
Using Decision Trees produced by Generative Adversarial Imitation Learning to
give insight into black box Reinforcement Learning models

Caspar Meijer
Supervisor(s): Anna Lukina

EEMCS, Delft University of Technology, The Netherlands
c.j.meijer-1@student.tudelft.nl, A.Lukina@tudelft.nl

Abstract
Machine learning models are increasingly being
used in fields that have direct impact on the lives
of humans. Often these machine learning mod-
els are black-box models and they lack trans-
parency and trust which is holding back the im-
plementation. To increase transparency and trust
this research investigates whether imitation learn-
ing, specifically Generative Adversarial Imitation
Learning (GAIL), can be used to give insights into
the black-box models by extracting decision trees.
To achieve this, an extension of GAIL was made
allowing it to extract decision trees. The decision
trees were then measured in terms of performance,
fidelity, behavior, and interpretability on three dif-
ferent environments. We find that GAIL is able
to extract decision trees with high fidelity and can
give insightful information into the expert mod-
els. Moreover, further research can be done on
more complex environments and black-box mod-
els, other surrogate models, and possibilities for
more specific local insights.

1 Introduction
Machine Learning (ML) models are increasingly being im-
plemented in the following fields: self-driving cars, health-
care, finance, insurance, war, marine logistics, science, con-
struction, and human resource [17, 23].

In these fields, the ML models make decisions that can
have a great impact on the lives of humans. The European
Union is aware of this and is advocating for more trans-
parency and giving humans the right to request understand-
able explanations why certain actions have been taken by the
models [4]. Besides giving transparency into the models,
their correctness and robustness also have to be extensively
tested. The combination of transparency, knowing their cor-
rectness and robustness improves the trust people will have in
the models [17]. This trust fosters the implementation of the
ML models into the aforementioned fields [4, 23, 17, 14].

There are three main methods of creating ML models,
namely: Supervised Learning, Unsupervised Learning, and
Reinforcement Learning (RL) [6]. In this paper, the focus
will continue on RL. RL is a method for specific types of

problems. Problems where an agent must maximize a nu-
merical reward in a simulated environment [21]. The agent
must learn what to do, what actions to take, given the state of
the environment, to discover which actions yield the most re-
ward. The actions the agent takes can also affect situations far
in the future and thus affect the immediate and all subsequent
rewards. Having to explore the environment and delayed re-
ward are defining features of problems that RL algorithms are
designed to solve [21].

A core problem with many of the models produced by con-
ventional RL methods is that they are often difficult to inter-
pret. It is almost impossible to understand for a human why
the models make certain decisions and thus actions. Such
models are referred to as black-box models [14, 17, 23, 22].

The field of Explainable Reinforcement Learning (XRL)
addresses this problem [17, 23, 22]. The survey about XRL
written by E. Puiutta and E. Veith concludes, first of all, that
it is important while analysing the models, to have a common
understanding for when a model is understandable, transpar-
ent, interpretable, etc. It has been concluded that the term
interpretability best represents the intention of what is to be
achieved when analysing the models. In their work inter-
pretability is defined as ”the ability to not only extract or
generate explanations for the decisions by a model, but also
to present this information in a way that is understandable
by human (non-expert) users to, ultimately, enable them to
predict a model’s behavior” [17]. Secondly, they have men-
tioned the different approaches for achieving interpretability,
depending on the scope (global vs. local) and the moment
of information extraction (intrinsic vs. post-hoc). A global
post-hoc analysis is most desirable, as people prefer a global
explanation over a local explanation and analysis of an al-
ready good performing model is more applicable and easier
than creating models that are intrinsically more interpretable
[17]. With global vs. local is meant whether the entire model
or only a specific section of the model is explained.

The field of Imitation Learning (IL) is about creating en-
tirely new models (surrogate models) from existing experts
by observing their behavior [8]. IL is mainly focused on mim-
icking human behavior to train the new ML models [8]. How-
ever, instead of using humans, it is also possible to use black
box models as experts. This is useful because humans are not
always available for their behavior. The current IL algorithms
are highly focused on performance by using complex ML to

Delft University of Technology, In Partial Fulfilment of the Requirements For the Bachelor of Computer Science and Engineering

mimic the expert as good as possible [8]. However, some-
thing that is missing in the IL field is how it can be used to
create global post-hoc interpretability analysis all the while
still guaranteeing the performance.

In this paper, we will research how and if Generative Ad-
versarial Imitation Learning (GAIL) can be used to give in-
sight into black box RL expert models by generating surro-
gate Decision Trees (DT). We choose DTs as surrogate mod-
els because their are inherently interpretable. DTs consist of
decision rules which split the data along a set value. To ex-
tract these DTs, three expert models trained for each a spe-
cific environments will be given as input to GAIL resulting
in multiple DTs. These DTs and their actions are analysed by
measuring their performance & fidelity, describing their be-
haviour in the environment, and whether it is possible for us
to interpret its decision rules. Their performance and fidelity
will be compared to DTs generated via baseline Behavioural
Cloning and 2 other IL algorithms: AGGREVATE & VIPER.
Respectively researched by J. Wols & O. Kaaij, my research
colleges at the TU Delft.

The core contribution are the modifications made to GAIL
in order to extract DTs, this is because GAIL is designed to
gradually update its surrogate model, which is not possible
with DTs. DTs have to be re-created from the root up when
new data is presented. Furthermore, we have added features
from VIPER into GAIL that help it extract data points where
it is important the correct output is given that lead to higher
rewards. Moreover, we have also added the option for GAIL
to leverage the expert for extra data.

The layout of the paper starts with section 2 where other re-
lated papers are mentioned and briefly explained. Then in the
preliminaries in section 3 GAIL and the IL algorithm behav-
ioral cloning are explained. Hereafter in section 4 a formal
problem description is given. After the problem description
we will explain the research methodology and modifications
made to GAIL in section 5. Then, in sections 6 and 7 the
setup and results are displayed. Finally in sections 8, 9, &
10 the discussion, conclusions and insights about ethical &
responsible research can be found respectively.

2 Related Work
There is the algorithm DAGGER[19] which is an IL algo-
rithm that leverages the expert and surrogate model to gen-
erate more data points by asking the expert what to do in
states the surrogate explores. From DAGGER the algorithms
Q-DAGGER[1] & VIPER[1] and AGGREVATE[18] evolved.
Q-DAGGER is an extension from DAGGER that also uses the
Q-fuction of the expert to evaluate whether given a certain
state it is important to take the right action. Then VIPER is a
extension on Q-DAGGER allowing it to train DTs. AGGRE-
VATE leverages the cost-to-go function defined in its paper,
to better indicate whether actions given a state will yield re-
ward or cost. In the VIPER and AGGREVATE paper, it is men-
tioned how cost-sensitive learning aka online-learning, which
GAIL does originally, is the same as cost-weighted sampling
and then learning [1, 19, 2]. cost-weighted sampling is re-
quired to train DTs in a online learning matter and is a core
component in the modification of GAIL [2].

The algorithm that is investigated in this paper, Genera-
tive Adversarial Imitation Learning [7] (GAIL), is an algo-
rithm that works differently then the previously mentioned
papers. It does not have access to the expert policy to lever-
age it for unknown situations, it is made for cost-sensitive
learning which makes it unable to train DTs. That is why
the cost-weighted sampling from Q-DAGGER has to be im-
plemented. GAIL is an extension of Generative Adversarial
Networks [5], which describes how two neural networks, a
discriminator and a generator, work together or more against
each other to become better, which is further explained in the
preliminaries.

None of the paper mention the interpretability of the sur-
rogate models or how this can be used as a global post-hoc
analysis [1, 19, 7].

3 Preliminaries
3.1 Terminology
In the appendix in section A the terminology used in this pa-
per are explained. This can be useful for people that are not
acquainted with the research field of machine learning, rein-
forcement learning, etc.

3.2 Original GAIL
The original GAIL algorithm is designed to train a neural net-
work with Trust Region Policy Optimization [20] from expert
data, without access to the expert model. The full pseudo-
code of GAIL can be seen in Algorithm 2 in the Appendix.

A short description of how to interpret the algorithm: For
each iteration, use the generator to generate new trajectories,
train the discriminator to distinguish expert trajectories from
generator trajectories. Then after training the discriminator,
train the generator with the output of the discriminator as its
cost function. Over multiple iterations this leads to the dis-
criminator not being able to distinguish between expert or
generator data, at this convergent point the generator is like
the expert [7]. The key takeaway from the algorithm that is
the Generator step (5 6) is done in a gradual fashion, where
only a small update to the model is done to prevent the model
from changing too much from the previous iteration.

3.3 Behavioral Cloning
Behavioral cloning (BC) is a basic IL algorithm where the
states and actions are trained in a supervised learning matter
on neural networks or in our case, decision trees. BC suf-
fers from compounding errors when the surrogate models find
themselves in situations never seen before [19]. This is what
the papers of DAGGER, AGGREVATE, VIPER, & GAIL pre-
vent by including a cost function that is related to the expert.
The pseudo-code for BC can be found in Algorithm 3. It will
function as the baseline in this research.

3.4 Training expert policies
First, the Deep Q Learning (DQL) [13] algorithm was set up
with TensorForce [10] to create expert models for the classi-
cal problems presented in OpenAI GYM [3]: MountainCar-
v0, Cartpole-v1, and Acrobot-v1.

4 Problem Description
there is the problem of the surrogate models of the original
GAIL that are black box like models. The goal is to mod-
ify GAIL such that it produces interpretable models, specifi-
cally DTs. Furthermore, the GAIL algorithm relies on cost-
sensitive learning to train the surrogate model, this is not pos-
sible with DTs. DTs are fitted on a data set at once, so the
only way to gradually train the DT is to gradually make the
data set on which the tree is fitted better. This is called cost-
weighted sampling [2].

5 Methodology
5.1 GAIL with decision trees
To tackle the problem of GAIL not being able to train DTs
because it relies on cost-sensitive learning. The GAIL paper
describes how the discriminator can function as a local cost
function for a given state-action pair [7]. Thus the algorithm
was changed so that the discriminator output would represent
the probability that a state-action pair was going to be used to
train the DT. This modification will act as the cost-weighted
sampling [1, 19, 2].

5.2 Including expert policy
In the recommendations of the GAIL paper, it is mentioned
that GAIL would perform better if it had access to the expert
model [7]. They state the algorithm would be better because
it could ask the expert what to do in new never seen before
situations. This is something that the other algorithms, like
VIPER & AGGREVATE already do. Thus the access is added
at the end of each iteration. The just fitted DT would gener-
ate a defined number of trajectories in the environment. The
trajectories are then given to the expert to ask which action
it would take at each state. The result of this are new state-
action pair expert mappings.

5.3 Extra action cost weighted sampling
In the Viper paper, they use a cost function of how important
it is to take a specific action by the agent given a state. This
is done by calculating the difference between the probability
the expert agent takes an action, and the lowest probability ac-
tion [1]. l(s, a) = P (aπE

|s) − min(P (a|s)) This results in
removing states where each action has about the same proba-
bility.

5.4 Add action cost to train discriminator
This solution of sampling the state-action pairs according to
their importance also gave rise to a new idea. Namely, also
including this indicator together with the state-action pairs
resulting in state-action-cost pairs. With these new pairs, the
discriminator has an extra data point to discriminate on.

5.5 Distinct generator trajectories
The generator model is supposed to produce trajectories sim-
ilar to the expert. Initially, we did not have the generator roll-
out its own trajectories because that would lead to data sets
that are not the same length. So instead of creating a defined
number of trajectories, we thought of having the generator

rollout trajectories until we would have a list of state-action
pairs with the same length as the experts state-action pairs.
This way the discriminator was also not just focusing on the
mappings of the state-action pairs but also on whether the
states were generated by the expert or the generator.

5.6 Follow-The-Leader
Both VIPER [1] and AGGREVATE [18] pick the best per-
forming surrogate model at the end of their iterations. This
is called a Follow-The-Leader strategy. The best performing
surrogate model is the model that achieves the highest reward
over a number rollouts.

