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Abstract
Objective. In head-and-neck cancer intensitymodulated proton therapy, adaptive radiotherapy is
currently restricted to offline re-planning,mitigating the effect of slow changes in patient anatomies.
Daily online adaptations can potentially improve dosimetry. Here, a new, fully automated online re-
optimization strategy is presented. In a retrospective study, this online re-optimization approachwas
compared to our trigger-based offline re-planning (offlineTB re-planning) schedule, including
extensive robustness analyses.Approach. The online re-optimizationmethod employs automated
multi-criterial re-optimization, using robust optimizationwith 1mmsetup-robustness settings (in
contrast to 3mm for offlineTB re-planning). Hard planning constraints and spot addition are used to
enforce adequate target coverage, avoid prohibitively largemaximumdoses andminimize organ-at-
risk doses. For 67 repeat-CTs from15 patients, fraction doses of the two strategies were compared for
theCTVs and organs-at-risk. Per repeat-CT, 10.000 fractions with different setup and range
robustness settings were simulated using polynomial chaos expansion for fast and accurate dose
calculations.Main results. For 14/67 repeat-CTs, offlineTB re-planning resulted in<50%probability
ofD98%� 95%of the prescribed dose (Dpres) in one or bothCTVs, which never happenedwith online
re-optimization.With offlineTB re-planning, eight repeat-CTs had zero probability of obtainingD98%

� 95%Dpres for CTV7000, while theminimumprobability with online re-optimizationwas 81%.Risks
of xerostomia and dysphagia grade� II were reduced by 3.5± 1.7 and 3.9± 2.8 percentage point
[mean± SD] (p< 10−5 for both). In online re-optimization, adjustment of spot configuration
followed by spot-intensity re-optimization took 3.4min on average. Significance. The fast online re-
optimization strategy always prevented substantial losses of target coverage caused by day-to-day
anatomical variations, as opposed to the clinical trigger-based offline re-planning schedule. On top of
this, online re-optimization could be performedwith smaller setup robustness settings, contributing
to improved organs-at-risk sparing.

Introduction

Daily online plan adaptation has the potential to reduce dose degradation caused by inter-fraction anatomy and
position variability (Bertholet et al 2020, Qiu et al 2023, Trnkova et al 2023). This is particularly relevant for
intensitymodulated proton therapy (IMPT), where the delivered dose is substantiallymore sensitive to these
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variations. For head-and-neck (H&N) cancer patients, the large setup robustness settings required to achieve the
desired target coverage in the absence of online plan adaptations can result in significantly increased toxicity
risks (van deWater et al 2016,Oud et al 2022). Therefore, there have been continuous efforts to investigate the
potential and feasibility of various online adaptation strategies.

Several studies have highlighted the feasibility of fast online adaptation for IMPT. Table 1 provides an
overview of proposed online adaptive strategies, and dosimetric evaluations of such strategies, explicitly for
H&N IMPT. Approaches can be divided in four categories, depending on the amount of information inherited
from the original plan (Paganetti et al 2021): (1) online re-planning strategies entail the generation of a full new
treatment planwith the original treatment planning pipeline, as introduced byMatter et al (2019), Nenoff et al
(2019). (2)Online re-optimization strategies adapt the original plan to obtain similar or improved plan quality,
without aiming at reproducing the original dose distribution (Botas et al 2018, Bobić et al 2021, 2023, Lalonde
et al 2021). (3)Online dose restoration strategies adapt the original plan to obtain a similar dose distribution for
the daily anatomy (Bernatowicz et al 2018, Borderías-Villarroel et al 2022, 2023,Miyazaki et al 2022). (4)Plan
library strategies do not adapt the original plans. Instead, a pre-treatment generated library of plans is employed
with daily selection of the library plan that bestfits the geometry-of-the-day (Oud et al 2022).

Effective and efficient online adaptation requires a fully automated algorithm that guarantees adequate
target coverage. However, existingmethods can fall short, primarily related to twomain factors. First, adapted
plansmay not have guaranteed robustness against residual errors such as intra-fractionmotion, beam alignment
to the isocenter of the CT, and range errors. Second, the in-roomplan re-optimizationworkflowmay be
inefficient, especially in the presence of large anatomical variations.Manual tweaking of objective weights to
balancemultiple objectives (target coverage,maximumdoses to theCTVs, and organ-at-risk (OAR)doses)may
be required to achieve adequate target coverage. Constraining theminimum robust target coverage of theCTV
during optimization could offer a solution. So far, none of the published online adaptation approaches forH&N
cancer have incorporated a combined approach that integrates robust optimizationwith imposed hard
constraints on target coverage.

