 for ℎ2 and lower values of 𝛾1𝛾2 for ℎ3 resulted
in an increased MD. This relationship aligns with
intuition, as 𝛾1 governs the allowed velocity towards
an obstacle based on the distance. Similarly, for ℎ3
with a given sum 𝛾1 + 𝛾2, the product 𝛾1𝛾2 influences
the maximum velocity/acceleration combination
for a given distance. However, lower values of
𝛾1 for ℎ2 and lower values of 𝛾1𝛾2 for ℎ3 do not
necessarily result in less near crashes. This is
because excessively low 𝛾1 (or 𝛾1𝛾2) values led
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MD [s] Near Crashes

ℎ
1

a

45.3 73

𝜸1 MD [s] Near Crashes

ℎ
2

0.5 67.75 0
1 57.55 0
2 53.7 45
4 47.75 16
6 45.95 31

𝜸1 + 𝜸2 𝜸1 · 𝜸2 MD [s] Near Crashes

ℎ
3

3 2 98.05 13
4.5 2 102.95 0
5 4 88.55 9

6.5 3 91.1 5
6 8 77.05 39
8 12 68.35 7
8 16 63.2 6
12 36 54.05 21

Table 1. Results for simulated machine hall ex-
periment of MD and near crash incidents for con-
straints ℎ1, ℎ2 and ℎ3.

a Violated the distance constraint by 2.5 cm.

to a restricted feasibility space, causing the drone
to get stuck near obstacles and increasing the
likelihood of near crashes. Conversely, very high
𝛾1 (or 𝛾1𝛾2) values compromise safety, as this ap-
proaches a simple distance-to-obstacle (ℎ1) constraint.

Secondly, for the second-order CBF ℎ3 it can
be noted that the performance in general is lower
than for ℎ2 (higher MD and 7/15 configurations not
reaching the final waypoint successfully). Although
arguably higher than for ℎ1 since some configurations
can reach the waypoint without crashing. It can be
noted that the sum of 𝛾1 + 𝛾2 dictates the weighing
between first time derivative ¤ℎ and the second time
derivative ¥ℎ towards an obstacle. A higher ratio
indicated a higher dependency on ¤ℎ, effectively
making it more like the first-order CBF. This can
also be seen in the result, where 𝛾1 + 𝛾2 = 12 s−1

and 𝛾1𝛾2 = 36 s−2 comes closest to the MD of
a first-order CBF, where the contribution of ¥ℎ is
relatively small (only 1

12 as compared to ¤ℎ).
There are two items that make the use of ¥ℎ chal-

lenging:
1) The acceleration vector is not a state in the

optimal control value problem, and thus not up-
dated to the measured values at every timestep.
Rather, all the states are updated to their mea-
sured values. Since the thrust is not measured,
the previous control input filtered with first-order
dynamics is used (as described in the model in
subsection II.A). This means the constraint
is directly dependent on the correctness of the
acceleration model including the throttle-thrust
mapping.

2) The term ¥ℎ depends upon the hessian of the
ESDF. This hessian is calculated numerically
on voxels of size 0.1 m, thus there will be an
error there. Calculating the Hessian of the ESDF
for voxelized structures is challenging due to
the discrete nature of the grid, which can lead
to inaccurate curvature estimates.

These hypotheses are validated using an an-
alytical distance function and using a simulator
where the model of the simulator is the same
model of the MPC. The performance of constraint
ℎ3 = ¥ℎ(p, v, a) + 10 ¤ℎ(p, v) + 24ℎ(p) was the best
performing controller in terms of MD. This indicates
that the term ¥𝑑 can indeed improve the performance
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theoretically. The experiment is available in
subsection IV.C.

Thirdly, although not directly visible in this
data, it is interesting to look at the impact speed. The
impact speed is defined as the velocity towards the
obstacle, which is a projection of the velocity on the
normal vector of the obstacle, given that the distance
constraint is violated. The impact damage scales
quadratically with the impact speed [26].
Constraint ℎ1 had a maximum impact speed of 0.47
m/s during a constraint violation. Constraint ℎ2 did
not crash but had a maximum speed of 0.09 − 0.22
m/s for 𝛾1 = 2 s−1 up to 𝛾1 = 6 s−1 within 5 cm of the
distance threshold. The impact speed for constraint
ℎ3 is maximum for the flight with 𝛾1 = 𝛾2 = 2 s−1,
which had a maximum impact speed of 0.47 m/s.

The results can be summarized as follows:
• ℎ2 is in the limit equal to ℎ1 given 𝛾1 is infinitely

high. Since ℎ1 offered efficient path planning
(lowest MD) but bad safety (violated distance
constraint with a high crashing speed), lowering
𝛾 (from infinity) improved the performance.

• The use of ¥ℎ is challenging since the term depends
on the modeled acceleration vector and implies
dependence on a numerically calculated Hessian
of the ESDF.

• One might argue that constraint ℎ1 can be better
than ℎ2 if there was more margin in the distance
constraint, due to the lower MDs. However, this
would involve tuning the size of such a margin.
Additionally, this would make the controller less
flexible, since it cannot pass through smaller
openings anymore.

Selecting appropriate values for 𝛾 is crucial to ensure
safety and feasible trajectories, striking a careful bal-
ance between obstacle avoidance and efficient path
planning.

C. Simulation Experiment: Investigating Perfor-
mance of Second-Order CBF

The goal of this simulation experiment is to inves-
tigate the performance of constraint ℎ3. Where the
motivation of constraint ℎ2 was to limit ¤ℎ when the
distance is small, the motivation behind constraint ℎ3
is to limit a combination of ¥ℎ and ¤ℎ when the distance

is small. This is achieved by nesting CBFs.
The two hypotheses described in subsection IV.B

are tested in an experiment for an obstacle where an
analytical solution for the ESDF is available, namely
a vertical cylinder with a radius of 2 m and infinite
height. This implies that the hessian can be calculated
exactly. Furthermore, the PX4 simulator is replaced by
a simulator that employs the same model as the MPC,
albeit integrated with a higher level of precision. This
implies that the acceleration vector in the constraint ℎ3
is the actual acceleration of the simulated drone. Apart
from these two changes, the same configurations as
for the machine hall experiment are used. The results
for the fastest versions are as follows:

• Constraint ℎ1 reached the waypoint successfully
in 6.15 s.

• ℎ2, 𝛾1 = 4 s−1, the fastest version of ℎ2, reached
the waypoint successfully in 5.9 s.

• ℎ3, 𝛾1 + 𝛾2 = 10 s−1, 𝛾1𝛾2 = 24 s−2, the fastest
version of ℎ3, reached the waypoint successfully
in 5.75 s.

Thus, there is an indication that ℎ3 can outperform
ℎ2 and ℎ1, but a difference between the actual acceler-
ation of the drone and the model-based acceleration
and the numerical integration of the hessian make this
challenging in a practical scenario. However, this is
only based on hypotheses and one experiment. In
general, more research into the role of ¥ℎ is required.

V. Simulation Experiment: Aircraft
Inspection

A. Methodology
The objective of this second simulation experiment
was to test and compare the behavior of the different
constraints in a more realistic scenario, i.e., under
the influence of noise and a control input delay. The
experiment is to fly an inspection flight around a static
aircraft. The ESDF is generated based on an OctoMap,
as described in Appendix A. The selected voxel size
is 0.3 m. The waypoints, the mesh and a flight route
are visualized in Figure 3b.

The simulation experiment was repeated for con-
straints ℎ1, ℎ2 and ℎ3. The values for 𝛾1 for ℎ2 are
as follows: 𝛾1 ∈ {1, 2} s−1. For ℎ3 the combinations
of 𝛾1 + 𝛾2, 𝛾1𝛾2 were (5, 4),(8, 12) and (8, 16) (s−1,
s−2). These were chosen since they were all success-
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ful configurations in the previous experiment. The
control input delay has been fixed to 100 ms, which is
deemed a realistic upper bound for off-board control.

As for the noise, two different intensities of ran-
dom walk noise were applied to the position, velocity,
and orientation of the simulated drone trajectories.
The noise comprises two white noise components:
a high-frequency component, which was not inte-
grated, and a low-frequency component, which was
integrated. The low-frequency component is designed
to mimic the drift of the odometry, while the high-
frequency component represents the random noise.
The low-frequency noise is clamped to a minimum
and maximum value.