5.7 Measuring the decision trees
These modifications to GAIL produced surrogate DT models
which had to be measured and analysed in order to say some-
thing about their ability to give insight into the expert models.
In order extract decision rules from the DTs that give insight
into the expert, it is required that the DT has a high func-
tional resembles of the expert, further mentioned as fidelity.
The following metrics were defined in order to later conclude
something about their ability to give insights.

Performance: In order to measure the performance of the
surrogate models their average reward and standard de-
viation were measured over a defined number of roll-
outs.

Fidelity: In order to measure how well the surrogate model
reflects the expert’s logic, we will measure how often the
surrogate model takes the same action as the expert.

Trajectory Description: The surrogate trajectories will be
compared to the trajectories of the expert to see if they
are similar. It is possible for the surrogate model to
achieve the same reward but with a different trajectory
path. If the trajectories are not similar then the decision
rules in the decision tree do not reflect the inner work-
ings of the expert.

Interpretability: In order to measure its interpretability, the
model is drawn, is explained by writing the decision
rules down in text, the state-action space is plotted to
show its distribution.

5.8 Modified version of GAIL
The algorithm is initiated with the Expert policy: πE , the
untrained DT policy θ0, the discriminator neural network
with 2 layers, each 32 nodes: D0, the number of initial
expert trajectories: τE : NτE , the number of extra trajec-
tories made by the DT but with expert actions at the end
of each epoch to extend the expert state-action pairs: Nθ,
the number of epochs: NEpochs. At last the booleans
indicating whether unique generator trajectories, extra tra-
jectories at the end should be made, the state-action pairs
should be sampled with their action aost, and whether
to include their action cost when training the discrimina-
tor: ownGeneratorTrajectories, hasAccessToExpert,
sampleWithC, discriminateWithC The full pusedo-code
can be found in Algorithm 1.

Algorithm 1: Modified version of GAIL
Input: πE , πθ0 , D0, NτE , Nθ, NEpochs,

ownGeneratorTrajectories,
hasAccessToExpert, sampleWithC,
discriminateWithC

Output: Surrogate Decision Tree
1 Generate expert trajectories τE form πE

2 for Epoch: i = 0, 1, 2, ..., NEpochs do
3 if ownGeneratorTrajectories then
4 Generate trajectories τθi with πθi

5 else
6 Create τθi with states from τE & actions

mapped with πθi(s)

7 if discriminateWithC then
8 Init Listc filled with action cost of each (s, a)

in τE & τθi
9 for c in Listc do

10 Add c to (s, a) in correct τE & τθi
resulting in τE & τθi with (s, a, c).

11 Train D with τE & τθi .
12 if sampleWithC then
13 if not discriminateWithC then
14 Init Listc of action cost: for each (s, a)

pair in τE & τθi
15 Sample both τE & τθi weighted with Listc.
16 Initialize new train list: TList(s,a)

17 for (s, a, (q)) in τE & τθi do
18 if random < D(s, a, (q)) then
19 append (s, a) to TList(s,a)

20 Train the πθi+1
with TList(s,a).

21 if hasAccessToExpert then
22 Use the πθi+1 to generate new trajectories τθ
23 Extend the τE with states from the τθ &

actions with the πE(s)

24 Save πθi+1

25 πθ = πθi with highest reward
26 Return πθ

6 Experimental Setup
6.1 Environments
In this section, the environments are listed in which the ex-
perts are trained. See screenshots in Figure 1.

• MountainCar-v0, with a minimal and maximal reward
of -200 & -110±3 respectively. The goal is to reach the
finish on top of the right hill as fast as possible. The
cart has to build up momentum before it can move up
the right hill. The State-space is the cart’s position and
velocity. The Action space is powering the cart to move
left, right, or not at all.

• CartPole-v1, with a minimal and maximal reward of
9±0.5 & 500 respectively. The goal is to balance the
pole on top of the cart for as long as possible. The State-

space is the pole angle relative to the cart, the pole angu-
lar velocity, the cart’s position, and velocity. The Action
space is powering the cart to move the cart left or right.

• Acrobot-v1, with a minimal and maximal reward of -500
& -60±2 respectively. The goal is to move the part of
the pendulum above the top line as fast as possible. The
State-space is the angles of the first and second links and
the angular velocities of the links. The Action space is
providing +1, 0, or 1 torque to the joint between the two
links.

(a) MountainCar-v0 (b) CartPole-v1 (c) Acrobot-v1

Figure 1: Screenshots of Environments.

6.2 Environment Experts
The experts are trained with the use of TensorForce [10]. In
Table 7 in the appendix, the environment-specific settings for
each environment are displayed. All of the other settings are
default. In Table 1 the results of 100 rollouts are displayed,
containing the average reward, the standard deviation of the
reward, and the minimum and maximum reward.

Description of Expert behavior
In this section, short descriptions of the expert rollouts are
given to later compare with the surrogate models extracted
with GAIL. Screenshots of the rollouts can be found in the
appendix in Figures 5, 6, & 7
MountainCar: The expert first moves right up the finish hill

a little bit, then moves left up till around 60% to 80% of
the hill and then accelerates right to the finish.

CartPole: The expert lets the pole fall to the left but is able
to put the cart underneath the pole just before it reaches
the end of the map. Then it lets the pole slowly fall to the
right till the end of the map and then lets the pole fall to
the left again. The rollout often ends before it can reach
the right side of the map.

Acrobot: The expert swings the pendulum left and right to
build up momentum until it goes over the line and fin-
ishes. The expert does not seem to have a clear trajectory
it follows every time, making it difficult to see whether
it does something else than move left and right to build
up momentum.

Table 1: Expert Performance

Environment Average Reward SD Minimum Maximum
MountainCar-v0 -115.1 2.02 -125 -113
CartPole-v1 500 0.00 500 500
Acrobot-v1 -92.73 14.24 -130 -76

6.3 Discriminator Surrogate model settings
The following settings were gathered from the GAIL paper
and slightly modified to prevent overfitting [7]. The discrim-
inator is a multi-layer neural network created with Tensor-
flow [11] & Keras [11]. It had 2 layers with each 32 nodes
and they are sequentially placed dense layers with activation
function LeakyReLU with alpha=0.05 and a dropout rate of
0.2. this alpha and dropout rate are used to avoid overfitting
the data. The output layer has a sigmoid activation function
so that the output is between 0 and 1. The input shape is so
that it fits state-action(-cost) pairs. The output via sigmoid is
1 single scalar. The optimizer is Adam the loss function is
cross-entropy.

The surrogate model is a DT that is implemented using
the Scikit-learn [16] library. The hyper-parameters which are
specified are the max depth of a tree and the Cost-Complexity
Pruning[16] alpha (ccp alpha) set to 0.013, which helps
avoid overfitting the data.

6.4 Hyper-Parameters
In this section, we will describe all of the settings for the mod-
ified version of GAIL.

Set parameters:
These parameters were set and were not changed while gath-
ering the results.

• Starting expert trajectories: 1
• If access to an expert: Trajectories to be added after

training the surrogate DT: 1
• Epochs to run GAIL: 10
• Epochs to train the discriminator each GAIL epoch: 500
• Rollouts to test performance for Expert & BC: 100
• Rollouts to test performance for Surrogate: 50

Variable parameters:
These parameters were not set and every combination was
tried while gathering the results.
Environment: The openAI GYM Environment names:

MountainCar-v0, CartPole-v1, Acrobot-v1
Depth: The Max depth of the DT: 1, 2, 3
ownGeneratorTrajectories: Create unique Generator tra-

jectories instead of using the expert states: True / False
hasAccessToExpert: Use Generator to create extra trajec-

tories with actions of expert: True / False
sampleWithC: Sample with the action cost for each state-

action pair: True / False
discriminateWithC: Include the action cost with the state-

action pairs for the Discriminator: True / False

7 The Results:
In this section, we will take a closer look at the results. gener-
ated by running the modified version of GAIL with all com-
binations of the variable parameters two times. So for there
are 2 data points for each variable parameter combination.
All of the data points are located in Tables 8, 9, & 10 in the
appendix.

7.1 Expert Initial Trajectory Reward
At the beginning before starting the process of extracting the
DTs, 1 rollout was done given the expert, resulting in the per-
formance seen in Table 2.

Table 2: Expert Initial Trajectory Reward

Environment Reward run 1 Reward run 2
MountainCar-v0 -114 -124
CartPole-v1 500 500
Acrobot-v1 -78 -87

7.2 Baseline BC Results:
Each of the values in table 3 are the average of 3 baselines fit-
ted on 1 expert trajectory. The reward of the expert trajectory
is located in table 2. The run number refers to which expert
trajectory reward the baselines were fitted on. These results
can also be found in the tables 8, 9, & 10 in the appendix.

Table 3: Baseline Results

Environment Depth BC Reward BC SD BC Fidelity
Run 1 Run 2 Run 1 Run 2 Run 1 Run 2

MountainCar-v0 1 -127.5 -128.6 20.779 21.316 90.5% 91.2%
MountainCar-v0 2 -122.9 -129.7 17.993 27.427 93.2% 92.2%
MountainCar-v0 3 -121.9 -132.3 15.323 29.229 93.8% 92.8%
CartPole-v1 1 9.31 9.24 0.666 0.705 86.4% 86.0%
CartPole-v1 2 9.263 9.247 0.773 0.706 86.4% 86.0%
CartPole-v1 3 9.217 9.37 0.755 0.73 86.4% 88.9%
Acrobot-v1 1 -92.427 -92.987 21.99 22.21 81.6% 81.8%
Acrobot-v1 2 -92.363 -88.57 29.359 25.592 84.6% 83.3%
Acrobot-v1 3 -102.22 -86.53 31.931 19.775 84.3% 83.0%

7.3 GAIL Results
We analysed the data from the tables 8, 9, & 10 in the ap-
pendix by sorting them on GAIL reward from high to low
and then sorting on GAIL fidelity from high to low, also fur-
ther refered to as the sort rule. This way the DT at the top of
the table has the highest reward given the highest fidelity. The
distributions of the states and actions can be seen in Figures:
2, 3, 4 or in higher resolution in the appendix. The distribu-
tions are expert trajectories of 100 rollouts put into the DT,
that way it is possible to tell the DT matches the experts be-
havior.

MountainCar-v0:
For MountainCar-v0 the highest fidelity was 95.2% with a
reward of -116.88 and an SD of 1.267 with a DT with depth
3. This DT was gathered with ownGeneratorTrajectories,
hasAccessToExpert discriminateWithC all set to true.
The DT can be seen in Figure 2(a) and in Figure 8 in the
appendix.

The DT with the 3rd highest-fidelity of 94.7% has a re-
ward of -117.0 and SD of 1.523 also had a depth of 3 but
was trained on only 1 expert trajectory worth of data. In-
dicating that the GAIL is able to gather DTs with high per-
formance & fidelity using little data for MountainCar-v0.
This DT was gathered with ownGeneratorTrajectories &
discriminateWithC set to True. This DT can be seen in
Figure 2(b) and in the large Figure 9 in the appendix.

The DT with the 4th highest fidelity of 93.9% has a re-
ward of -116.52 and an SD of 1.873 but has a depth of 2.
This DT was gathered with ownGeneratorTrajectories &
hasAccessToExpert set to True. This DT can be seen in
Figure 2(c) and in Figure 10 in the appendix.

Something worth noting is that the setting of
sampleWithC has a negative effect on results. With
the sorting rule defined above the first 24 DTs, all have
sampleWithC set to False.

Performance: The performance of the DTs all match that of
the expert with only 1 or 2 reward points lower. The
Standard Deviation is also similar. The performance is
significantly higher than the baselines.

Fidelity: The Fidelity is in each of the DTs higher than the
baselines with at least 2 percentage points.

Trajectory Description: The trajectory is very similar to
that of the expert, first moving slightly to the right and
then going up the hill to the left and then powering right
again to the finish.