Furthermore, accurate and systematic evaluation of the dosimetric impact of online adaptation is crucial for
the decision-making process regarding its introduction in clinical practice, given the considerable resources
associatedwith online procedures. The potential dosimetric benefit is currently unclear because published
assessments do notmeet one or both of the following two requirements, (1)no evaluation of robustness of
adapted plans against unavoidable residual errors. The omission of such analyzes bears the potential of bias in
the conclusions regarding truly delivered doses inCTVs andOARs. Recently, studies employing polynomial
chaos expansion (PCE) on the planning-CThave shown that large numbers of dose distributions under the
influence of potential residual errors can be generated rapidly and used for statistically accurate plan robustness
analysis (Perkó et al 2016, Rojo-Santiago et al 2021, 2023). This has not yet been employed to evaluate plan
adaptation strategies, (2)no comparisonwith current state-of-the-art clinical treatment planning strategy, such
as robust optimizationwith trigger-based offline adaptive re-planning. Bobić et al (2023) compared their online
re-optimization strategy to their clinical offline adaptation strategy.However, robustness evaluationwas not
performed and they exclusively included patients that needed an offline adaptation, not providing a
representative sample of the patient population. InOud et al (2022), our plan library strategywas compared in
compliancewith the two requirements. However, online dose restoration, re-optimization, and re-planning
strategies can potentially further improve dosimetry.

In this study, a fully automated online re-optimization strategy is proposed that guarantees CTV coverage by
using hard planning constraints and by employingmini-max robust optimization (Fredriksson et al 2011).
Setup robustness settings of 1 mmand automatedmulti-criterial optimization are used tomaximally reduce
OARdoses. Spots are added to the original spot distribution in poorly covered areas of theCTV, to ensure a good
spot distributionwhilemaintaining the original spot configuration asmuch as possible. Our novel online re-
optimization strategy was validated forH&Ncancer by dosimetric comparisons to our current clinical treatment
strategy, which entails trigger-based offline robust re-planning. Dosimetric comparisons between the novel
online re-optimization strategy and trigger-based offline re-planning included extensive robustness analyzes on
repeat-CTs using PCE evaluations (Perkó et al 2016, Rojo-Santiago et al 2021).

Methods andmaterials

Patient data
In this retrospective study, CT-scans offifteen primaryH&Ncancer patients treatedwith IMPT atHolland
ProtonTherapyCenter in 2019 and 2020were included. The following inclusion criteria had to bemet:
(1) availability of three ormore repeat-CTs in treatment position, acquired during the fractionated treatment to
verify the need for offline re-planning due to anatomical changes; and (2)Robust CTV coverage constraints
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Table 1.Overview of publications on overview of proposed online adaptive strategies, and dosimetric evaluations of such strategies in head-and-neck IMPT. PCE=Polynomial chaos expansion (see text). RS=Robustness setting (setup
robustness/range robustness). *Only patients with offline plan adaptations, ** only usedwhen target coverage constraints were notmet on repeat-CTs.

Matter et al

(2019)

Nenoff et al

(2019) Botas et al (2018) Bobić et al (2021)
Lalonde et al

(2021) Bob et al (2023) This study

Bernatowicz

et al (2018)

Borderías-

Villarroel et al

(2022)

Miyazaki et al

(2022)

Borderias Villar-

roel et al (2023) Oud et al (2022)

Online adaptation

approach

Re-planning Re-planning Re-optimization Re-optimization Re-optimization Re-optimization Re-optimization -Dose

restoration

Dose

restoration

Dose restoration Combined

approach:

dose restora-

tion and re-

optimization

Plan library

- Re-

optimization

PTVmargins or

RS for

adaptation

PTV - PTV5 mm None None None PTV1 mm Robust

1 mm/3%

PTV3–4 mm Robust

3 mm/3%

Robust 3 mm/

3.5% (inher-

ited nominal

dose on plan-

ning-CT)

Robust

4 mm/3%

Robust 1–5 mm/3%

- PTV1 mm+
range-specific

distalmargin

of 3%

Spot adjustment

strategy

New spot

configuration

New spot

configuration

Position, energy None None None Energy, spot

addition

Energy Energy New spot

configuration

New spot

configuration

n.a.

