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Abstract
CycleGANs [1] and CIConv [2] are both rela-
tively new approaches to their respective appli-
cations. For CycleGANs this application is un-
paired image-to-image domain adaptation and for
CIConv this application is making images more
robust to illumination changes. We investigate
whether CycleGANs in combination with CIConv
can be used to improve the day-night domain adap-
tation. The resulting images could then be used
during the training of CNNs that can be found in
self-driving cars. Attempts were made to get the
CycleGANs in combination with CIConv to train
in a stable manner. These attempts included a va-
riety of hyperparameter combinations, a number of
architecture alterations and training procedure ad-
justments, and most significantly two different loss
functions. Both these loss functions apply a Cycle-
Consistency Loss, one applies an additional Adver-
sarial Loss [1] and the other an additional Wasser-
stein Distance and Gradient Penalty [3]. In this pa-
per we show that CycleGANs with CIConv as the
first layer in either the Discriminators or the Gen-
erators resulted in unstable training. We conclude
that the root of the instability issues lies in the CI-
Conv layer causing exploding gradients resulting
in unsuccessful training of the model. Finally, we
propose an adjustment to the CIConv layer which
shows promise in resolving these issues for the ar-
chitecture with CIConv in the Generators. How-
ever, no extensive testing has been done.

1 Introduction
Nowadays, we are seeing more and more self-driving cars on
the roads. These cars rely on cameras and computer vision
software to recognize and react to their environment. This
software generally contains some sort of Convolutional Neu-
ral Network (CNN) [4] to perform the required image pro-
cessing tasks.

Since CNNs are a type of Neural Network (NN), they re-
quire training and therefore training data. To ensure that
the self-driving cars become capable of safely navigating the
roads, this training data should contain data of several do-
mains. More specifically, sufficient domains to encapsulate
the differences in illumination caused by the time of day.

However, the gathering of the data for all these domains has
proven a difficult task, especially for nighttime training data.
This results in a lack of nighttime training data for the training
of CNNs used by self-driving cars. Contrary, training data
during the day is readily accessible. This makes a method for
adapting the day domain data to night domain data appealing
to the self-driving car industry.

One of the main challenges of this potential method of
day-night domain adaptation is to learn the mapping between
the illumination characteristics of the domains. Recent work
on Color Invariant Convolution (CIConv) [2] has introduced
a method for making images more robust to illumination

changes making it an interesting candidate to assist in the
day-night domain adaptation. CIConv works by adding a
color invariant edge detector as a trainable layer to a Neural
Network hereby transforming an image to a color invariant
representation. As a result, images from either domain ran
through a trained CIConv layer should be near duplicates.

In this research, we tackle the challenge of domain adap-
tation by combining CIConv with Generative Adversarial
Networks (GANs), more specifically Cycle-Consistent Gen-
erative Adversarial Networks (CycleGANs) [1] and Cycle-
Consistent Wasserstein Adversarial Networks with Gradient
Penalty (CycleWGAN-GP) [3]. This is done in order to con-
vert training data from the day domain to training data from
the night domain. This data could then potentially be used to
train CNNs on segmentation or other computer vision tasks.
A (partially) successful completion of this research could be
of great benefit to the GAN field as well as the self-driving
car industry.

In order to carry out this research the following research
question is posed: What is the influence of CIConv in combi-
nation with CycleGANs on the generation of labeled training
data in a domain for which only unlabeled data is available?

In this paper we will make the following contributions:

• We show that the architecture without CIConv using ei-
ther the CycleGAN loss function or the CycleWGAN-
GP loss function trains in a stable manner and succeeds
in the day-night domain adaptation.

• We show that the architectures with original CIConv in
either the Discriminators or the Generators using either
the CycleGAN loss function or the CycleWGAN-GP
loss function results in unstable training due to explod-
ing gradients and is therefore unsuccessful in the day-
night domain adaptation.

• We propose an adjusted CIConv layer that, when added
to the first layer of the Discriminators or the Genera-
tors in a CycleGAN, allows for stable training and shows
promising preliminary results. It therefore has the poten-
tial to be of benefit during the day-night domain adapta-
tion.

• We provide a code-base containing an adjusted CIConv
layer and three CycleGAN architectures, namely: No
CIConv, CIConv as the first layer of the Discriminators
and CIConv as the first layer in the Generators. For these
architectures two loss functions are available, namely
the CycleGAN loss function [5] and the CycleWGAN-
GP loss function [3].

2 Related Works
Generative Adversarial Networks (GANs) have shown re-
markable results in the generation of fake images based on
simple noise [6, 7]. A well known example is the generation
of fake images of human faces. These faces are (almost) un-
differentiable from real images.

GANs train using two opposing models, namely the Gener-
ator and the Discriminator. The Generator generates images
that the Discriminator classifies as real or fake. The key to the



training of these models and thus the quality is called the Ad-
versarial Loss. This loss ensures that the Generator becomes
better at fooling the Discriminator and that the Discrimina-
tor becomes better at classifying images as either real or
fake. As a result, Adversarial Loss allows for the generation
of images that are (nearly) indistinguishable from real im-
ages [8]. GANs in itself are unable to perform domain adap-
tation, therefore we use Cycle-Consistent Generative Adver-
sarial Networks (CycleGAN) and Cycle-Consistent Wasser-
stein Generative Adversarial Networks with Gradient Penalty
(CycleWGAN-GP). These are extensions of the GAN archi-
tecture.

The stable training of GANs is known to be a challenging
issue and is still an active area of research. This is due to the
need for both the Generator and the Discriminator to learn at a
similar rate. If this is not the case, typically the Discriminator
will overpower the Generator with unsuccessful training as a
result.