The noise on the state vector that is injected into
the state is as follows:

Δx(𝑖) =clamp
(
Δx(𝑖−1) + 𝝎 (𝑖)

lf (𝜇 = 0,𝝈lf),min,max
)

+ 𝝎 (𝑖)
hf (𝜇 = 0,𝝈hf),

(4)
where Δx(𝑖) is the total noise for timestep 𝑖 and 𝝎 is
a sample from a from a (multidimensional) normal
distribution with mean 𝜇 and standard deviation 𝝈.

The following three noise models are used:
1) Zero Noise (𝝈 = 0): No additional noise is

added to the drone trajectories.
2) Low Intensity Noise (𝝈 = 𝝈1): The low-

intensity noise model is designed with the fol-
lowing parameters:

• Low-frequency component (𝝈𝑙 𝑓 ): 1 cm for
position, 0.5 cm/s for velocity, and 0.1◦ for
orientation.

• High-frequency component (𝝈ℎ 𝑓 ): 0.5 cm
for position, 0.25 cm/s for velocity, and
0.05◦ for orientation.

• Minimum and maximum clamping values
(min and max): (minus) 10 cm for position,
5 cm/s for velocity, and 1◦ for orientation.

3) High Intensity Noise (𝝈 = 𝝈2): The high-
intensity noise model incorporates the following
parameters:

• Low-frequency component (𝝈𝑙 𝑓 ): 2 cm for
position, 1 cm/s for velocity, and 0.2◦ for
orientation.

• High-frequency component (𝝈ℎ 𝑓 ): 1 cm
for position, 0.5 cm/s for velocity, and 0.1◦
for orientation.

• Minimum and maximum clamping values

(min and max): (minus) 20 cm for position,
10 cm/s for velocity, and 2◦ for orientation.

The output was the MD and the percentage of
successful runs. The minimum distance to be kept
was set to 1 m. The collision check is based on
the ground truth position, which is unknown to the
controller. A successful run is defined as a run that
did not violate the distance constraint by more than 5
cm and that reached the final waypoint. The MD is
the time from take-off till reaching the final waypoint,
provided it is reached. The simulation was stopped if
the time between two waypoints is longer than 30 s.

Since the experiment involves random variables,
every setting is repeated 20 times. From the results of
the MD a mean and standard deviation are obtained.

B. Results
The results for the MD and Successful Flight
Percentage (SFP) are summarized in Table 2 for the
varying noise levels.

Firstly, it can be noted that the CBF constraints ℎ2 and
ℎ3 exhibit somewhat similar zero-noise performance
compared to distance constraint ℎ1. However, when
subjected to noise and delays, it becomes evident that
ℎ2 and ℎ3 are more robust than ℎ1. The decrease in
performance for an increase in noise levels is smaller
for ℎ2 and ℎ3 than it is for ℎ1.

Secondly, it can be concluded that in this ex-
periment a lower value of 𝛾1 for ℎ2 or 𝛾1𝛾2 for ℎ3
tends to achieve a better SFP. These values dictate
the allowed velocity towards the obstacle for ℎ2 or
a combination between acceleration and velocity
towards and obstacle for ℎ3. A lower value increases
safety, but at the cost of a smaller feasible control
input space. For the limited number of tested values,
the odds of crashing were higher than of getting stuck.
This does come at the cost of an increased MD.

Thirdly, it can be concluded that the extra
term for ¥ℎ does not give a performance gain in this
experiment. Again, constraint h3 has less succesful
flights than h2 for a higher MD. In subsection IV.C it
is explained how this term can make the performance
worse.
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MD𝝈=0 [𝑠] MD𝝈=𝝈1 [𝑠] MD𝝈=𝝈2 [𝑠] SFP𝝈=0 SFP𝝈=𝝈1 SFP𝝈=𝝈2

ℎ
1 22.4 ± 0.2 22.7 ± 0.4 23.6 ± 0.8 80% 20% 10%

𝜸1 [s−1]

ℎ
2 1 25.4 ± 0.1 26.0 ± 0.8 26.8 ± 1.5 100% 100% 70%

2 24.4 ± 0.1 24.5 ± 0.5 25.6 ± 1.1 100% 85% 20%

𝜸1 + 𝜸2 [s−1] 𝜸1𝜸2 [s−2]

ℎ
3 5 4 25.6 ± 0.1 26.1 ± 0.5 27.0 ± 1.2 95% 45% 30%

8 12 24.5 ± 0.1 24.6 ± 0.4 25.2 ± 1.3 100% 35% 25%
8 16 23.8 ± 0.1 24.0 ± 0.4 24.5 ± 0.6 95% 30% 15%

Table 2. Results for simulated aircraft inspection of MD and SFP under a fixed delay and varying levels
of noise.

In summary, CBF constraints ℎ2 and ℎ3 are
robuster to noise than the baseline distance constraint
ℎ1. Constraint ℎ2 outperforms ℎ3 since the term ¥ℎ
makes performance worse. Lastly, a lower value of
𝛾1 (or 𝛾1𝛾2) works better for this experiment.

VI. Practical Experiment: Aircraft
Inspection

A. Methodology
The objective of a real-life aircraft inspection is to
validate the controller’s performance in a practical,
real-world scenario.

The controller’s aim was to start beside the aircraft
and reach an infeasible waypoint on top of the fuselage.
The desired behavior of the controller would be to
stop directly on top of the aircraft since that is the
closest point to the waypoint, while maintaining at
least 3 m to the aircraft.

This is also visualized in Figure 4a. This simple
path is chosen to validate the flown routes using
back-of-the-envelope calculations. Additionally, the
path can be visualized in two dimensions, making it
relatively easy to compare the different configurations.

The flight velocity had been limited to 0.5 m/s in
every direction and the control input has been limited
to 0.1 rad ≈ 6 ◦ in roll and pitch and 0.5 rad/s ≈ 3 ◦/s

for the yaw rate for safety. No artificial delay or noise
is added.

This flight was performed on a Boeing 787-9, since
that aircraft was available in the hangar the day of
testing. The ESDF’s used are pre-generated offline
from OctoMap models, as described in Appendix A.

The experiment was repeated for the configurations
ℎ1, ℎ2 with 𝛾1 ∈ {0.5, 1, 2, 3} s−1. Constraint ℎ3 is
not tested in real life since the extra term ¥ℎ did not
increase any performance in simulation. The output
is a validation of the performance based on a simple
back-of-the-envelope calculation and a comparison of
the trajectories flown. The experiment is repeated two
times per configuration (10 runs in total). The results
are cherry-picked to keep the final output readable.

B. Results
The average computational time on the custom
companion computer (Intel i5-8365UE processor with
8GB of RAM) is 5.4 ms with a standard deviation
of 3.4 ms and a maximum of 24 ms. No significant
difference in the computational time was observed
between the different constraints. The trajectories
flown and the distance to the aircraft are visualized
for configurations ℎ1, ℎ2 with 𝛾1 = 1 s−1 and ℎ2 with
𝛾1 = 3 s−1 Figure 4.

Firstly, it can be noted from Figure 4a that the con-
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(a) Trajectories flown for constraints ℎ1, ℎ2, 𝛾1 = 1 s−1

and ℎ2, 𝛾1 = 3 s−1. a

aDrawing from Wikipedia user Julien.scavini https://en.
wikipedia.org/wiki/Boeing_787_Dreamliner

(b) Distance to nearest obstacle for trajectories flown
for constraints ℎ1, ℎ2, 𝛾1 = 1 s−1 and ℎ2, 𝛾1 = 3 s−1.

Figure 4. Results for practical aircraft inspection around a Boeing 787-9 Dreamliner.

troller with constraint ℎ2, 𝛾1 = 1 s−1 starts avoiding
the aircraft approximately half a meter earlier than
distance constraint ℎ1. The controller with ℎ2, 𝛾1 = 3
s−1 starts avoiding the aircraft approximately 20 cm
earlier than ℎ1.