Contours used for

online

adaptation

Manual Manual Deformably

propagated

Deformably

propagated

Deformably

propagated

Deformably

propagated

Manual Rigidly

propagated

Rigidly

propagated

Rigidly propa-

gated and

manual

Rigidly propa-

gated and

deformably

propagated

Manual (CTVonly)

Number ofH&N

patients

1 5 10 10 10 8* 15 2 10 2 10 15

Number of repeat-

images/patient
1 1 5–7 31–35 31–35 26–35 3–6 1 4–6 1 35** 3–6

Type of repeat-

images

n.a. SimulatedCTs Scatter-cor-

rectedCBCT

Scatter-cor-

rectedCBCT

Scatter-cor-

rectedCBCT

Scatter- cor-

rectedCBCT

CT CT CT CT Corrected-CBCT CT

Evaluation: plan-

ning strategy

that online

adaptationwas

compared to

(adaptive strat-

egy, RS or PTV)

Full plan-

ning, PTV

-Non adaptive,

5 mmPTV

Non adaptive,

nomargin or

robustness

-Non adaptive,

nomargin or

robustness

-Non adaptive,

robust

3 mm/0%

Offline adaptive,

4 mmPTV

Trigger-based

offline adap-

tive, robust

3 mm/3%

Non adaptive,

3–4 mm

PTV

-Non adap-

tive, robust

3 mm/3%

-Non adaptive,

robust

3 mm/3.5%

Non adaptive,

robust

4 mm/3%

-Non adaptive, robust

1–5 mm/3%

-Non adaptive

1 mmPTV+
range-specific

distalmargin

of 3%

-Weekly online

re-optim-

ization, no

margin or

robustness

-Non adaptive,

anatomical

robust

3 mm/0%

- Full re-plan-

ning,

robust

3 mm/3%

-Full re-planning,

robust

3 mm/3.5%

-Trigger-based offline

adaptive, robust

3 mm/3%

3
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Table 1. (Continued.)

Matter et al

(2019)

Nenoff et al

(2019) Botas et al (2018) Bobić et al (2021)
Lalonde et al

(2021) Bob et al (2023) This study

Bernatowicz

et al (2018)

Borderías-

Villarroel et al

(2022)

Miyazaki et al

(2022)

Borderias Villar-

roel et al (2023) Oud et al (2022)

Evaluation: con-

touringmethod

on repeat-CTs

Manual Manual Deformably

propagated

Deformably

propagated

Deformably

propagated

Deformably

propagated

Manual Rigidly

propagated

Manual Manual Deformably pro-

pagated and

manual

Manual

Evaluation:

robustness

analysis

PTV Simulated

treatments

Not per-

formed

(CTV)

Not per-

formed (CTV)

Not per-

formed

(CTV)

Not per-

formed

(CTV)

PCE Not per-

formed

(CTV)

1 mm/3%

(worst-
case), per-

fraction

3 mm/3.5%

(DVH-

bandwidth)

Not per-

formed (CTV)

Simulated treatments

Evaluation: per-

fraction or

accumulated

dose

n.a. Accumulated Per-fraction and

accumulated

Per-fraction and

accumulated

Per-fraction and

accumulated

Per-fraction and

accumulated

Per-fraction Per-fraction Per-fraction Per-fraction Per-fraction and

accumulated

Accumulated

Optimization

times (excl.

dose

computation)

2.3 s — 61.7 s average 720 smedian

(Paganetti et al

2021)

Approximately

360 s

— 206 s average [20–80] s 672 smedian 372 s average [780–1020] s —
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could bemet on the planning-CTwithout exceeding constraints on serial OARs due to proximity of the CTV.
Prescribed doses (Dpres)were 70GyRBE to the high-dose CTV, including theGTV and positive lymphnodes
(CTV7000) and 54.25GyRBE to the elective areas (CTV5425) in 35 fractions. A constant relative biological
effectiveness (RBE) of 1.1 was used in planning. For each patient, 3–6 repeat-CTswere available. The acquisition
of repeat-CTswas part of the standard protocol, and the frequency per patient wasmostly based on the
availability of personnel andCT scanner.

CTV contours were propagated from the planning-CT to the corresponding repeat-CTs. TheCTV7000 and
the part of the CTV5425 thatwas within a 5 mmmargin to theCTV7000were rigidly propagated from the
planning-CT to the repeat-CTs andweremanually adjusted if contours were outside the external patient
contour or inside bone or if large discrepancies occurred (e.g. the hyoid bonemoved resulting in a different
position of theGTV). The remainder of theCTV5425was deformably propagated to the repeat-CTs and
manually adjusted in case of noticeablemismatches with the repeat-CTs. The contourswere checked for
consistency by expert clinicians. Contours of theOARswere deformably propagated to the repeat-CTs, and
manually adjusted.