A frequently encountered training issue is the Vanishing
Gradient problem. In this case the Generator fails to learn
due to the Discriminator not providing enough information
to do so. [9] proposes the Wasserstein loss which is designed
to prevent vanishing gradients even when the Discriminator
it trained sub-optimally. This loss is then further improved
using Gradient Penalty [10, 11], which guarantees GAN con-
vergence.

Another recurrent issue is the Exploding Gradient problem.
This problem occurs when the updates to the weights during
back-propagation become extremely large. As a result the
network is not updating its weights as it should and therefore
no improvements are made. [12] proposes the use of gradient
clipping in order to prevent the Exploding Gradient problem
and [10] proposes the Gradient Penalty as a substitution to
gradient clipping.

We use an extension of the GAN architecture, namely Cy-
cleGAN. Additionally, we add upon this architecture by im-
plementing a Wasserstein Distance and a Gradient Penalty.
Furthermore, the method of Gradient Clipping in order to pre-
vent Exploding Gradients has been implemented.

Domain Adaptation is used as an alternative to the fre-
quently expensive and time-consuming process of gathering
real labeled training data. Is is a sought after method for
adapting an image from a source domain to a target domain.
[8, 13, 14] use Conditional GANs to perform domain adap-
tation. [15] uses Coupled GANs (CoGANs) and [16] applies
StyleGANs. Furthermore, [1, 17] utilize CycleGANs to per-
form domain adaptation. Of these architectures, we have im-
plemented the CycleGAN architecture due to the others not
having a Cycle-Consistency Loss in their loss functions.

Cycle-Consistent Adversarial Networks (CycleGANs)
are an extension of the regular GAN architecture and are
known to perform unpaired image-to-image translation [1,
17]. This entails translating an image from a source domain,
to an image from a different target without a direct pairing
between the source and the target domain. CycleGANs are
able to perform this translation by introducing an extra type
of loss to their loss function, namely Cycle-Consistency Loss.
This loss ensures that images converted from one domain to
another and then back, differ as little as possible, hereby pre-

serving the structure of the original image.
Wasserstein Distance and Gradient Penalty are a vari-

ation of the regular loss function proposed by [9], in which
careful maintaining of the equilibrium is no longer needed.
The Wasserstein Distance allows for improved training stabil-
ity due to a decreased reliance on network architecture. Ad-
ditionally, the Gradient Penalty [10] helps in preventing both
the Vanishing Gradient and the Exploding Gradient prob-
lem. We use both the Wasserstein Distance and the Gradient
Penalty.

Color Invariance is achieved by making certain assump-
tions within physics-based reflection models allowing im-
ages to become invariant towards certain illumination fea-
tures [18]. It has applications in wide variety of computer
vision tasks. Recent works have applied color invariant trans-
formations as a preprocessing step and show improved image
segmentation performance [19, 20]. [2] introduces Color In-
variant Convolution (CIConv), which uses the Kubelka-Munk
theory for material reflections and applies it as a learnable
layer in a neural network. We compare CycleGANs with and
without the use of CIConv to discover whether CIConv can
be of benefit during day-night domain adaptation.

3 Method
Our aim is to determine if the incorporation of Color Invari-
ant Convolution (CIConv) (see section 3.2) in CycleGANs is
beneficial for performing day-night domain adaptation. This
is done by developing three architectures. One without CI-
Conv (CG), see figure 1a, one with CIConv as the first layer
in the Discriminators (CGdisc), see figure 1b and one with CI-
Conv as the first layer in the Generators (CGgen), see figure 1c.
For these architectures we implemented two loss functions.
The first applies the Adversarial Loss and Cycle-Consistency
Loss proposed by [1] (LCycleGAN ). The second swaps the
Adversarial Loss for the Wasserstein Distance and introduces
a Gradient Penalty according to [3] (LCycleWGANGP

).
As can be seen in figures 1a, 1b and 1c, images from XD

(day domain) are converted via the Generator GD2N (day-to-
night), to images from XN (night domain). The reverse also
occurs, in this case images from XN are converted via GN2D
(night-to-day) to images from XD. We denote images from
XD that have been converted to images from XN via a Gen-
erator GD2N as GD2N(XD), the reverse also holds. Conse-
quently, images converted from one domain to the other and
then back should resemble each other as closely as possible,
hence: GN2D(GD2N(XD)) ≈ XD.

Additionally, for CG, CGdisc and CGgen, we have intro-
duced two adversarial Discriminators, namely DD and DN.
DD classifies images from XD as real or fake. Members of XD
could be either original members of XD or converted members
of XN, so: GN2D(XD).

Reaching our goal requires combining the developed ar-
chitectures with a loss function and CIConv. First, the two
loss functions and what they consist of are laid out. This is
followed by an overview on CIConv.

3.1 Loss Functions
We apply two different loss functions, namely LCycleGAN

and LCycleWGANGP
. These loss functions consist of a com-



(a) CycleGAN architecture without
CIConv, referred to as CG

(b) CycleGAN architecture with CI-
Conv in the Discriminator, referred to
as CGdisc

(c) CycleGAN architecture with CI-
Conv in the Generator, referred to as
CGgen

Figure 1: CycleGAN architectures without (left) and with (center and right) CIConv. XD and XN are the input images of the day
and night domain, respectively. DD and DN are the Discriminators for the day and night domain, respectively. GD2N and GN2D
are the day-to-night and night-to-day domain Generators, respectively.

bination of loss terms. These terms are described in the fol-
lowing section.

