

Building Technology Graduation Project

MSc Architecture, Urbanism & Building Sciences Academic year 2021-2022

WOOD-BASED 3D PRINTING

POTENTIAL & LIMITATION TO 3D PRINT A WINDOW FRAME WITH PURE LIGNIN & CELLULOSE

> STUDENT: CHRISTOPHER BIERACH MENTORS: SERDAR ASUT, ULRICH KNAACK CONSULTANT: MICHELA TURRIN EXTERNAL SUPERVISOR: RICHARD GOSSELINK EXTERNAL HELP: PAUL DE RUITER & CHRISTIAN LOUTER COLLEAGUE: ALEXSANDER ALBERTS

> > COELHO

OVERALL PROBLEM STATEMENT GLOBA

In Europe buildings are responsible for **36%** of CO2 emissions.

- EU commission, 2020

POLLUTION VS SUSTAINABILITY

U.S Landfills receive around **17** million tons of paper & paperboard a year

LINEAR VS CIRCULAR

Almost **50 million tons** of Lignin is burnt every year

- C&EN, 2016

DESTRUCTION VS REGENERATION

LITERATURE STARED HE WAT: CELLULOSE & OR LIGNIN

COMESTIBLE CELLULOSE

3D PRINTING WITH WOOD WASTE

3D PRINTING WITH LIGNIN

MAIN PROBLEM STATEMENTLOCAL

NOT FULLY BIO-BASED

NOT PART OF BUILDING INDUSTRY

What are the potential and limitations of 3D printing a window frame with pure cellulose and lignin ?

SUB-QUESTIONS Contextual Framework (Exploratory phase)

Why are we looking into AM and wood-based material?

How can it be used sustainably & circularly?

What is the state-of-the-art technology with wood waste or by-products?

Design Evaluation (Experimental phase)

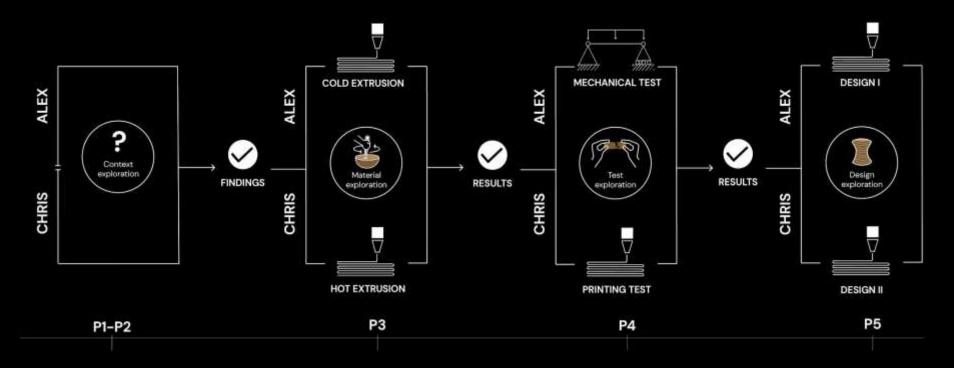
What are the constraints that need to be considered? (extruder, scale of print, access to the laboratory, final recipe)?

Which printing process is better for 3D printing with cellulose and lignin as feedstocks?

Which tests are necessary to evaluate a window frame?

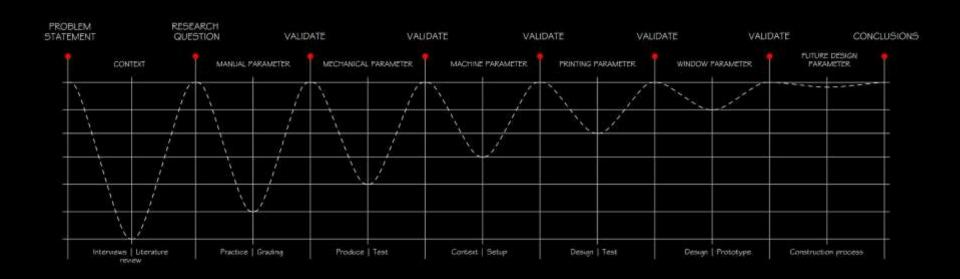
How can we improve the material recipe made by Thomas Liebrand?

Design Integration (Prototyping phase)

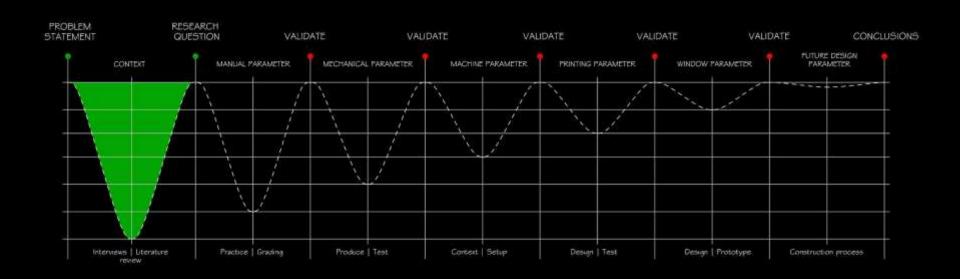

Can we 3D print a window frame?

Which limitations and advantages will influence the shape of the window frame?

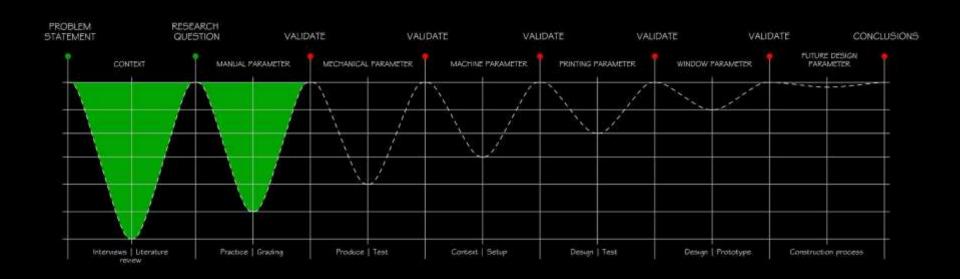
Can we replace and/or enhance the performance of a window frame with additive manufacturing?