All these results match with a back-of-the-envelope
prediction. Assuming a velocity towards the
aircraft ¤𝑑 (p) = −0.5 m/s (maximum flying velocity),
constraint ℎ2, 𝛾1 = 1 s−1 should start avoiding the
aircraft at 3.5 m before the aircraft. Compare this
behavior to constraint ℎ1, that should start avoiding
the aircraft at 3 m from the aircraft. For ℎ2, 𝛾1 = 3
the controller should avoid the aircraft at ≈ 3.2 m.

Secondly, in Figure 4a it can also be seen that
all three controllers start below their beginning
waypoint. This is because the throttle-thrust mapping
used was static and did not account for changing
battery voltages. Thus, all controllers suffer from a
mismatch between their model and reality, which
is equivalent to a disturbance in the z-direction.
This leads to a static offset from the waypoint and
decreased performance in obstacle avoidance. The
offset at the end waypoint is lower than at the
beginning waypoint, due to the extra cost associated
with violating the distance constraint.

Thirdly, in Figure 4b it can be seen that all
controllers are somewhat successful at keeping
3 m distance from the aircraft, although none of
the controllers managed to keep the 3 m exactly.
The maximum violation of ℎ1 is 11.5 cm. The
maximum violation for ℎ2, 𝛾1 = 1 s−1 is 6 cm and
for for ℎ2, 𝛾1 = 3 s−1 it is 4.5 cm. It can be seen the
maximum violation of ℎ1 happens at 𝑦 ≈ −4 m, which
is in front of the aircraft. For both ℎ2 constraints, the
maximum violation occurs at 𝑦 ≈ −1.5 m, which is
on top of the aircraft. In other words, all controllers
violate the constraint on top of the aircraft due to the
throttle-thrust mapping that is off, but the controllers
with a first-order CBF constraint manage to avoid the
violation in front of the aircraft.

Finally, one last interesting aspect to look at
is the maximum impact speed. This results in a
maximum impact speed of ≈ 0.17 m/s for ℎ1 and
≈ 0.11 m/s both for ℎ2, 𝛾1 = 1 s−1 and 𝛾1 = 3 s−1

towards the aircraft.

The difference in impact speed between ℎ1 and
ℎ2 is to be expected, since a violation of a distance
constraint with a higher velocity towards the obstacle
is an even bigger violation for CBF constraints.
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In summary, CBF constraints ℎ2 have a higher
performance than the baseline ℎ1. Specifically, the
distance violation is smaller and the impact speed
during the distance violation is lower. Additionally,
the trajectories of the controllers are validated based
on simple calculations.

VII. Conclusion & Recommendations
We proposed the use of an ESDF-based CBF constraint
in MPC with the goal of improved obstacle avoidance
for UAVs.

Simulation experiments show that first-order CBF
constraints offer a significant improvement in terms
of trajectory planning & tracking efficiency and safety
over the baseline distance constraint when using ES-
DFs to encode obstacles. The results have been
validated on a real drone, reaffirming the real-life
applicability of the proposed control framework.

In contrast, second-order CBFs suffer from practical
limitations like the stricter dependency on an accurate
acceleration model and the numerical approximation
of the hessian of the ESDF.

The authors conclude that using first-order CBFs
combined with ESDFs as a collision constraint is a vi-
able method to improve MPC for navigating complex
environments for UAVs. By wrapping the distance
constraint in a first-order CBF the controller achieves
better safety and scales better with noise, making
the controller better suitable for safety-critical appli-
cations, such as inspections purposes and search &
rescue missions.

Recommendations include finding a method to tune
the CBF dynamically depending on the surroundings,
overcoming the practical limitation for the second-
order CBF and studying the theoretical properties of
the proposed controller.
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A. Creating Euclidean Signed Distance Fields
from Octomaps

The authors had access to OctoMaps [22] from various
aircraft. OctoMap is a probabilistic 3D mapping
framework used in robotics and autonomous systems
to represent and manage spatial environments with
voxel-based octrees. For these collision constraints,
these octomaps need to be converted to Voxblox [21]
ESDFs to be compatible with the controller. The
goal was to make these conversions with minimal
changes to the Voxblox source code. OctoMaps have
the advantage that they can be ray traced fast, since
OctoMaps use octrees as underlying data structure.
The general idea is to cast many rays on the octomap
and use this mocked lidar data to send to Voxblox.
Voxblox will create an ESDF from this mocked lidar
data. Specifically:

1) The first step is to create a strategy to cast
rays to the OctoMap. The following strategy is
proposed. Rays are cast from a big sphere in
which the object fits. The object is centered at
the origin of the sphere. From evenly spaced
points on the sphere, rays are cast inward to
the origin (so the direction is the normal of
the sphere). Random noise is applied to the
direction of the normal vector and several rays
are cast from every point. To loop over the
sphere with evenly spaced points, we can use
spherical coordinates and loop over the angles.
The radius of the sphere and the amount of noise
is tweaked by hand.
This results in two pointclouds: A pointcloud
with all the raycasted points (on the aircraft),
which is visualized in Figure 5 and a pointcloud
with all the origin points (on the sphere).

2) The origin pointclouds are moved towards the
aircraft in the direction of the original beam.
This makes the origin pointcloud an inflated
version of the aircraft. This is to limit the
integration time of Voxblox. From a practical
standpoint, it is already established that we will
never exceed a distance of 10 meters from the
aircraft in our flights. Therefore, we can factor
in this information here. This is visualized in
Figure 6.

3) The Voxblox function integratePointcloud
takes a depth pointcloud in the robot frame

Figure 5. Visualized pointcloud of the casted points
of raycasting on an Airbus A330-200 OctoMap.

Figure 6. Visualized pointcloud of the origins of
raycasting on an Airbus A330-200 OctoMap.

of reference and a transformation between the
inertial frame and the robot frame 𝑇𝐺𝐶 , where
𝐶 is the robot frame of reference and 𝐺 is
the inertial frame of reference. Based on the
transformation and the depth pointcloud in the
robot frame of reference the ESDF is updated.
This function is modified slightly so that it can
take two pointclouds, the origin pointcloud and
the raycasted pointcloud, both already in the
inertial frame of reference.

The result is visualized in Figure 7. This figure
contains a mesh generated by Voxblox (to be used for
visualization) and a slice of the ESDF at a height of
4[𝑚]. Especially at the tips of the wings some points
are missing, but since the distance to the nearest
neighbor for a non-filled voxel is set to zero, the
controller will never go there. Thus, in general, the
result is satisfactory for this use-case.
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Figure 7. Visualized Airbus A330-200 mesh cre-
ated by Voxblox and ESDF slice at 𝑧 = 4 m.
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Part II
Literature Review
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3
Introduction

Autonomous unmanned aerial vehicle’s (UAV) are increasingly used, demonstrating their capabilities
as a safety inspection tool [1], for cinematography [10], precision agriculture [11], surveillance [12], mil-
itary purposes [12], 3D mapping [12] and search-and-rescue missions [13]. These applications share
the challenge of reaching goal locations/poses while ensuring no collisions without human intervention.
This is defined as the navigation problem. Limitations on the vehicle (e.g., onboard sensing capabilities,
computational power, and actuation limits) make the navigation problem complex to solve. To solve the
navigation problem, designing efficient navigation methods is crucial.

An often-used approach for navigation is performed in a decoupled manner where a high-level control
system, the motion planner, plans a safe and feasible trajectory, which is tracked by a low-level control
system [2]. For example [3], which first plans a collision-free path using an RRT* path planner, followed
by a minimum snap trajectory generator phase that is is tracked by an MPC. Usually there is a second
sensor-based obstacle- and collision avoidance backup strategy, e.g., using stereo vision cameras, used
to avoid unforeseen obstacles.
A novel research area is real-time trajectory planning techniques, which is made possible by improved
hardware and efficient navigation algorithms. This effectively combines the motion planner and the
obstacle- and collision avoidance system. Despite being more computationally intensive, this method can
handle obstacles and collisions more intelligently. This is especially important for dynamic environments,
since it would be impossible to plan a safe trajectory offline. An example of an online trajectory planner,
a model predictive controller with dynamic collision constraints, can be seen in [14].