Interpretability: All three of the DTs take the same actions
but respectively with fewer nodes. How we would in-
terpret the DT is as followed: Power the cart in the di-
rection it moving but not if it is near the left edge of the
valley, then power the cart back down to the right giving
it the momentum to get to the top of the hill on the right
and finishing.

(a) 95.2% (b) 94.7% (c) 93.9%

Figure 2: Small Screenshots of MountainCar-v0 DTs.

CartPole-v1:
For CartPole-v1 the highest fidelity was 86.4% but with a re-
ward of 9.37 and an SD of 0.73 with a DT of depth 1. The DT
was gathered with ownGeneratorTrajectories set to True.
The DT can be seen in Figure 3(a) and in Figure 11 in the
appendix.

The first DT that resembles the reward of the expert
has a fidelity of 61.7% which is number 45 from the top
with the defined sort rule. It has a reward of 498.2, an
SD of 14.116 and a depth of 3. This DT was gathered
with ownGeneratorTrajectories, hasAccessToExpert,
sampleOnC, and discriminateWithC all set to True. The
DT can be seen in Figure 3(b) and in Figure 12 in the ap-
pendix.

Something worth noting is that the setting of
hasAccessToExpert set to False has a negative effect
on the reward, but a positive result on Fidelity. The first 21
DTs with the highest fidelity all had hasAccessToExpert
set to False.

(a) 86.4% (b) 61.7%

Figure 3: Small Screenshots of CartPole-v1 DTs.

Performance: The performance of the DTs often does not
match that of the expert, only 3 times did GAIL come
close to the expert reward. The performance is however
often higher than the baselines.

Fidelity: GAIL can generate DTs with a fidelity that looks
high, but the reward is in these cases close to the mini-
mum reward possible. With a higher reward, the fidelity
lowers.

Trajectory Description: The Trajectory of the DT with high
fidelity is similar to the expert in that it lets the pole fall,
however it is not able to recover from this. The DT with
a similar reward does something different from the ex-
pert, namely, it balances the pole close to the middle of
the map and does not reach the edges at all.

Interpretability: The main point that can be made up from
the DT with the highest fidelity is that the actions of the
expert seem to force the pole to always be falling a bit,
either to the left or right. As the pole falls to the right
the DT matches the expert by moving the cart to the left,
making the pole fall faster. The expert is however able
to restore the pole from falling, which the DT is not able
to do. The DT with the high reward does not have nodes
that describe a clear split of the data, making it difficult
to describe how it makes the choices.

Acrobot-v1:
For Acrobot-v1 the highest fidelity was 84.7% and a re-
ward of -95.89 and an SD of 27.36 with a DT of depth 3.
The DT was gathered with ownGeneratorTrajectories &
discriminateWithC set to True. The DT can be seen in
Figure 4(a) and in Figure 13 in the appendix.

There are DTs with an average reward higher than the ex-
pert and with the same SD. The DT with the second-best re-
ward has a depth of 1. It has an average reward of -82.92, an
SD of 15.77, and a fidelity of 80.2%. This DT was gathered
with only hasAccessToExpert set to true. This DT can be
seen in Figure 4(b) and in Figure 14 in the appendix. The first
6 DTs all had hasAccessToExpert & sampleWithC set to
False, so they were all trained with only 1 expert trajectory
worth of data.
Performance: The reward resembles the expert but the SD is

almost 2 times higher. The performance is often higher
than the baselines.

Fidelity: The fidelity of the DT makes it seem it resembles
the expert quite well. The fidelity is often the same as
the baselines.

Trajectory Description: The trajectory is similar to the ex-
pert in that it is building up momentum until it moves
over the line and finishes. However, it is difficult to com-
pare it in depth as it moves the pendulum fast.

Interpretability: The DT with the highest fidelity gives
torque in the same direction as the first link is moving,
making it build up momentum. Then the other nodes
look at the angle & velocity of the second link, but it is
not clear what it tries to do here. The DT with the high
reward only looks at the velocity of the first link, also
indicating that it is used for the build-up of momentum.

(a) 84.7% (b) 80.2%

Figure 4: Small Screenshots of Acrobot-v1 DTs.

7.4 GAIL vs BC vs AGGREVATE vs VIPER
In this section we will be comparing the results extracted from
GAIL with the baseline BC, AGGREVATE, & VIPER. Due to
the fact that AGGREVATE & VIPER both had their own ex-
pert, their trajectories do not match, so we cannot compare
whether their DTs extract the same decision rules. We can,
however, compare the DTs on how well they resemble their
experts in terms of fidelity and thus whether they can give in-
sights into their experts. We can also compare how well they
can resemble their experts in terms of performance, but with
this, we have to keep in mind that the experts are different and
can thus have different trajectories to achieve their reward.

MountainCar-v0 comparison
For MountainCar-v0 every algorithm was able to closely re-
semble their expert in terms of performance and fidelity and
each of them did better than their baseline. The expert of
VIPER performed best and VIPER was able to create a DT
with almost 100% fidelity. AggreVate was only able to ob-
tain a fidelity of 80% which is much lower than that of GAIL
and VIPER.

Table 4: Algorithm Results of MountainCar-v0

GAIL AggreVaTe Viper
Expert BC GAIL Expert BC AggreVaTe Expert BC Viper

Depth N/A 3 3 N/A 1 1 N/A 3 3
Reward -115.1 -121.9 -116.88 -120.6 -124.35 -120.35 -112.1 -114.17 111.2
SD 2.02 15.323 1.267 19.9 3.9 4.3 1.8 3.3 2.7
Fidelity N/A 93.8% 95.2% N/A 79.0% 80.0% N/A 95% 97.1%

CartPole-v1 comparison
For CartPole the algorithms show a large diversity of results.
GAIL was able to extract a DT with the highest fidelity but
was not able to match the performance of the expert. GAIL is
also the only algorithm that performs better than the baseline

in terms of fidelity. The other algorithms outperform their
baseline in terms of performance. The VIPER DT has a fi-
delity of 62.8% making it resemble the expert far less than
the AGGREVATE & GAIL.

Table 5: Algorithm Results of CartPole-v1

GAIL AggreVaTe Viper
Expert BC GAIL Expert BC AggreVaTe Expert BC Viper

Depth N/A 1 1 N/A 2 2 N/A 2 2
Reward 500 9.31 9.37 470.5 227.5 474.95 500 466.5 500
SD 0 0.666 0.73 71.5 46.2 52.4 0 33.5 0
Fidelity N/A 86.0% 86.4% N/A 78.0% 70.0% N/A 84.1% 62.8%

Acrobot-v1 comparison
For Acrobot the algorithms were trained using experts with
significantly different performance. Namely, the performance
of the expert used in AGGREVATE indicates that it has not
been optimized. Other than that, GAIL is the only algorithm
that outperformed its baseline in terms of fidelity. Further-
more, the fidelity of GAIL was higher than those of AGGRE-
VATE & VIPER. Even though the fidelity of VIPER is lower
than that of GAIL, the performance resembles its expert bet-
ter.

Table 6: Algorithm Results of Acrobot-v1

GAIL AggreVaTe Viper
Expert BC GAIL Expert BC AggreVaTe Expert BC Viper

Depth N/A 3 3 N/A 3 3 N/A 2 2
Reward -92.73 -102.22 -95.89 -179.95 93.4 -91.95 -85 -114.2 -84.3
SD 14.24 31.931 27.36 50.1 34.1 34 17.1 93.8 20.81
Fidelity N/A 84.3% 84.7% N/A 53.0% 53.0% N/A 84.3% 82.1%

8 Discussion
In this section, we will first discuss the results of the extracted
DTs of GAIL and then discuss the comparison between the
other IL algorithms.

From the experiment mentioned in section 6, we can see
that GAIL is able to perform better than its baseline in ex-
tracting DTs with higher fidelity. This higher fidelity allows
us to better use the decision rules in the DT to gain insights
into the workings of the expert.

For example, with the extracted decision trees for
MountainCar-v0 we can indicate the location on the map
where the expert starts to accelerate towards the finish. An-
other thing that can be seen in the results is that GAIL is
consistent with extracting decision rules. The first 2 decision
lines in each of the DTs are the same. What can be said about
the changes is that using sampleWithCost seems to have a
negative effect on fidelity as the first 24 results set this setting
to false. An explanation for this could be that this cost func-
tion focuses on reward and not on fidelity. In addition, the
use of ownGeneratorTrajectories is present in the first 5
highest-fidelity results, indicating that it helps extract those
last few action maps.

Moreover, from the results of CartPole-v1 we can extract
that the expert does not use the angular velocity of the pole,
the most valuable feature of the environment, to decide on
his actions. If this analysis would have been used in practice,
a re-evaluation of the expert is recommended. On the other
hand, GAIL was unable to generate a DT that matched the

expert’s performance and behavior. The DT that most closely
matched the expert’s performance only had a confidence level
of about 62%, which was visible in his trajectory description,
which was different from the expert. This raises the question
of whether GAIL or DTs are suitable for extracting behav-
ior from complex experts. Additionally, there is the question
of whether it is better than the baseline as there is a base-
line with higher fidelity. But this could also be the result of
the complex expert that are require larger DTs to describe.
GAIL does perform better than the baseline in terms of ex-
tracting a DT with a reward that resembles the expert. Fur-
thermore, the negative effect of hasAccessToExpert can be
explained by the fact that the expert may not be able to re-
cover from the new trajectories generated by the generator.
These trajectories are then nevertheless classified as expert
trajectories, resulting in a bias towards unfavorable states.
Besides, ownGeneratorTrajectories was also present in
the DT with the highest fidelity, but not consistent thereafter.

The results of Acrobot-v1 indicate that the expert uses the
angular velocity of the first link to build up momentum, which
is the most valuable feature of the environment. The DT ex-
tracted with GAIL has a slightly higher fidelity compared to
the baseline. This might indicate that the decision-making of
the experts does not require complex data sampling. The top
results also had ownGeneratorTrajectories enabled but
not consistent thereafter. The top half of the results mostly
had sampleWithCost set to false, indicating it has a nega-
tive effect on the fidelity.

And finally, the comparison with GAIL, AGGREVATE,
and VIPER indicates that GAIL outperforms the other algo-
rithms in terms of fidelity. Making it the most suited algo-
rithm to give insights into the expert. Something to keep in
mind is that all 3 the algorithms were examined with different
expert models, thus it is not possible to conclude whether the
extracted DTs would differ in their decision rules. It can also
be said that both GAIL, AGGREVATE and VIPER are able to
extract DTs with high reward alone.

9 Conclusions and Future Work
In this paper, we have demonstrated that GAIL is able to pro-
duce insight into black-box reinforcement learning models
for small environments by extracting decision trees (DT) that
are functionally ver similar these black-box models. GAIL is
able to produce DTs that better resemble the black-box mod-
els than the baseline behavioral cloning, AGGREVATE, &
VIPER. With this high similarity in behavior, it was possible
to use the decision rules in the DTs to interpret the decision-
making of the black-box models. It is more important to focus
on the similarity with the black-box than the reward from the
environment. Because only with high fidelity can something
truly be said about the black-box model. Furthermore, it can
be stated that the DTs generated with GAIL are interpretable.
They are small and do not have a lot of decision rules. How-
ever, this is a setting that is adjusted in the algorithm that fits
the DT, not in GAIL that provides the data for fitting the DT.
The DTs generated by GAIL is slightly less interpretable than
those generated by AGGREVATE, & VIPER but they do not
resemble the expert with which they are used as much.

In order to make GAIL able to extract DTs certain mod-
ifications had to be made. The core adjustment is using the
discriminator output, which functions as a loss function to the
generator, as the probability that a data point is to be used to
train the DT. Moreover, allowing the generator to generate its
own trajectories to be distinguished from the expert by the
discriminator has proven to be a viable modification. It was
used in all of the DTs with the highest fidelity. Furthermore
we have included features found in VIPER & AGGREVATE
into the algorithm. Namely, leveraging the expert to gener-
ate more data for data points not yet seen, the action cost
weighted sampling and the Follow-The-Leader DT selection
feature.