Online re-optimization
The novel online re-optimization strategy consisted of daily adaptation of the initial treatment plan using
contoured repeat-CTs. The initial treatment planwas obtained through fullmulti-criterial optimization (see
below). The re-optimization algorithmwas embedded in our in-house system for automated treatment
planning (Erasmus-iCycle), and used aweighted-sum cost-function and hard constraints for plan generation.
Weights in the appliedweighted-sum cost-functionwere Lagrange parameters obtained from the initial
treatment plan (Breedveld et al 2009). Suchweight extractions could be done automatically, prior to the first
treatment fraction. Online re-optimization for repeat-CTs then consisted offive steps: (1) restoration of spot
Bragg peak positions to their intended positions by adjusting their energies to account for changes inwater-
equivalent-path-lengths (WEPL) (Jagt et al 2017). Restored energies were interpolated to the same energy grid as
used for initial treatment planning, (2) the online re-optimization strategy employs a novelmethod to improve
the established original spot distribution, inwhich new spots were added specifically to target areas that were not
covered by spots after step 1 due to anatomical changes. Hereto, a dense candidate spot distributionwith spots
originating from all beamdirections was first placed over theCTV+ 5 mmexpansion, followed by an iterative
selection of 2000 of these spots with a Bragg peak location at 8 mmormore from restored original spots, (3)
computation of dose-depositionmatrices for the repeat-CT anatomy for all spots (restored original and added),
(4) constrained robust optimization of the intensities of all spots using theweighted-sum cost-function. The
same robustness settings as the initial planwere used (1 mm/3% setup/range robustness settings in 29
scenarios, see below). The constraints ensured appropriate coverage of the twoCTVs, (5) spots that had an
intensity below theminimum requiredmonitor units were removed to ensure deliverability of the
treatment plan.

Trigger-based offline re-planning schedule
Our current clinical adaptation strategy consists of trigger-based offline re-planning (offlineTB re-planning). For
the simulation of this strategy, treatment planswere generatedwith fullmulti-criterial optimization (see below),
and the clinical offline re-planning schedule was followed. In our clinical workflow, triggering offline
adaptations is guided by dose assessments on repeat-CTs and the evaluation of sequential daily CBCTs. In this
dataset, nine plan offline adaptationswere performed for seven patients in total. Four of these plan adaptations
were performed on the last repeat-CT. In the simulations, offline adapted planswere used from the next repeat-
CTonwards. Adaptations based on the last repeat-CTwere therefore not taken into account in the evaluations.
This resulted in a total of 5 plan adaptations for 5 patients that were taken into account. In supplementary data A,
a schematic representation of the treatment planning schedule in the online re-optimization and offlineTB re-
planning strategies is shown.

Fullmulti-criterial optimization of treatment plans
For the online re-optimization strategy, initial treatment plans for the planning-CTswere generatedwith full
multi-objective optimization. For the offlineTB re-planning strategy, all treatment plans on the planning-CT and
the 5 plan adaptationswere generatedwith this approach.Wish-list driven fully-automated softwarewas used
for generation of the treatment plans: Erasmus-iCycle (Breedveld et al 2012, van deWater et al 2013). To
simultaneously also ensure plan robustness, these optimizations weremini-max scenario-based (Fredriksson
et al 2011, Liu et al 2013). Smaller setup robustness settings were applied for treatment plans used in the online
re-optimization strategy. A resampling approachwas used for spot selection (van deWater et al 2013), where
candidate spots are iteratively selected froma dense grid and added to the optimization problem. After each
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iteration of optimization, non-contributing spots are removed from the optimization problem.Details on the
appliedwish-list, sequentialminimization of prioritized objectives subject to hard constraints, and treatment-
site specific configuration of the employed treatment planning system can be found in Breedveld et al (2012), van
deWater et al (2013), Heijmen et al (2018). Details on the specific configuration of automated plan generation in
this study are described in the supplementary data ofOud et al (2022).

During optimization, the nominal scenario and 28 uncertainty scenarios were used to account for variations
in patient setup and uncertainties in proton ranges (Korevaar et al 2019). For offlineTB re-planning, 3 mm/3%
robustness settings (setup robustness/range robustness)were used, while 1 mm/3%was used for online re-
optimization. The selected setup robustness setting of 3 mm for offlineTB re-planning is the same as currently
used in our clinic. The 1 mmsetup robustness setting for online re-optimizationwas based on literature (Nenoff
et al 2021, Bobić et al 2023). Both for CTV7000 and for CTV5425, generated treatment plans had tomeet a
coverage constraint:V95%> 98% in the voxelwiseminimumdose distribution (Korevaar et al 2019). Note that
voxelwise dose distributionswere only used in the planning phase, not for plan evaluations and comparisons
(below).