This literature review specifically focuses on using model predictive control for real-time trajectory plan-
ning with collision avoidance. Model predictive controllers are considered since they optimize over a
time horizon and can include constraints explicitly. The result is an optimal control problem (OCP) that
needs to be solved for each time step. This review also highlights the use of control barrier functions
to ensure safety, as used in [15] for example. Safety is defined as forward-set invariance, or informally:
Starting in the safe set equals staying in the safe set. The aim of this review is to answer the following
research question: How can model predictive control be used for real-time trajectory planning under the
constraints of not colliding and staying within predefined state limits? This question is subdivided into
three sub-questions:

• What are the considerations in using a probabilistic method for MPC trajectory planning?
• Can forward-invariance of a safe set be guaranteed?
• How can a numerical solver be selected for the resulting OCP?

This review will be presented in the following structure: Chapter 4 will describe relevant background
information. Chapter 5 will provide the reader with an overview of papers published on model predictive
controllers (MPC) for online trajectory planning. This chapter is split into a deterministic and probabilistic
section and a discussion. After that, using the same structure, Chapter 6 describes the result of several
papers on control barrier functions. Chapter 7 describes the results from papers describing a combination
between MPC’s and CBFs. Chapter 8 will go in more depth on numerical solvers. Lastly, Chapter 9
concludes the report by answering the research questions.
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4
Background Information

This chapter will describe relevant background information for this literature review. Firstly, background
information on control barrier functions is described. Secondly, a discrete stochastic model is presented.
This model (or a similar model) is used for all probabilistic navigation methods, that require a model,
presented in this review. Lastly, a multirotor model will be presented. All navigation methods requiring a
model use this (or a similar) model.

4.1. Control Barrier Functions
The background information presented in this section is borrowed from [15] and is placed here for com-
pleteness’s sake.

Throughout this section the following dynamic control-affine system is assumed:

ẋ = f(x) + g(x)u (4.1)

with f and g locally Lipschitz, x ∈ X ⊂ Rn is the state in the state space and u ∈ U ⊂ Rm is the control
input in the space of control inputs.
The motivation for control barrier functions (CBF) is based on control Lyapunov functions (CLF). CLFs
are based on Lyapunov stability theorem, that states that if the derivative of the positive definite Lyapunov
potential function is always negative, the system is asymptotically stable. The equilibrium point is the
point where the Lyapunov potential function is zero. The authors of [16] provide the reader with a review
on methods to numerically compute Lyapunov potential functions. Concretely, a function is a CLF if it
satisfies:

inf
u∈U

[LfV (x) + LgV (x)u] ≤ −γ(V (x)) (4.2)

Where V is the Lyapunov potential function. Intuitively this makes sense: LfV (x) + LgV (x)u is the Lie
derivative of V, which is forced to be lower than something negative definite: namely −γ(V (x)). This term
is zero at the equilibrium point and lower than zero everywhere else.

However, the restriction on a system to always be stable can be too restrictive, leading to empty control
spaces. CBFs tackles exactly this problem. The goal is to be forward invariant inside a user defined safe
set. I.e., starting in the set, means staying inside of it. This set is usually denoted by S(x) for all x ∈ X
for which h(x) ≥ 0. This can be guaranteed by:

sup
u∈U

[Lfh(x) + Lgh(x)u] ≥ −γ(h(x)). (4.3)

If a function satisfies this property, it is called a control barrier function. Intuitively this makes sense:
−γ(h(x)) is zero near the borders and is negative in the set. Lfh(x) + Lgh(x)u is the Lie derivative of
h(x). In other words, the derivative is forced to be at least 0 at the borders but can decrease in the set.
Since the safe set was defined where the CBF is bigger than zero, starting in the set means staying in
the set.
Without going in too much detail, this assumes a relative degree of one between the state constraint and
the input. For higher relative degrees more derivatives are needed. This is because the condition on h
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needs to be dependent on u. E.g., in the case of a position function of h, to always satisfy a condition on
the derivative of h, direct velocity control is needed to guarantee safety. This is extensively described in
[17].

CBFs can be used as a safety filter on a nominal controller in a minimal invasive way. CLFs and
CBFs can also be combined in one framework, namely a CLF-CBF, as for example in [18]. Usually CLFs
(ensuring stability) are implemented as a soft constraint, while CBFs (guaranteeing safety, i.e., forward
invariance) are implemented as a hard constraint. The resulting framework would then look as follows:

u∗(x) = argmin
u∈U,x∈X

||u− uref ||2 (4.4)

s.t. LgV (x)u+ LfV (x) + cV (x)− γ1(V (x))− δ ≤ 0, (4.5)
Lgh(x)u+ Lfh(x) + γ2(h(x)) ≥ 0 (4.6)

Where uref is the reference input from a nominal controller and δ is a slack variable used to make the
CLF a soft constraint.
Note the nominal controller can also be omitted in this scenario taking the CLF as cost function. I.e.,
guaranteeing safety while optimizing stability.

Technically speaking there are two types of control barrier functions, namely zeroing control barrier
functions (the function h as described previously and reciprocal control barrier functions B:

B(x) = 1/h(x) (4.7)

However, in recent literature, only zeroing control barrier functions are used. This literature review will not
consider reciprocal control barrier functions, but only zeroing control barrier functions. Note that zeroing
control barrier functions are not actually barrier functions, since they do not approach infinity at the borders
of the domain.

4.2. Discrete Stochastic Model
The following stochastic model is described in [5], but used exactly or in very comparable form for all
probabilistic motion planning strategies in this review that require a model. The model is repeated here
for completeness.
Assume n UAV’s operating in a three-dimensional environment. Each UAV i is modeled as follows:

xk+1
i = fi

(
xki ,uk

i

)
+ ωk

i , x0i ∼ N
(
x̂0i ,Γ0

i

)
, (4.8)

Where xki =
[
pk
i , vki , ϕki , θki , ψk

i

]T ∈ Xi ⊂ Rnx denotes the state of the UAV (global position, global velocity
and orientation) and uk

i ∈ Ui ⊂ Rnu denotes the control input of the robot at time k. Xi and Ui are the
state space and control space respectively. The dynamic equations (i.e., the function f) are presented in
the next section for a multicopter model. The initial state x0i is defined to be a Gaussian random variable
with mean x̂0i and covariance Γ0

i . This mean and covariance is typically given by a state estimator.

4.3. Multirotor Modeling
In this section the multirotor model proposed in [19] is described. This model or a similar model is used by
all motion planning strategies in this review. The model is repeated here for completeness. A picture of
the coordinate frame used can be seen in Figure 4.1. Note that this model assumes a low-level controller
of roll, pitch, yaw rate and thrust. This is common for Parrot multicopters1, DJI multicopters2 and PixHawk
controllers [20]. In other words u =

[
ϕc, θc, Tc, ψ̇c

]T
∈ R4, where ϕc, θc, Tc, ψ̇c are the commanded

roll angle, pitch angle, mass normalized thrust (positive in upward body frame direction) and yaw rate,
respectively. Additionally, the model assumes a first order model for the roll and yaw rate, no time delay
for the commanded inputs and a linear relationship between the velocity and the air resistance. The

1https://www.parrot.com/assets/s3fs-public/2022-01/whitepaperanafiai.pdf
2https://developer.dji.com/onboard-sdk/documentation/introduction/homepage.html
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Figure 4.1: The coordinate system used in this model of a multicopter with global inertial frame w and
body fixed frame b. 3

dynamic equations are given as follows:

ṗ(t) = v(t)

v̇(t) = R(ψ, θ, ϕ)

 0

0

Tc

+

 0

0

−g

−

 Ax 0 0

0 Ay 0

0 0 Az

v(t)

ϕ̇(t) =
1

τϕ
(Kϕϕc(t)− ϕ(t))

θ̇(t) =
1

τθ
(Kθθc(t)− θ(t))

ψ̇(t) = ψ̇c(t)

(4.9)

The state x ∈ R9 was defined in Section 4.2. R(ψ, θ, ϕ) is the rotation matrix from the body frame
(u,v,w) of reference to the global frame of reference (x,y,z). g is the gravitational acceleration. T is the
mass normalized thrust, Ax, Ay and Az indicate the mass normalized drag coefficients τϕ,Kϕ and τθ,Kθ

are the time constant and gain of inner-loop behavior for roll angle and pitch angle, respectively.
It can be noted that the system is control-affine.
Note that this is the continuous version of the dynamics equations, which can be made discrete by using
a multiple shooting approach.