3.1.1 Adversarial Loss
We apply an adversarial loss to both the Discriminators and
the Generators. For the day-to-night domain conversion
(XD → XN), this is done with the following equation adopted
from [6]:

LGAN (GD2N,DN,XD,XN) = En∼pN(n)[log(DN(n))]

+ Ed∼pD(d)[1− log(DN(n
∗))].

(1)
In the first part of equation 1 (before the + sign), we see

that DN assesses a real image from XN. DN aims to keep this
value as high as possible. If successful, real images will be
assigned a value close to 1.0.

In the second part of equation 1 (after the + sign), DN as-
sesses a fake image n∗ from XN generated by GD2N. DN aims
to assess these images as accurately as possible. If successful,
by assigning them values close to 0.0. Due to the [1−] term,
the Discriminator will again attempt to keep the part of the
equation after the + sign as large as possible.

Contrary, GD2N aims to keep the second part of equation 1
as low as possible. If it succeeds, this would mean that GD2N
fooled DN into assessing a fake image as if it were real. Addi-
tionally, if GD2N is capable of fooling DN in some cases, this
results in a lower certainty by DN in the first part of equation
1.

DN and GD2N are both trying to achieve their own op-
posing goals in terms of what should happen to the value
of equation 1. DN wants it to be as high as possible and
GD2N wants it to be as low as possible. They are therefore
competing in a minimax game which can be formulated as:
minGD2N maxDN LGAN (GD2N,DN,XD,XN).

Furthermore, an altered version of this minimax game also
occurs for the reverse domain adaptation, namely: XN →
XD. In this case the minimax game formulation becomes:
minGN2D maxDD LGAN (GN2D,DD,XN,XD).

3.1.2 Wasserstein Distance
We apply a Wasserstein Distance as the adversarial part of the
loss function for both the Generators and the Discriminators1.
For the day-night domain conversion (XD → XN) this results
in the following equation adopted from [3]:

LWGAN (GD2N,DN,XD,XN) = En∼pN(n)[DN(n)]

− Ed∼pD(d)[DN(n
∗)].

(2)

The first part of equation 2 (before the - sign) represents
the mean of the prediction of DN on real images from XN.
The second part of equation 2 (after the - sign) represents
the mean of the prediction of DN on fake images n∗ from
XN generated by GD2N. They are subtracted to arrive at the
Wasserstein Distance.

The Wasserstein Distance is a value for how closely the
images resemble each other. The Generators aim to ob-
tain a larger score from the Discriminators. The Dis-
criminators aim to provide a larger score for real im-
ages and a lower score for fake images. To describe
their behavior the following minimax game is formulated:
minGD2N maxDN LWGAN (GD2N,DN,XD,XN).

An altered version of this minimax game also holds for the
reverse domain adaptation, namely: XN → XD. This can then
be described as minGN2D maxDD LWGAN (GN2D,DD,XN,XD).

3.1.3 Gradient Penalty
We apply a Gradient Penalty which penalizes the norm of the
gradient of the discriminators. It is defined by the following
equation:

LGP(DN,XN) = λGPEx̃∼ Px̃
[(||∇x̃D(x̃)|| − 1)2], (3)

where λGP is the Gradient Penalty coefficient, it allows
for control over the relative influence of the Gradient Penalty.

1Formally, when applying Wasserstein distances we use a Critic
instead of a Discriminator. For simplicity, we only speak of Dis-
criminators in this paper.



Px̃ is the sampling distribution between pairs of points sam-
pled from the data distribution of real images and generated
images [3]. By applying equation 3, we convert the regular
WGAN loss function to an improved WGAN-GP loss func-
tion.

Apart from the Discriminator DN and the domain XN, equa-
tion 3 is also applied for the Discriminator DD and the domain
XD. The result being LGP (DD,XD).

3.1.4 Cycle-Consistency Loss
We apply Cycle-Consistency Loss to ensure that the structure
of the image between conversions stays intact. This is repre-
sented with the following equation adopted from [1]:

Lcycle(GD2N,GN2D) = Ed∼pdata(d)[||GN2D(GD2N(d))− d||]
+ En∼pdata(n)[||GD2N(GN2D(n))− n||].

(4)
In the first term of equation 4 (before the + sign) the ab-

solute value of the difference between images from XD con-
verted to XN and then back, and images from XD is taken. A
similar operation is done in the second part of the equation.
Now, with the Generators and the domains flipped.

Cycle-Consistency Loss is used because Adversarial Loss
alone is not capable of generating the desired images. With-
out Cycle-Consistency structural properties of images would
go lost between image conversions.

3.1.5 Combined Loss Functions
By combining the losses described in sections 3.1.1, 3.1.2,
3.1.3 and 3.1.4 we arrive at two loss functions, namely
LCycleGAN and LCycleWGANGP

. These losses are further
defined in the following sections.
3.1.5.1 CycleGAN Loss Function
From equations 1 and 4 we obtain the following combined
loss function for LCycleGAN adopted from [5]:

LCycleGAN (G,D,X ) = LGAN (GD2N,DN,XD,XN)

+ LGAN (GN2D,DD,XN,XD)

+ λLcycle(GD2N,GN2D)

(5)

or LCycleGAN for short. Here, G, D and X are the Gener-
ators GD2N and GN2D, the Discriminators DN and DD, and the
domains XN and XD, respectively. Equation 5 combines two
Adversarial Loss terms, one for each Generator and Discrim-
inator pair, and a Cycle-Consistency Loss term. Additionally,
notice the multiplication with λ before the Cycle-Consistency
Loss term. This multiplication allows for control over the rel-
ative importance between the types of losses.
3.1.5.2 CycleWGAN-GP Loss Function
From equations 2, 3 and 4, we arrive at a the following com-
bined loss function for LCycleWGANGP

adopted from [3]:

LCycleWGANGP
(G,D,X ) = LWGAN (GD2N,DN,XD,XN)

+ LWGAN (GN2D,DD,XN,XD)

+ λ0Lcycle(GD2N,GN2D)

+ λ1LGP (DN,XN)

+ λ2LGP (DD,XD)
(6)

or LCycleWGANGP
for short. Here, G, D and X are the

Generators GD2N and GN2D, the Discriminators DN and DD,
and the domains XN and XD, respectively. Additionally, λ0

represents the Cycle-Consistency Loss coefficient and both
λ1 and λ2 represent the Gradient Penalty coefficients.