WORKFLOW OVERVIEW

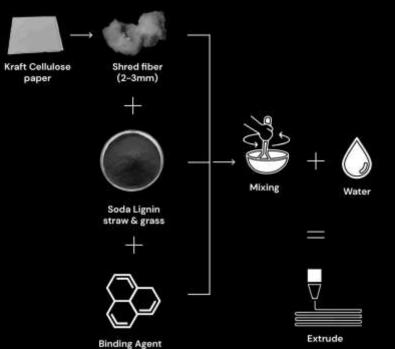
PROCESS


WORKFLOW OVERVIEW

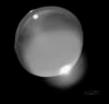
TIMELINE


MANUAL PARAMETER

PRACTICE | GRADING


MANUAL PARAMETER

PRACTICE | GRADING



MATERIAL PROCESS

OVERVIEW

MIX 1 ACETON E

MIX 2 DMSO

MIX 3 XANTHAN GUM

MIX 4 CORN STARCH

MIX 5 GLYCERIN E

MIX 6 ALGINAT E

MIX 7 BONE GLUE

MIX 8

WOOD

GLUE

Е

MIX 9

METHYLCELLULOS

MIX 10 BEESWA X

MATERIAL EXPERIMENTATION - HOT & COLD OVERVIE W

MIX 1 ACETONE

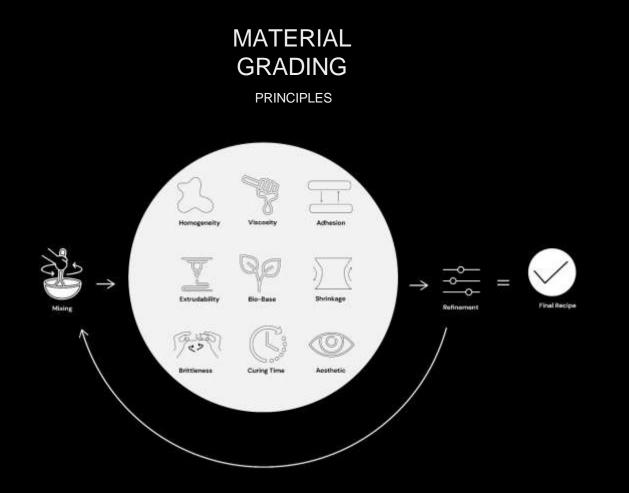
MIX 3 XANTHAN GUM

MIX 4 CORN STARCH

MIX 5 GLYCERIN

MIX 6 ALGINATE

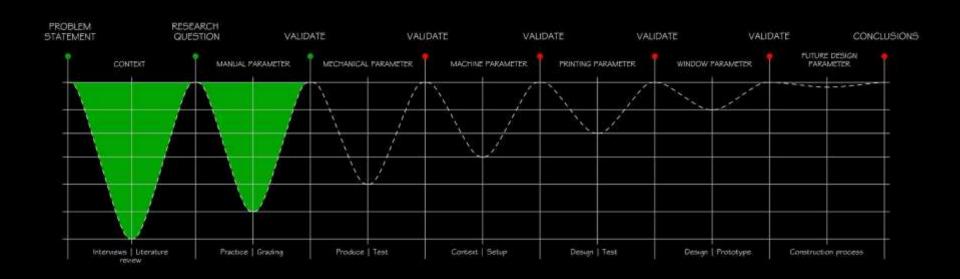
MIX 7 BONE GLUE


MIX 8 WOOD GLUE

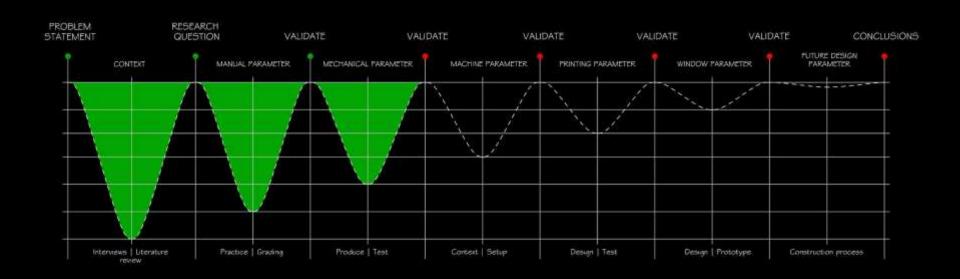
MIX 9 METHYLCELLULOS Е

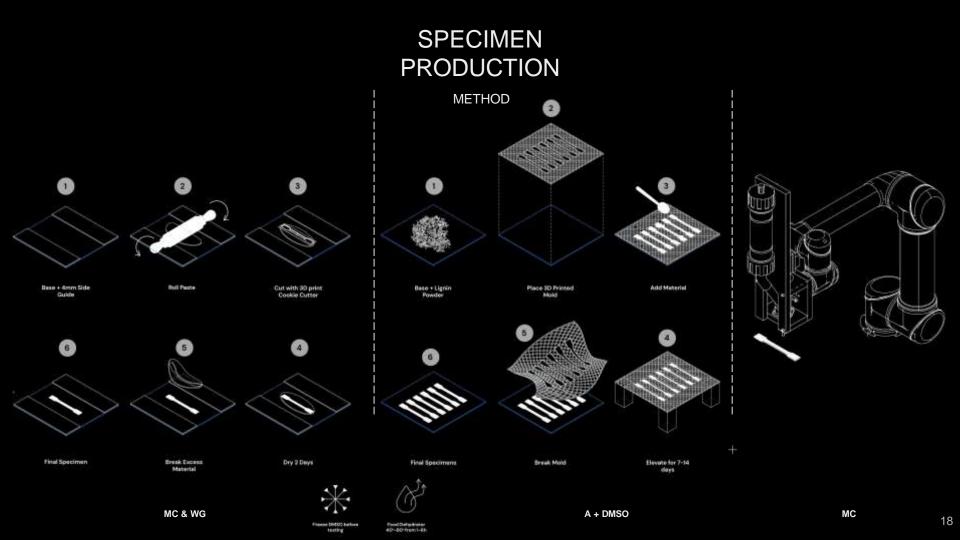
MIX 10 BEESWA х

PROMISING MIXES - HOT & COLD


GRADING SYSTEM

ACETON E MIX 2 DMSO MIX 8 WOOD GLUE MIX 9 METHYLCELLULOS E


MECHANICAL PARAMETER


PRODUCE | TEST

MECHANICAL PARAMETER

PRODUCE | TEST

MECHANICAL TESTS

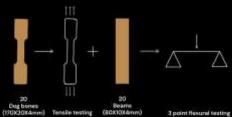
OVERVIEW

Paint Coatings

24h ho Cast Beener

Index Linksed Cit

Weigh Specimens No Cost (x8) Berner (19)

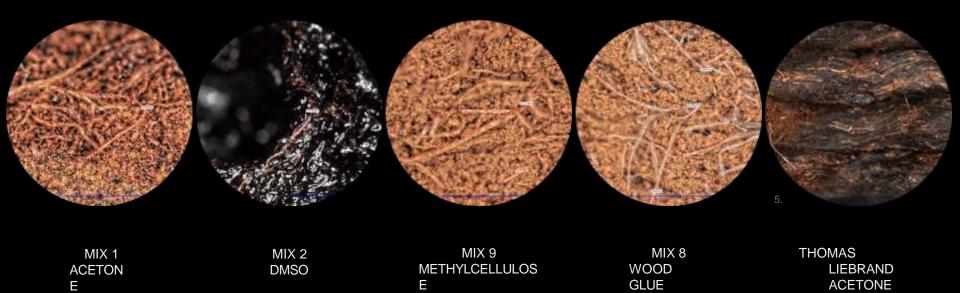

Builed Linds and OR Cest-

Water 34 hours

Weigh Specimens After 20 larger and again 1 Insurinteer and 9 hours later Add in Cold

Medium magnification Maximum magnification

STRUCTURAL TEST



19

POROSITY, HOMOGENEITY, FIBER ORIENTATION MICROSCOPE COMPARISON

WATER ABSORPTION - NO COAT

WATER PROPERTIES COMPARISON

WATER ABSORPTION - LINSEED OIL

WATER PROPERTIES COMPARISON

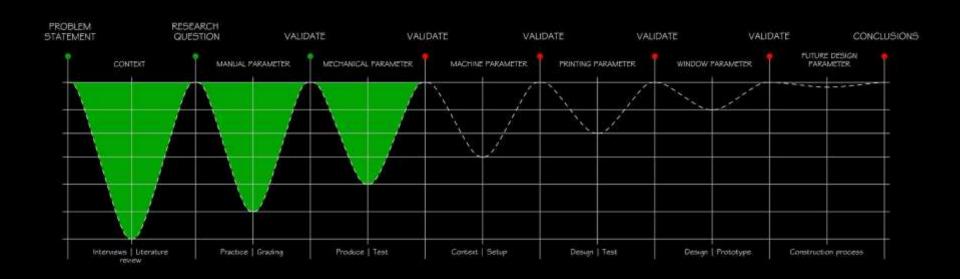
YIELD STRENGTH (TENSILE TEST)

MECHANICAL PROPERTIES COMPARISON

MATERIAL (FLAM)

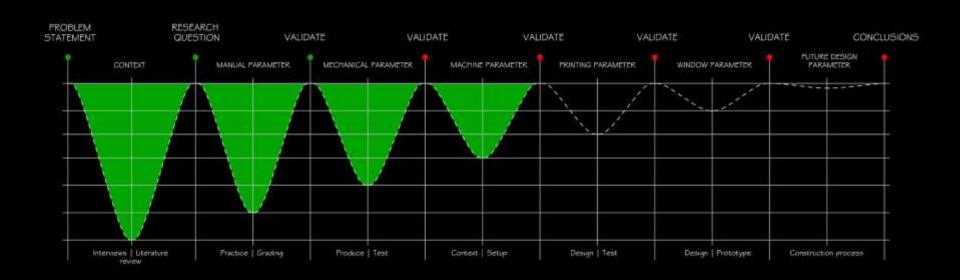
FLEXURAL MODULUS (3 POINT BENDING TEST)

MECHANICAL PROPERTIES COMPARISON



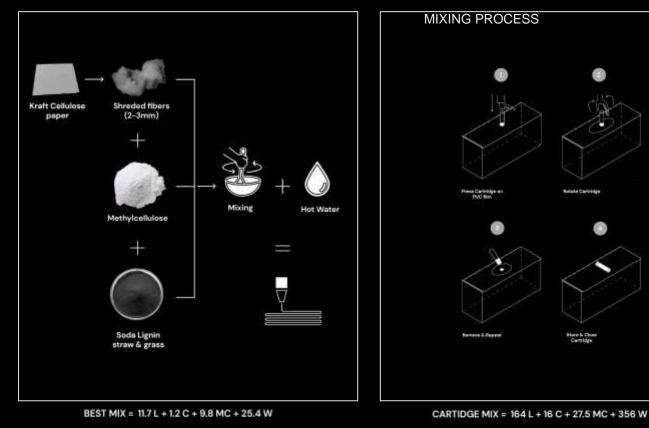
PINE WOOD ARBOBLEN D MIX 9 (MC)