While conducting the research limitations and ideas for fu-
ture work came to mind. For instance: Leveraging the sur-
rogate model and expert to generate more trajectories can
work counterproductive if the expert is not optimized for ev-
ery possible state. The surrogate model might make mistakes
in which the expert would be asked what it would do, but if
the expert has not been trained to recover from such mistakes
its action is of no use. Like asking a professional skydiver
what it would do in a situation 10 meters above ground after
jumping from an airplane. Maybe using the discriminator to
first select, with probability, only those states it classifies as
the expert, to prevent the bias of unfavorable states.

Furthermore, interpretability is subjective to the complex-
ity of the surrogate model, which in turn depends on the ex-
pert model which is optimized for the environment. Thus in-
directly the interpretability of the surrogate model will de-
pend on the complexity of the environment. Extending on
this, for complex environments, it might be an idea to ana-
lyze the trajectories in more depth to see where in the trajec-
tory the expert and surrogate model actions differ from each
other. Allowing to use the insights in those parts where they
resemble each other a lot.

Moreover, DTs are limited to splitting the data on fixed
data values. For instance, they are not able to compare fea-
tures with each other, x < y. To extend on this, there are dif-
ferent types of Tree training algorithms like Gradient Boost-
ing which do incrementally train the DT in an online learning
matter. Maybe this is a better solution to be used for GAIL
as it originally relies on small step improvements. With the
current DT training algorithm, it rebuilds the tree each time it
receives new data.

The code that was used to conduct this research can be
found on GitHub [12]

.

10 Responsible Research

10.1 Ethical aspects

This research was conducted without the use of any human
subjects. But still something can be said about the ethical as-
pects of this research, because as the paper starts it stats that
machine learning models are increasingly being implemented
into fields that have impact on human lives. The use of black
box models in situations of war, insurance, healthcare, etc
would raise the question of how ethically correct their inner
workings and training data are. We all know the examples of
machine learning models that become racist if the data that
they are trained on is not carefully unbiased. On top of that
it is the European Union that is advocating for more trans-
parency into the machine learning models to increase the trust
of the people [4].

10.2 Reproducibility

The article written by M. Baker and D. Penny [15] indicates
that there is a reproducibility crisis. However, this paper does
not mention statistics about the computer science field. But
eitherway it is important to assess the reproducibility of the
research conducted in this paper. The research was done with
software that is freely available on the internet, the used li-
braries are cited in the text [10, 11, 16, 3] and the papers of
algorithms used are also cited in the text. The experts that
are used in the paper can be learned by copying the settings
into TensorForce [10] and running the algorithms. Further-
more, the code that was created during this research is pub-
licly available on Github at time of release [12].

10.3 Research Integrity

In 2018, the Netherlands Code of Conduct for Research In-
tegrity has been published by KNAW and NFU and NWO and
TO2-Federatie and Vereniging Hogescholen and VSNU [9].
This code of conduct mentions five principles that form the
basis of integrity in research. They are mentioned below.

Honesty
The research in this paper is done as honestly as possible, by
reporting the research process, settings and results as accu-
rately as possible. All of the data used in the research can be
found in the appendix in large data tables. In order to create
honest results the whole process was done 2 times after which
the data analysed. All of the data points show their standard
deviation where applicable so to indicate the values are not
highly accurate.

Scrupulousness
The research and methods in this paper are taken from other
research papers and carefully curated that they do indeed re-
flect their original intend. On top of that the research was
peer-review multiple times by a scholarly supervisor which
agreed with the methods undertaken.

Transparency
All of the data used in the paper can be found in the appendix
and the code can be found on the github [12]. There were no
significant external stakeholders that had any financial motive
for supporting this research. Apart from the TU Delft them-
selves, but that is in the broader sense and not specific for this
research. No data used in the paper is withheld from the pub-
lic. Something that did happen was that while developing,
after having converted the decision tree vector files in this pa-
per to png, the other the decision trees of each of the rows in
the large result tables in the appendix got deleted. However, it
is possible to regenerate the new data by running the publicly
available code. The changes to the code can be followed via
the git branches system.

Independence
The research was done with no commercial or political nature
involved. The choice of method was influenced by our course
supervisor which had setup the initial guidelines for the re-
search. These were located on a project forum website of the
TU Delft and contained a brief description about how ai was
increasingly being used to control safety critical systems and
that interpretability is a problem holding back the implemen-
tation of such machine learning algorithms. This supervisor
also helped searching for related papers to the topic.

Responsability
The research did not happen in isolation and no human or
animal test subjects were used. The research is societally rel-
evant because of the previously mentioned reasons. About
how AI should be interpretable and it increases trust and
transparency.

Ethically this research is giving insights into how black box
models are making decisions. This could bring a lot more
transparency into the field. The project code will be published
so that the reproducibility is very high.

References
[1] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama.

Verifiable Reinforcement Learning via Policy Extrac-
tion. arXiv:1805.08328 [cs, stat], January 2019. arXiv:
1805.08328.

[2] Alina Beygelzimer, John Langford, and Bianca
Zadrozny. Machine Learning Techniques—Reductions
Between Prediction Quality Metrics. In Zhen Liu and
Cathy H. Xia, editors, Performance Modeling and En-
gineering, pages 3–28. Springer US, Boston, MA, 2008.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson,
Jonas Schneider, John Schulman, Jie Tang, and Woj-
ciech Zaremba. OpenAI Gym, 2016. original-date:
2016-04-27T14:59:16Z.

[4] European Parliament. Directorate General for Parlia-
mentary Research Services. A governance framework
for algorithmic accountability and transparency. Publi-
cations Office, LU, 2019.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron

Courville, and Yoshua Bengio. Generative Adversar-
ial Nets. In Advances in Neural Information Processing
Systems, volume 27. Curran Associates, Inc., 2014.

[6] Hunter Heidenreich. What are the types of machine
learning?, December 2018.

[7] Jonathan Ho and Stefano Ermon. Generative Adver-
sarial Imitation Learning. arXiv:1606.03476 [cs], June
2016. arXiv: 1606.03476.

[8] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan,
and Chrisina Jayne. Imitation Learning: A Survey of
Learning Methods. ACM Computing Surveys, 50(2):1–
35, March 2018.

[9] KNAW, NFU, NWO, TO2-Federatie, Vereniging
Hogescholen, and VSNU. Nederlandse gedragscode
wetenschappelijke integriteit, 2018. Medium: applica-
tion/pdf Type: dataset.

[10] Kuhnle (last), Alexander (last), Schaarschmidt (last),
Michael (last), Fricke (last), and Kai (last). Ten-
sorforce: a TensorFlow library for applied reinforce-
ment learning, January 2022. original-date: 2017-03-
19T16:24:22Z.

[11] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-
icz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-
nanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: Large-Scale Machine Learning on Hetero-
geneous Systems, 2015.

[12] Caspar Meijer. interpretable-gail: Repository for re-
search project about using decision trees produced by
generative adversarial imitation learning to give in-
sight into black box reinforcement learning models. at
https://github.com/capsar/interpretable-gail, 2022.

[13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing Atari with Deep Reinforce-
ment Learning. arXiv:1312.5602 [cs], December 2013.
arXiv: 1312.5602.

[14] Christoph Molnar. Interpretable Machine Learning.
page 312, February 2020.

[15] Open Science Collaboration. Estimating the re-
producibility of psychological science. Science,
349(6251):aac4716, August 2015.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine Learning in Python, 2011.

[17] Erika Puiutta and Eric MSP Veith. Explainable Rein-
forcement Learning: A Survey. arXiv:2005.06247 [cs,
stat], May 2020. arXiv: 2005.06247.

[18] Stephane Ross and J. Andrew Bagnell. Reinforcement
and Imitation Learning via Interactive No-Regret Learn-
ing. arXiv:1406.5979 [cs, stat], June 2014. arXiv:
1406.5979.

[19] Stephane Ross, Geoffrey Gordon, and Drew Bagnell.
A Reduction of Imitation Learning and Structured Pre-
diction to No-Regret Online Learning. In Proceedings
of the Fourteenth International Conference on Artifi-
cial Intelligence and Statistics, pages 627–635. JMLR
Workshop and Conference Proceedings, June 2011.
ISSN: 1938-7228.

[20] John Schulman, Sergey Levine, Philipp Moritz,
Michael I. Jordan, and Pieter Abbeel. Trust Region Pol-
icy Optimization. arXiv:1502.05477 [cs], April 2017.
arXiv: 1502.05477.

[21] Richard S. Sutton and Andrew G. Barto. Reinforcement
learning: an introduction. Adaptive computation and
machine learning series. The MIT Press, Cambridge,
Massachusetts, second edition edition, 2018.

[22] Lindsay Wells and Tomasz Bednarz. Explainable AI
and Reinforcement Learning—A Systematic Review of
Current Approaches and Trends. Frontiers in Artificial
Intelligence, 4:48, 2021.

[23] Amber E. Zelvelder, Marcus Westberg, and Kary
Främling. Assessing Explainability in Reinforcement
Learning. In Davide Calvaresi, Amro Najjar, Michael
Winikoff, and Kary Främling, editors, Explainable
and Transparent AI and Multi-Agent Systems, volume
12688, pages 223–240. Springer International Publish-
ing, Cham, 2021. Series Title: Lecture Notes in Com-
puter Science.

A Terminology
Environment (Env): The simulation, in our case, OpenAI GYM simulation. If given an Action it changes its state.

State (s): A state revers to the state of the Environment.

Agent (π): The actor inside an Environment. Makes decisions and takes actions given the state of the environment.

Action (a): A action refers to an action that the agent takes given a state.

Rollout R(π, Env): Running an environment given an agent from beginning to end. Returns a trajectory cumulative reward.

Trajectory (τ): This is a recording of a rollout containing the states and actions. List of state-action pairs.

State-action pair (s, a): This is a combination of a state and the action the agent would decide on given the state.

Action mapping: The action an agent takes given a state. The state can be from a rollout given an agent different from the
agent making the decision.

Behavior: Is the resulting trajectory from the action mappings.

Reward (r): A numerical resemblance of the goodness of a state an Agent in an Environment.

Cumulative Reward: The cumulative reward at the end of a rollout. In the environments mentioned in this paper the total
number of actions taken during a rollout.

Expert (πE): A human or ML model which performs its tasks perfectly. The behaviour that we want to imitate. Makes
decisions in an Agent.

Surrogate (DT or πθ): The model we get from imitating the Expert. Makes decisions in an Agent.

Generator (DT or πθ): The model in GAIL which is being trained to be like the expert, at the end of all r will become the
surrogate.

Iteration: Is an iteration within GAIL, each iteration a new list of state-action pairs is used to train the Generator.

B Algorithms

Algorithm 2: GAIL [7]
Input: Expert trajectories τE , initial policy θ0, and discriminator parameters w0

Output: Surrogate model
1 for iteration: i = 0, 1, 2, ... do
2 Sample trajectories: τi from Generator πθi
3 Update the Discriminator parameters from wi to wi+1 with the gradient:

Êτi [∇w log (Dw(s, a))] + ÊτE [∇w log (1−Dw(s, a))]
4 Take a policy step from θi to θi+1, using the TRPO rule with cost function log(Dwi+1

(s, a)). Specifically, take a
KL-constrained natural gradient step with Êτi [∇θ log πθ(a | s)Q(s, a)]− λ∇θH (πθ) where
Q(s̄, ā) = Êτi

[
log

(
Dwi+1

(s, a)
)
| s0 = s̄, a0 = ā

]

Algorithm 3: Behavioural Cloning
Input: N Expert trajectories τE
Output: Decision Tree πDT

1 Function Train BC:
2 Initialize Decision Tree.
3 Train πDT on τE
4 Return: πDT

C Information related to the experts
Table 7 and Figures 5, 6, & 7 are related to the experts.