Equation 6 combines two Wasserstein Distances, one for
each Generator and Discriminator pair, a Cycle-Consistency
Loss and two Gradient Penalties, one for each Discriminator.

3.2 Color Invariant Convolution (CIConv)
CIConv is a method for making images more robust to illumi-
nation changes and has been introduced in recent work [2]. It
works by adding a color invariant edge detector as a trainable
layer to a CNN.

In this work, we apply the W version of the CIConv layer
since this was the most successful variant from [2]. This vari-
ant is defined in the following equation:

W =
√

W 2
x +W 2

λx +W 2
λλx +W 2

y +W 2
λy +W 2

λλy, (7)

where Wx, Wλx and Wλλx are defined as follows:

Wx =
Ex

E
,Wλx =

Eλx

E
,Wλλx =

Eλλx

E
(8)

and Wy , Wλy and Wλλy are similarly defined. Ex, Eλx

and Eλλx are determined by first estimating E, Eλ and Eλλ

based on the Gaussian color model and then convolving these
estimations with a Gaussian derivative kernel [2].

Finally, CIConv is defined as:

CIConv(x, y) =
log(CI2(x, y, σ = 2s) + ϵ)− µS

σS
, (9)

where CI is the color invariant choice, in our case W from
equation 7. µS and σS are the sample mean and standard
deviation over log(CI2 + ϵ). ϵ is a small term added to pre-
vent the log term from approaching −∞ when its input ap-
proaches zero [2].

A result of using CIConv is that a three-channel image is
converted to a one-channel image. When CIConv is used in
the Discriminators, this has the consequence of them only
classifying images as real or fake based on a one-channel im-
age. Something similar is true when CIConv is used in the
Generators. In this case a one-channel image is run through
the Generator network and in the final layer it is converted
back to a three-channel image.

4 Experiments
Our aim for this project is to determine whether Color Invari-
ant Convolution (CIConv) (see section 3.2) is a useful addi-
tion to a CycleGAN performing day-night domain adaptation.
To establish this, our first priority is to have the architectures
train in a stable manner. To determine if stable training oc-
curred, we ran the training sessions for 10 epochs. This pro-
vided us with enough information to conclude whether or not
a setup was training stably. The following sections will make
use of certain symbols of which the meaning can be found in
table 1.



Symbol Meaning
GD2N or G D2N Day-to-Night Generator
GN2D or G N2D Night-to-Day Generator
DD or D D Day Discriminator
DN or D N Night Discriminator
XD Day domain
XN Night domain
CG CycleGAN without CIConv (figure

1a)
CGdisc CycleGAN with CIConv in the first

layer of the Discriminators (figure 1b)
CGgen CycleGAN with CIConv in the first

layer of the Generators (figure 1c)
LCycleGAN Loss function with adversarial losses

and cycle-consistency losses (equation
5)

LCycleWGANGP
Loss function with Wasserstein dis-
tances, gradient penalties and cycle-
consistency losses (equation 6)

Table 1: Overview of used symbols and their meaning.

4.1 Network Architectures
We propose three architectures for which the main implemen-
tation largely originates from [5]. These architectures consist
of CG, CGdisc and CGgen. We trained all three of these archi-
tectures with two different loss functions, namely LCycleGAN

and LCycleWGANGP
.

Generator Layers Specification
Optional CIConv layer, variant W, k 3, initial scale 0.0
7×7 Conv-Norm-ReLu layer, 64 filters, stride 1
3×3 Conv-Norm-ReLu layer, 128 filters, stride 2
3×3 Conv-Norm-ReLu layer, 256 filters, stride 2
9 Residual blocks
3×3 ConvTrans-Norm-ReLu layer, 128 filters, stride 2
3×3 ConvTrans-Norm-ReLu layer, 64 filters, stride 2
7×7 Conv layer, 3 filters, stride 1

Table 2: Specification of the Generator layers. Conv repre-
sents a Convolutional layer, ConvTrans a Transpose Convo-
lutional layer, Norm an Instance Normalization step and ReLu
a ReLu activation function. Notice the optional first CIConv
layer.

Tables 2 and 3 show the Generator and Discriminator lay-
ers specifications, respectively. They both have an optional
first CIConv layer. By varying if we apply this layer, we cre-
ate the three architectures. Additionally, the Discriminator
has an extra Sigmoid activation function in case LCycleGAN

is used.
Furthermore, when LCycleGAN is used we apply one-sided

label smoothing. This entails that when the Discriminator
losses on real images are lower than 0.1, we replace these loss
values with a random number between 0.0 and 0.1. Addition-
ally, we apply a five percent probabilistic label switching of

Discriminator Layers Specification
Optional CIConv layer, variant W, k 3, initial scale 0.0
4×4 Conv-LeakyReLu layer, 64 filters, stride 2
4×4 Conv-Norm-LeakyReLu layer, 128 filters, stride 1
4×4 Conv-Norm-LeakyReLu layer, 256 filters, stride 1
4×4 Conv-Norm-LeakyReLu layer, 512 filters, stride 2
4×4 Conv layer, 1 filter, stride 1
If using LCycleGAN : Sigmoid

Table 3: Specification of the Discriminator layers. Conv rep-
resents a Convolutional layer, Norm an Instance Normaliza-
tion step and LeakyReLu a LeakyReLu activation function.
Notice the optional first CIConv layer and the final Sigmoid
activation function in case LCycleGAN is applied.