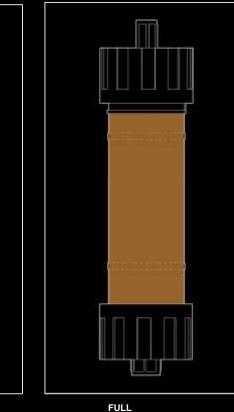
FLAM


MACHINE PARAMETER

CONTEXT | SETUP

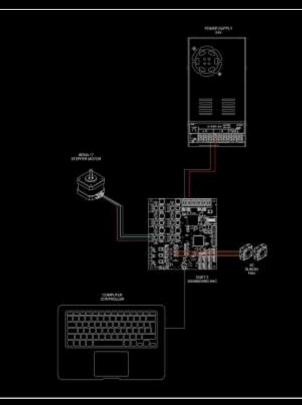
MACHINE PARAMETER

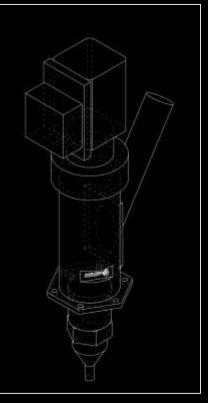

CONTEXT | SETUP



MATERIAL SETUP

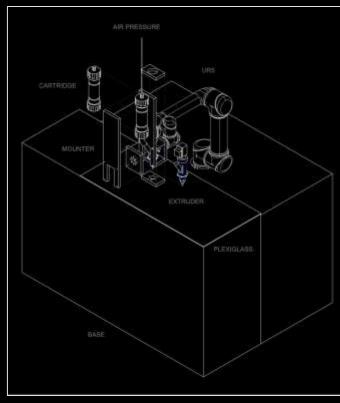
Bulate Cartridge

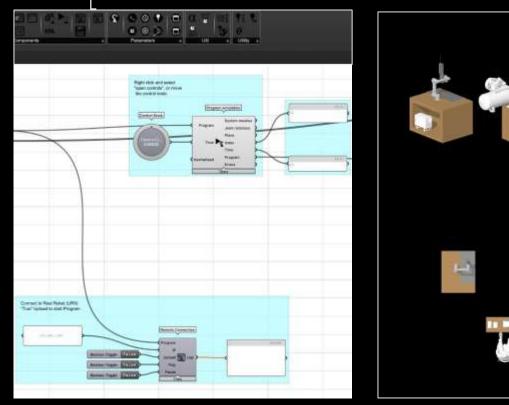

Store 5 Chase Cartridge



CARTRIDGE

FIRMWARE | HARDWARE | SOFTWARE SETUP LOCAL

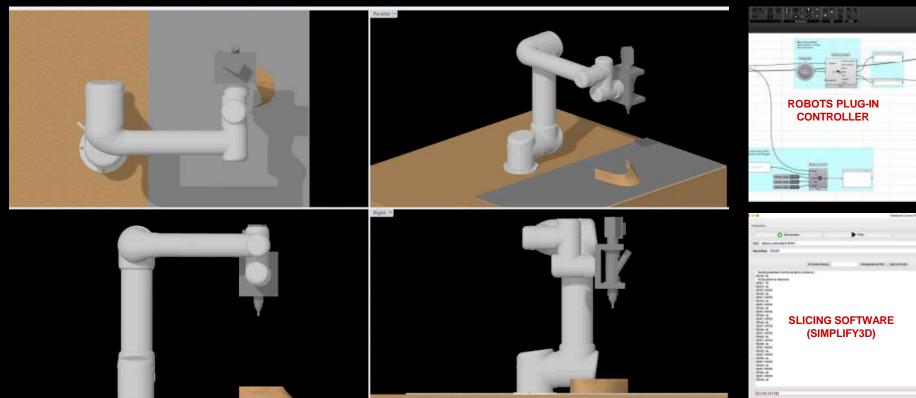

Protection Port / devicus unbenedem14101 Baud Rate: 116200 Commercial on machinel Starting plantast communication protect READ: ek	Code Library	Print Temperature Pick	
Disconnect Port /device.usbmodern14101 Beud Rate 116200 Testing plantext communication protect READ: ok Connected is machinel SIMT: 10	CARL .		
Baud Rate 115200 0 Testing planteet communication protect READ: ok Corrected is machinel SIMT: TO	CARL .	Temperature Hot	
G Texting plantext communication protoc READ: ok Connected is machinel SERVET 0	CARL .	Temperature Plot	
Teating plaintext communication protect READ: ok Connected to machine! SENT: TO	CARL .	Temperature Plot	
READ: ok Connected to machinel SENT: TO	ol		Jog Contrais
SENT: MIDS READ: ok SENT: MID5 READ: ok			



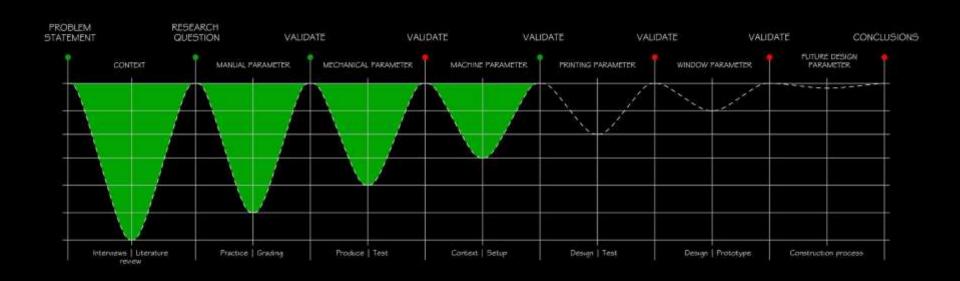
LDM WASP EXTRUDER XL 3.0

SLICING SOFTWARE (SIMPLIFY3D)

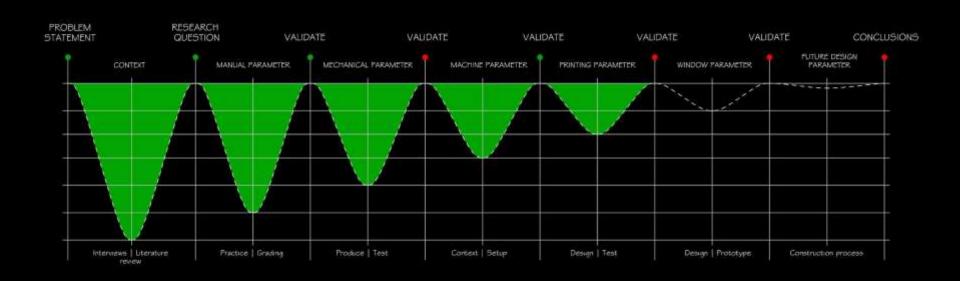
FIRMWARE | HARDWARE | SOFTWARE SETUP GLOBA



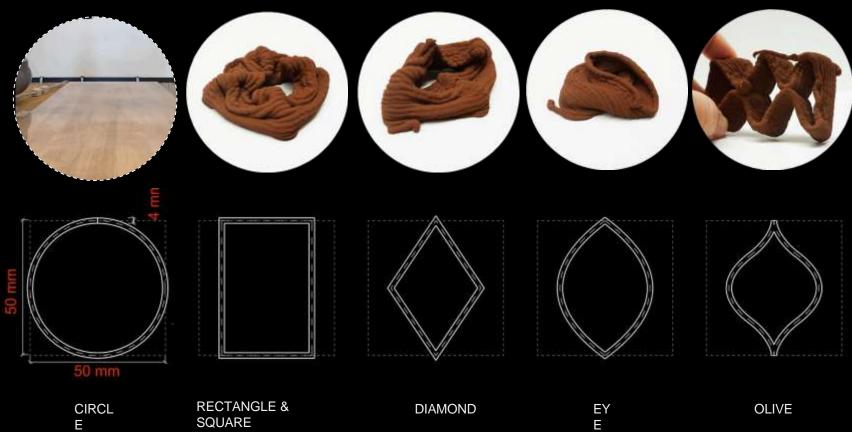
3D PRINTING SETUP (CUSTOM TOOL)