Table 7: Expert TensorForce Settings

Environment Agent Memory size Layer Types Layer Sizes
MountainCar-v0 DQN 100000 [Dense, Dense, Dense] [64, 64, 64]
CartPole-v1 DQN 50000 [Dense, Dense] [64, 64]
Acrobot-v1 DQN 200000 [Dense, Dense, Dense] [64, 64, 64]

(a) Move right (b) Left 60% / 80% (c) Right to finish

Figure 5: Screenshots of MountainCar Expert rollout.

(a) Fall to the left (b) Left edge of map (c) Fall to the right

Figure 6: Screenshots of CartPole Expert rollout.

(a) Momentum right (b) Momentum left (c) Almost finished

Figure 7: Screenshots of Acrobot Expert rollout.

Figure 8: MountainCar Reward: -116.88, SD: 1.267, & Fidelity: 0.952

Figure 9: MountainCar Reward: -117.0, SD: 2.112, & Fidelity: 0.939

Figure 10: MountainCar Reward: -116.52, SD: 1873, & Fidelity: 0.939

Figure 11: CartPole Reward: 9.37, SD: 0.73, & Fidelity: 0.864

Figure 12: CartPole Reward: 498.2, SD: 14.12, & Fidelity: 0.617

Figure 13: Acrobot Reward: -95.89, SD: 27.36, & Fidelity: 0.847

Figure 14: Acrobot Reward: -82.92, SD: 15.77, & Fidelity: 0.802

D GAIL Result Decision Trees
Figures 8 to 14 are made by GAIL.

E GAIL Results Tables
Column Names:
Index: The index in the table, for reference.
A: Environment Name
B: Decision Tree Depth, for both BC and GAIL
C: ownGeneratorTrajectories: Generate own Generator Trajectories (not using expert states with generator action map-

pings)
D: hasAccessToExpert: Use the Expert to create new trajectories and replace expert actions with actions of the Generator,

and add this list to the Expert Trajectories.
E: sampleWithC: Use the sampling technique described in Viper. Re-sample the training data weighted with the loss func-

tion: the difference between maximum probability of an action given a state and minimum probability of an action given
a state, by the Expert.

F: discriminateWithC Add this loss function to the state-action pairs to train the discriminator.
G: The Total Number of Expert State-Action pairs at the end of running GAIL. This will increase if hasAccessToExpert is

True.
H: Expert Reward
I: Expert Standard Deviation
J: BC Reward
K: BC Standard Deviation
L: GAIL Reward
M: GAIL Standard Deviation
N: BC Fidelity
O: GAIL Fidelity

Table 8: MountainCar Sorted Results - 2 Full Runs

Index A B C D E F G H I J K L M N O
1 MountainCar-v0 3 TRUE TRUE FALSE TRUE 1369 -114 0 -121.9 15.323 -116.88 1.267 0.938 0.952
2 MountainCar-v0 3 TRUE TRUE FALSE TRUE 1383 -124 0 -132.32 29.229 -116.7 1.825 0.928 0.949
3 MountainCar-v0 3 TRUE FALSE FALSE TRUE 114 -114 0 -121.9 15.323 -117 1.523 0.938 0.947
4 MountainCar-v0 2 TRUE TRUE FALSE FALSE 1367 -124 0 -129.71 27.427 -116.52 1.873 0.922 0.939
5 MountainCar-v0 3 TRUE TRUE FALSE FALSE 1396 -124 0 -132.32 29.229 -117 2.112 0.928 0.939
6 MountainCar-v0 3 FALSE TRUE FALSE FALSE 1374 -124 0 -132.32 29.229 -116.35 1.664 0.928 0.937
7 MountainCar-v0 2 TRUE TRUE FALSE TRUE 1470 -124 0 -129.71 27.427 -116.41 2.122 0.922 0.936
8 MountainCar-v0 2 FALSE TRUE FALSE TRUE 1373 -124 0 -129.71 27.427 -116.53 2.012 0.922 0.936
9 MountainCar-v0 2 FALSE TRUE FALSE FALSE 1486 -114 0 -122.89 17.993 -116.31 1.573 0.932 0.935

10 MountainCar-v0 3 TRUE FALSE FALSE FALSE 114 -114 0 -121.9 15.323 -121.75 14.218 0.938 0.933
11 MountainCar-v0 2 TRUE TRUE FALSE TRUE 1352 -114 0 -122.89 17.993 -115.69 1.412 0.932 0.932
12 MountainCar-v0 2 FALSE TRUE FALSE FALSE 1385 -124 0 -129.71 27.427 -116.98 2.839 0.922 0.932
13 MountainCar-v0 2 FALSE TRUE FALSE TRUE 1424 -114 0 -122.89 17.993 -117.53 3.351 0.932 0.932
14 MountainCar-v0 3 FALSE FALSE FALSE FALSE 124 -124 0 -132.32 29.229 -122.06 17.056 0.928 0.932
15 MountainCar-v0 2 TRUE FALSE FALSE FALSE 114 -114 0 -122.89 17.993 -122.31 16.286 0.932 0.932
16 MountainCar-v0 2 TRUE FALSE FALSE TRUE 114 -114 0 -122.89 17.993 -123.54 19.586 0.932 0.932
17 MountainCar-v0 3 FALSE FALSE FALSE FALSE 114 -114 0 -121.9 15.323 -124.81 20.996 0.938 0.932
18 MountainCar-v0 3 TRUE TRUE FALSE FALSE 1266 -114 0 -121.9 15.323 -116.56 1.711 0.938 0.931
19 MountainCar-v0 2 FALSE FALSE FALSE TRUE 114 -114 0 -122.89 17.993 -122.1 16.296 0.932 0.93
20 MountainCar-v0 3 FALSE TRUE FALSE FALSE 1361 -114 0 -121.9 15.323 -120.09 13.363 0.938 0.929
21 MountainCar-v0 3 FALSE TRUE FALSE TRUE 545 -114 0 -121.9 15.323 -115.2 0.529 0.938 0.928
22 MountainCar-v0 3 FALSE FALSE FALSE TRUE 124 -124 0 -132.32 29.229 -117.06 2.445 0.928 0.926
23 MountainCar-v0 2 FALSE FALSE FALSE TRUE 124 -124 0 -129.71 27.427 -126.32 23.493 0.922 0.922
24 MountainCar-v0 3 FALSE FALSE FALSE TRUE 114 -114 0 -121.9 15.323 -124.96 19.148 0.938 0.918
25 MountainCar-v0 3 TRUE TRUE TRUE TRUE 1874 -114 0 -121.9 15.323 -118.57 2.783 0.938 0.917
26 MountainCar-v0 2 FALSE FALSE FALSE FALSE 114 -114 0 -122.89 17.993 -126.26 20.514 0.932 0.914
27 MountainCar-v0 1 TRUE FALSE TRUE FALSE 124 -124 0 -128.56 21.316 -128.26 21.677 0.912 0.912
28 MountainCar-v0 1 TRUE FALSE TRUE TRUE 124 -124 0 -128.56 21.316 -128.79 21.446 0.912 0.912
29 MountainCar-v0 3 TRUE TRUE TRUE TRUE 1607 -124 0 -132.32 29.229 -128.84 21.456 0.928 0.912
30 MountainCar-v0 2 TRUE FALSE TRUE TRUE 124 -124 0 -129.71 27.427 -129.3 22.854 0.922 0.912
31 MountainCar-v0 1 FALSE FALSE FALSE TRUE 124 -124 0 -128.56 21.316 -129.66 22.565 0.912 0.912
32 MountainCar-v0 2 TRUE FALSE TRUE FALSE 124 -124 0 -129.71 27.427 -129.82 23.897 0.922 0.912
33 MountainCar-v0 2 FALSE FALSE TRUE FALSE 124 -124 0 -129.71 27.427 -129.98 23.909 0.922 0.912
34 MountainCar-v0 1 FALSE FALSE FALSE FALSE 124 -124 0 -128.56 21.316 -131.02 24.695 0.912 0.912
35 MountainCar-v0 2 FALSE TRUE TRUE TRUE 1483 -124 0 -129.71 27.427 -116.4 1.954 0.922 0.911
36 MountainCar-v0 1 FALSE TRUE TRUE TRUE 1518 -124 0 -128.56 21.316 -119.27 4.259 0.912 0.911
37 MountainCar-v0 1 TRUE FALSE FALSE TRUE 124 -124 0 -128.56 21.316 -120.29 4.073 0.912 0.911
38 MountainCar-v0 1 TRUE TRUE TRUE FALSE 1670 -124 0 -128.56 21.316 -120.4 4.366 0.912 0.911
39 MountainCar-v0 1 TRUE FALSE FALSE FALSE 124 -124 0 -128.56 21.316 -120.47 4.478 0.912 0.911
40 MountainCar-v0 3 FALSE TRUE TRUE FALSE 1577 -124 0 -132.32 29.229 -120.93 4.174 0.928 0.911
41 MountainCar-v0 2 TRUE TRUE TRUE TRUE 1677 -124 0 -129.71 27.427 -121.9 4.446 0.922 0.911
42 MountainCar-v0 2 TRUE TRUE TRUE FALSE 1719 -124 0 -129.71 27.427 -122.31 2.253 0.922 0.911
43 MountainCar-v0 3 TRUE FALSE TRUE FALSE 124 -124 0 -132.32 29.229 -130.88 24.805 0.928 0.911