Evaluation and comparison of online re-optimization and offlineTB re-planning
Dosimetric evaluations and comparisons of the two investigated adaptive strategies were performed for the
available repeat-CTs. The impact of inter-fraction anatomical changes was incorporated through repeat-CTs.
While adaptive approaches canmitigate anatomical changes, they cannot compensate for residual errors: errors
inmatching the gantry to the isocenter of the CT, uncertainties in couch positioning, registration errors with the
MR that was used for target delineation, registration errors with theCT, intra-fractionmotion and proton range
uncertainties (supplementary data B). On the other hand, dosimetric variations caused by these uncertainties
will in reality occur and need to be accounted for in evaluations and comparisons of optimized/predicted doses.

PCE (Perkó et al 2016, Rojo-Santiago et al 2021)was used for extensive evaluation of robustness of generated
dose distributions against residual uncertainties. The rationale to use PCE comes from its ability to accurately
approximate 3Ddose distributions for all (i.e. thousands of) uncertainty scenarios of a treatment plan in amatter
of seconds, allowing statistical robustness evaluation instead of using the commonnominal or 29 scenarios.
Instead of executing forward dose computations to obtain the 3Ddose distribution for all the scenarios, PCE
constructs and employs a computationalmodel to predict dose distributions. Thismodel is amulti-dimensional
polynomial function of the stochastic input variables (geometrical errors and proton range-errors in this study).
Expansion coefficients of the function are obtained by linear regression, see Perkó et al (2016), Rojo-Santiago
et al (2021) for details. Our PCE approach is implemented inMatlab (version 2021b) andwas previously
validated for the employedASTROIDdose engine (Kooy et al 2010, Perkó et al 2016, van der Voort et al 2016). In
this study, the expansion coefficients were obtained based on the input of 208 dose distributions computed in
fixed uncertainty scenarios. Once these computations are completed, computing the expansion coefficients took
around 2 s, and the generation of 10.000 scenario dose distributions for a structure took around 2 s. Time
required for assessment of theDVHs highly depends on the employed settings and organ size. In our case, DVH
computation for the twoCTVs took around 30 min for an average patient (analysis performed on an Intel®

Xeon®Gold 6248). PCEmodels were constructed for each repeat-CT, for both online re-optimization and
offlineTB re-planning strategy.

Both for online re-optimization and offlineTB re-planning, PCEwas used to calculate for each repeat-CT
10.000 dose distributions, each for a randomly selected total residual setup error for each of the three principal
directions, and a randomly selected range error for offlineTB re-planning and online re-optimization. These
errors were sampled fromGaussian distributions describing total residual geometric uncertainties. The standard
deviations (SD) of these Gaussian distributions were derived fromquality assurance (QA) and treatment data at
Holland ProtonTherapyCenter by quadratically adding SDs of the various residual errors involved. This
resulted in total SDs of 1.18, 1.16, and 1.22 mm for the setup errors in lateral, longitudinal, and vertical
directions, respectively. A description of the residual errors and the employed SD can be found in supplementary
data B. TheGaussian distribution of range errors was assumed to have a SDof 1.5% in correspondence toTaasti
et al (2018).

For each repeat-CT, the obtained dosimetric values weremultiplied by 35 to arrive at values for full
treatments to improve interpretability. The probabilities for adequate CTV coverage and for exceeding preferred
maximumdoses in a fractionwere establishedwith the 10.000 PCE dose distributions. TheD98%was evaluated
as it is an ICRU-recommendedmetric that is numericallymore robust than pointminimumdoses. Reported
OARmean doses were obtained by averaging achievedmean doses in the 10.000 PCE dose distributions. For
each repeat-CT,NTCPswere calculated using theseOARdoses. The risks of xerostomia and dysphagia grade�
II and� III were evaluated.We usedNTCPmodels described in theDutchNational Indication protocol
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(National Association for Radiotherapy in theNetherlands 2019), whichwere constructed using the data of 750
patients usingmultivariable regression analysis andwere validated on an independent dataset.

Online re-optimization timeswere evaluated on an Intel® Xeon®Gold 6248, ignoring dose computation and
contouring times.