ROBOTS PLUG-IN CONTROLLER SIMULATED WORKSPACE 日日

SIMULATED MATEON, ERWIEW ARDWARE, SOFTWARE SETUP

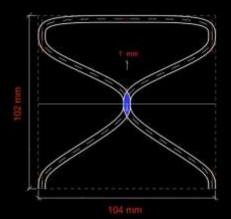

PRINTING PARAMETER

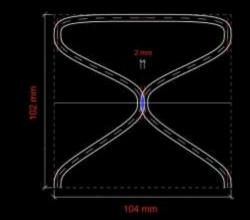
DESIGN | TEST

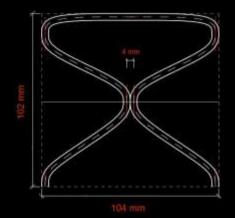


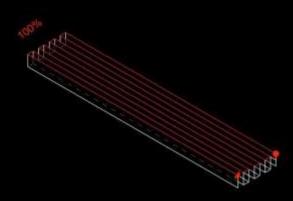
PRINTING PARAMETER

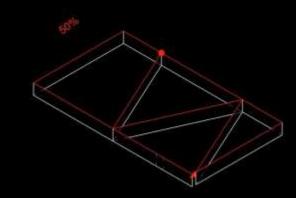
DESIGN | TEST

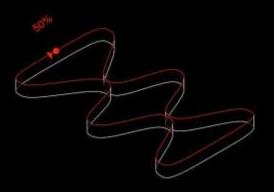


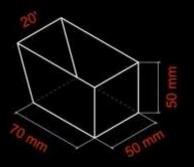

OVERLAP TESTING



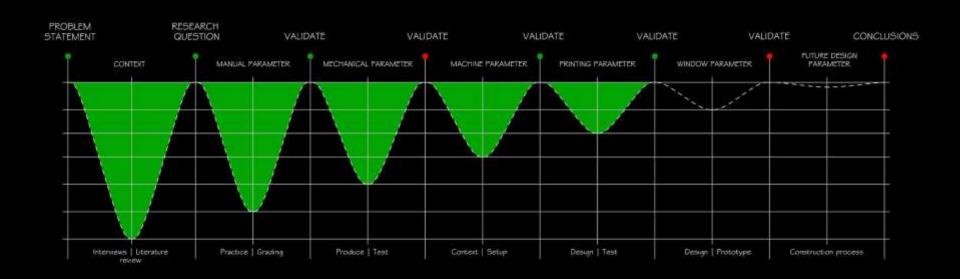

INFILL & TOOLPATH TESTING


LIMITATION & POTENTIAL



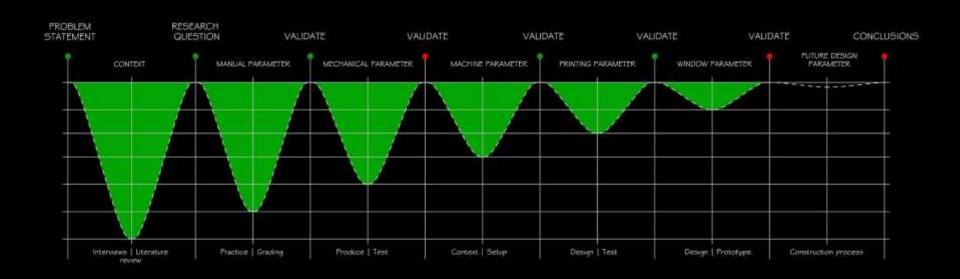


OVERHANG TESTING

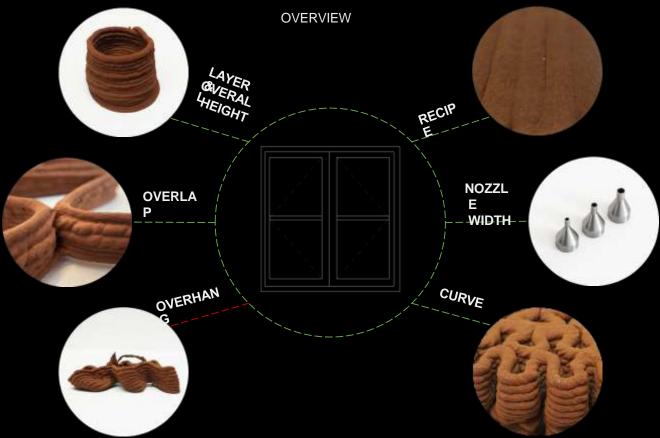


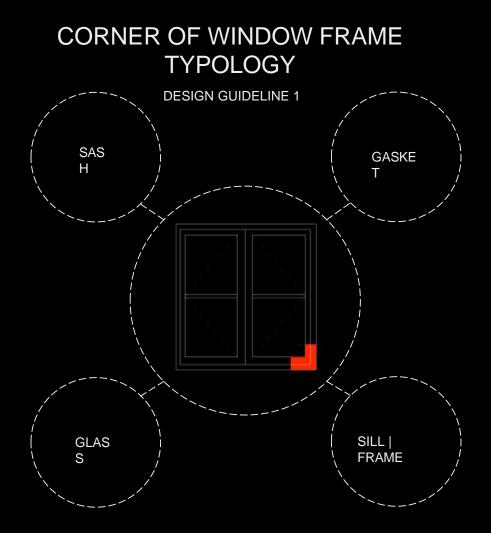
STRAIGH T CURVE D

STRAIGHT INFILL CURVED INFILL

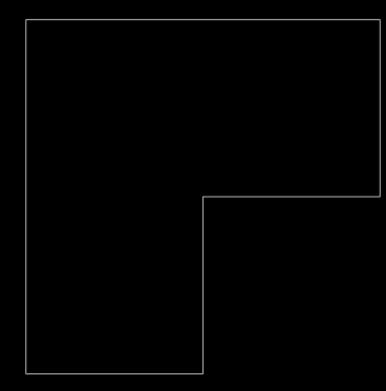

WINDOW PARAMETER

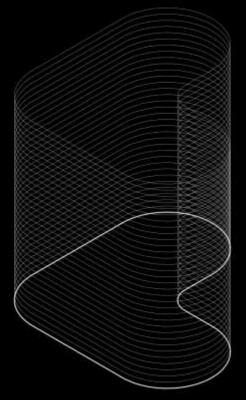
DESIGN | PROTOTYPE



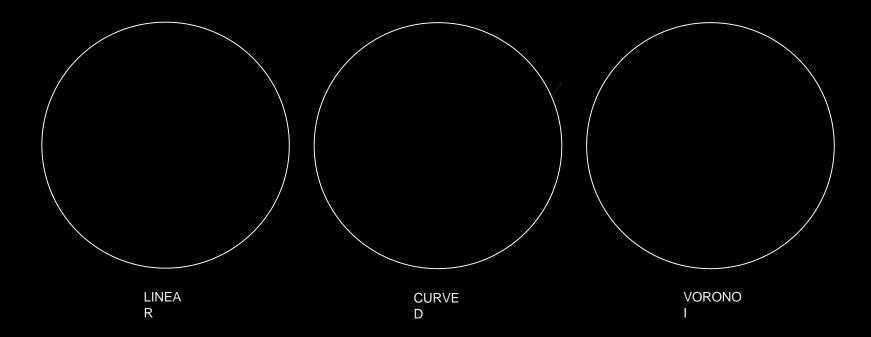

WINDOW PARAMETER

DESIGN | PROTOTYPE

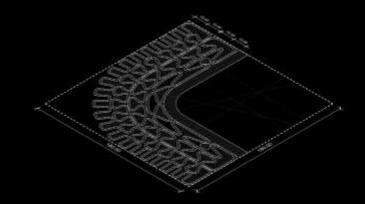

DESIGN CONSIDERATIONS


STRAIGHT TO CURVE BORDER

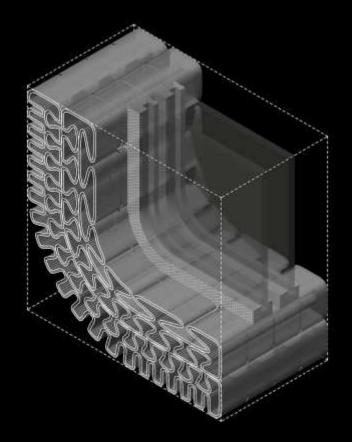
DESIGN GUIDELINE 2


HEIGHT & OVERHANG

DESIGN GUIDELINE 3


TOOLPATH RESTRICTION

DESIGN GUIDELINE 4



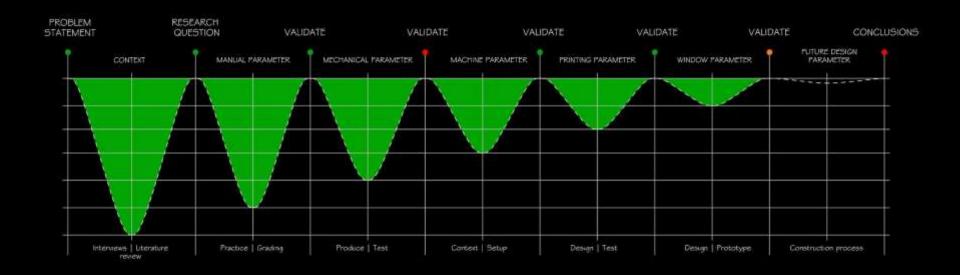
FINAL MODEL

CONSTRUCTION

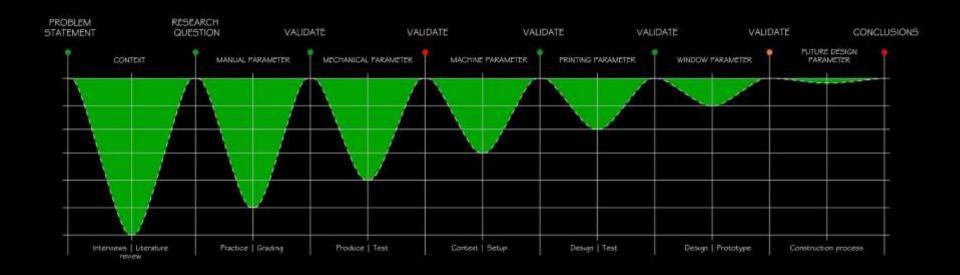
FINAL DIGITAL PROTOTYPE

CONSIDERATION S

LIMITATION & POTENTIAL



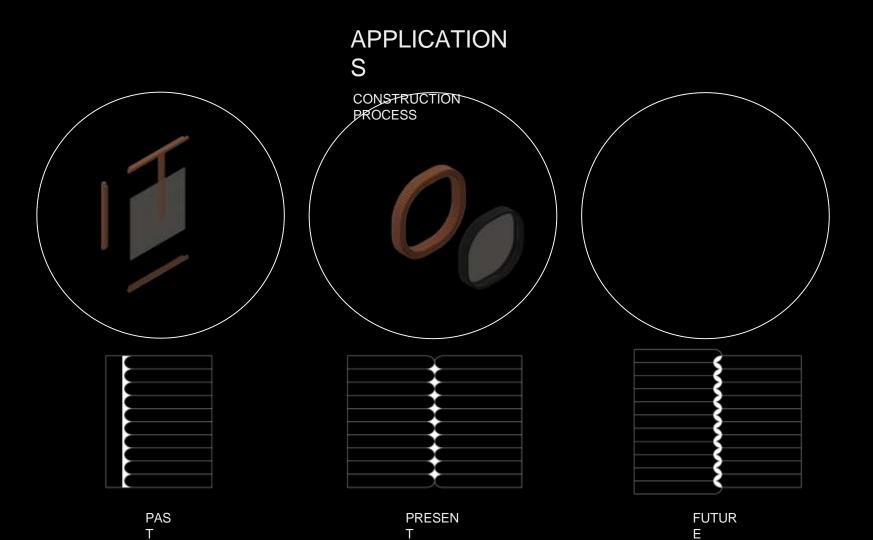
CONNECTION TO GASKET CONNECTION TO FRAME


FUTURE VISION

CONSTRUCTION PROCESS

FUTURE VISION

CONSTRUCTION PROCESS

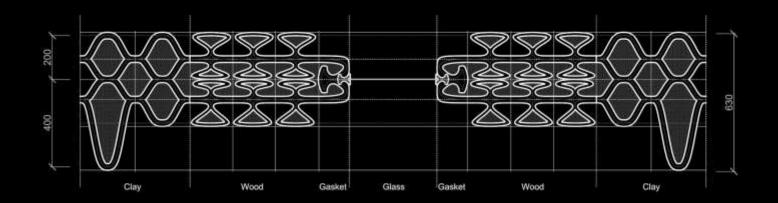


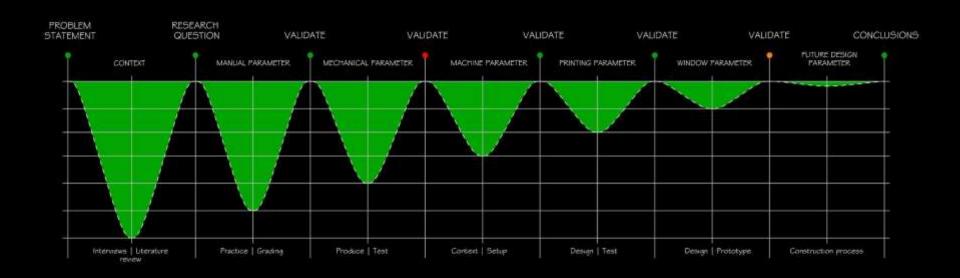
CASE STUDY

WINDOW FRAME

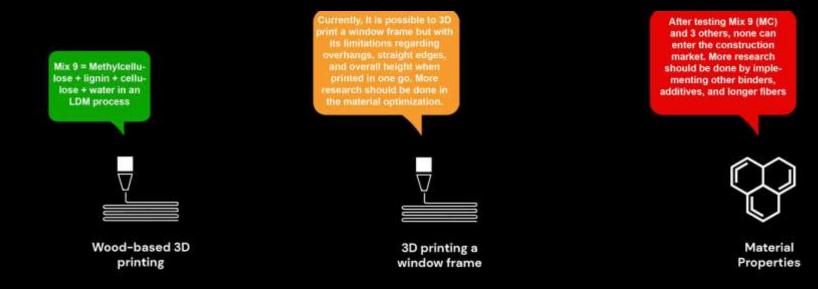
DECA Y CONNECTIO N LINEA R

HEIGHT & OVERHANG


6


FUTURE CONNECTION

CONNECTION FROM WALL TO FRAME


CONCLUSION S

WHAT'S NEXT

CONCLUSION S

REFLECTION

APPENDI X

MATERIAL MIXTURE

REFERENCES	THOMAS LIEBRAND	GABRIELLA ROSSI	MARTINA BAMBI & RONALD HELGERS	MAX LATOUR	MAX LATOUR
BASE MATERIALS	CELLULOSE, LIGNIN, ACETONE, WATER	CELLULOSE, WOODFLOUR, XANTHAN GUM, GLYCEROL, CALCIUM	wood flour, water, methylcellulose falso tried wool poper glue, bentonite, alcohol, øger øger, potato starch)	PAPER PULP, COFFEE BEANS AND CLAY	White turning clay 1000–1800c, wit-witbaak, filter coffee, mycellum
RECIPE	10g WATER + 26g ACETONE + 40g LIGNIN + 5g CELLULOSE	sailulose fice 10%, woodficur 7% (sawdust), xarithan gum 2% (sugar) , glycerol 8% (sugar alcohof) , calcium 1%	wood flour 500g water 2070g methylcellulose 135 g color additive	7 liters of White turning clay 1000-1300c, 25% chamotte, 2% dry paper pulp	NL