3https://www.autonomousrobotslab.com/multirotor-dynamics.html



5
Model Predictive Control

This section covers both deterministic and probabilistic model predictive control (MPC) structures for online
trajectory planning. MPC’s offer the advantage that they optimize over a time horizon, instead of a single
timestep (such as a PD controller). Additionally, constraints can be included explicitly. The goal is to
minimize a cost function (usually consisting of a stage state cost, a terminal state cost, an input cost and
sometimes an input smoothness cost) given a UAV model and a reference state. The problem is usually
constrained in input (actuation limits), position (collision constraints) and sometimes in state (safety limits).
The chapter is divided into three sections: Deterministic MPC’s, Probabilistic MPC’s and a discussion on
the provided literature.

5.1. Deterministic Model Predictive Control
Figure 5.1 shows the control block diagram of such a deterministic model predictive controller. In this
figure, xref is the reference state, x is the state, which is assumed fully known, u∗ is the optimum control
input and y is the sensor output of the drone.

The authors of [14] implemented such a nonlinear MPC (NMPC). The authors proposed a classification
scheme to distinguish between trajectory types (static, linear, projectile motion) to feed the MPC the
future positions of obstacles as part of the optimization problem. Obstacles are modeled as spheres. The
resulting problem was implemented using the PANOC solver using a separate laptop and sending the
control inputs to the drone.
The NMPC scheme was tested experimentally using a motion detection system and compared to an
artificial potential field method and an NMPC scheme without an object classifier (assuming all objects
are static). As expected, the drone can avoid collisions more efficiently if the solver has information about
the future position. In the case of a bouncing ball as obstacle, only the NMPC scheme with trajectory
classifier avoided a collision consistently.

In [21] tries to solve a similar problem, using the same solver. It is assumed that the future positions

Figure 5.1: Block diagram of MPC assuming full state knowledge.
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Figure 5.2: Block diagram of MPC assuming a state estimator.

of obstacles are known, removing the need for a trajectory classifier. The proposed methodology can
accommodate obstacles of arbitrary geometry. Additionally, the NMPC controls the thrust coefficient,
rather than the thrust (using a thrust estimator). This effectively means the NMPC is robust to mass
changes.
The resulting control structure was tested experimentally using a motion detection system. The first
experiment conducted was to fly between two waypoints, while avoiding obstacles. The drone managed
to avoid the obstacles consistently. Secondly the thrust coefficient was tested by a position hold task up
and until the battery is empty. This worked for as long as the battery could produce enough power to
hover. Note the total thrust of a quadcopter decreases with decreasing battery level.

The authors of [22] propose a similar framework used for cinematography. The main difference with
the previous paper is that the quadcopter now also considers a gimbal pitch and yaw angle, and the
authors force the quadcopter to follow a virtual rails (input), in analogy to physical camera cranes. The
solver used was the commercial FORCES Pro software.
Experiments were conducted using a motion system and a laptop to solve the optimization problem to
film multiple challenging movie shots with multiple drones. Since the authors use a sequential planning
approach, it is shown that the computational cost grows linearly with the number of drones. Additionally, a
qualitative experiment is conducted where an expert gives feedback on the cinematographic capabilities
of the drone. The feedback includes that using this method can simplify creating certain shots, especially
in dynamic environments.

5.2. Probabilistic Model Predictive Control
This section covers probabilistic model predictive controllers. The problem is like the deterministic case,
where a cost function will be minimized given a model and constraints. The difference is that the position
of the vehicle and the obstacles are unknown, only the probability distributions are known, which are the
result from a state estimator. A block diagram of such a framework is shown in Figure 5.2. In this figure,
xref is the reference state, x̂ is the mean of the state, Γ is the covariance matrix of the states, u∗ is the
optimum control input and y is the sensor output of the drone. This scenario is deemed more realistic
since the state is not fully known due to sensor noise.

In [23] a MPC framework is combined with a potential field like cost function. Potential fields do not
provide guarantees and are thus combined with hard constrained in this paper to ensure no collisions.
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Specifically, both the potential field term and the hard constraint are dependent on the uncertainty in
position of both the vehicle and the obstacle. Note that this uncertainty is increasing with time. The state
estimator used is an Extended Kalman Filter. The solver used was generated by ACADO toolkit [24].
The resulting framework was tested experimentally using two UAVs and a motion system with injected
noise. The first experimental test was to try to crash a manually flown UAV into a position holding drone.
The second experimental task was for two UAVs to follow crossing reference trajectories. In both experi-
ments the minimum distance hard constraint was not violated.

The authors of [5] treat the uncertainty explicitly by implementing a chance constrained NMPC (CCN-
MPC). The obstacles were modeled as ellipsoids. For the state estimation an unscented Kalman filter
(UFK) was used for vehicles and a linear Kalman filter (LFK) for obstacles. The solver used is the com-
mercial FORCES Pro software.
The authors have tested the resulting framework experimentally using a motion system with injected
noise. Firstly, a position swap experiment between two quadcopters shows a significant improvement
over both [23], which framework is described in the previous paragraph, and a deterministic NMPC used
for cinematography [22], which framework is described in Section 5.1. Secondly, the framework was
tested in a close environment with two humans and two quadcopters. The minimum distance requirement
was not violated. Lastly, a comparison was made between three different multirobot planning settings
(distributed, decentralized, and centralized) for a position swap experiment: In the case of the distributed
setting the minimum distance requirement was violated. Since the distributed setting assumed a constant
velocity model, this caused a mismatch with reality giving rise to a collision (given the used thresholds).
The other two settings were successful in this experiment.

In [25] the authors implement a similar CCNMPC framework but propose a conservative solution to
save computational cost. Rather than integrating the overlap of probability distributions a bound is put on
the probability distributions where overlap is not allowed. The authors have also implemented a sample
average approximation for comparison, which can be seen as a method to integrate the probability distri-
butions.
The resulting framework was tested in simulation for planar UAV’s passing through a gap. The conserva-
tive solution offers a computational improvement (factor of 50) over the sample average approximation
implementation for a decrease in cost function of 4 percent. Additionally, the authors produce empirical
evidence using simulation that the probabilistic constraints are better suited than robust control constraints
in case there is a model of the stochastic disturbance.

Lastly, the authors of [26] propose an NMPC framework for motion planning. However, this time the
authors assume a 3D point cloud obtained from a lidar. The authors note three main contributions: First,
the ability to reveal underlying planes from a point cloud using a subspace clustering method. Second,
the ability to incorporate these planes in an NMPC. Lastly, by considering uncertainty in the localization
using the Shannon’s entropy to construct the weight matrix for the waypoint error.
Three simulation experiments were conducted. In the first experiment the plane segmentation is com-
pared to three other clustering techniques. The proposed technique achieves comparable results while
reducing the computational cost by an order of magnitude. In the second experiment the micro aerial
vehicle (MAV) was instructed to fly in a corridor environment, namely the ”house_maze” world available
in the VoxBlox repository1. Noise was injected into the system. The MAV managed to keep the minimum
distance needed for several velocities. The authors compared the results to a potential field strategy
that did not reach the final goal. In the third experiment the MAV was instructed to hold a waypoint in
a confined space with injected state noise. It was shown that the MPC with adaptive weights has less
oscillations and the non-adaptive weights variant has more oscillations and sometimes crashes into one
the walls.

1https://github.com/ethz-asl/voxblox
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5.3. A Discussion on Model Predictive Control
The main challenge in using an NMPC for all these papers is computational cost. All the methods rely on
a powerful onboard computer or a separate laptop, while all using specialized solver. The solvers will be
discussed in more detail in Chapter 8. The horizon is between 1− 2 [s] for all papers, solving the problem
at approximately 10− 20 [Hz]. While these numbers are hard to compare for different hardware, they do
give the reader an indication of an order of magnitude.

While probabilistic MPC’s were more robust to noise, they are also more computationally expensive
than their deterministic counterparts, due to evaluating collision probabilities and (potentially) handling
chance constraints. While sampling-based evaluation strategies can achieve exact results asymptotically,
they are computationally intensive. For a full overview of computing waypoint collision probabilities and
how to combine them for a trajectory, the reader is referred to [27, p. 8-14].