Hyperparameter LCycleGAN LCycleWGANGP

LR Discriminators 1e-5 2e-4
LR Generators 1e-5 2e-4
Batch size 2 2
CC coefficient 10 50
Gradient Penalty - 10

Table 4: An overview of the hyperparameters used during the
experiments for the two loss functions. LR: Learning rate,
CC: Cycle-Consistency.

images going into the Discriminators. Meaning that in five
percent of the cases, we swap the labels of the real and fake
images going into the Discriminators. Both these methods
help steer training to an equilibrium between Generator and
Discriminator performance, hereby improving training stabil-
ity [21].

Further attempted architecture tweaks include gradient
clipping of the CIConv layer scale parameter and applying
batch normalization instead of instance normalization. How-
ever, we found these to show no performance increase and
they are therefore not used in the final implementation.

4.2 Training Details
Ensuring that the architectures trained in a stable manner was
our first priority. A wide variety of hyperparameter combi-
nations was attempted. For the upcoming experiments we
used the hyperparameters in table 4. The hyperparameters
under LCycleGAN follow [1] and under LCycleWGANGP

fol-
low [3]. The exception is the batch size, this was chosen
to be as large as possible but was constrained by the al-
lowed amount of GPU memory allocation. Additionally, we
used the CityScapes dataset for the day domain and the Dark
Zurich dataset for the night domain.

4.3 Training architectures with LCycleGAN

In this section, we discuss our findings when training CG,
CGdisc and CGgen with LCycleGAN as the loss function. We
compare the architectures based on their output images and
on the evolution of their losses during training.



Figure 2: Images from the XD test-set converted to images from XN with LCycleGAN and LCycleWGANGP
as loss func-

tions after 10 epochs of training. Of the columns under CG, CGdisc and CGgen, the left columns are images converted
using LCycleGAN as the loss function during training and the right columns are images converted using LCycleWGANGP

.
The pore quality of the images converted by CGdisc and CGgen compared to images converted by CG indicate that CGdisc
and CGgen are training in an unstable fashion.

4.3.1 Architecture without CIConv
We investigate whether CG with LCycleGAN as its loss func-
tion is capable of performing day-night domain adaptation.
This experiment will be used as a baseline for following ex-
periments with the same loss function.

The images in figure 2 corresponding to CG and
LCycleGAN show some results of the architecture trained for
10 epochs. In this figure, we can see that the day-night do-
main adaptation is being performed quite well considering the
relatively few training iterations.

Furthermore, in figures 3a and 3b we can see that the train-
ing follows an expected pattern of Generator and Discrimina-
tor losses. The GN2D & GD2N combined loss in figure 3a fol-
lows a steadily decreasing and then relatively constant curve.

Additionally, the Generator and Discriminator adversarial
losses in figure 3b quickly converge to somewhat constant
values of approximately 0.4. This is slightly lower than the
ideal 0.5, however it still indicates stable training. Moreover,
these losses of approximately 0.4 are nicely around the mid-
dle of the maximum loss of 1.0 and the minimum loss of 0.0
which is again a good sign that stable training is occurring.

4.3.2 Architectures with CIConv
We investigate whether CGdisc and CGgen both with
LCycleGAN as their loss function, are capable of performing
day-night domain adaptation. The first priority is to ensure
that training is being executed in a stable manner.

The initial indication whether stable training is occurring
is the quality of the output images of the architecture. In

this case, these output images are the images in figure 2
corresponding to CGdisc and CGgen which were trained with
LCycleGAN as their loss function. These images do not in-
dicate any form of convergence towards the sought-after do-
main adaptation.

Furthermore, by comparing the stable training in figures 3a
and 3b with figures 3c and 3d and figures 3e and 3f, we again
find that stable training is not occurring.

Firstly, the GN2D & GD2N combined loss in figure 3c and 3e
are significantly larger than in figure 3a. Additionally, they
converge at a much lower rate.

Secondly, the GN2D adversarial loss and the GD2N adver-
sarial loss in figures 3d and 3f approach a value between 0.9
and 1.0, which represents the maximum loss value for the
Generators due to the five percent probabilistic label flipping
mentioned in section 4.1. This indicates an extremely high
loss for these Generators meaning the Discriminators are ef-
fortlessly able to classify the generated images as real and
fake.

Thirdly, the GN2D cycle loss and the GD2N cycle loss in fig-
ures 3c and 3e are significantly higher and more chaotic than
in figure 3a. This could be caused by the overall pore perfor-
mance of the Generators, hereby making the domain conver-
sion from one domain to another and then back notably more
challenging.

Lastly, the Discriminator adversarial losses in figures 3d
and 3f quickly converge to a value of around 0.1, which is
practically the minimum due to the one-sided label smoothing



(a) EMA of Generator losses
of CG with LCycleGAN .

(b) EMA of Generator
and Discriminator adver-
sarial losses of CG with
LCycleGAN .

(c) EMA of Generator losses
of CGdisc with LCycleGAN .