PROS	- Homogenous - High viscosity - High edhesion	Good elastic performances	– Bentonite helps to harden the material	N.I.	Successful material experiments to grow involum through a clay based material

MATERIAL MIXTURE

REFERENCES	THOMAS LIEBRAND	GABRIELLA ROSSI	MARTINA BAMBI & RONALD HELGERS	MAX LATOUR	MAX LATOUR
BASE MATERIALS	CELLULOSE, LIGNIN, ACETONE, WATER	CELLULOSE, WOODFLOUR, XANTHAN GUM, GLYCEROL, CALCIUM	wood flour, water, methylcellulose falso tried wool poper glue, bentonite, alcohol, øger øger, potato starch)	PAPER PULP, COFFEE BEANS AND CLAY	White turning clay 1000–1800c, wit-witbaak, filter coffee, mycellum
RECIPE	10g WATER + 26g ACETONE + 40g LIGNIN + 5g CELLULOSE	sailulose fice 10%, woodficur 7% (sawdust), xarithan gum 2% (sugar) , glycerol 8% (sugar alcohof) , calcium 1%	wood flour 500g water 2070g methylcellulose 135 g color additive	7 liters of White turning clay 1000-1300c, 25% chamotte, 2% dry paper pulp	NL
PROS	- Homogenous - High viscosity - High edhesion	Good elastic performances	– Bentonite helps to harden the material	N.I.	Successful material experiments to grow involum through a clay based material

3D PRINTING

RESEARCH & REFERENCE	THOMAS LIEBRAND	GABRIELLA ROSSI	MARTINA BAMBL& RONALD HELGERS	MAX LATOUR	MAX LATOUR
AM TYPE	LDM	LDM	LDM	LDM	LDM
TEMPERATURE	COLD PROCESS	COLD PROCESS (hot process in the future)	COLD PROCESS	COLD PROCESS	COLD PROCESS
NOZZLE SETTINGS	ւն ուտ	NL	2-8mm	4 mm	3 mm
LAYER HEIGHT	2mm, 5mm	O.SMMP	02mm-0,4mm	4 mm	2.3 mm
LAYER WIDTH	29mm	2-4MM2	30MM	5 mm	
FLOW	200%, 600%, 800%	2 BAR PRESSURE	E EAR PRESSURE	start:30-40 main:28	start 65 main 55-60
SPEED	5 mm/s	35 mm/s	NOT INDICATED	start:80 main:100	start:80 main:95-100
PROS	NJ	 Printable at a large scale Geometrical freedom to design complex joints 	 Large fibers = Increase strength connects material botter, small fibers get a smoother, nicer finish 	NJ.	- Coffee grain enhances the structural capacities of the wet olay
LIMITATIONS	- Only printed with a syringe - Regultus metal installation	- Evaporative surface - Dries unequally	 low drying process. Added 3 hair dries on the printer while printing the artifact No scientific tests 	 Difficult to extrude because it contracted in the tank When exits nozzle, material expands causes issues which increase the amount of layers printed. 	NL