6
Control Barrier Functions

Another technique that can be used for motion planning is using control barrier functions. As described in
Section 4.1, control barrier functions are used to construct a constraint to ensure safety. Safety is defined
as being forward invariant, i.e., if the vehicle starts in the safe set, it will stay in it. This constraint is
also called a safety barrier certificate (SBC) in literature. These terms will be used interchangeably. The
chapter is divided into three sections: Deterministic control barrier functions, probabilistic control barrier
functions and a discussion on the provided literature.

6.1. Deterministic Control Barrier Functions
In [15], the authors provide the readers with both theory, which forms the basis for the background section
Section 4.1 and four applications, one of which will be highlighted here. This is the application of dynamic
balancing of a Segway. The SBC is related to the tipping angle. Secondly there are constraints on the
forward velocity and the angular rate. The authors perform a reachability analysis to combine these con-
straints in one safety barrier certificate to guarantee feasibility. The experiment compares a PD controller
with and without the safety filter. The PD controller could be made unstable with an external disturbance,
while the PD controller + safety filter managed to stay upright under the same disturbance. A video of this
experiment can be found here: https://youtu.be/RYXcGTo8Chg.

In [28] the authors compare three SBCs: A nominal certificate, a relaxed certificate (with extra opti-
mized parameters) and a feasible certificate (with a backup strategy), as can be seen in Table 6.1. This
was applied to a multirobot system. The authors also designed a mechanism to tackle deadlocks. The
resulting framework results in a quadratic programming problem since the model used was linear. The
solver used was the MATLAB quadprog solver.

Table 6.1: Comparison Across Three Decentralized Safety Barrier Certificates [28]

Type of certificate Guaranteed safety Guaranteed feasibility Admissible control space
Nominal ✓ × Standard
Relaxed ✓ × Enlarged
Feasible ✓ ✓ Shrunken

The authors compare the three different versions of the decentralized safety barrier certificates. From
a go-to-goal task experiment, it was concluded that the relaxed SBCs are the least invasive to the
nominal controller of the three. The total time of intervention of a simulated position swap experi-
ment was 2.9[s] for the relaxed SBC versus 4.5[s] and 5.4[s] for the nominal and relaxed SBC, re-
spectively. The resulting framework has also been experimentally tested using unmanned ground
vehicles (UGV) in a two-dimensional setting for a position swap. A video of this can be seen here:
https://www.youtube.com/watch?v=-WUkzik1_VQ.

In [29] the authors again implement a minimal invasive safety filter and a backup controller to prove
guaranteed feasibility. The resulting framework was tested in simulation using a 17-dimensional model
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for two quadrotors with the task of avoiding each other in a decentralized way (no communication).
The solver used was a non-public implementation of the OSQP solver [30]. The safety barrier func-
tion is related to the distance between the quadrotors and the back-up policy is to level the drone
with zero velocity. The minimum distance constraint was not violated. The code can be found at:
https://github.com/DrewSingletary/uav_sim_ros.

In [31] the authors take another approach by constructing a CLF-CBF to control a planar quadrotor
for obstacle and collision avoidance. The CLF constraint is used as a soft constraint to optimize stability
and the CBF to guarantee safety. The resulting problem is solved pointwise in time as a sequential
quadratic programming problem. The main contribution of the authors is to augment the control barrier
function from a distance function (used by the previous three papers) with an orientation term, to make
the constraint explicitly dependent on the moment control input. The optimal control problem was solved
using an unspecified interior point method.
The resulting controller with augmented CBF was tested in simulation and compared to a controller with-
out CBF in simulation with extra constraints on the maximum force and moment. The former managed to
successfully reach a goal pose without collisions, while the latter did not. Unfortunately, the authors did
not compare the resulting controller to a controller with unaugmented CBF. Because of that, it is hard to
conclude what exactly the contribution of this extra term is.

6.2. Probabilistic Control Barrier Functions
In [32] the term probabilistic SBC (PrSBC) is introduced. Rather than enforcing a safety barrier certificate,
there is a constraint on the chance that the safety barrier certificate is violated considering a mean and
variance on the state. The PrSBC is defined as a convex set. Additionally, it is only constructed for single
integrator dynamics.
The authors conduct two simulation experiments with injected noise: Firstly, the authors compare their
PrSBC safety filter to a conventional SBC safety filter in a multirobot two-dimensional position swap task,
with dynamic obstacles. The PrSBC controller managed to perform the task consistently successfully,
while the conventional SBC controller did not. Secondly, the authors tested their PrSBC safety filter in a
multi UAV simulator, with the task of writing letters in the air while avoiding dynamic obstacles. Also in
this experiment a minimum separation distance was kept consistently.

In [27] the SBC method of [28] (described in the previous section) is extended from the deterministic
case to the probabilistic case. This results in chance constrained SBCs (CC-SBC). CC-CBCs differ from
PrSBCs in the sense that they are a non-convex set and hold for general nonlinear control affine dynami-
cal systems (not only single integrator systems). Like PrSBCs, they define a chance that the safety barrier
certificate is violated considering a mean and variance on the state. The CC-SBCs is approximated with
quadratic constraints resulting in a quadratically constrained quadratic program (QCQP). The barrier cer-
tificates are used as a safety filter with the goal of minimally changing the nominal controller’s input, while
ensuring safety. The resulting framework has been tested in simulation and compared to it’s deterministic
counterpart for a position swap experiment with injected noise. The CC-SBC’s framework outperforms
the SBC’s framework. While the probabilistic variant manages to consistently retain the minimum required
distance (over multiple runs), the deterministic variant does not manage to do this.

To the authors’ best knowledge these are the only two examples of probabilistic control barrier func-
tion in literature.

6.3. A Discussion on Control Barrier Functions
In most of the above papers, the control barrier function h was a function on the distance between the
vehicle and another vehicle or obstacle. In these cases, the control barrier function handles collision
avoidance. Additionally, most of the papers implement the control barrier certificates as a safety filter.
Note that these kind of problems are quadratic programming problems since there is no nonlinear model.
CBFs are used both in deterministic and probabilistic contexts. Probabilistic CBFs were shown to be
more robust to noise, however limited literature is available on this.

The main challenge with control barrier functions is feasibility of the optimized problem (i.e., existence of

https://github.com/DrewSingletary/uav_sim_ros
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a solution) given a limited control space. While satisfying the SBC implies safety, the counterpart does
not hold. I.e., there is no guarantee that the SBC is feasible when it is still possible to stay in the safe
set. This was the motivation for creating back-up controllers. This implies that control barrier functions
must be constructed so that such a back-up controller can guarantee safety. E.g., the minimum distance
between two vehicles is based on the maximum deceleration. The dependence of the choice of γ in this
feasibility problem is visualized in Figure 7.1 for a discrete control barrier function with γ as a constant.
This problem can also be mitigated by defining a viable safe set. I.e., a safe set in which it is always
possible to go to another point in the safe set giving the control input space and SBC. This process is
described in [33]. Computing this safe set comes down to solving the Hamilton-Jacobi partial differential
equation, which scales exponentially. Solving the Hamilton-Jacobi partial differential equation for a full
drone model (with nine states and four control inputs) is currently not possible in a reasonable amount of
time.
This feasibility problem undermines the theoretical background on the safety guarantees of CBFs.



7
Combining Model Predictive Control with

Control Barrier Functions

In this chapter a combination of MPC and CBF is discussed. This chapter is divided into three sections:
A section describing the motivation, a section of the work published and a discussion on a combination of
the two. Unfortunately, the available literature is limited to only distance control barrier function, effectively
replacing the collision constraints.

7.1. Motivation
Control barrier functions can guarantee safety (forward invariance) if used correctly. Control barrier func-
tions are used as a constraint, without providing a measure on the quality of a state. Therefore, control
barrier functions are always combined with another cost function/ controller to fulfill control purposes. Pre-
viously mentioned strategies included the use of CBFs as safety filters that minimally invade a nominal
control, while guaranteeing safety and the combination with a control Lyapunov function (CLF-CBF). Note
that both strategies optimize point wise in time and can thus be seen as a greedy approach. MPC’s offer
the advantage of optimizing over a time horizon, as described in the chapter introduction of Chapter 5.
This chapter explores the concept of combining these two advantages.