(d) EMA of Generator and
Discriminator adversar-
ial losses of CGdisc with
LCycleGAN .

(e) EMA of Generator losses
of CGgen with LCycleGAN .

(f) EMA of Discrimina-
tor losses of CGgen with
LCycleGAN .

Figure 3: Exponential moving average of Generator and Dis-
criminator losses of CG, CGdisc and CGgen with LCycleGAN

as the loss function. For CG, the initially decreasing and then
converging path of the GN2D & GD2N combined loss com-
bined with the approximately constant value for the adversar-
ial losses indicate that stable training is occurring. For CGdisc
and CGgen, convergence of both the Generators and the Dis-
criminators adversarial losses towards practically their max-
imal and minimal, respectively, combined with a relatively
high GN2D & GD2N combined loss is a strong indication for
unstable training.

mentioned in section 4.1. Hereby, again indicating that the
Discriminators have too simple of a job in classifying images
as real and fake.

The observations made, especially of the high GN2D and
GD2N adversarial losses and the low DD and DN adversarial
losses strongly indicate unstable training. Section 4.5 will
further analyse why CGdisc is failing to train in a stable man-
ner.

4.4 Training architectures with LCycleWGANGP

In this section, we discuss our findings when training CG,
CGdisc and CGgen with LCycleWGANGP

as the loss function.
The architectures are compared based on their output images
and the evolution of their losses during training.

4.4.1 Architecture without CIConv
We investigate if CG and LCycleWGANGP

as its loss func-
tion is capable of performing the day-night domain adapta-
tion. This experiment will act as a baseline in following ex-
periments with the same loss function. The images in figure
2 corresponding to CG and LCycleWGANGP

show several re-
sults after 10 epochs of training. We can see a quite well
performing domain adaptation considering the short training
time.

Furthermore, the images in figure 2 corresponding to CG
and LCycleWGANGP

as the loss function seem to be of higher
quality than the same architecture with LCycleGAN as its loss
function. This could suggest that LCycleWGANGP

is the bet-
ter of the two LCycleGAN , at least for the current setup.

Figure 4 shows the losses for both the Generators and the
Discriminators. Here, we see relatively quick curve conver-
gence for all parameters, most importantly for the GN2D &
GD2N combined loss in figure 4a. A relatively constant value
for this specific loss indicates the desired stable training.

4.4.2 Architectures with CIConv
In this section we investigate whether CGdisc and CGgen, both
with LCycleWGANGP

as their loss functions, are capable of
performing domain adaptation. As in section 4.3.1 our first
priority is to have the architectures train in a stable manner.

Once again, our primary indication that stable training is
not occurring, is the state of the images in figure 2 corre-
sponding to the architectures trained with LCycleWGANGP

as
their loss function. These images do not suggest a conver-
gence in the direction of the desired domain adaptation. Fur-
thermore, by comparing figures 4a and 4b with figures 4c and
4d and figures 4e and 4f in the following sections, we show
stable training does not occur for both architectures with CI-
Conv and LCycleWGANGP

as their loss function.

4.4.2.1 CIConv in the Discriminators (CGdisc)
In figure 4c, we see a relatively low GN2D & GD2N combined
loss compared to figure 4a. Since the Generators loss is deter-
mined via the Discriminators, this suggests underperforming
Discriminators.

Furthermore, in figure 4d, we see extremely large Gradient
Penalty values for both the day and night Discriminators. No-
tice how the Wasserstein distances are overshadowed by the
Gradient Penalty values. To determine the Gradient Penalty,
we apply equation 3. This equation uses the Discriminators



(a) EMA of Generator losses
of CG with LCycleWGANGP .

(b) EMA of Discrimi-
nator losses of CG with
LCycleWGANGP .

(c) EMA of Generator
losses of CGdisc with
LCycleWGANGP .

(d) EMA of Discrimina-
tor losses of CGdisc with
LCycleWGANGP .

(e) EMA of Genera-
tor losses of CGgen with
LCycleWGANGP .

(f) EMA of Discrimina-
tor losses of CGgen with
LCycleWGANGP .

Figure 4: Exponential moving average of Generator and Dis-
criminator losses of CG with LCycleWGANGP

. For CG, the
quick convergence and relatively constant values for all pa-
rameters, especially GN2D & GD2N combined loss, indicate
stable training. For CGdisc, the extremely large Wasserstein
distance values are a powerful indication that unstable train-
ing is occurring. For CGgen, the relatively large and increas-
ing GN2D & GD2N combined loss combined with a far from
constant DD Wasserstein distance is a solid sign that unstable
training is occurring.

which in this architecture have a CIConv layer as their first
layer. This CIConv layer seems to be the cause for the large
Gradient Penalty values and thus the unstable training. Fur-
ther analysis on why the CIConv layer causes unstable train-
ing can be found in section 4.5.

4.4.2.2 CIConv in the Generators (CGgen)
In figure 4e, we see a strong increase for all parameters com-
pared to figure 4a. As a result the GN2D & GD2N combined
loss for this architecture is significantly higher than for the
same architecture without CIConv. The increased GN2D &
GD2N combined loss suggest failing Generators.

Additionally, the GN2D Wasserstein distance in figure 4e
is significantly larger than the GN2D Wasserstein distance.
These values are determined by using the Discriminators,
meaning they have more of a challenge correctly classifying
fake images from the night domain than from the day domain.
This could be due to the difference in illumination properties
between the day and night domain, for example the larger
contrast of the day domain.