44 MountainCar-v0 3 FALSE TRUE FALSE TRUE 1328 -124 0 -132.32 29.229 -119.37 9.023 0.928 0.91
45 MountainCar-v0 1 FALSE TRUE FALSE TRUE 1380 -124 0 -128.56 21.316 -119.75 4.038 0.912 0.91
46 MountainCar-v0 1 FALSE TRUE FALSE FALSE 1336 -124 0 -128.56 21.316 -120.04 3.58 0.912 0.91
47 MountainCar-v0 1 FALSE FALSE TRUE TRUE 124 -124 0 -128.56 21.316 -136.46 30.206 0.912 0.91
48 MountainCar-v0 1 FALSE FALSE TRUE FALSE 124 -124 0 -128.56 21.316 -140.9 33.468 0.912 0.91
49 MountainCar-v0 1 TRUE TRUE TRUE TRUE 1577 -124 0 -128.56 21.316 -119.78 3.862 0.912 0.909
50 MountainCar-v0 1 TRUE TRUE FALSE TRUE 1405 -124 0 -128.56 21.316 -119.83 3.829 0.912 0.909
51 MountainCar-v0 2 FALSE FALSE FALSE FALSE 124 -124 0 -129.71 27.427 -128.86 23.92 0.922 0.909
52 MountainCar-v0 3 TRUE FALSE FALSE FALSE 124 -124 0 -132.32 29.229 -130.37 27.215 0.928 0.909
53 MountainCar-v0 3 FALSE FALSE TRUE FALSE 124 -124 0 -132.32 29.229 -145.29 35.184 0.928 0.909
54 MountainCar-v0 2 FALSE FALSE TRUE TRUE 124 -124 0 -129.71 27.427 -147.64 36.169 0.922 0.909
55 MountainCar-v0 3 TRUE FALSE TRUE TRUE 124 -124 0 -132.32 29.229 -149.68 36.399 0.928 0.909
56 MountainCar-v0 2 TRUE FALSE FALSE FALSE 124 -124 0 -129.71 27.427 -117.88 3.269 0.922 0.908
57 MountainCar-v0 2 TRUE FALSE FALSE TRUE 124 -124 0 -129.71 27.427 -118.54 3.984 0.922 0.907
58 MountainCar-v0 3 TRUE TRUE TRUE FALSE 1476 -124 0 -132.32 29.229 -118.87 3.825 0.928 0.907
59 MountainCar-v0 1 TRUE TRUE FALSE FALSE 1371 -124 0 -128.56 21.316 -119.35 3.825 0.912 0.907
60 MountainCar-v0 1 FALSE TRUE TRUE FALSE 1656 -124 0 -128.56 21.316 -119.28 3.707 0.912 0.906
61 MountainCar-v0 2 FALSE TRUE TRUE TRUE 1557 -114 0 -122.89 17.993 -120.99 5.084 0.932 0.906
62 MountainCar-v0 3 FALSE FALSE TRUE FALSE 114 -114 0 -121.9 15.323 -121.14 5.453 0.938 0.906
63 MountainCar-v0 1 FALSE FALSE FALSE TRUE 114 -114 0 -127.493 20.779 -121.27 4.181 0.905 0.906
64 MountainCar-v0 2 TRUE TRUE TRUE TRUE 1601 -114 0 -122.89 17.993 -121.41 4.233 0.932 0.906
65 MountainCar-v0 2 TRUE TRUE TRUE FALSE 1801 -114 0 -122.89 17.993 -121.45 4.84 0.932 0.906
66 MountainCar-v0 1 FALSE FALSE TRUE FALSE 114 -114 0 -127.493 20.779 -121.54 4.428 0.905 0.906
67 MountainCar-v0 1 FALSE TRUE TRUE TRUE 1649 -114 0 -127.493 20.779 -121.87 4.983 0.905 0.906
68 MountainCar-v0 2 FALSE FALSE TRUE TRUE 114 -114 0 -122.89 17.993 -129.44 22.635 0.932 0.906
69 MountainCar-v0 3 FALSE TRUE TRUE TRUE 1674 -114 0 -121.9 15.323 -131.36 24.496 0.938 0.906
70 MountainCar-v0 2 FALSE TRUE TRUE FALSE 1652 -124 0 -129.71 27.427 -119.36 3.543 0.922 0.905
71 MountainCar-v0 1 TRUE TRUE TRUE TRUE 1650 -114 0 -127.493 20.779 -120.45 3.74 0.905 0.905
72 MountainCar-v0 1 FALSE FALSE FALSE FALSE 114 -114 0 -127.493 20.779 -122.55 8.925 0.905 0.905
73 MountainCar-v0 1 TRUE FALSE FALSE TRUE 114 -114 0 -127.493 20.779 -127.81 20.372 0.905 0.905
74 MountainCar-v0 3 FALSE FALSE TRUE TRUE 114 -114 0 -121.9 15.323 -128.12 21.69 0.938 0.905
75 MountainCar-v0 1 TRUE TRUE TRUE FALSE 1419 -114 0 -127.493 20.779 -119.61 3.834 0.905 0.904
76 MountainCar-v0 1 TRUE TRUE FALSE TRUE 1363 -114 0 -127.493 20.779 -120.05 3.756 0.905 0.904
77 MountainCar-v0 2 FALSE TRUE TRUE FALSE 1479 -114 0 -122.89 17.993 -120.24 3.645 0.932 0.904
78 MountainCar-v0 2 TRUE FALSE TRUE FALSE 114 -114 0 -122.89 17.993 -135.56 28.536 0.932 0.904
79 MountainCar-v0 2 TRUE FALSE TRUE TRUE 114 -114 0 -122.89 17.993 -138.69 30.031 0.932 0.904
80 MountainCar-v0 3 TRUE FALSE TRUE FALSE 114 -114 0 -121.9 15.323 -141.29 32.391 0.938 0.904
81 MountainCar-v0 1 FALSE TRUE FALSE FALSE 1409 -114 0 -127.493 20.779 -119.56 3.514 0.905 0.903
82 MountainCar-v0 3 FALSE TRUE TRUE FALSE 1466 -114 0 -121.9 15.323 -119.79 3.92 0.938 0.903
83 MountainCar-v0 3 TRUE TRUE TRUE FALSE 1495 -114 0 -121.9 15.323 -120.16 3.627 0.938 0.903
84 MountainCar-v0 3 TRUE FALSE FALSE TRUE 124 -124 0 -132.32 29.229 -120.88 23.935 0.928 0.903
85 MountainCar-v0 1 FALSE TRUE TRUE FALSE 1652 -114 0 -127.493 20.779 -119.24 3.798 0.905 0.902
86 MountainCar-v0 1 TRUE FALSE TRUE TRUE 114 -114 0 -127.493 20.779 -149.14 35.88 0.905 0.902
87 MountainCar-v0 3 TRUE FALSE TRUE TRUE 114 -114 0 -121.9 15.323 -154.19 36.756 0.938 0.902
88 MountainCar-v0 2 FALSE FALSE TRUE FALSE 114 -114 0 -122.89 17.993 -159.39 37.556 0.932 0.902
89 MountainCar-v0 1 TRUE TRUE FALSE FALSE 1670 -114 0 -127.493 20.779 -119.64 3.738 0.905 0.901

90 MountainCar-v0 2 TRUE TRUE FALSE FALSE 1606 -114 0 -122.89 17.993 -119.7 3.39 0.932 0.901
91 MountainCar-v0 1 FALSE FALSE TRUE TRUE 114 -114 0 -127.493 20.779 -126.11 33.306 0.905 0.885
92 MountainCar-v0 1 FALSE TRUE FALSE TRUE 1613 -114 0 -127.493 20.779 -132.87 30.872 0.905 0.88
93 MountainCar-v0 1 TRUE FALSE FALSE FALSE 114 -114 0 -127.493 20.779 -134.34 32.416 0.905 0.868
94 MountainCar-v0 3 FALSE FALSE TRUE TRUE 124 -124 0 -132.32 29.229 -147.77 35.471 0.928 0.838
95 MountainCar-v0 3 FALSE TRUE TRUE TRUE 1950 -124 0 -132.32 29.229 -138.46 9.515 0.928 0.816
96 MountainCar-v0 1 TRUE FALSE TRUE FALSE 114 -114 0 -127.493 20.779 -200 0 0.905 0.117

Table 9: CartPole Sorted Results - 2 Full Runs

Index A B C D E F G H I J K L M N O
1 CartPole-v1 1 TRUE FALSE FALSE FALSE 500 500 0 9.31 0.666 9.37 0.73 0.864 0.864
2 CartPole-v1 1 FALSE FALSE FALSE TRUE 500 500 0 9.31 0.666 9.26 0.716 0.864 0.864
3 CartPole-v1 2 TRUE FALSE FALSE TRUE 500 500 0 9.263 0.773 9.2 0.787 0.864 0.864
4 CartPole-v1 3 FALSE FALSE TRUE TRUE 500 500 0 9.217 0.755 9.18 0.779 0.864 0.864
5 CartPole-v1 3 FALSE FALSE TRUE FALSE 500 500 0 9.37 0.73 11.17 4.539 0.889 0.861
6 CartPole-v1 2 TRUE FALSE FALSE FALSE 500 500 0 9.247 0.706 9.35 0.726 0.86 0.861
7 CartPole-v1 1 TRUE FALSE FALSE FALSE 500 500 0 9.24 0.705 9.13 0.688 0.86 0.861
8 CartPole-v1 3 FALSE FALSE FALSE FALSE 500 500 0 9.37 0.73 9.28 0.763 0.889 0.86
9 CartPole-v1 2 FALSE FALSE FALSE FALSE 500 500 0 9.247 0.706 9.22 0.729 0.86 0.86

10 CartPole-v1 1 FALSE FALSE FALSE FALSE 500 500 0 9.24 0.705 9.21 0.725 0.86 0.86
11 CartPole-v1 3 FALSE FALSE FALSE TRUE 500 500 0 9.37 0.73 9.13 0.688 0.889 0.859
12 CartPole-v1 3 FALSE FALSE TRUE TRUE 500 500 0 9.37 0.73 10.96 3.947 0.889 0.857
13 CartPole-v1 1 FALSE FALSE TRUE TRUE 500 500 0 9.24 0.705 9.25 0.817 0.86 0.852
14 CartPole-v1 2 FALSE FALSE TRUE FALSE 500 500 0 9.263 0.773 9.29 0.791 0.864 0.843
15 CartPole-v1 3 FALSE FALSE TRUE FALSE 500 500 0 9.217 0.755 9.49 0.685 0.864 0.842
16 CartPole-v1 3 TRUE FALSE TRUE FALSE 500 500 0 9.217 0.755 9.9 0.412 0.864 0.834
17 CartPole-v1 1 TRUE FALSE TRUE TRUE 500 500 0 9.31 0.666 9.35 0.841 0.864 0.833
18 CartPole-v1 1 FALSE FALSE TRUE TRUE 500 500 0 9.31 0.666 9.36 0.794 0.864 0.832
19 CartPole-v1 1 TRUE FALSE TRUE FALSE 500 500 0 9.31 0.666 9.37 0.716 0.864 0.82
20 CartPole-v1 2 TRUE FALSE TRUE FALSE 500 500 0 9.247 0.706 18.86 5.641 0.86 0.81
21 CartPole-v1 3 FALSE FALSE FALSE TRUE 500 500 0 9.217 0.755 9.24 0.709 0.864 0.81
22 CartPole-v1 3 FALSE TRUE TRUE FALSE 712 500 0 9.217 0.755 28.63 12.169 0.864 0.803
23 CartPole-v1 3 TRUE FALSE TRUE TRUE 500 500 0 9.217 0.755 20.35 5.432 0.864 0.802
24 CartPole-v1 2 FALSE FALSE TRUE TRUE 500 500 0 9.263 0.773 14.38 6.043 0.864 0.801
25 CartPole-v1 1 TRUE FALSE TRUE FALSE 500 500 0 9.24 0.705 9.37 0.73 0.86 0.79
26 CartPole-v1 1 TRUE FALSE TRUE TRUE 500 500 0 9.24 0.705 9.36 0.755 0.86 0.774
27 CartPole-v1 2 FALSE FALSE FALSE FALSE 500 500 0 9.263 0.773 9.33 0.694 0.864 0.765
28 CartPole-v1 3 TRUE TRUE FALSE TRUE 759 500 0 9.217 0.755 93.95 57.967 0.864 0.754
29 CartPole-v1 3 TRUE TRUE FALSE FALSE 1024 500 0 9.217 0.755 101.48 66.116 0.864 0.741
30 CartPole-v1 2 TRUE TRUE FALSE FALSE 807 500 0 9.263 0.773 62.77 53.232 0.864 0.736
31 CartPole-v1 2 FALSE TRUE FALSE TRUE 786 500 0 9.263 0.773 55.62 57.231 0.864 0.736
32 CartPole-v1 2 TRUE TRUE FALSE TRUE 678 500 0 9.263 0.773 103.91 58.5 0.864 0.733
33 CartPole-v1 2 FALSE TRUE FALSE FALSE 924 500 0 9.263 0.773 129.4 71.288 0.864 0.727
34 CartPole-v1 2 TRUE TRUE FALSE FALSE 785 500 0 9.247 0.706 71.58 53.934 0.86 0.724
35 CartPole-v1 3 FALSE TRUE FALSE TRUE 989 500 0 9.217 0.755 307.31 187.514 0.864 0.71
36 CartPole-v1 3 FALSE TRUE FALSE FALSE 998 500 0 9.217 0.755 160.69 63.672 0.864 0.703
37 CartPole-v1 2 TRUE TRUE FALSE TRUE 897 500 0 9.247 0.706 132.41 69.365 0.86 0.703
38 CartPole-v1 3 TRUE TRUE FALSE TRUE 859 500 0 9.37 0.73 126.6 60.965 0.889 0.698
39 CartPole-v1 3 FALSE TRUE FALSE TRUE 1221 500 0 9.37 0.73 139.78 62.084 0.889 0.693
40 CartPole-v1 3 FALSE TRUE FALSE FALSE 898 500 0 9.37 0.73 60.62 54.685 0.889 0.678
41 CartPole-v1 3 TRUE TRUE TRUE TRUE 744 500 0 9.217 0.755 102.97 48.074 0.864 0.651
42 CartPole-v1 2 FALSE TRUE FALSE FALSE 763 500 0 9.247 0.706 96.2 61.71 0.86 0.651
43 CartPole-v1 3 TRUE TRUE FALSE FALSE 1466 500 0 9.37 0.73 309.28 169.249 0.889 0.648