Statistical significance of differences between online re-optimization and offlineTB re-planningwas tested
using pairedWilcoxon signed-rank tests for paired data, andWilcoxon rank sum tests for unpaired
data (α< 0.05).

Results

CTV coverage for example repeat-CT
Figures 1 and 2 illustrate results for an example repeat-CT. Figure 1 presents the 90%-worst-case obtainedwith
online re-optimization for CTV5425. This particular repeat-CTwas selected because it shows the efficacy of
online re-optimization in areas of large anatomical variations (top panels): underdosage in theCTV5425 with
offlineTB re-planning, while coveragewasmaintainedwith online re-optimization. The example also shows the
ability of online re-optimization tomaintain good conformity, which is reducedwith offlineTB re-planning
(bottompanels).

Figures 2(a) and (b) show theD98% histogram and the corresponding cumulativeD98% histogram for the
example repeat-CT infigure 1, derived from the 10.000 fractions obtainedwith the PCE simulations.With
offlineTB re-planning, the probabilities of obtaining at least 95%Dpres in CTV5425 andCTV7000 were 50% and
98% (points A1 andA2 infigure 2(b))while for online re-optimization theywere 88% and 83% (points A3, A4 in
figure 2(b)).

CTVcoverage in population of repeat-CTs
Figure 3 shows for each repeat-CT for the two adaptive strategies separately, the percentage of the 10.000 PCE
dose distributionswith aD98% of at least 95%Dpres, both for CTV5425 andCTV7000.While for themajority of
repeat-CTs the chances of reachingD98%� 95%Dpres were higherwith offlineTB re-planning, for a large
minority of repeat-CTs, the probability for adequate coveragewas zero or close to zerowith offlineTB re-
planning because of large changes in patient geometry, while online re-optimizationwas able to guarantee high
coverage probabilities. For 14/67 repeat-CTs, offlineTB re-planning resulted in<50%probability ofD98%�
95%Dpres in one or bothCTVs, which never happenedwith online re-optimization.With offlineTB re-planning,

Figure 1. Slices of an example repeat-CT (#38 in figure 3), showing the dose distribution corresponding to the scenario having the
90%-worst-caseD98% among the 10 000 simulated fractions for the CTV5425 in the trigger-based offline re-planning (offlineTB re-
planning) strategy. The arrow in the upper left panel points at an underdose inCTV5425 with the offlineTB re-planning strategy, while
proper dose is deliveredwith online re-optimization (upper right). Arrows in the lower panels point at toowide high dose delivery
aroundCTV7000 with offlineTB re-planning, which does not happenwith online re-optimization.
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eight repeat-CTs had zero coverage probability for CTV7000, while theminimum repeat-CT coverage
probability with online re-optimizationwas 81%. For online re-optimization, themean percentages with [10th,
90th percentile]were 93.6% [84.7%, 91.1%] for CTV5425 and 87.9% [86.0%, 98.2%] for CTV7000. For offlineTB
re-planning, this was 87.7% [46.6%, 100%] and 83.0% [0, 99.9%], for CTV5425 andCTV7000. Comparing the
10th and 90th percentiles of the distributions for offlineTB re-planning and online re-optimization, target
coverage ismore consistent across the repeat-CTs for online re-optimization.With online re-optimization,
probabilities for adequate target coverage in repeat-CTswere highly similar to those in the corresponding
planning-CT plans (supplementary data C), meaning that the intended target coverage from the planning-CTs
wasmaintained for repeat-CTs. This was certainly not achievedwith offlineTB re-planning, as in a largeminority
the probability was extremely low.

Figure 4(a) shows cumulativeD98% histograms for CTV5425 andCTV7000 for the 95th, 90th, 85th, and 5th
percentiles of the population of 67 repeat-CTs. For bothCTVs, comparison of the 95th percentile curves points
to enhanced rates of adequate coveragewith online re-optimization compared to offlineTB re-planning.
Comparisons of the 5th percentile curves’ intersections with 90%probability ofD98% above dose (B1with B3
andB2with B4) infigure 4(a) further point at clear coverage advantages for online re-optimization, as 95%of
the repeat-CTs had�90% chance of receiving aD98% of�49.4 Gy in theCTV5425 and�64.0 Gy in theCTV7000

for offlineTB re-planning, while this was�51.1 Gy and�66.1 Gy for online re-optimization. The 95%Dpres

intersections with the 5th percentile also highlight the advantage of online re-optimization, showing that for
95%of the patient population online re-optimization ensures aminimumCTV5425 coverage probability as high

Figure 2. For the example repeat-CT infigure 1, histograms showing distributions ofD98% values in the 10.000 polynomial chaos
expansion (PCE) dose distributions (a) and the correspondingD98%-histogram. (b)Points A1–4 are discussed in the text.