Furthermore, in figure 4f, we see a decreased value for
the DD Wasserstein distance and the DN Wasserstein distance
compared to figure 4b. This corresponds to the Discrimina-
tors having an undemanding task correctly classifying images
as real and fake. Additionally, we again see a smaller value
for the DD Wasserstein distance than the DN Wasserstein dis-
tance. This is in line with the impression that the Discrimina-
tors face less of challenge when classifying fake day images
compared to fake night images.

4.5 Analysing Unstable Architectures
In this section, we show that the addition of the CIConv layer
in either the Generators or the Discriminators causes explod-
ing gradients in this layer. Additionally, we investigate which
term in the CIConv layer causes the exploding gradients prob-
lem and finally we show how to mitigate it.

4.5.1 Exploding Gradients
In figures 5a through 5d, we see graphs of the absolute values
of the means of the gradients of the CIConv layer scale value.
The extremely large values in these graphs indicate exploding
gradients.

To understand why the gradients in figures 5a through 5d
are so large, we partly derive the equation for the gradient of
the CIConv layer:

∂y

∂x
=

1
W (x)2+ϵ

∂W (x)2

∂x − ∂σS

∂x log(W (x)2 + ϵ)

σ2
S

−
∂µS

∂x σS − ∂σS

∂x µS

σ2
S

, (10)

with y being the CIConv layer as in equation 9 with CI
as W , see equation 7. We partially derive with respect to x,
which represents the input image going into the CIConv layer.
Equation 10 is used in following sections to investigate why
the CIConv layer has exploding gradients.



(a) CGdisc with LCycleGAN CI-
Conv scale gradient with log
term.

(b) CGgen with LCycleGAN CI-
Conv scale gradient with log
term.

(c) CGdisc with LCycleWGANGP

CIConv scale gradient with log
term.

(d) CGgen with LCycleWGANGP

CIConv scale gradient with log
term.

(e) CGdisc with LCycleGAN CI-
Conv scale gradient without log
term.

(f) CGgen with LCycleGAN CI-
Conv scale gradient without log
term.

(g) CGdisc with LCycleWGANGP

CIConv scale gradient without
log term.

(h) CGgen with LCycleWGANGP

CIConv scale gradient without
log term.

Figure 5: These graphs provide a visualisation of the size of the mean of the CIConv layer scale gradients for the different
architectures and the two loss functions, see graph captions for details. The top four graphs show the CIConv layer scale
gradients for the CIConv layer with the log term, the bottom four graphs without the log term. The training session at figure 5g
only ran for a little more than one epoch before the gradients became too large and caused an error. The difference in magnitude
between the top four graphs and the bottom four graphs shows that the log term in equation 9 is not the cause of the exploding
gradients.

4.5.2 Remove log term
In equation 10, we see the term 1

W (x)2+ϵ . When W (x) ap-
proaches zero, this term becomes large which is a potential
cause for the exploding gradients. To further test this theory,
we removed the log term in equation 9, resulting in:

z = CIConv(x, y) =
CI2(x, y, σ = 2s) + ϵ− µS

σS
, (11)

with the following partial derivative with respect to x as the
gradient:

∂z

∂x
=

∂W (x)2

∂x σS − ∂σS

∂x W (x)2

σ2
S

−
∂σS

∂x ϵ

σ2
S

−
∂µS

∂x σS − ∂σS

∂x µS

σ2
S

. (12)

This equation does not contain a 1
W (x)2+ϵ term. We expect

the gradients to be smaller when W (x) approached zero. If

this is the case, the log term will be identified as a probable
cause for the exploding gradients.

However, we trained the CGdisc and CGgen with both
LCycleGAN ad LCycleWGANGP

and observed a significant
increase in the gradient size in all four cases, see figures 5e
through 5h. This increase ranged from a factor of 1e2 to 1e9.
This shows that the log term in the CIConv layer and thus
the 1

W (x)2+ϵ term in equation 10 is not the cause of the ex-
ploding gradients. The opposite seems to be true, where the

1
W (x)2+ϵ term reduces the size of the gradient. This could
suggest that the issue does not lay in W (x) approaching zero
but in it becoming considerably large. This theory is explored
in the following section.

4.5.3 Clamp W
In figures 6a through 6d, we see that the values for W (x)
are indeed considerably large. To test whether these large
values for W (x) are the cause for the exploding gradients in
the CIConv layer, we cap these values before applying the log
term. This results in the following equation for CIConv:



(a) Uncapped W (x) for
CGdisc with LCycleGAN .

(b) Uncapped W (x) for
CGgen with LCycleGAN .

(c) Uncapped W (x)
for CGdisc with
LCycleWGANGP .

(d) Uncapped W (x)
for CGgen with
LCycleWGANGP .

(e) Capped W (x) for CGdisc

with LCycleGAN .
(f) Capped W (x) for CGgen

with LCycleGAN .
(g) Capped W (x) for CGdisc

with LCycleWGANGP .
(h) Capped W (x) for CGgen

with LCycleWGANGP .

Figure 6: These graphs provide a visualisation of the size of W for the different architectures and the two loss functions. Each
graph shows the value of W for a certain architecture with a certain loss function, see graph captions for details. The top four
graphs show the values of an uncapped W , the bottom four graphs of a capped W at 1e4. The training session at figure 6c only
ran for 9 epochs before the values became too large and caused an error. The extreme decrease in magnitude of the values of the
bottom four graphs compared to the top four graphs shows that an uncapped W has few considerably large values but overall is
relatively low. Capping W therefore seems a valid candidate to solve the exploding gradients issue.