7.2. Literature on MPC combined with CBF
In [34] the authors combine an MPC and a CLF-CBF in a multi-rate controller. The MPC is used as a
high-level planner at a low frequency and the CLF-CBF is used as a low-level tracker at a high frequency.
The authors prove the resulting closed-loop system is forward set invariant, thus safe. The CLF-CBF is
designed with the full model, while the MPC uses a simplified model.
The resulting framework is benchmarked against linear and non-linear MPC’s in a simulated Segway
experiment. The authors show that in the case where the rod angle is constrained to a certain angle, the
multi-rate controller is successful at the task, while both the linear and nonlinear MPC’s fail.

In [7] the authors describe how to use continuous CBF constraints in a non-affine NMPC framework.
Since the continuous control barrier function ensures safety over an infinite timeline, it is possible to
decrease the horizon, thus saving computational power. The paper’s main contribution is a description
of how exponential control barrier functions can be constructed for systems with a relative degree higher
than one for non-affine systems, namely using pole placement on a new dynamical system.
The resulting framework was validated using high fidelity vehicle dynamics and traffic/sensor models. The
task is to avoid an obstacle having torque and acceleration as input (relative degree 2). The experiment
shows that a conventional NMPC could not avoid the obstacle, while the NMPC combined with the CBF
constraint could avoid it.

In [6] three frameworks are compared: DCLF-DCBF, discrete control barrier functions combined with
a discrete Lyapunov controller, DMPC-DCBF, discrete model predictive control combined with discrete
control barrier functions and MPC-DC, discrete conventional MPC. In both MPC cases the cost function
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Figure 7.1: The reachable set Rk and the safe set Scbf,k as a function of timestep k for initial condition
xt. δScbf,k are the level sets of the safe set S. The union of Rk and Scbf,k are feasible solution to the

MPC-CBF problem. The feasibility is shown for different γ. [6]

is a Lyapunov potential function (which is minimized). The writers hypothesize that DMPC-DCBF can
outperform MPC-DC. This is because MPC-DC will only act in the context of obstacle avoidance if the
distance norm is small. This is not the case for a CBF constraint since it is a constraint on one or multiple
derivatives. The conversion from continuous to discrete control barrier functions is described by [35].
The authors note that if a time horizon of N = 1 is used for the MPC-CBF, the resulting framework is like
the CLF-CBF framework. The difference is that the CLF constraint in the CLF-CBF framework is in the
cost function of the MPC-CBF framework (with N = 1).
Additionally, the authors note that if γ = 1 is used for the MPC-CBF, the safety barrier certificate is like the
distance constraint in the MPC framework. The difference is that the safety barrier certificate for γ = 1 is
the distance constraint, but for the next horizon time step, while for the MPC it is of the current time step.
The effect of the choice of γ is nicely illustrated in Figure 7.1.
Both analyses have also been confirmed in simulated car obstacle avoidance experiment, where MPC-
CBF with N = 1 provides similar output to CLF-CBF and MPC-CBF with γ = 1 provides similar output to
MPC-DC. Additionally, it is shown in a second race-car simulation that MPC-CBF outperforms both other
frameworks, confirming the hypothesis of the writers. The solver used was ipopt.
However, the authors do not consider that their relative degree is higher than one (again a constraint on
position with acceleration and torque as input, thus r = 2). According to [7] they would need a second
derivative and first derivative on the control barrier function to guarantee safety, which is not used in their
implementation. Only a discrete variant of the first derivative is considered.

7.3. A Discussion on MPC-CBF
While [6] provided a discussion on the theoretical consequences of combining MPC with CBF, it is not
validated in a realistic setting on hardware. MPC combined with CBF is a novel research area with many
unknowns. Specifically, the unknowns are as follows:
Firstly, all three papers published on a combination of MPC and CBF assume a perfectly known state. An
opportunity for future work is to combine CC-SBCs, as described in [27] with an MPC. This would involve
the use of a state estimator and would change the resulting framework from safety guarantees to chance
constrained safety guarantees.
Secondly, all three papers test their framework only in simulations. Since computational cost is the number
one challenge in model predictive control and control barrier functions can be seen as a way to artificially
expand the horizon, it would be interesting to see the performance in a realistic setting. It would be extra
interesting to see this in combination with the previous point.
Lastly, in [36] the authors combine a control Lyapunov function with NMPC. Using a CLF term in the
cost function as a terminal condition is used by multiple authors before, e.g. [37]. However, the main
contribution of this paper is to experiment with several ways to include the CLF in the NMPC. The author
deems it interesting to also see such a study being performed on (N)MPC combined with CBF.



8
Numerical Optimization

This section aims to provide an overview of numerical optimization for NMPC purposes. First, a problem
formulation is given. After that literature on numerical solvers is discussed. Lastly, a comparison is made
between the discussed numerical solvers.

8.1. Problem Formulation
The following finite-horizon problem is considered:

argmin
u∈U,x∈X

N−1∑
n=0

ℓn (xn, un) + ℓN (xN ) (8.1)

s.t. x0 = x̄ (8.2)
xn+1 = f (xn,un) (8.3)

zi (xn,un) ≤ 0, i = 1, 2, 3..., Z (8.4)

Where ℓn and ℓN are the stage cost and terminal cost, respectively. z is a state and or input constraint
and x̄ is the known initial condition for state x. Furthermore, it is assumed that ℓn, ℓN , f and z are smooth,
possibly non-convex functions.
Ideally the goal is to find the global optimum considering the constraints, however finding a local optimum
is more realistic given the real-time application.

8.2. Literature on Numerical Optimization
This section contains an overview of literature on numerical optimization. This section will be split into
two subsections, first order methods and second order methods. First order methods only use the first
derivative, second order methods use both the first and the second derivative. Note that the algorithms
will not be discussed elaborately, rather their advantages and disadvantages will be laid out. Additionally,
their relative speed is compared.

8.2.1. First Order Methods
First order methods utilize the gradient to find the search direction in each iteration. Since there is no need
to compute the Hessian, iterations are relatively cheap. However, this does come at the cost of slower
convergence rates. Despite slower convergence rates, first order methods have proved to be useful in
practice for solving NMPC problems [38].
The authors of [39] propose an algorithm, PANOC, used for solving optimal control problems for NMPC.
PANOC proposes an alternative for sequential quadratic programming (SQP). SQP requires iterative pro-
cedures, which can take long if the problem is ill-conditioned. Ill-conditioning is customary in NMPC prob-
lems due to nonlinear dynamics and the horizon length. The authors propose a line-search algorithm with
Forward-Backward iterations with Newton-Type steps. The resulting algorithm is completely matrix-free
and thus has low memory requirements. This enables embedded applications. The authors compared
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their algorithm to forward-backward splitting, MATLABS FMINCON function (SQP)1, and IPOPT [40] (an
interior point method) in terms of computational speed. The PANOC algorithm outperforms the algorithms
for the given problem. An open-source implementation of PANOC is available in the c++ library opEn2.
opEn relies on generated code, thus no extra compiler optimization can be performed, and flexibility is
limited.

8.2.2. Second Order Methods
Second order methods use not only the gradient, but also the Hessian is needed for each iteration. This
makes iterations more expensive, but also improves the convergence rate [38]. Two second order meth-
ods are discussed: Sequential quadratic programming and interior point methods.