Figure 3. For each of the 67 repeat-CT, the percentage of the 10.000 PCEdose distributionswithD98%> 95%of the prescribed dose
for the two investigated adaptive strategies, for CTV7000 (top) andCTV5425 (bottom). Repeat-CTswere sorted based onCTV7000D98%

in the trigger-based offline adaptive (offlineTB re-planning) strategy.

8

Phys.Med. Biol. 69 (2024) 075007 MOud et al



as 84%,while this drops to 31%with offlineTB re-planning (points C1 andC3), and for CTV7000 online re-
optimization ensures aminimumcoverage probability of 84%versus 0%with offlineTB re-planning (points C2
andC4). Furthermore, comparisons of the difference between the 5th percentile curves and the 95th percentile
curves between the two adaptive strategies infigure 4(a) show enhanced consistency in target coverage across the
patient populationwith online re-optimization.

Figure 4(b) displays cumulative populationD2%histograms for CTV7000 for the two strategies with
corresponding 5th and 95th percentile curves. The 95th percentile curves (right dashed curves) show a slight
disadvantage for online re-optimization: for�95%of the repeat-CTs the probability thatD2% exceeded 74.9 Gy
(107%Dpres)was only limited at�3%,while this probability was zero for offlineTB re-planning (see points D1
andD2 infigure 4(b)).

OARs
Differences between online re-optimization and offlineTB re-planning inOARmean doses are shown in
figure 5(a). Online re-optimizationwas superior for all dose differences (p< 105 for all). The highest reduction
was observed for themiddle constrictormuscle (−5.0 Gy on average, ranging from−23.8 to 3.8 Gy). Figure 5(b)
shows towhat extent the superiority of online re-optimization inOARdoses impactsNTCPs. The risk of
xerostomia and dysphagia grade� II could be reduced significantly by 3.5± 1.7 percentage point and 3.9± 2.8
percentage point [mean± SD] (p< 105 for both). The risk of xerostomia and dysphagia grade� III could be
reduced by 1.1± 0.6 percentage point and 1.0± 1.0 percentage point (p< 105 for both).

Optimization times
In the online re-optimization strategy, restoration of the plannedWEPL took 2.5± 0.6 s [mean± SD] per
repeat-CT. Spot addition took 14.8± 2.8 s. Re-optimization timeswere 189± 31 s.

Discussion

In this study, we have proposed a novel approach for online adaptive dose re-optimization in IMPT and
evaluated this for patients withH&Ncancer. To enforce adequate target coverage andminimizeOARdose, the
online re-optimizationmethod employs automated constraint-basedmulti-criterial re-optimization,mini-max
robust optimizationwith a 1 mmsetup-robustness setting, spot restoration and spot addition. Dose
distributions obtainedwith online re-optimizationwere benchmarked against our current offline adaptive re-
planning protocol. To obtain an accurate and relevant comparison of the two strategies, a representative patient
population and realistic robustness settings during optimizationwere used, and a comprehensive statistical
analysis of the robustness against residual errors was performed.

Three important advantages of the online re-optimization strategy compared to offlineTB re-planningwere
identified:first, with the novel online re-optimization strategy, the intended planning-CT target coveragewas
maintained in the repeat-CTs. Second, online re-optimization resulted in full avoidance of very low probabilities
for adequate target coverage, while with offlineTB re-planning in 21%of the analyzed repeat-CTs the chance of

Figure 4. For the population of 67 repeat-CTs,D98%- (a) andD2%- (b) cumulative histograms obtained from the 10.000 PCEdose
distributions for each of the repeat-CT scans. For each of theCTVs, the construction of the presented cumulative histograms started
by establishing the cumulative histogram for each repeat-CT separately. Next, the 95%, 90%, 85%, and 5%of these 67 cumulative
histogramswere taken and displayed. Points B1–4, C1–4 andD1–2 are discussed in the text.
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adequate target coveragewas<50% in one or bothCTVs. Third, online re-optimization significantly reduced
OARdoses, which resulted in reducedNTCPs.On the other hand, two dosimetric advantages of offlineTB re-
planningwere found:first, near-maximumdoses in theCTV7000were slightly advantageouswith offlineTB re-
planning. Second, apart from very low coverage probabilities with offlineTB re-planning for some repeat-CTs
(above), there is also a substantial fraction of repeat-CTswith coverage probabilities approaching 100% (48%of
repeat-CTswith 100%CTV7000 coverage probability, see figure 3). However, very high coverage probabilities in
the latter are a result of the population-based setup robustness settings determined by the near-worst
performing patients. The overall increasedNTCPswith offlineTB re-planning are likely (partly) related to these
high coverages.With online re-optimization such higher-than-requested coverage probabilities were avoided:
theyweremore in linewith intended coverage probabilities in the corresponding planning-CT plans.