FINAL PROTOTYPE

RESEARCH & REFERENCE	THOMAS LIEBRAND	GAERIELLA ROSSI	MARTINA BAMBI & RONALD HELGERS	MAX LATOUR	MAX LATOUR
SIZE	circle 38mm and triangle 40mm height 150mm	80 X 50 X 25 cm	80 cm heigh	186 X 171 X 286 mm	186 X 171 X 286mm
SHRINKAGE	Mealum	25 %	NL	NJ	NJ.
WATER ABSORPTION	Low	High		High	High
CONCLUSIONS	NJ.	 Geometrical based influence; Cylindar loose 70% of its weight after 7 days High evaporative rate: shrinks 25% in height (check infill structure of the cavities and amount of air) 	Print 80 cm high continuous feeding vase with different colors in 1.5 days with 6 batches of 1D-15L. Very strong when not in contact with water.	The speed and flow are percentages of the feedrate and extrusion value raspectively, they depend on the code and pressure as well.	successful material experiments to grow mycellum through a clay based material with both coffee and paper pulp and those individually

	MATERIAL PROPERTIES									
	INGREDIENTS	GENERAL OBSERVATIONS	TEMPERATURE	ROOM CONDITIONS						
MDC-7	24g Lignin, 2g Cellulose, 8g Water, 11.2g Acetone	Homogenous, easy to mix when using a mixer in a closed besker, easy to extrude viscous & black color	COLD MIX	200 ROOM TEMPERATURE 35% HUMIDITY						

	MATERIAL RATING									
	HOMOGENEITY	VISCOSITY	ADHESION	EXTRUDABILITY	BIO-BASE	SHRINKAGE	BRITTLENESS	CURING TIME	AESTHETIC	TOTAL
MIX 1	1	, al	3	1	E.	0	0	0	-1	2

	MATERIAL PROPERTIES									
	INGREDIENTS	GENERAL OBSERVATIONS	TEMPERATURE	ROOM CONDITIONS						
MIX-2	25g lignin, 2g cellulose, 20g dmso, 10g water	Homogenous, hard to mix viscous, easy to extrude & black color	COLD MIX	20C ROOM TEMPERATURE 35% HUMIDITY						

MATERIAL RATING										
	HOMOGENEITY	VISCOSITY	ADHESION	EXTRUDABILITY	BIO~BASE	SHRINKAGE	BRITTLENESS	CURING TIME	AESTHETIC	TOTAL
MIX-2	Ţ,	Û,	1		Ť	Θ	0	-1	0	4

	MATERIAL PROPERTIES									
	INGREDIENTS	GENERAL OBSERVATIONS	TEMPERATURE	ROOM CONDITIONS						
MIX 3	Lignin, Cellulose, Water, Xanthan Gum	Non-homogeneous covered in residual lightn powder, which retained the gel-like consistency and did not solidify	COLD MIX	20C ROOM TEMPERATURE 36% HUMIDITY						

MATERIAL RATING										
	HOMOGENEITY	VISCOSITY	ADHESION	EXTRUDABILITY	BIO-BASE	SHRINKAGE	BRITTLENESS	CURING TIME	AESTHETIC	TOTAL
MIX 3	-1	-		T	1	0	0	7	7	-5

	MATERIAL PROPERTIES										
	INGREDIENTS	GENERAL OBSERVATIONS	TEMPERATURE	ROOM CONDITIONS							
MIX 4	Lignin, Cellulose, Water, Com Starch	Extrudable material. However, the homogeneity, viscosity, and adhesion characteristics are not as promising as previous mixes	HOT MIX	20C ROOM TEMPERATURE 35% HUMIDITY							

MATERIAL RATING										
	HOMOGENEITY	VISCOSITY	ADHESION	EXTRUDABILITY	BIO-BASE	SHRINKAGE	BRITTLENESS	CURING TIME	AESTHETIC	TOTAL
MIX 4	0	-1	-1			Û	-1	0	1	-2

MATERIAL PROPERTIES									
	INGREDIENTS	GENERAL OBSERVATIONS	TEMPERATURE	ROOM CONDITIONS					
MIX-5	Elgnin, Celluloso, Water, Glycerine :	non homogeneous with low viscosity and adhesion, not oxtrudiable by hand dry material with a crumbly aspect & gel-like consistency	COLD OR HOT MIX	20C ROOM TEMPERATURE 35% HUMIDITY					

MATERIAL RATING										
	HOMOGENEITY	VISCOSITY	ADHESION	EXTRUDABILITY	BIO-BASE	SHRINKAGE	BRITTLENESS	CURING TIME	AESTHETIC	TOTAL
MIX 5	-1		÷1	7		0	0	.et	(0)	-4

MATERIAL PROPERTIES									
	INGREDIENTS	GENERAL OBSERVATIONS	TEMPERATURE	ROOM CONDITIONS					
MIX 6	Lignin, Cellulose, Water, ALGINATE	similar behavior to xanthan gum	COLO OR HOT MIX	20C ROOM TEMPERATURE 35% HUMIDITY					

MATERIAL RATING										
	HOMOGENEITY	VISCOSITY	ADHESION	EXTRUDABILITY	BIO-BASE	SHRINKAGE	BRITTLENESS	CURING TIME	AESTHETIC	TOTAL
MIX 6	-1	н	-1	1	1	0	0	0	.0	-3

	MATERIAL PROPERTIES										
	INGREDIENTS	GENERAL OBSERVATIONS	TEMPERATURE	ROOM CONDITIONS							
MIX 7	Lignin, Cellulose, Water, Bone glue	Homogeneous paste, with high viscosity and adhesion, but still not easy to extrude by hand.	HOT MIX	20C ROOM TEMPERATURE 35% HUMIDITY							

MATERIAL RATING										
	HOMOGENEITY	VISCOSITY	ADHESION	EXTRUDABILITY	BIO-BASE	SHRINKAGE	BRITTLENESS	CURING TIME	AESTHETIC	TOTAL
MIX-7	Û.		(- Yi	0		-1	0	0	4	2

MATERIAL PROPERTIES									
	INGREDIENTS	GENERAL OBSERVATIONS	TEMPERATURE	ROOM CONDITIONS					
MIX 8	10g Lignin, tg Cettulosa, 30g Wood Glue	Use water bath method, mix is homogenous, easy to mix, medium hard to extrude by hand, & viscous	COLD OR HOT MIX	20C ROOM TEMPERATURE 35% HUMIDITY					

MATERIAL RATING										
	HOMOGENEITY	VISCOSITY	ADHESION	EXTRUDABILITY	BIO-BASE	SHRINKAGE	BRITTLENESS	CURING TIME	AESTHETIC	TOTAL
MIX 8			0	ļ.		0		G.	売	5

GRADING ANALYSIS MIX9

MATERIAL PROPERTIES								
	INGREDIENTS	TEMPERATURE	ROOM CONDITIONS					
MIX 9	25g Lignin, 3g Cellulose, 5g Methylcellulose, 60g Hot Water,	Homogenous, easy to mix when the water is warm (ROC) otherwise hardens, brown color, the more viscous the worse the printability	HOT MIX	20C ROOM TEMPERATURE 35% HUMIDITY				

MATERIAL RATING										
HOMOGENEITY VISCOSITY ADHESION EXTRUDABILITY BIO-BASE SHRINKAGE BRITTLENESS CURING TIME AESTHETIC TOTAL									ΤΟΤΑΙ	
MIX 9 T T T T T T T O T T 6										6

GRADING ANALYSIS MIX10

	MATERIAL PROPERTIES								
	INGREDIENTS	TEMPERATURE	ROOM CONDITIONS						
MIX 10	Lignin, Cellulose, Water, Beewax	non-homogeneous paste with moderated viscosity and low adhesion Dried quickly, compromising the material's extrudebility	НСТ МІХ	20C ROOM TEMPERATURE 35% HUMIDITY					

	MATERIAL RATING									
	HOMOGENEITY VISCOSITY ADHESION EXTRUDABILITY BIO-BASE SHRINKAGE BRITTLENESS CURING TIME AESTHETIC TOTAL									TOTAL
MIX 10	MIX10 -1 -1 -1 -1 0 0 -1 1 -1 -5									

REFERENCE

MECHANICAL PROPERTIES COMPARISON

	FLEXURAL STRENGHT	MODULUS ELASTICITY (BENDING)	YIELD STRENGHT	MODULUS ELASTICITY (TENSION)	REFERENCE
BEECH, AMERICAN	÷	9.5 GPa	86.2 MPa	120	(USDA Forest Service, 2018)
OAK, OVERCUP	-	9.8 GPa	77.9 MPa		(USDA Forest Service, 2010)
PINE, EASTERN WHITE		8.5 GPa	73.1 MPa		(USDA Forest Service, 2010)
SPRUCE, ENGELMANN		8.9 GPa	84.8 MPa		(USDA Forest Service, 2010)
PARTICLEBOARD		2.8 - 4.1 GPa	15 - 24 MPa	•	(USDA Forest Service, 2010)
MDF		3.6 GPa	36 MPa		(USDA Forest Service, 2010)
OSB	-	4.4 - 6.3 GPa	22 - 35MPa	4.	(USDA Forest Service, 2010)
PLYW00D	a7:	7 - 8.6 GPa	34 - 43 MPa		(USDA Forest Service, 2018)
GLULAM		9 - 14.5 GPa	29 - 63 MPa		(USDA Forest Service, 2010)
PLA + WOOD POWDER		3 6Pa	30 MPa	-	(Gardner et al., 2019)
PLA + LIGNIN (40WT%)	- 1	1.93 GPa	29.25 MPa		(Tanase-Opedal et al., 2019)
WOOD POWDER + GLUE	- (3 - 3.94 GPa	30 - 57 MPa	(4)	(Das et al., 2021a)
TECNARO ARBOBLEND		4.3 GPa	58 MPa	-	(www.albis.com)
FLAM!		0.26 GPa	6.12 MPa	-	(Sanandiya et al., 2018)
METHYLCELLULOSE MIX	8.59 - 10.60 MPa	0.67 - 1.05 GPa	3.21 - 4.06 MPa	0.33 - 0.56 GPa	

REFERENCE S

WATER PROPERTIES COMPARISON

	WATER ABSORPTION LINDSEED COATING	WATER RETENTION LINDSEED COATING	WATER ABSORPTION NO COATING	WATER RETENTION NO COATING	REFERENCE
MIX 1: ACETONE	20.74%	3.48%	24.62%	2.16%	
MIX 2: DMSO	30,80%	14.85%	28.23%	7.12%	-
MIX 8: WOOD GLUE	8.27%	3.91%	10.35%	4.82%	
MIX 9: METHYLCELLULOSE	70.89%	30.52%	134.91%	58.79%	
PINE HEARTWOOD	84%		100%	-	(Lejavs et al. , 2021)
PINE SAPWOOD	21%	-	100%	855	(Lejavs et al. , 2021)
SPRUCE WOOD	39%	-	100%		(Lejavs et al. , 2021)

Methylcellulose Mix									
Specimens A1.1 A1.2 A1.3 A1.4 A1.5 A1.6 MC.01 MC.02									
ர மா Ultimate Tensile Strength [Mpa]	3,60	2,94	4,29	4,07	0,00	0,00	3,37	3,74	
ਰ ਅ Yield Strength [Mpa]	3,51	2,89	3,79	4,06	0,00	0,00	3,21	3,63	
E Modulus of Elasticity [Gpa]	E 0.37 0.25 0.56 0.45 0.00 0.00 0.33 0.52								

FLEXURAL ANALYSIS

Methylcellulose Mix								
	Specimens							
	81.1 81.2 81.3 81.4 81.5							
F Failure Load [N]	30,37	27,99	22,91	28,26	28,57			
σ 15 Flexural Strength [Mpa]	9,41	10,00	8,59	10,60	10,85			
E Flexural Modulus [Gpa]	0,90 0,67 0,82 1,02 1,05							

Methylcellulose Mix - EXTRUDED SPECIMENS								
	Specimens							
	A5.1	A5.2	A5.3	A5.4	A5.5			
σ uts Ultimate Tensile Strength [Mpa]	3,14	3,45	3,23	2,43	2,64			
σ vs Yield Strength [Mpa]	2,58	3,10	2,98	2,38	2,51			
E Modulus of Elasticity [Gpa]	0,42	0,46	0,52	0,44	0,40			

Methylcellulose Mix - EXTRUDED SPECIMENS								
	Specimens							
	B5.1 B5.2 B5.3							
F Failure Load [N]	68,77	62,35	68,51					
σ FS Flexural Strength [Mpa]	9,55	8,48	9,52					
E Flexural Modulus [Gpa]	0,60	0,64	0,61					

Acetone Mix									
	Specimens								
	B2.1 B2.2 B2.3 B2.4 B2.5								
F Failure Load [N]	61,87	37,16	61,37	38,48	30,04				
σ es Flexural Strength [Mpa]	9,37	6,86	9,74	5,70	4,77				
E 0,15 0,22 0,20 0,37									

Acetone Mix								
	Specimens							
	A2.1	A2.2	A2.3	A2.4	A2.5			
ص uts Ultimate Tensile Strength [Mpa]	1,76	1,26	1,70	1,09	0,98			
σ vs Yield Strength [Mpa]	1,09	1,25	1,51	0,81	0,97			
E 0,28 0,11 0,20 0,13 0,13								

Wood Glue Mix												
Specimens												
A3.1 A3.2 A3.3 A3.4 A												
σ uts Ultimate Tensile Strength [Mpa]	6,99	6,69	7,66	7,04	6,66							
σ vs Yield Strength [Mpa]	4,81	3,58	4,26	3,58	3,74							
E Modulus of Elasticity [Gpa]	0,30	0,58	0,41	0,64	0,77							

Wood Glue Mix												
	Specimens											
B3.1 B3.2 B3.3 B3.4												
F Failure Load [N]	122,78	143,36	173,33	166,05	158,29							
σ छ Flexural Strength [Mpa]	20,67	23,89	28,89	27,28	27,06							
E Flexural Modulus [Gpa]	0,67	0,64	0,79	0,90	0,79							

NO COATING ANALYSIS

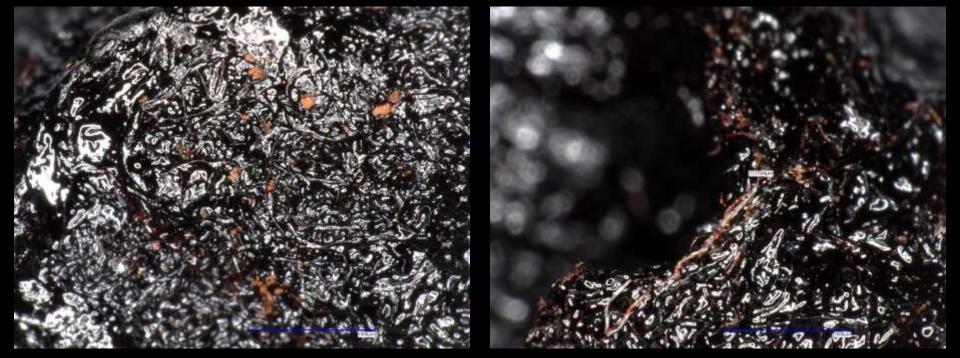
No Coating - Pure Material

8	1		Weig	ht (g)		Water Absorption			Water Retention (after 1h)			Water Retention (after 3h)			
		Initial	After 24h	After 1h	After 3h	Quantity (g)	Weight Ratio	Average	Quantity (g)	Weight Ratio	Average	Quantity (g)	Weight Ratio	Average	
	CL.1	2,00	4,90	4,40	3,22	2,90	145,00%		2,40	120,00%		1,22	61,00%		
1	C1.2	2,41	5,45	4,99	3,87	3,04	126,14%	134,91%	2,58	107,05%	114,22%	1,46	60,58%	58,79%	
ann -	C1.3	2,50	5,84	5,39	3,87	3,34	133,60%		2,89	115,60%		1,37	54,80%	100 STORE	
	(2.1	6,50	7,15	6,96	6,81	0,65	10,00%		0,46	7,08%		0,31	4,77%		
	a.1	5,78	6,37	6,21	6,06	0,59	10,21%	10,35%	0,43	7,44%	7,33%	0,28	4,84%	4,82%	
- M	G2.3	5,35	5,93	5,75	5,61	0,58	10,84%		0,40	7,48%		0,26	4,86%		
	63.1	3,46	4,34	4,13	3,48	0,88	25,43%	24,62%	0,67	19,36%	19,31%	0,02	0,58%	2,16%	
	63.2	5,38	6,66	6,39	5,55	1,28	23,79%		1,01	18,77%		0,17	3,16%		
	G.3	6,21	7,74	7,44	6,38	1,53	24,64%		1,23	19,81%		0,17	2,74%		
	64.1	4,37	5,54	5,34	4,43	1,17	26,77%	28,23%	0,97	22,20%	23,82%	0,06	1,37%	7,12%	
OSMC	64.2	6,58	8,55	8,26	7,36	1,97	29,94%		1,68	25,53%		0,78	11,85%		
	64.3	5,90	7,55	7,30	6,38	1,65	27,97%		1,40	23,73%		0,48	8,14%		

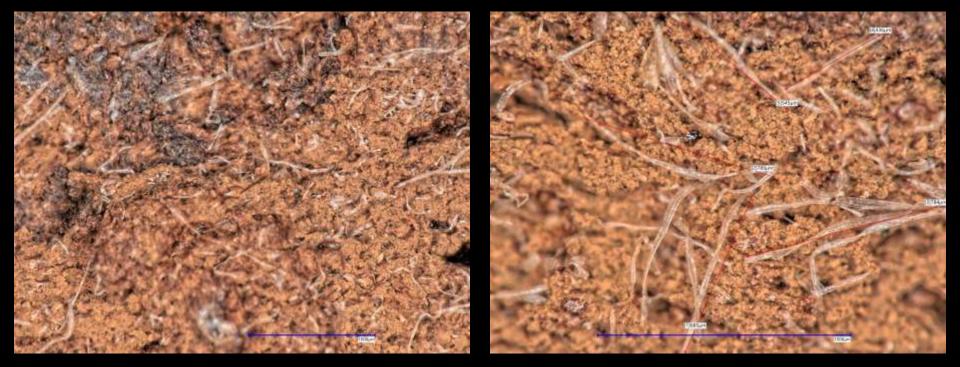
LINSEED OIL ANALYSIS

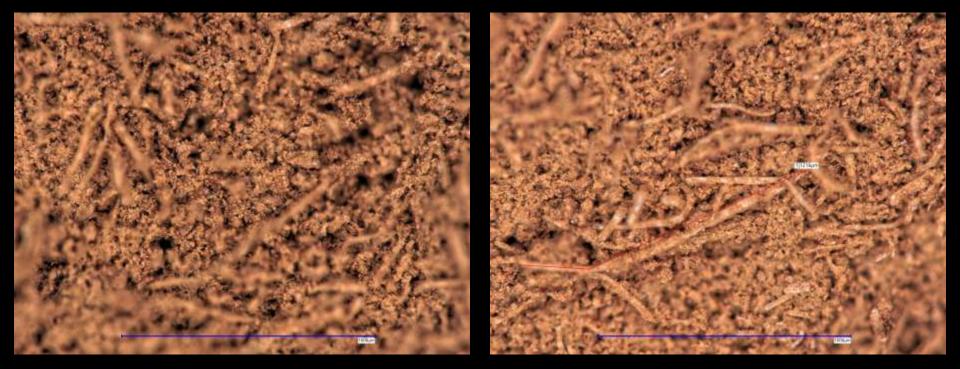
Linseed Oil Coating

12. 	9	-	Weig	ht (g)	t	Water Absorption			Water Retention (after 1h)			Water Retention (after 3h)		
		Initial	After 24h	After 1h	After 3h	Quantity (g)	Weight Ratio	Average	Quantity (g)	Weight Ratio	Average	Quantity (g)	Weight Ratio	Average
	CL.7	2,43	4,42	4,05	3,24	1,99	81,89%		1,62	66,67%		0,81	33,33%	
1	CL.8	3,14	5,20	4,86	4,07	2,06	65,61%	70,89%	1,72	54,78%	58,64%	0,93	29,62%	30,52%
Net	C1.9	2,90	4,79	4,48	3,73	1,89	65,17%		1,58	54,48%		0,83	28,62%	
	G2.7	5,39	5,81	5,69	5,60	0,42	7,79%		0,30	5,57%		0,21	3,90%	
8	CL.8	5,69	6,21	6,05	5,94	0,52	9,14%	8,27%	0,36	6,33%	5,73%	0,25	4,39%	3,91%
*	(2.9	6,97	7,52	7,34	7,21	0,55	7,89%		0,37	5,31%		0,24	3,44%	
	61.7	3,40	4,19	3,92	3,53	0,79	23,24%		0,52	15,29%	14,57%	0,13	3,82%	3,48%
	C3.8	4,60	5,69	5,40	4,81	1,09	23,70%	20,74%	0,80	17,39%		0,21	4,57%	
	C3.9	5,89	6,79	6,54	6,01	0,90	15,28%		0,65	11,04%		0,12	2,04%	
	64.7	5,12	6,63	6,38	5,79	1,51	29,49%	30,80%	1,26	24,61%	26,06%	0,67	13,09%	
OSMO	C4.8	5,21	6,90	6,67	6,20	1,69	32,44%		1,46	28,02%		0,99	19,00%	14,85%
	C4.9	4,89	6,38	6,14	5,50	1,49	30,47%		1,25	25,56%		0,61	12,47%	


BEESWAX ANALYSIS

9	Bee Wax Coating													
-	1		Weig	ht (g)			Water Absorption		Wa	ster Retention (after	1h)	W	ater Retention (after	3h)
		Initial	After 24h	After 1h	After 3h	Quantity (g)	Weight Ratio	Average	Quantity (g)	Weight Ratio	Average	Quantity (g)	Weight Ratio	Average
line i	C1.4	4,69	7,89	7,68	7,01	3,20	68,23%		2,99	63,75%		2,32	49,47%	
Ĩ	CL.5	3,00	5,05	4,89	4,34	2,05	68,33%	69,61%	1,89	63,00%	64,40%	1,34	44,67%	46,75%
and a	CL.6	3,10	5,34	5,16	4,53	2,24	72,26%		2,06	66,45%		1,43	46,13%	
	G2.4	7,14	7,47	7,31	7,25	0,33	4,62%	3,60%	0,17	2,38%		0,11	1,54%	0,98%
1	C2.5	6,53	6,71	6,59	6,57	0,18	2,76%		0,06	0,92%	1,41%	0,04	0,61%	
	62.6	7,59	7,85	7,66	7,65	0,26	3,43%		0,07	0,92%		0,06	0,79%	
	GI.4	6,28	7,61	7,38	6,68	1,33	21,18%		1,10	17,52%	17,52%	0,40	6,37%	7,13%
	C3.5	5,55	6,66	6,55	6,02	1,11	20,00%	20,35%	1,00	18,02%		0,47	8,47%	
	Cl.6	5,64	6,76	6,60	6,01	1,12	19,86%		0,96	17,02%		0,37	6,56%	
	64.4	6,99	7,82	7,60	7,47	0,83	11,87%		0,61	8,73%		0,48	6,87%	6,15%
OSMO	C4.5	7,34	8,22	8,01	7,86	0,88	11,99%	10,44%	0,67	9,13%	7,83%	0,52	7,08%	
	C4.6	7,10	7,63	7,50	7,42	0,53	7,46%		0,40	5,63%		0,32	4,51%	


ACETONE CROSS SECTION



WOOD GLUE CROSS SECTION

METHYLCELLULOSE CROSS SECTION

REFERENCE S

- 1. https://www.scmp.com/comment/insight-opinion/article/1695119/hong-kong-needs-more-flats-we-must-be-sensible-about-how
- 2. https://www.nationalgeographic.org/encyclopedia/mining/
- 3. https://www.nationalheraldindia.com/science-and-tech/europe-to-launch-satellite-to-tackle-greenhouse-gas-emissions
- 4. https://www.naibooksellers.nl/materials-in-progress-innovations-for-designers-and-architects.html
- 5. <u>https://repository.tudelft.nl/islandora/search/author%3A%22Liebrand%2C%20Thomas%22</u>
- 6. https://www.ronaldhelgers.com/
- 7. https://www.azuremagazine.com/article/forust-3d-printed-wood/
- 8. https://en.sg-veneers.com/veneer-world/veneer-gallery/detail/carolina-pine-1.html
- 9. https://www.tecnaro.de/en/arboblend-arbofill-arboform/
- 10. https://3dprintingindustry.com/news/singaporean-research-details-the-3d-printing-of-chitinous-bio-composites-170484/
- 1 https://sciendo.com/pdf/10.2478/plua-2021-0005
- 12. https://repository.tudelft.nl/islandora/object/uuid%3Aa8abc460-155c-4584-9952-dca7e439844b
- 13. https://www.storaenso.com/en/newsroom/news/2019/8/bio-based-carbon-materials-for-batteries
- 14. https://www.dezeen.com/2018/06/04/eindhoven-university-technology-project-milestone-3d-printed-concrete-houses/