44 CartPole-v1 3 TRUE TRUE TRUE FALSE 1188 500 0 9.217 0.755 261.17 64.364 0.864 0.637
45 CartPole-v1 3 TRUE TRUE TRUE TRUE 1120 500 0 9.37 0.73 498.2 14.116 0.889 0.617
46 CartPole-v1 3 FALSE TRUE TRUE TRUE 1111 500 0 9.217 0.755 410.72 44.652 0.864 0.611
47 CartPole-v1 2 FALSE FALSE FALSE TRUE 500 500 0 9.263 0.773 9.42 0.695 0.864 0.554
48 CartPole-v1 1 FALSE FALSE TRUE FALSE 500 500 0 9.31 0.666 43.75 9.104 0.864 0.551
49 CartPole-v1 1 FALSE FALSE TRUE FALSE 500 500 0 9.24 0.705 43.27 9.229 0.86 0.55
50 CartPole-v1 1 FALSE TRUE TRUE FALSE 727 500 0 9.31 0.666 41.3 7.436 0.864 0.548
51 CartPole-v1 1 TRUE TRUE TRUE TRUE 736 500 0 9.31 0.666 42.25 9.068 0.864 0.546
52 CartPole-v1 1 FALSE TRUE TRUE TRUE 725 500 0 9.31 0.666 41.59 7.561 0.864 0.545
53 CartPole-v1 3 TRUE FALSE FALSE TRUE 500 500 0 9.217 0.755 41.37 8.162 0.864 0.544
54 CartPole-v1 2 FALSE TRUE TRUE TRUE 1387 500 0 9.247 0.706 210.86 14.466 0.86 0.54
55 CartPole-v1 1 FALSE FALSE FALSE FALSE 500 500 0 9.31 0.666 40.65 8.85 0.864 0.54
56 CartPole-v1 1 TRUE TRUE TRUE FALSE 741 500 0 9.31 0.666 42.81 8.222 0.864 0.538
57 CartPole-v1 1 FALSE FALSE FALSE TRUE 500 500 0 9.24 0.705 42.01 9.429 0.86 0.538
58 CartPole-v1 2 FALSE FALSE TRUE TRUE 500 500 0 9.247 0.706 41.56 8.975 0.86 0.538
59 CartPole-v1 2 TRUE FALSE TRUE FALSE 500 500 0 9.263 0.773 41.34 8.687 0.864 0.537
60 CartPole-v1 1 TRUE TRUE FALSE TRUE 592 500 0 9.31 0.666 40.51 7.619 0.864 0.537
61 CartPole-v1 3 FALSE TRUE TRUE FALSE 1010 500 0 9.37 0.73 151.26 27.814 0.889 0.536
62 CartPole-v1 2 TRUE TRUE TRUE FALSE 744 500 0 9.247 0.706 41.66 8.995 0.86 0.536
63 CartPole-v1 1 TRUE TRUE TRUE FALSE 757 500 0 9.24 0.705 42.07 8.1 0.86 0.535
64 CartPole-v1 3 FALSE TRUE TRUE TRUE 1426 500 0 9.37 0.73 354.75 39.62 0.889 0.534
65 CartPole-v1 1 FALSE TRUE TRUE TRUE 759 500 0 9.24 0.705 42.44 7.697 0.86 0.533
66 CartPole-v1 2 FALSE TRUE TRUE FALSE 711 500 0 9.263 0.773 30.44 12.624 0.864 0.53
67 CartPole-v1 2 TRUE TRUE TRUE TRUE 825 500 0 9.247 0.706 131.77 25.902 0.86 0.528
68 CartPole-v1 2 TRUE FALSE FALSE TRUE 500 500 0 9.247 0.706 41.56 7.843 0.86 0.528
69 CartPole-v1 2 TRUE FALSE FALSE FALSE 500 500 0 9.263 0.773 39.7 7.721 0.864 0.528
70 CartPole-v1 3 TRUE TRUE TRUE FALSE 1804 500 0 9.37 0.73 497.64 10.768 0.889 0.515
71 CartPole-v1 2 TRUE TRUE TRUE TRUE 831 500 0 9.263 0.773 210.24 55.044 0.864 0.515
72 CartPole-v1 2 FALSE TRUE TRUE FALSE 1460 500 0 9.247 0.706 498.7 7.383 0.86 0.514
73 CartPole-v1 2 TRUE TRUE TRUE FALSE 686 500 0 9.263 0.773 39.51 18.724 0.864 0.51
74 CartPole-v1 2 FALSE FALSE TRUE FALSE 500 500 0 9.247 0.706 31.79 11.534 0.86 0.51
75 CartPole-v1 2 TRUE FALSE TRUE TRUE 500 500 0 9.247 0.706 28.83 11.387 0.86 0.51
76 CartPole-v1 3 TRUE FALSE TRUE TRUE 500 500 0 9.37 0.73 26.8 13.574 0.889 0.51
77 CartPole-v1 2 FALSE TRUE TRUE TRUE 673 500 0 9.263 0.773 35.62 14.733 0.864 0.509
78 CartPole-v1 1 TRUE TRUE FALSE TRUE 594 500 0 9.24 0.705 28.74 12.73 0.86 0.509
79 CartPole-v1 1 TRUE TRUE FALSE FALSE 597 500 0 9.24 0.705 27.94 11.645 0.86 0.509
80 CartPole-v1 1 FALSE TRUE FALSE TRUE 593 500 0 9.31 0.666 28.08 14.199 0.864 0.508
81 CartPole-v1 1 TRUE FALSE FALSE TRUE 500 500 0 9.24 0.705 9.3 0.768 0.86 0.49
82 CartPole-v1 3 TRUE FALSE FALSE FALSE 500 500 0 9.217 0.755 42.67 21.966 0.864 0.448
83 CartPole-v1 2 FALSE FALSE FALSE TRUE 500 500 0 9.247 0.706 41.02 18.455 0.86 0.448
84 CartPole-v1 1 TRUE FALSE FALSE TRUE 500 500 0 9.31 0.666 43.78 21.587 0.864 0.447
85 CartPole-v1 1 TRUE TRUE FALSE FALSE 592 500 0 9.31 0.666 40 13.548 0.864 0.446
86 CartPole-v1 3 FALSE FALSE FALSE FALSE 500 500 0 9.217 0.755 39.88 15.377 0.864 0.445
87 CartPole-v1 3 TRUE FALSE FALSE TRUE 500 500 0 9.37 0.73 39.2 15.768 0.889 0.445
88 CartPole-v1 1 FALSE TRUE TRUE FALSE 749 500 0 9.24 0.705 34.28 4.633 0.86 0.429
89 CartPole-v1 3 TRUE FALSE TRUE FALSE 500 500 0 9.37 0.73 152.98 32.617 0.889 0.148

90 CartPole-v1 1 TRUE TRUE TRUE TRUE 791 500 0 9.24 0.705 159.21 33.667 0.86 0.146
91 CartPole-v1 1 FALSE TRUE FALSE FALSE 594 500 0 9.31 0.666 162.44 35.828 0.864 0.144
92 CartPole-v1 1 FALSE TRUE FALSE FALSE 595 500 0 9.24 0.705 189.46 51.038 0.86 0.142
93 CartPole-v1 1 FALSE TRUE FALSE TRUE 591 500 0 9.24 0.705 189.21 45.342 0.86 0.141
94 CartPole-v1 3 TRUE FALSE FALSE FALSE 500 500 0 9.37 0.73 178.33 47.208 0.889 0.141
95 CartPole-v1 2 FALSE TRUE FALSE TRUE 787 500 0 9.247 0.706 198.49 46.719 0.86 0.14
96 CartPole-v1 2 TRUE FALSE TRUE TRUE 500 500 0 9.263 0.773 203.11 43.316 0.864 0.137

Table 10: Acrobot Sorted Results - 2 Full Runs

Index A B C D E F G H I J K L M N O
1 Acrobot-v1 3 TRUE FALSE FALSE TRUE 79 -78 0 -102.22 31.931 -95.89 27.36 0.843 0.847
2 Acrobot-v1 2 TRUE FALSE FALSE FALSE 79 -78 0 -92.363 29.359 -92.56 29.304 0.846 0.846
3 Acrobot-v1 2 TRUE FALSE FALSE TRUE 79 -78 0 -92.363 29.359 -95.08 30.989 0.846 0.846
4 Acrobot-v1 3 FALSE FALSE FALSE TRUE 79 -78 0 -102.22 31.931 -96.24 44.92 0.843 0.844
5 Acrobot-v1 3 TRUE FALSE FALSE FALSE 79 -78 0 -102.22 31.931 -102.8 30.25 0.843 0.842
6 Acrobot-v1 3 FALSE FALSE FALSE FALSE 88 -87 0 -86.53 19.775 -88.75 21.843 0.83 0.84
7 Acrobot-v1 2 FALSE TRUE TRUE TRUE 3406 -87 0 -88.57 25.592 -103.27 79.092 0.833 0.839
8 Acrobot-v1 2 FALSE FALSE FALSE TRUE 79 -78 0 -92.363 29.359 -95.31 24.636 0.846 0.835
9 Acrobot-v1 2 FALSE FALSE FALSE TRUE 88 -87 0 -88.57 25.592 -93.42 49.799 0.833 0.834

10 Acrobot-v1 3 FALSE FALSE FALSE TRUE 88 -87 0 -86.53 19.775 -88.88 24.575 0.83 0.831
11 Acrobot-v1 3 TRUE TRUE TRUE TRUE 1910 -87 0 -86.53 19.775 -92.24 36.061 0.83 0.831
12 Acrobot-v1 2 TRUE FALSE FALSE FALSE 88 -87 0 -88.57 25.592 -343.46 196.288 0.833 0.831
13 Acrobot-v1 3 TRUE FALSE FALSE FALSE 88 -87 0 -86.53 19.775 -89.06 19.831 0.83 0.83
14 Acrobot-v1 3 FALSE TRUE FALSE TRUE 444 -78 0 -102.22 31.931 -93.9 16.856 0.843 0.826
15 Acrobot-v1 3 FALSE FALSE TRUE FALSE 79 -78 0 -102.22 31.931 -96.26 21.011 0.843 0.825
16 Acrobot-v1 2 FALSE FALSE FALSE FALSE 88 -87 0 -88.57 25.592 -91.35 18.709 0.833 0.824
17 Acrobot-v1 1 FALSE FALSE FALSE FALSE 88 -87 0 -92.987 22.21 -109.55 81.349 0.818 0.824
18 Acrobot-v1 3 FALSE TRUE TRUE TRUE 2773 -78 0 -102.22 31.931 -129.69 98.345 0.843 0.823
19 Acrobot-v1 3 FALSE TRUE FALSE FALSE 1636 -87 0 -86.53 19.775 -95.07 50.264 0.83 0.82
20 Acrobot-v1 3 TRUE TRUE FALSE FALSE 2363 -87 0 -86.53 19.775 -95.68 37.138 0.83 0.82
21 Acrobot-v1 1 TRUE TRUE TRUE FALSE 3464 -87 0 -92.987 22.21 -199.64 176.498 0.818 0.82
22 Acrobot-v1 2 TRUE FALSE TRUE TRUE 88 -87 0 -88.57 25.592 -90.92 28.922 0.833 0.818
23 Acrobot-v1 1 TRUE FALSE FALSE FALSE 88 -87 0 -92.987 22.21 -92 18.326 0.818 0.818
24 Acrobot-v1 1 FALSE FALSE FALSE TRUE 88 -87 0 -92.987 22.21 -94.56 25.239 0.818 0.818
25 Acrobot-v1 1 FALSE TRUE TRUE TRUE 1921 -87 0 -92.987 22.21 -273.29 195.698 0.818 0.818
26 Acrobot-v1 2 FALSE TRUE FALSE TRUE 1239 -78 0 -92.363 29.359 -102.84 50.719 0.846 0.817
27 Acrobot-v1 2 FALSE TRUE FALSE FALSE 1643 -78 0 -92.363 29.359 -88.99 19.673 0.846 0.816
28 Acrobot-v1 1 FALSE FALSE FALSE TRUE 79 -78 0 -92.427 21.99 -91.82 19.781 0.816 0.816
29 Acrobot-v1 1 TRUE FALSE FALSE FALSE 79 -78 0 -92.427 21.99 -92.56 28.019 0.816 0.816
30 Acrobot-v1 1 FALSE TRUE FALSE TRUE 1071 -78 0 -92.427 21.99 -93.63 19.486 0.816 0.816
31 Acrobot-v1 1 TRUE FALSE FALSE TRUE 79 -78 0 -92.427 21.99 -95.35 28.653 0.816 0.816
32 Acrobot-v1 1 TRUE TRUE FALSE TRUE 157 -78 0 -92.427 21.99 -95.65 32.816 0.816 0.816
33 Acrobot-v1 1 FALSE FALSE FALSE FALSE 79 -78 0 -92.427 21.99 -97.73 26.357 0.816 0.816
34 Acrobot-v1 3 FALSE FALSE FALSE FALSE 79 -78 0 -102.22 31.931 -88.46 19.464 0.843 0.815
35 Acrobot-v1 1 FALSE TRUE FALSE TRUE 1582 -87 0 -92.987 22.21 -90.25 18.015 0.818 0.814
36 Acrobot-v1 1 TRUE TRUE FALSE TRUE 970 -87 0 -92.987 22.21 -91.8 26.847 0.818 0.814
37 Acrobot-v1 2 FALSE FALSE FALSE FALSE 79 -78 0 -92.363 29.359 -92.09 20.077 0.846 0.812
38 Acrobot-v1 3 TRUE FALSE TRUE FALSE 79 -78 0 -102.22 31.931 -266.98 197.014 0.843 0.811
39 Acrobot-v1 3 TRUE FALSE FALSE TRUE 88 -87 0 -86.53 19.775 -88.33 21.239 0.83 0.81
40 Acrobot-v1 3 FALSE TRUE FALSE FALSE 1090 -78 0 -102.22 31.931 -90.16 17.07 0.843 0.809
41 Acrobot-v1 3 TRUE FALSE TRUE TRUE 88 -87 0 -86.53 19.775 -88.12 28.162 0.83 0.808
42 Acrobot-v1 2 TRUE FALSE TRUE TRUE 79 -78 0 -92.363 29.359 -398.8 171.175 0.846 0.808
43 Acrobot-v1 2 FALSE FALSE TRUE TRUE 79 -78 0 -92.363 29.359 -135.36 109.361 0.846 0.807