Sequential Quadratic Programming
Sequential Quadratic Programming (SQP) methods linearize the nonlinear constraints resulting in a
quadratic programming method (QP). These QP’s are solved consecutively. In every QP the active
constraints are treated as equality constraints. The solution to the QP determines which constraints are
active in the next QP. This solving process can be made efficiently by exploiting the structure of the
optimal control problem (OCP).
An advantage of SQP methods over interior point methods, which are discussed in the next subsection,
is that they can be warm started. I.e., the previous solution, which is readily available in MPC problems,
can be used as an initial guess [41].
In [42] the authors propose a SQP algorithm: qpOASES. qpOASES is a dense solver and is implemented
in the acados software package [43]. The acados software package for optimal control and estimation
problems. Acados is the successor of the ACADO toolkit. Acados is faster, produces exactly the same
results and does not rely on pre-generated code as compared to ACADO toolkit. It can be noted that
states are only dependent on the previous states and the input. Using this property is called condensing.
qpOASES is a dense solver which uses condensing by solving smaller QP problems.
Another active set method is qpDUNES [44]. qpDUNES exploits the block-banded structure of OCP’s [41].
qpDUNES is also implemented in the acados software package. The authors compare their algorithm to
among others FORCES [45], the predecessor of FORCES Pro, which is discussed in the next subsection
on interior point methods. The active set method outperforms the FORCES code generation tool with an
order of magnitude in terms of computational speed. In [41] qpDUNES is shown to outperform qpOASES
in terms of computational speed. Additionally, the authors show HPMPC, the predecessor of HPIPM, an
interior point method discussed in the next subsection outperforms qpDUNES and qpOASES in terms of
computational speed for the same benchmark.

Interior Point
In interior point (IP) methods a barrier function is used to implement constraints. Usually, a logarithmic
barrier function is used to enforce a variable to be larger than zero. If the weight of this barrier term is
small, the solution to the modified problem approaches the original solution. Note that a barrier function
is a function that goes to infinity at the boundaries, not to be confused with a control barrier function.
An example of such an implementation is in ipopt. Ipopt is an open-source (Eclipse Public License) soft-
ware library3, which implements an interior point line search filter method [40]. The authors compare their
algorithm against LOQO[46] and KNITRO4, two previously often used interior point methods. Ipopt shows
favorable performance as compared to the other two.
Another alternative is FORCES Pro5. FORCES Pro is commercial software that generates c code for opti-
mized NMPC embedded problems. The paid license states that disclosing computational performance is
not allowed. It is mentioned here since it is used in MPC literature. E.g., in [27] and [22] (both discussed
earlier).
In [47] the authors propose another interior point method for optimal control problems: HPIPM. HPIPM
uses partial condensing, a combination of condensing (as in qpOASES) and exploiting the block-banded

1https://www.mathworks.com/help/optim/ug/fmincon.html
2https://alphaville.github.io/optimization-engine/
3https://coin-or.github.io/Ipopt/
4https://tomopt.com/docs/knitro/tomlab_knitro002.php
5https://www.embotech.com/products/forcespro/overview/
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structure (as in qpDUNES). HPIPM is one of the solvers implemented in the acados software package[43].
The authors compare the performance to qpOASES (also implemented in acados), which it outperforms
in terms of computational speed.

8.3. A Discussion on Numerical Solvers
Previously one first order method (PANOC), and five second order methods, of which two SQP methods
(qpOASES, qpDUNES) and three IP methods (ipopt, FORCES Pro, HPIPM) were discussed. This section
aims at advising the reader which solver to use.

Ipopt was shown to be outperformed multiple times, thus this solver is not advised. FORCES Pro
has a paid license, which can either be a disadvantage or an advantage since it comes with support.
HPIPM was shown to be the fastest second order solver in a benchmark test. HPIPM, qpOASES and
qpDUNES are all implemented in the open-source library acados, and thus it is easy to switch between
these solvers. PANOC, implemented in the open-source library opEn, can also be a satisfactory solution,
since it is matrix-free and thus has low memory requirements, making it a solid choice for embedded
applications. Moreover, PANOC is a first order method, thus no second derivatives are needed. While
there is no direct speed comparison between PANOC and HPIPM, both are shown to be about two orders
of magnitude faster than ipopt [43], [39].
In the end the choice of solver depends on a trade-off between flexibility, memory usage and speed.
PANOC and HPIPM score about equal in terms of speed. PANOC has lower memory requirements, be-
ing completely matrix free. HPIPM, implemented in acados, scores higher on flexibility, since it does not
rely on pre-generated code and is implemented in a modular software package as compared to PANOC
implemented in opEn.



9
Conclusion

The aim of this review was to provide the reader with an overview of how model predictive control can be
used for trajectory planning. That is, to answer the research question: How can model predictive control
be used for real time trajectory planning under the constraints of not colliding and staying within predefined
state limits? This research question was divided in three sub-questions:

• What are the considerations in using a probabilistic method for MPC trajectory planning?
• Can forward-invariance of a safe set be guaranteed?
• How can a numerical solver be selected for the resulting OCP?

These three sub-questions are answered in order, followed by an answer to the research question and a
paragraph on future work.

Uncertainties in the state estimation can be handled by using chance constraints. Since the state of
the vehicle is usually unknown, a state estimator is used. The output of this state estimator is a probability
distribution. This probability distribution can be used to handle chance constraints. There are examples
of this both for collision constraints as well as control barrier functions. Probabilistic methods are compu-
tationally more intensive than their deterministic counterpart, but also more robust to noise. Therefore,
the main considerations are the sensor quality and the computational power available.

Control barrier functions can be used to guarantee safety, where safety is defined as forward invari-
ance. However, there is no guarantee there is always a feasible solution given a limited control space.
This feasibility problem can be solved by designing a back-up controller that always produces a control
input that ensures safety. An example of this is an emergency brake maneuver. Note that this does imply
that a compatible control barrier function is needed, i.e., a distance that takes the maximum deceleration
of the vehicle into account. For state constraints an emergency maneuver would be to hover. Therefore,
given that a back-up controller is allowed and control barrier functions are constructed in a smart way,
safety can be guaranteed. This can also be done with regular hard constraints, however there are indica-
tions that control barrier functions offer improved performance.

Several numerical solvers are compared to solve the nonlinear optimal control problem. The consid-
erations to select these solvers are computational speed, flexibility, and the size of the available memory.
Two solvers stood out based on these criteria. The first solver algorithm is PANOC, which is implemented
in the open-source code generator opEn. PANOC is a first order solver (only requiring the Jacobian
matrix), which is completely matrix-free. Therefore, it has low memory requirements making it ideal for
embedded applications. The second solver is the HPIPM solver in the acados package. Acados is a
modular software package that implements multiple second order solvers (also requiring the Hessian ma-
trix): qpOASES, qpDUNES and HPIPM. Acados is more flexible since it does not rely on generated code.
Switching between the implemented solvers is simple and code maintainability is high. Both software
packages exploit the structure of the OCP and are used multiple times throughout the literature on MPC’s
for trajectory planning. In terms of computational speed the performance is similar can be conluded from
an indrect comparison.
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Coming back to the main research question: Model predictive control can be used for online trajec-
tory planning in a probabilistic and deterministic framework. Probabilistic frameworks are more robust to
noise, but also require more computational power. Safety can be guaranteed with control barrier func-
tions, if used correctly. While literature on using CBFs as MPC constraints is sparse, there are clear signs
that using control barrier functions can increase performance over using conventional hard constraints.
The main challenge for MPCs for online trajectory planning is computational cost, therefore a specialized
numerical solver is needed. Two excellent solvers, used multiple times throughout literature, include the
first order PANOC implementation of opEn, which relies on generated code and the second order HPIPM
solver of acados, which is more flexible since it does not rely on generated code. Both are open-source
software libraries and score similar in terms of computational speed.

Answering these research questions also raised new questions which form the basis for future research.
Especially in the combination with MPC and CBF there are still a lot of unknowns. Specifically, the author
deems research in the following topics interesting:

• The effect of selecting a certain γ (not necessarily a constant) in the control barrier function.
• The effect of using a control barrier function as constraint on all states, instead of only on the position
state for collision avoidance.

• The feasibility of a combination between CBF and MPC on hardware in a real-time application.
• The effect on the feasibility problem on the usability of control barrier functions in the context of MPC.
• The combination of probabilistic control barrier functions with MPC altogether.
• The stage in which to apply the control barrier function constraint. I.e., on which timestep to apply
the constraint.

• The feasibility of applying a combination of MPC and CBF for trajectory planning on a quadcopter.

Note that the first two topics are not specific to a combination between MPC and CBF, but also hold for
CBF’s in general. However, they are still included since they can be studied in the context of MPC and
different contexts. These items are summarized in the following research question: What are the main
considerations when combining MPC with CBF for trajectory planning? This research question forms the
basis of a master thesis that is to be done directly after this literature report.
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