CIConv(x, y) =
log(Cα(CI2(x, y, σ = 2s) + ϵ))− µS

σS
,

(13)
where Cα is our cap function with α the cap value and

where CI is the W variant from equation 7.
By running the training session again, now with the up-

dated equation for CIConv with α = 1e4, we find that the
values for W (x) have significantly decreased. This can be
seen in figures 6e through 6h. Notice how these values are
notably lower than α suggesting that W (x) without capping
has a few extremely large values but is overall relatively low.
This also follows what we see in figures 6a through 6d.

The corresponding CIConv layer scale gradients can be
seen in figure 7. Here, we see that the gradients are signif-
icantly lower than in figures 5a through 5d, where W (x) was
not capped. Especially CGgen has reduced immensely. For
CGdisc the gradients have not reduced as much compared to
CGgen.

The resulting images of capping W (x) can be seen in fig-

ure 8. By comparing these images to the images from figure
2, it becomes apparent that capping W (x) greatly improved
the performance of CGdisc and especially CGgen. In figure 2,
any architecture with CIConv produced images that did not
come close to the images generated by CG. In figure 8, im-
ages from CGdisc structurally resemble the images from CG,
the color is still off yet this could be corrected with further
testing. Images from CGgen greatly resemble the images from
CG.

5 Discussion
To establish whether CIConv is a useful addition to Cycle-
GANs when it comes to performing day-night domain adap-
tation, we created three architectures. The first acted as a
baseline and did not use CIConv, the second applied CIConv
in the first layer of the Discriminators and the third had CI-
Conv as the first layer in the Generators. In an effort to have
the architectures train in a stable manner, we made numerous
architecture and training procedure adjustments, attempted a
number of hyperparameter combinations and most noticeably



(a) CGdisc with LCycleGAN CI-
Conv scale gradient.

(b) CGgen with LCycleGAN CI-
Conv scale gradient.

(c) CGdisc with LCycleWGANGP

CIConv scale gradient.
(d) CGgen with LCycleWGANGP

CIConv scale gradient.

Figure 7: These graphs provide a visualisation of the size of
the CIConv layer scale gradient for the different architectures
and the two loss functions with W capped at 1e4. See graph
captions for the used architecture and the loss function. These
graphs no longer show exploding gradients and therefore the
capping of W seems a valid method for preventing this issue.

implemented two different loss functions. The first loss func-
tion applied an Adversarial Loss and the second a Wasserstein
Distance with Gradient Penalty. Additionally, they both ap-
plied a Cycle-Consistency Loss. We found that the usage of
an unadjusted CIConv layer resulted in unstable training due
to it causing Exploding Gradients. It is therefore unsuitable
as an addition to the CycleGAN architecture for day-night
domain adaptation.

Analysis of the behaviour of the CIConv layer and of the
gradient through it led to the discovery that the output of the
CIConv layer followed a pattern similar to that of Exploding
Gradients. We found this to be the cause for the Exploding
Gradients and propose a method for mitigating the issue. This
method consists of the capping of W before applying the log
term and before normalizing. The usage of this method pro-
vided some interesting preliminary results of the day-night
domain adaptation with the use of CIConv. These results sug-
gest that CIConv in the first layer of the Generators has the
potential to be of use during domain adaptation. Additionally,
it seems that CIConv in the first layer of the Discriminators is
not a useful addition.

However, the method of capping W has not been exten-

Figure 8: Images from the XD test-set converted to im-
ages from XN with LCycleGAN and LCycleWGANGP

as
loss functions with W capped at 1e4 after 10 epochs of
training. Of the columns under CGdisc and CGgen, the
left columns are images converted using LCycleGAN as
the loss function during training and the right columns
using LCycleWGANGP

. The quality of these images has
greatly improved compared to the images where W was
not capped (figure 2). Especially CGgen seems to be
performing the day-night domain adaptation quite well.
CGdisc is structurally performing well, however the colors
are off.

sively tested since only one capping value has been applied
so far. Additionally, variations to the method might prove
more effective than the simple version it is now. Furthermore,
we suspect that the optimal combination of hyperparameters,
training procedure and loss function is yet to be discovered.
So far, only one combination has been used to show the po-
tential of this method.

Finally, we conclude that an altered version of CIConv in
combination with CycleGANs has the potential to be of ben-
efit to the day-night domain adaptation and therefore the gen-
eration of labeled training data in a domain for which only un-
labeled training data is available. However, further research is
required to decisively say whether applying the adjusted CI-
Conv layer increases performance compared to not applying
any CIConv layer.

6 Responsible Research
When performing research in a field such as neural networks,
certain ethical implications need to be discussed. More so
if the resulting method has the potential to be used to train
CNNs in self-driving cars. This section will discuss the most
important ethical implications.

In this paper, we discuss a potential method for converting
images from the day domain to the night domain such that
they can be used to train the CNNs present in self-driving
cars. Because of the potential use in self-driving cars, human
lives may be at risk. As a consequence, it is extremely impor-
tant that this work is not blindly copied and applied in ones



own application. Further tweaking and testing is most likely
needed.

The implementation has been made available at [22]. Here,
the code can be cloned and used to reproduce old experiments
or carry out new experiments.
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A Appendix

D
G 1e-6 2e-6 4e-6 1e-5 5e-5 1e-4 2e-4

1e-6 X X
2e-6 X X

2.5e-6 X
4e-6 X X

7.5e-6 X
1e-5 X X X X
5e-5 X
1e-4 X
2e-4 X

Table 5: Attempted learning rate combinations with
LCycleGAN as the loss function. The top row represents the
learning rates for the Generators, the first column represents
the learning rates for the Discriminators. An X on an inter-
section indicates that the learning rate was attempted.
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