44 Acrobot-v1 2 FALSE TRUE TRUE FALSE 965 -87 0 -88.57 25.592 -85.17 20.29 0.833 0.806
45 Acrobot-v1 1 FALSE TRUE TRUE FALSE 4278 -78 0 -92.427 21.99 -95.65 32.311 0.816 0.806
46 Acrobot-v1 2 TRUE TRUE TRUE TRUE 2506 -78 0 -92.363 29.359 -96.55 19.735 0.846 0.805
47 Acrobot-v1 1 FALSE TRUE TRUE FALSE 2576 -87 0 -92.987 22.21 -94.13 32.47 0.818 0.804
48 Acrobot-v1 1 TRUE TRUE TRUE FALSE 2553 -78 0 -92.427 21.99 -114.12 96.671 0.816 0.804
49 Acrobot-v1 3 FALSE TRUE TRUE TRUE 2150 -87 0 -86.53 19.775 -95.96 29.044 0.83 0.803
50 Acrobot-v1 1 TRUE TRUE TRUE TRUE 2413 -87 0 -92.987 22.21 -114.44 85.031 0.818 0.803
51 Acrobot-v1 1 FALSE TRUE FALSE FALSE 585 -78 0 -92.427 21.99 -82.92 15.771 0.816 0.802
52 Acrobot-v1 2 FALSE TRUE FALSE FALSE 689 -87 0 -88.57 25.592 -88.46 22.782 0.833 0.801
53 Acrobot-v1 3 TRUE TRUE TRUE FALSE 1327 -87 0 -86.53 19.775 -88.79 24.6 0.83 0.801
54 Acrobot-v1 1 FALSE TRUE TRUE TRUE 2766 -78 0 -92.427 21.99 -136.31 126.671 0.816 0.801
55 Acrobot-v1 3 TRUE FALSE TRUE TRUE 79 -78 0 -102.22 31.931 -388.75 178.569 0.843 0.801
56 Acrobot-v1 1 TRUE TRUE FALSE FALSE 1747 -78 0 -92.427 21.99 -84.55 16.19 0.816 0.8
57 Acrobot-v1 2 TRUE TRUE TRUE TRUE 2706 -87 0 -88.57 25.592 -86.9 30.712 0.833 0.8
58 Acrobot-v1 3 FALSE FALSE TRUE FALSE 88 -87 0 -86.53 19.775 -113.63 82.544 0.83 0.8
59 Acrobot-v1 2 TRUE TRUE FALSE TRUE 606 -87 0 -88.57 25.592 -82.97 14.929 0.833 0.799
60 Acrobot-v1 1 TRUE TRUE FALSE FALSE 1472 -87 0 -92.987 22.21 -93.15 42.023 0.818 0.796
61 Acrobot-v1 2 TRUE TRUE FALSE FALSE 1849 -87 0 -88.57 25.592 -91.17 50.014 0.833 0.795
62 Acrobot-v1 2 FALSE TRUE FALSE TRUE 757 -87 0 -88.57 25.592 -85.56 16.915 0.833 0.794
63 Acrobot-v1 2 TRUE FALSE FALSE TRUE 88 -87 0 -88.57 25.592 -93.18 51.511 0.833 0.794
64 Acrobot-v1 1 FALSE TRUE FALSE FALSE 1383 -87 0 -92.987 22.21 -87.4 28.862 0.818 0.793
65 Acrobot-v1 2 TRUE TRUE FALSE TRUE 253 -78 0 -92.363 29.359 -97.52 36.108 0.846 0.792
66 Acrobot-v1 2 FALSE TRUE TRUE TRUE 3575 -78 0 -92.363 29.359 -106.63 50.433 0.846 0.792
67 Acrobot-v1 2 TRUE FALSE TRUE FALSE 79 -78 0 -92.363 29.359 -111.6 56.497 0.846 0.792
68 Acrobot-v1 3 TRUE TRUE FALSE TRUE 1497 -87 0 -86.53 19.775 -79.46 18.535 0.83 0.791
69 Acrobot-v1 3 FALSE TRUE FALSE TRUE 1099 -87 0 -86.53 19.775 -92.59 20.876 0.83 0.791
70 Acrobot-v1 3 TRUE TRUE TRUE TRUE 2793 -78 0 -102.22 31.931 -93.55 24.967 0.843 0.79
71 Acrobot-v1 3 FALSE TRUE TRUE FALSE 694 -78 0 -102.22 31.931 -104.42 52.272 0.843 0.786
72 Acrobot-v1 2 FALSE FALSE TRUE FALSE 79 -78 0 -92.363 29.359 -103.5 33.194 0.846 0.785
73 Acrobot-v1 2 FALSE FALSE TRUE FALSE 88 -87 0 -88.57 25.592 -101.48 53.732 0.833 0.783
74 Acrobot-v1 3 TRUE TRUE TRUE FALSE 1091 -78 0 -102.22 31.931 -91.34 17.467 0.843 0.777
75 Acrobot-v1 1 FALSE FALSE TRUE FALSE 88 -87 0 -92.987 22.21 -111.19 80.777 0.818 0.777
76 Acrobot-v1 3 TRUE TRUE FALSE FALSE 2046 -78 0 -102.22 31.931 -101.13 24.231 0.843 0.776
77 Acrobot-v1 3 TRUE TRUE FALSE TRUE 1539 -78 0 -102.22 31.931 -85.3 17.46 0.843 0.762
78 Acrobot-v1 3 FALSE FALSE TRUE TRUE 79 -78 0 -102.22 31.931 -150.86 130.435 0.843 0.759
79 Acrobot-v1 1 TRUE FALSE TRUE TRUE 88 -87 0 -92.987 22.21 -239.47 188.777 0.818 0.759
80 Acrobot-v1 1 FALSE FALSE TRUE TRUE 88 -87 0 -92.987 22.21 -139.03 124.208 0.818 0.755
81 Acrobot-v1 1 TRUE FALSE FALSE TRUE 88 -87 0 -92.987 22.21 -301.9 199.786 0.818 0.755
82 Acrobot-v1 3 FALSE TRUE TRUE FALSE 1272 -87 0 -86.53 19.775 -95.41 14.91 0.83 0.743
83 Acrobot-v1 3 TRUE FALSE TRUE FALSE 88 -87 0 -86.53 19.775 -105.73 37.972 0.83 0.741
84 Acrobot-v1 2 TRUE FALSE TRUE FALSE 88 -87 0 -88.57 25.592 -95.88 19.07 0.833 0.737
85 Acrobot-v1 2 FALSE FALSE TRUE TRUE 88 -87 0 -88.57 25.592 -117.35 98.757 0.833 0.722
86 Acrobot-v1 2 TRUE TRUE FALSE FALSE 1492 -78 0 -92.363 29.359 -103.42 20.322 0.846 0.695
87 Acrobot-v1 3 FALSE FALSE TRUE TRUE 88 -87 0 -86.53 19.775 -117.11 48.264 0.83 0.686
88 Acrobot-v1 2 FALSE TRUE TRUE FALSE 2877 -78 0 -92.363 29.359 -136.92 26.069 0.846 0.672
89 Acrobot-v1 2 TRUE TRUE TRUE FALSE 2857 -87 0 -88.57 25.592 -137.19 28.175 0.833 0.657

90 Acrobot-v1 2 TRUE TRUE TRUE FALSE 3194 -78 0 -92.363 29.359 -137.08 30.122 0.846 0.652
91 Acrobot-v1 1 TRUE TRUE TRUE TRUE 4228 -78 0 -92.427 21.99 -270.39 44.425 0.816 0.521
92 Acrobot-v1 1 TRUE FALSE TRUE TRUE 79 -78 0 -92.427 21.99 -160.83 41.458 0.816 0.449
93 Acrobot-v1 1 TRUE FALSE TRUE FALSE 88 -87 0 -92.987 22.21 -161.33 47.17 0.818 0.446
94 Acrobot-v1 1 FALSE FALSE TRUE TRUE 79 -78 0 -92.427 21.99 -500 0 0.816 0.206
95 Acrobot-v1 1 TRUE FALSE TRUE FALSE 79 -78 0 -92.427 21.99 -500 0 0.816 0.106
96 Acrobot-v1 1 FALSE FALSE TRUE FALSE 79 -78 0 -92.427 21.99 -500 0 0.816 0.101

	Introduction
	Related Work
	Preliminaries
	Terminology
	Original GAIL
	Behavioral Cloning
	Training expert policies

	Problem Description
	Methodology
	GAIL with decision trees
	Including expert policy
	Extra action cost weighted sampling
	Add action cost to train discriminator
	Distinct generator trajectories
	Follow-The-Leader
	Measuring the decision trees
	Modified version of GAIL

	Experimental Setup
	Environments
	Environment Experts
	Description of Expert behavior

	Discriminator Surrogate model settings
	Hyper-Parameters
	Set parameters:
	Variable parameters:

	The Results:
	Expert Initial Trajectory Reward
	Baseline BC Results:
	GAIL Results
	MountainCar-v0:
	CartPole-v1:
	Acrobot-v1:

	GAIL vs BC vs AggreVaTe vs Viper
	MountainCar-v0 comparison
	CartPole-v1 comparison
	Acrobot-v1 comparison

	Discussion
	Conclusions and Future Work
	Responsible Research
	Ethical aspects
	Reproducibility
	Research Integrity
	Honesty
	Scrupulousness
	Transparency
	Independence
	Responsability

	Terminology
	Algorithms
	Information related to the experts
	GAIL Result Decision Trees
	GAIL Results Tables
	Column Names:

