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Whole-slide imaging systems can generate full-color image data of tissue slides efficiently, which are needed for 
digital pathology applications. This paper focuses on a scanner architecture that is based on a multi-line image 
sensor that is tilted with respect to the optical axis, such that every line of the sensor scans the tissue slide at a 
different focus level. This scanner platform is designed for imaging with continuous autofocus and inherent 
color registration at a throughput of the order of 400 MPx/s. Here, single-scan multi-focal whole-slide imaging, 
enabled by this platform, is explored. In particular, two computational imaging modalities based on multi-focal 
image data are studied. First, 3D imaging of thick absorption stained slides (∼60 µm) is demonstrated in 
combination with deconvolution to ameliorate the inherently weak contrast in thick-tissue imaging. Second, 
quantitative phase tomography is demonstrated on unstained tissue slides and on fluorescently stained slides, 
revealing morphological features com-plementary to features made visible with conventional absorption or 
fluorescence stains. For both computational approaches simplified algorithms are proposed, targeted for 
straightforward parallel processing implementation at ∼GPx/s throughputs. © 2020 Optical Society of America

https://doi.org/10.1364/AO.394290

1. INTRODUCTION

A higher resolution and a larger field of view (FOV) have always
been an important concern in the design of optical systems. The
use of an objective lens with a higher numerical aperture (NA)
provides a higher resolution but at the same time decreases the
FOV of the optical system. Whole-slide imaging (WSI) systems
provide a solution to this fundamental trade-off between resolu-
tion and FOV by scanning the tissue slide and acquiring a digital
image with high resolution (∼0.25 µm) with a truly unlimited
FOV. WSI systems are the primary enabling technology for
digital pathology, with applications in primary diagnosis [1–4],
education [5–7], and research [8,9].

Other methods are proposed to overcome the trade-off
between resolution and FOV. Multi-spot scanning with array
illuminators—here a large grid of high-NA spots is used for
illumination, but a low NA with large FOV imaging path is
used—have been considered [10–12]. In Fourier ptychogra-
phy [13,14], a series of low-resolution images of a large FOV
acquired with different illumination beam angles are combined
to produce a single high-resolution image of the entire FOV.
Although these methods do overcome the resolution–FOV
trade-off, they do not optimally use the space-bandwidth-time

product of the optical system [15] (basically corresponding to
the throughput in Mpx/s) because a fraction of the data stream
is lost to overhead or carries redundant information. In addi-
tion, non-scanning approaches are still limited in FOV by the
low-magnification objective lenses used.

Currently, the majority of WSI systems provides high-
quality two-dimensional (2D) images of tissue slides, mostly for
brightfield microscopy with white-light illumination [16–18].
There are two main methods of scanning. The first is the “step
-and-stitch” method, in which the slide is moved step-wise and
imaged using an area scanner. This is the most trivial extension
to the traditional FOV-limited microscope but requires a poten-
tially complex process of image-stitching in post-processing.
The second is the “push broom” or line scanning method, which
combines simplicity and speed by scanning the slide with a line
sensor at a constant velocity. The limited illumination etendue
can be compensated by sensors with a time delay integration
(TDI) capability [19]. Current scanner systems have a through-
put of several 100 Mpx/s, sufficient for imaging ∼cm2 tissue
areas at submicrometer sampling density within∼1 min.

A major challenge in slide scanning is the need for tracking
the topographic variations of the tissue layer which usually
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exceed the depth-of-focus of the scanner. To this end, a focus
map of the whole slide can be made prior to scanning, where
only a limited number of locations is used to save time [20]. An
improvement is an autofocus system in which focus information
is provided continuously, without mechanically changing focus.
This information is then used for a closed-loop feedback system
for maintaining optimum focus [21,22]. Such an autofocus
system can be realized using a second optical branch in the
scanner for generating the focus information. Drawbacks of this
approach are the increase in overall optical complexity and the
required synchronization between the autofocus and imaging
branches of the scanner.

Recently, a new WSI system has been described in the patent
literature by Philips [23–25] to overcome these drawbacks. The
core of the approach lies in a new architecture for a multi-line
image sensor. The sensor contains separate “sensorlets,” groups
of adjacent pixel rows, which can be read-out independently.
The sensor is tilted with respect to the optical axis resulting in
a tilted object plane [26]. The readout of pixel information is
done via two separate, simultaneously obtained, data streams,
one obtained from a single sensorlet for providing the pri-
mary imaging information, the other obtained from multiple
sensorlets for providing autofocus information. A full-color
whole-slide image with inherent color registration is acquired
with a color-sequential illumination scheme based on fast
switchable, high-power LEDs [27]. In summary, the advantages
of the proposed architecture are the elimination of the need for
multiple cameras for imaging and autofocusing, the reduction
of component costs, and the simplification of manufacturing
and maintenance.

An inherent capacity of the WSI platform is the possibility to
make a multi-focal scan by readout of multiple sensorlets simul-
taneously [23–25]. This reduces scan time and has intrinsic
axial registration of the scanned layers compared to acquiring
a multi-layer image with multiple sequential 2D scans. The
goal of this paper is to explore new imaging modalities of the
scanner platform, based on this opportunity. Making 3D images
with a single scan specifically leads to opportunities in imaging
the 3D morphology of tissues and cells over large FOVs and in
computational phase contrast imaging of unstained tissues.

Visualizing the 3D tissue morphology adds value in some
cases in the field of histology for making a final diagnosis
[16,28]. Visualizing cells in 3D is generally always needed for
diagnoses in the field of cytology [29]. The 3D imaging func-
tionality of current WSI systems is mostly realized through
sequential scans at different focus levels [30–32]. This approach
leads to a considerable increase in scan time, and is sensitive
to errors in registration of focal layers, which hamper its large-
scale application. These disadvantages can be overcome by the
proposed single-scan 3D imaging mode.

Quantitative phase imaging forms a non-invasive and label-
free imaging platform in cell biology and pathology [33].
Algorithms are available for phase retrieval from a through-focus
image stack to obtain a 2D phase contrast image of a thin layer,
usually based on solving the transport of intensity equation
(TIE) [34–37], as well as for a full 3D tomographic recon-
struction of a thicker specimen [38–40]. Application of such
computational phase contrast modalities based on multi-focal

image stacks can broaden the application of WSI systems to
unstained samples.

An important requirement for both modalities is the need
for simple, scalable image processing methods, ultimately
enabling real-time image data processing. Key in achieving
high-throughput image processing is parallelization of the
algorithm, such that it can be computed efficiently on a graphics
processing unit (GPU) or on dedicated hardware, e.g., a field-
programmable gate array (FPGA). In this work the focus will
therefore be on image processing algorithms that are compatible
with large-scale parallelization in a straightforward way. In par-
ticular, a deconvolution algorithm for improved sectioning in
multi-focal volumetric imaging of thick slides and an algorithm
for quantitative phase tomography are presented. In both a
“z-only” approach is proposed, in which the final deconvolved
or phase image data is calculated independently for each lateral
position (x , y ), which leads to low memory, efficient, and
scalable calculations.

This paper is structured as follows. First, the 3D scanner
architecture is described including the novel image sensor. Next,
multi-focal volumetric images of 60µm thick tissue sections are
shown. Then, the results of quantitative phase tomography of
unstained tissue sections are presented. The paper is concluded
with an evaluation of the findings and possible next steps for the
highly modular WSI platform.

2. SCANNER SETUP AND IMAGE PROCESSING

A. 3D Scanner Architecture

A schematic outline of the 3D WSI platform is shown in Fig. 1.
At the heart of the system lies a CMOS image sensor, of which
the pixel geometry is outlined in Fig. 1(a). The sensor consists
of 128 sensorlets, groups of four adjacent pixel rows with a
width of 4096 pixels. The sensorlets have a 13-row spacing.
The pixel pitch is 1l = 6.42 µm in the scan direction and
1p = 5.54 µm in the orthogonal, or “field” direction. The
sensorlets have a 13-row spacing such that the sensorlet pitch
1s = (13+ 4)1l = 115.56 µm. The sensor is tilted over an
angle of β = 30 deg, so that each sensorlet scans the sample
at a different depth; see Fig. 1(e). This also results in a square
projection of the pixels on the plane of the tissue slide. The slide
is illuminated by a color-sequential LED-based light source,
equipped with a Köhler condenser [27]; see Fig. 1(f ). The light
source has three color channels for RGB imaging, with a typical
wavelength of 657 nm for the red channel, 557 nm for the green
channel, and 465 nm for the blue channel.

Two FPGA modules or “engines” govern the readout of the
sensor and provide the capability of on-chip processing of the
image data. Each engine has four analog-to-digital converters
(ADCs), which can be independently connected to a sensorlet
of choice. The main purpose of having two engines is to use one
for acquiring the image data, while the other engine is used to
capture autofocus data, as is illustrated in Fig. 1(b). Optionally,
the readout signal can be increased with a factor of 4 by appli-
cation of TDI [19]. In this case, all four ADCs are connected
to the four rows of a single sensorlet, and the FPGA applies
digital TDI to create the primary, high-resolution, high-SNR,
image information. Simultaneously, the other engine reads
out a series of sensorlets sequentially, e.g., starting at sensorlet
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Fig. 1. Schematic layout of the WSI system. (a) The pixel geometry of the novel multi-line CMOS image sensor. The sensor is equipped with two
“engines” that can independently read out the sensor. This can be used for (b) 2D scanning with continuous autofocus or (c) 3D scanning. The optical
layout (d) shows the tilted sensor that gives rise to (e) a tilted object plane. (f ) A color sequential illumination strategy is used for RGB imaging.

one, and increasing the sensorlet number with every readout
line. Optionally, this is combined with “binning” for higher
signal levels, where the FPGA combines the data of two rows of a
sensorlet to create a two times down-sampled image with a four
times higher signal level. The FPGA can calculate the optimal
focus position from this data, and provides real-time feedback
to adjust the position of the objective lens. In this study we use
an alternative readout mode in which data is acquired from eight
different sensorlets simultaneously, as is illustrated in Fig. 1(c).
For example, by reading out a single row of the sensorlets 1,
17,. . . ,127, an eight-layer multi-focal volume covering the full
axial range can be obtained.

Images are acquired in a line-by-line or “push broom” scan-
ning fashion [41,42]. The translation stages perform a linear
translation with a velocity vt while the sensor is triggered for
data acquisition at equidistant positions with a step size1t . We
use1t = 0.25 µm and vt = 1 mm/s resulting in a throughput
of 4096 · 3 · 8 · vt/1t ≈ 393 MPx/s.

The objective lens and tube lens form a telecentric imag-
ing system; see Fig. 1(d). We use a Nikon 20× NA.75 Plan
Apochromat VC objective lens (Fobj = 10 mm) for high-
resolution imaging. Alternatively, a Nikon 10× NA.45 CFI
Plan Apochromat λ objective lens (Fobj = 20 mm) is used for a
2× wider scan lane and larger axial range, at the expense of lat-
eral resolution. The tube lens has an effective back focal length
of Ftube = 222.4± 2.2 mm to match the sensor pixel pitch of
5.54µm with the target sampling density of1= 0.25 µm.

Scanning experiments were carried out on a prototype WSI
system realized by Philips for research purposes.

B. Finite Conjugate Imaging and Spherical
Aberration

A range of axial positions in object (sample) space is imaged
onto the tilted detector by the imaging light path, comprising
the objective lens and the tube lens. This imaging light path
is optimized for imaging at a single depth inside the sample,
typically directly after the coverslip. It follows that in this case we
will suffer from spherical aberration. The sensitivity to spherical
aberration can be analyzed along the lines of [43]. In that analy-
sis, it is assumed that the objective lens and tube lens form an
aplanatic telecentric imaging system.

We consider three degrees of freedom (see Fig. 2), namely z1,
the axial object position; z2, the increase of the free working dis-
tance of the objective with respect to the nominal working dis-
tance; and z3, the axial image position. These three distances are
relative to the nominal aberration-free case. The total aberration
function W(ρ) is then given by

W (ρ)= z1

√
n2 − ρ2NA2

+ z2

√
1− ρ2NA2

− z3

√
1−

ρ2NA2

M2
,

(1)

where ρ is the scaled radial pupil coordinate (0≤ ρ ≤ 1)
such that the pupil is scaled to the unit circle, NA denotes the
objective numerical aperture, M = Ftube/Fob is the lateral
magnification, equal to the ratio of the tube focal length and
the objective focal length, and n is the medium refractive index.
This may be written in a compact form as

W (ρ)=

3∑
j=1

z j f j (ρ) , (2)
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Fig. 2. Illustration of the effect of the shifted axial position on focus and conjugate for two lines on the sensor (in blue and red). The light path
runs from right to left so as to be consistent with previous figures. The sample consists of a coverslip (cyan) and the tissue of interest (pink) which are
assumed to have a matched refractive index n. The dashed lines indicate the nominal object and image planes, i.e., the focal plane of the tube lens
and the surface below the coverslip. Three degrees of freedom are indicated: the axial object position z1, the free working distance z f + z2 where z f is
the nominal free working distance, and the axial image position z3. Tilting the sensor over an angle β makes it cover an axial range d in image space.
Changing the axial position zc of the sensor is used for minimizing the overall spherical aberration.

f1 (ρ)=

√
n2 − ρ2NA2, (3)

f2 (ρ)=

√
1− ρ2NA2, (4)

f3 (ρ)=
ρ2NA2

2M2
, (5)

where a Taylor approximation is used for the third aberration
term based on M� 1 and neglecting the piston term. The total
amount of aberration is given by the root mean square (rms)
value of the aberration function Wrms,which is given by

W2
rms =

3∑
j ,l=1

g jlz j zl , (6)

with

g jl = 〈 f j fl 〉 − 〈 f j 〉〈 fl 〉. (7)

Here the angular brackets indicate averaging over the pupil
(i.e., integration over the unit circle with radial coordinate ρ).
These averages can be evaluated analytically and are given in
[43].

The degrees of freedom in our system can be reduced using
two conditions. First, the object should be in focus. This is
defined by the axial object position z1 for which the rms value
of the aberration function is minimal, given the axial position
of the sensor z3 and the objective’s working distance z2. This
implies that z1 can be found by solving

∂Wrms

∂z1
= 0, (8)

which leads to

z1 =−
g 12

g 11
z2 −

g 13

g 11
z3. (9)

This expression directly gives the axial magnification as

Max =−
g 11

g 13
= χ

M2

n
, (10)

where χ is a non-paraxial correction factor depending only on
NA and n, which satisfiesχ→ 1 in the limit NA/n→ 0.

The second condition we impose is that the upper focal slice
should be adjacent to the coverslip. The tilted image sensor
spans a range of axial positions zc − d/2≤ z3 ≤ zc + d/2 in
image space, where d is the total axial range and zc is the axial
position of the center of the sensor. In object space, this corre-
sponds to the axial range 0≤ z1 ≤ d/M||. Now Eq. (9) implies
that the working distance of the objective must be set such that

z2 =−
g 13

g 12

(
zc −

d
2

)
. (11)

Using the expressions we derived for the object axial position
and the working distance [see Eqs. (9) and (11)], we can now
write the rms value of the aberration function as a function of the
axial image position, in which the axial position for the center of
the sensor zc remains as a free parameter. With some algebra it
may be shown that

W2
rms =

(
g 33 −

g 2
13

g 11

)
z2

3 + 2

(
g 2

13

g 11
−

g 23g 13

g 12

)(
zc −

d
2

)
z3

+

(
g 22g 2

13

g 2
23

−
g 2

13

g 11

)(
zc −

d
2

)2

.

(12)

Clearly, the aberration depends quadratically on the axial
image position z3, which is illustrated in Fig. 3. We can now
choose zc to minimize the overall aberration. This is achieved
when the minimum of the parabola is at z3 = zc . This condition
can be used to find an expression for zc :

zc =
g 2

13/g 11 − g 23g 13/g 12

g 33 − g 23g 13/g 12

d
2

. (13)

We will discuss the implications for the default 20×NA0.75
objective lens. The results for other optical configurations are
given in Table 1. Using this objective, the lateral magnifica-
tion is M = 22.2. The sensor has a pixel pitch of 5.56 µm,
which gives a pixel pitch in object space equal to p = 0.25 µm.
Assuming a medium refractive index n = 1.5, it is found that
χ = 1.07 and the axial magnification is Max = 352. The image
sensor size in the direction perpendicular to the line sensors is
127× 17× 6.42 µm= 13.9 mm. With a tilt angleβ = 30 deg
the axial range in image space is d = 6.9 mm and the axial range
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Fig. 3. Total aberration Wrms as a function of the axial position in image (detector) space for different values of zc : the optimal value (zc = 0.32d),
with the top of the sensor at the nominal plane (zc = d/2), and with the center of the sensor at the nominal plane (zc = 0). The curves are calculated
using NA= 0.75 and λ= 500 nm.

Table 1. Calculated Optical Properties for Optical Configurations, with Different Magnification and Axial Range of
the 3D Scan

a

Obj. Fobj [mm] M Max χ 1 [µm] 1ax [µm] d/Max [µm] Wrms [mλ]

20 × /.75 10 22.2 352 1.07 0.25 0.15 19.7 1.4–21
10 × /.45 20 11.1 84.1 1.02 0.50 0.65 82.4 0.2–10
5× /.20 50 5.55 13.2 1.00 1.25 2.65 512 0.0–2.4

aShown are the used objective lens, the NA, the focal length Fobj of the objective lens, the lateral magnification M, the axial magnification Max, the non-paraxial cor-
rection factor χ , the lateral pixel pitch in object space1, the target sampling density in object space1ax, the resulting axial range in object space d/Max, and the root
mean square spherical aberrations Wrms at the center and edge of the sensor, respectively. The values are based on n = 1.5, λ= 500 nm, and β = 30 deg.

in object space is d/Max = 19.7 µm. The optimal axial position
of the center of the sensor is zc = 0.32d , giving an axial range in
image space of −0.18d ≤ z3 ≤ 0.82d . The reason for the sig-
nificant asymmetry is the use of finite conjugate compensation
of the spherical aberration arising from focusing into the sample
below the coverslip.

Figure 3 shows the rms spherical aberration as a function of
the axial position in image (detector) space. With the optimum
choice for zc , the rms spherical aberration for the center of the
sensor is only 1.4 mλ for a typical green emission wavelength
of λ= 500 nm, composed mainly of higher-order spherical
aberration, and 21 mλ at the edge of the sensor. The spherical
aberration varies in an asymmetrical way from the bottom of the
sensor to the top of the sensor, in case the axial position of the
middle of the sensor is not chosen optimally. For example, by
choosing zc = 0, the center of the sensor is at the nominal image
plane. Now the rms spherical aberration ranges up to 60 m λ for
the worst-case edge of the sensor. When zc = d/2 is chosen, the
top row of the sensor is in the nominal image plane and has no
aberration. However, the row at the other side of the sensor will
then experience an rms aberration of 42 mλ.

C. Image Post-Processing

In this work, no use is made of the on-chip processing capa-
bilities of the sensor, but instead raw measurement data is
written to a digital file for further processing in MATLAB. The
four-dimensional image dataset I [l , p, c , s ] depends on a first
index l ∈ [1, Nl ] for the “scan” direction with size Nl equal
to the number of scanned lines, a second index p ∈ [1, Np ]

for the field direction, with Np = 4096 pixels, a third index
c ∈ [1, Nc ] representing the color channels, which has Nc = 3

for RGB imaging, and a fourth index s ∈ [1, Ns ], enumerating
the Ns = 8 layers. Lines and channels are acquired line after
line, and for every line Nc channels are acquired sequentially.
The connotation of the term “line” is therefore temporal in the
current context and must not be confused with a physical row of
pixels on the sensor.

Three pre-processing steps are taken for all datasets. First,
the sensor offset is corrected, which consists of two terms. The
sensor has a line-to-line varying offset Id [l , c , s ] which is pro-
vided in the raw data of each scan. The second offset is a lateral
offset Il [p, c , s ], which must be measured only once for every
particular configuration of exposure time, gain, and chosen
sensorlets. The offset was measured by creating a “dark” scan
without illumination. The second pre-processing step is the
registration that is required to compensate for the spatial offset
in the scan direction of the different sensorlets used to scan the
focus layers. Additionally, small registration errors arising from
misalignment of the sensor tilt and rotation typically arise. This
is compensated by translating the image data dl pixels in the scan
direction and d p pixels in the field direction, given by

dl [s ] =
[

Nt1s

1l

(
s −

Ns + 1

2

)
+

(
r −

Nr + 1

2

)]
D(1+ δl ),

(14)

d p [s ] =
[

Nt1s

1l

(
s −

Ns + 1

2

)
+

(
r −

Nr + 1

2

)]
δl ,

(15)

where a constant sensorlet interval Nt is assumed, e.g., Nt = 4
when sensorlets 50, 54,. . . ,78 are used. D is the number of stage
steps of size1t it takes to translate the image to the next row on
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the sensor, given by D=1l cos(β)/M1t . The stage step size
1t is chosen such that D= 1 for the 20× objective lens and
D= 2 for the 10× objective lens. The value r is the row within
the sensorlet at which the data is acquired, given by

r [s ] =
{

s , s ≤ 4,
s − 4, s ≥ 5.

(16)

The overall displacement is minimized by correcting s and
r for the number of used sensorlets Ns = 8 and the number of
rows in a sensorlet Nr = 4. The residual alignment errors δl and
δp are found by scanning a checkerboard resolution target and
searching the value that optimizes the correlation between the
layers. This is implemented by a coarse 5× 5 grid search around
zero with a step size of 0.02, followed by a parabolic interpola-
tion of the result. Finally, the image is scaled in the scan direction
with a factor1p/1t M, to have isotropic sampling. The system
is designed to have this factor equal to one for the 20× objective
lens such that this scaling can be omitted in that particular case.
The third pre-processing step is to correct for non-uniformity
of the illumination by applying flat fielding. The illumination
intensity I f [l , c , s ] is found by scanning a transparent area of a
resolution target and average the result over the scan direction.

The quantitative phase tomography algorithm appears to be
sensitive to inhomogeneities between the focal layers originating
from incomplete flat fielding and a small line-to-line instability
of the readout gain. A simple mitigation is to correct pixel values
for line-to-line and pixel-to-pixel variations by the average line
and pixel value:

I ′[l , p, c , z] = I [l , p, c , z] −
1

Np

∑
p

I [l , p, c , z]

−
1

Nl

∑
l

I [l , p, c , z]. (17)

This can work because the DC offset is not important for the
phase tomography algorithm.

3. SINGLE-SCAN MULTI-FOCAL VOLUMETRIC
IMAGING OF THICK TISSUE LAYERS

A. Axial Deconvolution

Widefield microscopy has no optical sectioning capability,
i.e., multi-focal volumetric images have optical cross talk,
adding blurred structures in out-of-focus layers to the in-focus
image. This can be partly compensated by the use of deconvo-
lution techniques, in the case of sufficiently high SNR [44–46].
A drawback of applying existing 3D deconvolution approaches
to multi-focal whole-slide images is the computational com-
plexity, which scales unfavorably with lateral image size. This
may be attributed to the lateral sharpening, that is a secondary
goal of 3D deconvolution methods. The idea of this lateral
sharpening is to partially undo the blurring by the microscope
point spread function (PSF). Here, a “z-only” approach is fol-
lowed, in which the goal of lateral sharpening is abandoned,
and the focus is entirely on the goal of reducing the axial cross
talk. This reduces the computational complexity in such a way
that the computational costs are scalable with lateral image
size in a straightforward way. Deconvolution would then

become suitable for real-time processing with the use of parallel
processing.

The deconvolution algorithm is a variant of the iterative
constrained Tikhonov–Miller (ICTM) deconvolution method
[47], which is based on the minimization of the function

ε =
1

2
|p − Gd |2 +

1

2
w|Cd |2, (18)

under the constraint d ≥ 0. Here p represents the pre-processed
image data vector, d is the to-be-deconvolved image data vector,
G is the blurring matrix (PSF), w is the regularization param-
eter, and C is the regularization matrix. The constraint d ≥ 0
is taken into account by a mapping d = c (s ) from the domain
−∞< s <∞ to 0≤ d <∞. Verveer and Jovin [47] use the
mapping c (s )= s for s ≥ 0 and c (s )= 0 for s < 0. The con-
jugate gradient method is used in [47] to minimize Eq. (18)
with the aid of this mapping. An alternative mapping that could
possibly work is c (s )= exp(s ). The gradient vector of the error
function w.r.t. d has components:

r i =
∂ε

∂di
=

∑
j

Ai j d j − bi , (19)

where i and j are indices labeling the vector and matrix
components, and with the vector b = GT p and the matrix
A= GT G +wC TC . The Hessian is

∂2ε

∂di∂d j
= Ai j . (20)

For the unconstrained vector s we find a gradient,

ui =
∂ε

∂ s i
= c ′ (s i ) r i (21)

and a Hessian,

Bi j =
∂2ε

∂ s i∂ s j
= c ′ (s i ) c ′

(
s j
)

Ai j + c ′′ (s i ) r iδi j , (22)

where c ′(s ) and c ′′(s ) are the first- and second-order derivative
of the mapping function. For the mapping function of [47]
c ′(s )= 1 for s > 0 and c ′(s )= 0 for s ≤ 0, and c ′′(s )= 0 (the
delta-peak at s = 0 is ignored). This boils down to u = Pr and
B = P T AP with P a diagonal (projection) matrix with entries
Pii = 1 for s i > 0 and Pii = 0 for s i ≤ 0. An iterative update
is made of the unconstrained deconvolved image vector s at
iteration step k in the search direction v following

s k+1
= s k
+ αv, (23)

with step size

α =−
uTv

vT Bv
. (24)

The search direction can be computed using, e.g., the con-
jugate gradient method or the steepest descent method. For the
sake of simplicity we use the gradient in the original d -domain,
i.e., v = r . The constrained deconvolved image vector d at iter-
ation k + 1 is then found by d k+1

= c (s k+1). A fixed number of
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iterations Ni is used, because this removes the need for conver-
gence testing during the optimization, which greatly contributes
to the computational efficiency. For Ni = 30, the deconvolved
images are converged to the final image with an error below the
eight bit precision level. The ICTM method is applied to do
only an axial deconvolution. This “z-only” approach uses an
effective blurring matrix:

G ij = α j

[
1− β + βsinc

(
π

zi − z j

1z

)2
]
, (25)

of size Ns × Ns with Ns the number of layers, sinc(t)=
sin(t)/t , and z is the axial position in object space. The con-
stant term represents the axial response for a uniform object
(delta-peak in Fourier space), the sinc term represents the axial
response for a point object (uniform in Fourier space). The
weighting coefficient β takes the relative magnitude of both
contributions into account. In practice, a value close to but not
equal to one gives satisfactory results. In the following β = 0.95
has been used. The parameter1z is a measure for the depth of
focus for which we use 1z= 19.9 µm. The parameter α j is
used to normalize every row of the blurring matrix G such that∑

j G ij = 1. This ensures that G leaves the DC component
unchanged, and it prevents the deconvolution to underestimate
the value of d at the upper and lower scanned layers.

Regularization is needed in order to avoid division by zero if
the blurring matrix is singular and/or if prior knowledge of the

imaged object is available. For the axial deconvolution with the
effective blurring matrix Eq. (25) this appears to be relatively
unimportant. In the following C = I , the identity matrix, is
used andw= 10−6.

The axial deconvolution method is implemented on a GPU
using MATLAB’s Parallel Processing Toolbox. Deconvolving
an image segment of 512× 4096× 3× 8 requires 17 ms on an
Nvidia Tesla P100-PCIE-16 GB GPU. The current calculation
time implies a throughput of about 3 GPx/s, far exceeding the
acquisition speed.

B. Scan Setup and Samples

The 10× objective lens is used to cover a large axial range
for multi-focal volumetric imaging of thick slides. A sen-
sorlet pitch Nt = 18 is used such that the layers have a
pitch of Nt1ax = 11.7 µm and cover a total axial range of
8Nt1ax = 93.5 µm.

Two samples are used to demonstrate the imaging of thick
slides. The first slide contains a 60 µm thick stage 3 human rec-
tum cancer section, stained with hematoxylin and eosin (H&E).
The second slide contains a 60 µm thick human prostate sec-
tion, stained with H&E and cleared using benzyl alcohol benzyl
benzoate [48].

Fig. 4. Multi-layer scan of a 60µm thick, H&E stained normal human rectal mucosa section. (a) Center layer after pre-processing. (b) Center layer
after deconvolution. Visualization 1 provides the whole focal volume. (c), (e) All focal layers of a detail of the pre-processed image. (d), (f ) All focal lay-
ers of a detail of the deconvolved image.

https://doi.org/10.6084/m9.figshare.12097866
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C. Results

Figure 4 shows the result of a multi-focal scan of a normal
human rectum tissue section. It provides a side-by-side com-
parison of the image after pre-processing and the image after
deconvolution. In Figs. 4(a) and 4(b), the center layer of the
focal stack is shown, displaying a 800× 800 µm2 area of 60µm
thick mucosa tissue. Transverse sectioned colonic crypts are
shown (tube-shaped mucosal structures) extended toward the
bowel lumen. An edge toward the lumen is shown in the left half
of the image; see Arrow 1 in Fig. 4. For two structures, a detailed
view of all focal layers is provided in Figs. 4(c)–4(f ).

The deconvolution algorithm clearly improves the image
contrast by using the information of the neighboring layers. A
higher contrast between the dark ring of cells along the crypts
and the surrounding area is observed; see, e.g., Arrow 2 in
Figs. 4(a) and 4(b). Also, the nuclei in the intermediate tissue
show enhanced contrast; see, e.g., Arrow 3 in Figs. 4(a) and 4(b).
The deconvolution reveals multiple cellular layers of the cellular
inner structure of the crypt that are hard to distinguish in the
pre-processed data; see, e.g., Arrow 4 in Figs. 4(c) and 4(d)
and Arrow 5 in Figs. 4(e) and 4(f ). Some ringing artifacts are
observed in the out-of-focus layers, in particular for z= 47 µm;
see, e.g., Arrow 6 in Figs. 4(c) and 4(d) and Arrow 7 in Figs. 4(e)
and 4(f ), but do not seem to harm the overall image quality too
much.

The result of a multi-focal scan of a cleared prostate section is
provided in Fig. 5. Again, a side-by-side comparison is provided

between the pre-processed data and the deconvolved data.
Figures 5(a) and 5(b) depict an 800× 800 µm2 area of 60 µm
thick prostate tissue, showing stroma separated from prostate
glandules (containing two types of cells in normal prostate). In
Figs. 5(c) and 5(d) a detailed view is provided of an almost fully
cleared tissue, where mainly the nuclei have remained visible.
Figures 5(e) and 5(f ) provide a detailed view of the differences in
morphology.

The deconvolved images show an improved contrast, espe-
cially on the smaller length scales. For example, the nuclei show
a good separation; see, e.g., Arrow 1 in Figs. 5(c) and 5(d). Also
there is a clear separation of basal and luminal cells throughout
the focal volume; see, e.g., Arrow 2 in Figs. 5(e) and 5(f ). Bright
circular shapes with a smooth gray outline are visible in Fig. 5(d)
for z≤−33 µm; see, for example, Arrow 3 in Fig. 5(d). These
structures are out-of-focus nuclei of which only the center is
suppressed by the axial deconvolution. This is interpreted as an
artifact of the “z-only approach” to deconvolution.

4. QUANTITATIVE PHASE TOMOGRAPHY OF
UNSTAINED TISSUE LAYERS

A. Quantitative Phase Tomography

We have implemented 3D phase retrieval using the quantitative
phase tomography (QPT) method that was recently introduced
by Descloux et al. [40]. This method enables the retrieval of a
local phase in 3D from a stack of bright-field images by a simple

Fig. 5. Multi-layer scan of a 60 µm thick, cleared, and H&E stained human prostate section. (a) Center layer after pre-processing. (b) Center
layer after deconvolution. Visualization 2 provides a side-by-side comparison of the whole focal volume. (c), (e) All focal layers of a detail of the
pre-processed image. (d), (f ) All focal layers of a detail of the deconvolved image.

https://doi.org/10.6084/m9.figshare.12097872
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filtering operation. Their optical analysis is based on the Born
approximation, in which the 3D intensity of a weak scattering
object can be written in 3D Fourier space as a function of the 3D
spatial frequency vector Ef as

Î ( Ef )≈ I0δ( Ef )+ 0̂( Ef )+ 0̂∗( Ef ). (26)

The first term represents a DC offset with amplitude I0, giving
rise to the delta-function δ( Ef ) in reciprocal space. The second
and third terms are the complex valued so-called cross-spectral
density 0̂( Ef ) and its complex conjugate.

After a 3D Fourier transform from spatial frequency to real
space, the cross-spectral density is related to the local phase by

φ(Er )= tan−1

(
αIm(0(Er ))

I0 + αRe(0(Er ))

)
, (27)

where α is a calibration factor and Er = (x , y , z) is the spatial
position vector.

Descloux et al. provide a description of the spatial frequency
support of the cross-spectral density, which is given by the differ-
ence between any possible spatial frequency vector in the cone of
directions of incidence on the illumination side and in the cone
of directions of scattering on the detection side:

Ef =
n
λ

([
sin θi

cos θi

]
−

[
sin θd

cos θd

])
, with |θi |< arcsin

NAi

n
,

and |θd |< arcsin
NAd

n
,

(28)

where n is the average object refractive index, NAi is the illu-
mination numerical aperture, NAd is the detection numerical
aperture, and λ is the wavelength. Only the spatial frequency
component along the radial direction ( f⊥) and along the optical
axis ( fz) are given, as the optical system is rotationally sym-
metric around the optical (z) axis. The frequency support of
the complex conjugate 0̂∗ has the same shape, but is mirrored
in the f⊥ axis (substitution fz→− fz). Figure 6(a) shows the
frequency support in the incoherent limit, i.e., the detection
NAd is equal to the illumination NAi , where 0̂ fully overlaps
with its complex conjugate. In contrast, in a partially coherent
system, i.e., NAi<NAd , 0̂ can be largely separated from 0̂∗; see
Fig. 6(b). The frequency support of 0̂ has an upper bound in fz

given by

fm =
n
λ

1−

√
1−

NA2
d

n2

 . (29)

The upper bound in fz of the complex conjugate0∗ is

fc =
n
λ

1−

√
1−

NA2
i

n2

 . (30)

Both fm and fc are indicated in Fig. 6(b). Here it can be seen
that a substantial part of 0̂ can be retrieved from a stack of inten-
sity data by using a single sideband high-pass filter K :

0̂+( Ef )= Î ( Ef )K̂ ( Ef ), K̂ ( Ef )=
{

1, fz > fc

0, otherwise
. (31)

It can be seen from Eq. 28 that, provided that the NAi is sub-
stantially smaller than NAd , the support of0 is bound by the arc
( f⊥λ/n + sin θi )

2
+ ( fzλ/n − cos θi )

2
= 1. The intersection

of this curve with fz = fc provides the smallest lateral spatial
frequency fl for which 0̂+ is non-zero. This smallest lateral
spatial frequency fl is given by

fl =
n
λ

2

√√√√√
1−

NA2
i

n2
−

(
1−

NA2
i

n2

)
−

NAi

n

 . (32)

The highest lateral spatial frequency for which 0̂+ is non-zero
is given by the regular partially coherent cutoff frequency:

fu =
NAd

λ
+

NAi

λ
. (33)

In Fig. 6(b) both fl and fu are indicated.
It may be concluded that, although we do not apply explicit

filtering in the lateral direction, the optical transfer function
of this new phase imaging modality will be a bandpass filter in
the lateral plane. The absence of low spatial frequencies is not
uncommon to phase reconstructions obtained from through-
focus image stacks. Methods based on solving the TIE [34–37]
need to invert the Laplacian in the lateral coordinates. The
Laplacian has a transfer function that depends quadratically
on the (lateral) spatial frequency components, i.e., it has (near)
zero transfer at low spatial frequencies. The bandpass character
of the QPT modality under consideration will result in phase
reconstructions in which there is considerable edge ringing. Two

Fig. 6. Frequency support of the cross-spectral density 0̂ and its complex conjugate 0̂∗ as a function of the lateral spatial frequency

f⊥ =
√

fx
2
+ f y

2 and the axial spatial frequency fz for a wavelength λ= 500nm. (a) In the incoherent limit NAi =NAd , the support of 0̂ fully

overlaps with the support of 0̂∗. (b) Under partial coherence conditions NAi <NAd , 0̂ can be retrieved in the region fz > fc and fl < | f⊥|< fu

from the intensity data.
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uniform regions separated by a sharp phase step are recognizable
as flat regions with the same phase value, the border between the
two regions separated by a single oscillation. A small point-like
phase object is imaged as a λ/NAd sized spot with considerable
circular fringes. In fact the integral over the entire PSF must be
zero, as the transfer function at zero spatial frequency is zero.

In the following we present an analysis of different trade-offs
between and interdependencies of the optical system param-
eters. There are six system parameters for quantitative phase
imaging: the NA of the detection NAd , the NA of the illumina-
tion NAi , the average sample refractive index n, the wavelength
λ, the axial sampling distance 1z, and the number of layers
scanned Ns . These parameters, however, are not independent.
First, Nyquist sampling in the axial direction requires an axial
sampling:

1z=
1

2 fm
=
λ

2n

1−

√
1−

NA2
d

n2

−1

, (34)

where we used the relation between fm and N Ad given in
Eq. (29). Second, it appears that there is an optimal choice for
the illumination NAi given the number of scanned layers Ns .
Equation (30) implies that the illumination NAi can be derived
from the lower axial cutoff frequency fc . Generally, a lower fc

is favorable, but fc is limited by the sampling density in the
Fourier domain. For that reason fc is selected to be half of the
smallest resolvable frequency:

fc =
1

2Ns1z
. (35)

The corresponding NAi can be found by solving Eq. (30) and
substituting Eq. (35) to obtain

NAi = n

√√√√√1−

1−
1−

√
1−NA2

d/n2

Ns

2

. (36)

Substitution in Eq. (30) leads to

fc =
fm

Ns
, (37)

i.e., the ratio to the upper and lower axial cutoff frequencies
must be equal to the number of scanned layers. It is noted that

the system has no direct dependence on n, but only on the ratio’s
NAd/n and NAi/n. The current analysis shows that instead of
six, there are only three degrees of freedom in the design of the
optical system. A convenient set of three independent system
parameters are formed by the diffraction length scale λ/NAd ,
the scaled objective lens NAd/n, and the number of scanned
layers Ns .

In Fig. 7 different relevant optical system parameters are
plotted as a function of Ns for four different NAd/n values cor-
responding to objective lenses with NAd = 0.2, 0.45, .75, 1.2
and an average sample refractive index n = 1.33. Figure 7(a)
shows the axial spatial frequency support of 0̂+, i.e., the range
of spatial frequencies between fc and fm . The maximum axial
spatial frequency fm is independent of the number of lay-
ers scanned but shows a strong dependence on NAd/n. This
implies that the axial resolution depends on NA comparable to
conventional brightfield or fluorescence microscopes. The lower
bound of the spatial frequency support fc appears to be inversely
proportional to the number of scanned layers Ns according to
Eq. (37). Imaging objects with large axial size, i.e., small axial
spatial frequencies, is thus realized primarily by scanning more
layers.

The lateral frequency support of 0̂+, i.e., the range of
frequencies between the lower and upper cutoff spatial frequen-
cies fl and fu is shown in Fig. 7(b). The lateral frequency
support depends only slightly on NAd/n. For increasing values
of Ns , the lateral upper bound fu decreases to an asymptotic
value λ/NAd . The lateral lower bound fl decreases typically as
1/
√

Ns , except for the practically not so relevant case Ns = 2 or
3 in combination with a high value of NAd/n. Imaging objects
with large lateral size, i.e., small lateral spatial frequencies, can
thus be improved by scanning more layers, just as for the axial
case, although the rate of improvement scales less favorably for
the lateral case.

Figure 7(c) shows the partial coherence factor NAi/NAd ,
which turns out to depend hardly on NAd/n. The partial
coherence factor decreases with Ns typically as 1/

√
Ns .

B. Numerical Implementation

The QPT method takes the following steps [40]: 1. Padding the
intensity data I (x , y , z) with a mirrored copy I (x , y ,−z) to
minimize Fourier streaking occurring because of the bound-
ary discontinuity in the axial direction. 2. Take a 3D Fourier

Fig. 7. Behavior of a QPT optical system expressed in normalized coordinates, as a function of the dimensionless numbers Ns and NAd/n.
(a) Axial frequency support of 0̂+. (b) Lateral frequency support 0̂+. (c) Partial coherence factor.
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transform of the data. 3. Apply the axial spatial frequency filter.
4. Optionally, noise can be reduced by suppressing all spatial
frequencies where no signal is expected based on the known
spatial frequency support given in Eq. (28). 5. Take the inverse
3D Fourier transform. 6. Remove the padded data. 7. Calculate
the phase using Eq. (27).

In our application, scalability to large image datasets is
of utmost importance. We therefore do not implement the
optional fourth step. This makes the implementation a z-only
problem, just as for the deconvolution approach we propose,
easily compatible with parallel processing solutions. It turns out
that it is numerically convenient to implement steps 1–3, 5, and
6 using a single matrix transform:

0+ = P I (Er )=
[
C F −1

z K Fz M
]

I (Er ), (38)

where P is a Ns × Ns matrix with Ns the number of layers
in the intensity stack I (Er ). P is composed of four matri-
ces. First, M is a 2Ns × Ns matrix that pads the data using
Mij = δij + δ2Ns−i+1, j , where δ is the Kronecker delta. The
second matrix F has size 2Ns × 2Ns and implements the
Fourier transform along the z axis. Matrix K is a 2Ns × 2Ns

diagonal matrix implementing the spatial frequency filter. The
data is inverse Fourier transformed using the 2Ns × 2Ns matrix
F −1. Finally, the mirrored data is removed by the Ns × 2Ns

matrix Cij = δij for i, j ≤ Ns and zero otherwise. The matrix
P has to be calculated only once and can then be applied to
every coordinate (x , y ) independently. This method is particu-
larly suitable for small numbers of layers, where the need for
extra memory allocation that is associated with data mirroring
outweighs the high efficiency of the fast Fourier transform com-
pared to a matrix multiplication. This method is implemented
for execution on a GPU using the MATLAB Parallel Processing
Toolbox. Calculating the phase of a 2048× 2048× 8 image
requires about 50 ms using an Nvidia Tesla P100-PCIE-16 GB.
This implies a throughput of 670 MPx.

C. Scan Setup and Samples

The QPT method is implemented based on scans with the 20×
objective lens, the green color channel, and the use of Ns = 8
scan lines simultaneously. Given that NAd = 0.75, and assum-
ing a sample refractive index of n = 1.33 and a wavelength of
λ= 500nm, Eq. (34) results in a target1z of 1.05µm. To guar-
antee Nyquist sampling a sensorlet interval Nt = 6 is chosen,
leading to1z= 0.93 µm. This gives a total covered axial range
Ns1z= 7.4 µm. Now Eq. (35) provides fc = 1/14.9 µm,
and solving Eq. (30) gives NAi = 0.29. As a result, the system
will have a lateral resolution of 1/ fu = 0.48 µm, as follows
from Eq. (33), it images structures with a lateral size up to
1/ fl = 4.3 µm, according to Eq. (32), and Eq. (29) provides a
maximum axial spatial frequency fm = 1/2.2 µm.

Three samples are used to demonstrate the QPT method.
The first slide contains a 5 µm thick human prostate tissue
microarray (TMA) section labeled with Kreatech ERBB2
(17q12)/SE 17 FISH probe (product number KBI-10701) for
the detection of amplification of the ERBB2 (also known as
HER-2/neu) gene via fluorescence in situ hybridization (FISH)
[49]. The second slide is a 4 µm thick stage 3 human rectum

cancer section with immunofluorescence labeling. Three pro-
teins are labeled: Desmin (IgG1 M antibody labeled with Alexa
Fluor 488), which is highly expressed in muscle cells; CD31
(IgG R antibody labeled with Alexa Fluor 546), which is a is a
marker for blood vessels; and D2-40 (labeled with Alexa Fluor
594), which is used as a marker of lymphatic endothelium.
Additionally, the slide is stained with DAPI, labeling the nuclei.
The third slide is an 4 µm thick human prostate section. The
slide is deparaffinized and embedded in xylene but not further
processed for staining.

D. Results

Figure 8 shows the result for the ERBB2 slide. Figure 8(a)
shows all eight layers of the pre-processed image data. A detail
is selected in which a single cell is visible. The local phase com-
puted from this data is shown in Fig. 8(b). A diverging colormap
is used to display the phase values [51], with blue corresponding
to negative values, black to zero, and green to positive values.
The total estimated optical thickness of the sample is obtained
by summing the local phase over all layers. The result is shown
over three length scales, zooming in with a factor of 64: Fig. 8(c)
has the full width of a single scan lane, Fig. 8(d) displays an
intermediate length scale, and Fig. 8(e) corresponds to the
detail shown in Figs. 8(a) and 8(b). Figures 8(f )–8(h) show a
color-coded maximum intensity projection of the same area.
The pixel values in this image have an intensity corresponding to
the maximum phase along the axial direction and a color corre-
sponding to the depth at which the maximum was found. The
used colormap, shown at the left side of Fig. 8(f ), has a uniform
luminescence and an equidistant color spacing. This minimizes
the visual cross talk between depth and intensity. As a reference,
Figs. 8(i)–8(k) provide a maximum intensity projection of a
multi-focal fluorescence image of the same section, for the same
areas. This fluorescence image was obtained in previous research
[26] using a multi-focal multi-line confocal scanner. A rigid
transform is used to register the fluorescence reference image
to the phase image, where the optimal transform is found by
minimizing the root mean square distance between a series of
manually selected landmarks.

In the pre-processed images shown in Fig. 8(a) the outline
of the cells are visible at low contrast, as well as a few spots that
change from bright to dark through focus; see Arrows 1 and 2
in Fig. 8(a). The corresponding local phase in Fig. 8(b) shows
the contours of the cells and cell organelles with a high con-
trast. The QPT algorithm is able to reveal the axial position
(z≈ 1.7 µm) of the sources of the bright and dark spots; see
Arrow 3 in Fig. 8(c). The lateral bandpass behavior of the QPT
algorithm causes ringing, which is particularly visible as a blue
(negative) local phase surrounding the cell; see for example
Arrow 4 in Fig. 4(b). Also in the total optical thickness, dis-
played in Figs. 8(c)–8(e), the cell contours and tissue structure
are clearly revealed. The bandpass characteristic is again appar-
ent, for example indicated by Arrow 5 in Fig. 8(d) and Arrow
6 in Fig. 8(e). The color-coded maximum intensity projection
appears particularly suitable for imaging at larger length scales.
For example, the wall of a blood vessel with a size of∼100 µm
is clearly visible; see Arrow 7 in Fig. 8(f ). Comparing the results
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Fig. 8. Multi-layer phase contrast image of a 5 µm thick human prostate TMA section prepared for ERBB2 detection using FISH. The layers
have an axial spacing of 0.93 µm spanning 7.4 µm in total. (a) Detail of the raw image data after pre-processing. (b) Retrieved phase of the corre-
sponding area. (c)–(e) Total optical thickness, shown over three length scales. Visualization 3 shows this in more detail. (f )–(h) Color-coded maxi-
mum intensity projection of the same area; see Visualization 4. (i)–(k) Confocal fluorescence image of the same section [26] showing the same area; see
Visualization 5.

with the fluorescence images, a surprisingly clear correspond-
ence is found between the cell organelles observed in the phase
images and the FISH labeled sites; compare Arrow 8 in Fig. 8(h)
with Arrow 9 in Fig. 8(k).

Figure 9 shows the result for the human rectum section fol-
lowing the same structure as Fig. 8. The sample is shown over
three length scales, zooming in with a factor of 16, ranging from
the full width of a single scan lane to the same detail shown in
Figs. 9(a) and 9(b). Figures 9(i)–9(k) provide a multi-color
widefield fluorescence image of a directly adjacent, identically
prepared slide that we reported on in earlier research [50]. This
image was registered to the phase image, just as for the previous
case.

The insets show the cross section of normal crypts in the
human rectum. The crypt lumen indicated by Arrow 1 in
Fig. 9(e) and cell walls indicated by Arrow 2 in Fig. 9(e) are
clearly visible. The phase images are able to reveal relevant struc-
ture in the tissue on the larger length scales as well, in particular
in the color-coded maximum intensity projection. For example,
the top half of the largest zoom level shows the submucosa with
two veins [see Arrow 3 in Fig. 9(f )], the muscularis mucosae [see
Arrow 4 in Fig. 9(f )], while the bottom half shows the normal
mucosa with the crypts, indicated by Arrow 5 in Fig. 9(f ). A
clear correspondence is found with the fluorescence images. For
example, the red labeled microvessel indicated by Arrow 6 in
Fig. 9(h) can also be observed in the phase contrast images; see

https://doi.org/10.6084/m9.figshare.12097881
https://doi.org/10.6084/m9.figshare.12097884
https://doi.org/10.6084/m9.figshare.12097887
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Fig. 9. Multi-layer phase contrast image of a 4 µm thick human rectum section. The layers have an axial spacing of 0.93 µm spanning 7.4 µm in
total. (a) Detail of the raw image data after pre-processing. (b) Retrieved phase of the corresponding area. (c)–(e) Total optical thickness, shown over
three length scales. Visualization 6 shows this in more detail. (f )–(h) Color-coded maximum intensity projection of the same area; see Visualization 7.
(i)–(k) Widefield multi-color fluorescence image of an directly adjacent section [50] showing the same area; see Visualization 8.

Arrow 7 in Fig. 9(h). At the smallest zoom level small spots are
visible that are not present in the fluorescence control images.
Interestingly, some of them have a negative phase value [see,
e.g., Arrow 8 in Fig. 9(e)], suggesting that this might be regions
with a lower refractive index than the surrounding tissue struc-
tures, such as water droplets or air bubbles. Around the spots,
ringing is visible in correspondence with the expected bandpass
behavior.

Figure 10 shows the result for the human prostate section
following the same structure as Figs. 8 and 9. The result is shown
over three length scales, zooming in over a factor of 25, from the
full width of a single scan lane down to a columnar epithelium
layer around a lumen. As a reference an H&E stained section

from the same tissue block is shown, registered to the phase
image. It is noted, however, that this section was not directly
adjacent to the unstained section used for phase imaging,
and that therefore the overall structure is not corresponding
closely to the structure of the phase images of the unstained
slide.

The cell borders of the epithelium are clearly visible in the
phase images; see Arrow 1 in 10(e). Also apparent are the out-
line of the nuclei, e.g., as indicated by Arrow 2 in Fig. 10(h)
and the structure of the stroma, e.g., as indicated by Arrow
3 in Fig. 10(g). The overall features (highlighting edges
and near-point like objects) are the same as for the other two
cases.
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Fig. 10. Multi-layer phase contrast image of an unstained, 4 µm thick human prostate section. The layers have an axial spacing of 0.93 µm span-
ning 7.4 µm in total. (a) Detail of the raw image data after pre-processing. (b) Retrieved phase of the corresponding area. (c)–(e) Total optical thick-
ness, shown over three length scales. Visualization 9 shows this in more detail. (f )–(h) Color-coded maximum intensity projection of the same area;
see Visualization 10. (i)–(k) H&E stained section of the same tissue block showing the same area; see Visualization 11.

5. CONCLUSION

In conclusion, we present a WSI system based on a multi-line
CMOS sensor devised by Philips [23–25]. A tilted image plane
makes it possible to acquire image data from multiple focal slices
simultaneously. The architecture with a single image sensor
provides inherent registration of different color channels and
focal layers. The “push-broom” scanning approach results in a
field of view that is in principle unlimited, and a reduced need
for stitching. The system achieves image acquisition with a
very high throughput of ∼400MPx/s, and can be used for 2D
full-color imaging of absorption stained slides with continuous
autofocus, but also for multi-focus imaging.

The scanner platform enables novel contrast modalities based
on computational imaging approaches. Multi-focal volumetric
imaging of thick pathology samples is demonstrated, where

eight layers are acquired in a single scan. Samples of 60 µm
thick are imaged with a resolution of 0.5 µm. Deconvolution
is used to improve contrast, which is inherently low for such
thick specimens. A simplified form of the ICTM deconvolution
method is proposed, targeting suppression of out-of-focus light
only, and ignoring lateral resolution improvement, enabling
very high processing speeds of about 3 GPx/s, far exceeding the
acquisition speed. This indicates that this approach is suitable
for on-line, and potentially on-chip, processing.

The sectioning of the focal layers could possibly be improved
upon by combining the proposed “z-only” deconvolution
with a multi-scale image approach [52]. Decomposition of the
image data in a wavelet representation would enable a different
setting of the depth of focus parameter for every lateral length
scale in the wavelet domain [53]. In this way, the deconvolution
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would become effectively dependent on the lateral spatial fre-
quency content, while at the same time avoiding a (much) larger
blurring matrix.

Next, phase imaging based on the recently introduced
QPT method [40] is demonstrated. A simplified form of
the algorithm, based on “z-only” processing is proposed for this
modality as well, giving data processing speeds of∼0.67 GPx/s,
exceeding the acquisition speed. A system design study of the
phase imaging modality is developed in this paper, leading to
a description in which the axial and lateral spatial frequency
support, as well as the partial coherence factor, are entirely
given by the diffraction length scale λ/NAd , the scaled imaging
NAd/n, and the number of scanned layers Ns . The image for-
mation theory points to an in-plane transfer function that has
the character of a bandpass spatial frequency filter. The lower
and upper cutoff spatial frequencies for the current setup (with
objective lens NAd = 0.75 and condenser NAi = 0.26) are at
1/ fl = 4.3 µm and 1/ fu = 0.48 µm. This bandpass transfer
results in phase images where the near-point like objects, with a
size of∼1 µm, are highlighted, and where phase step edges are
recognizable by a single oscillation in the direction orthogonal
to the edges. Comparison of QPT images of a slide prepared
for FISH to the fluorescence reference image reveals that QPT
imaging is able to image the sites labeled for FISH imaging.
QPT imaging of an unstained tissue slide and comparison to
immunofluorescence imaging shows that phase imaging can
provide additional structural tissue information.

A next step for the QPT method could be to include a form
of in-plane image processing, targeting to overcome the primary
limitation of the QPT method of having a zero transfer function
at low spatial frequencies, a limitation shared with TIE-based
methods of solving the phase from through-focus image stacks.
This next step should be accompanied with a careful balanc-
ing of signal reconstruction and noise amplification at low
spatial frequencies, following the lines of, e.g., [36,37] for TIE-
based methods. At the same time, sacrifices to computational
speed should not be too large, as speed is a need for real-time
processing of∼cm2 tissue areas scanned in∼1min.
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