For online re-optimization, obtained probabilities for adequate target coverage (D98%>95%Dpres) on the
repeat-CTswere 87.9% [86.0%, 98.2%] (mean [10th, 90th percentile]) for CTV7000 and 93.6% [84.7%,91.1%]
for CTV5425. Further research, including dose accumulation studies, is needed to establish the optimal choice for
themetrics used to assess adequate target coverage, as well as for the optimal probabilities of obtaining adequate
target coverage.With the proposed online re-optimization approach, steering theD98% is possible with the
applied setup robustness settings in planning-CT plan generations (1 mm in the current study, as proposed in
literature).

Guaranteeing adequate target coveragewithout prohibitively highmaximumdoses requires an appropriate
spot distribution. An improved spot distribution in the daily situation can be obtained by complete replacement
of the spot configuration (Borderias Villarroel et al 2023), but generating this distribution can be time-
consuming and large changes in spot configurations are undesirable for onlineQApurposes. Previous studies
found that restoration could be performed by keeping the original spot distribution (Bobić et al 2021, Lalonde
et al 2021) or only changing the energies of the spots (Botas et al 2018). However, our findingswere that spot
additionwas necessary to achieve dose distributionswith acceptable target coverages and acceptablemaximum
doses in targets and surroundings. This is related to the imposed dosimetric constraints on target coverage in our
strategy. Contrary to ourfindings, imposed constraints on target coverage in Lalonde et al (2021)without the use
of spot addition resulted in acceptable near-maximumdoses in the high-dose CTV. Possibly, this is related to
their larger number of spots in original treatment plans, the omission of robust optimization and evaluation, or a
different degree of variability in patient anatomies. Although the near-maximumdoses with our online re-
optimization strategy were still slightly higher compared to offlineTB re-planning, itmay not be clinically
relevant to further improve these.

In our comparisons, the clinical trigger for offline re-planningwas based on plans generatedwith a 5 mm
setup robustness settingwhile we used 3 mm setup robustness settings as this complies with current standard
clinical care ofH&Nproton treatment in theNetherlands. Thismay have contributed to a relatively lower
coverage in the trigger-based offline adaptive approach.

Figure 5.Differences between online re-optimization and trigger-based offline adaptive planning (offlineTB re-planning) in (top)
OARmean doses and (bottom) resultingNTCPs. Box plots showdistributions for the 67 evaluated repeat-CTs, every dot indicates a
repeat-CT.Whiskers extend to the 10th and 90th percentiles of the distributions. All differences inOARmean doses and inNTCPs
were statistically significant with p< 105.
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For both strategies, all treatment planswere generatedwith Erasmus-iCycle, intentionally omitting the use
of the clinical treatment plan. The rationale behind this decisionwas to allow for fully-automated plan
generation for both adaptive strategies and to keep optimization differences between the strategiesminimal, e.g.
using the same dose calculation algorithm, the same implementation of cost functions, etc. Employing
treatment plan generationwith identical optimization settings (except the setup robustness setting) ensured a
systematic and consistent dosimetric evaluation. Erasmus-iCycle generates treatment planswith comparable-
to-better quality compared to clinical treatment plans, as shown byHuiskes et al (2023).

Our comparison of online re-optimization and offlineTB re-planningwas based on 3–6 repeat-CTs per
patient, while other studies (table 1) performed their analyzes of online re-optimization using correctedCBCTs.
A limitation of our studywas that evaluatingwith a limited number of repeat-CTsmay have led to the possibility
that offline adaptationswere initiated earlier in clinical practice, potentially resulting in an overrepresentation of
the number of fractions with inadequate target coverage in this study.On the other hand, corrected CBCTs
provide daily information on the anatomy.However,HU in correctedCBCTs are less accurate compared to
repeat-CTs (Park et al 2015, Lalonde et al 2020, Thummerer et al 2020). Therefore, using corrected CBCT also
introduces potential bias because online re-optimizationwill compensate for inaccuracies inHU in contrast to
offline re-planning.

This study only compared single-fraction delivered doses. For interpretability, fraction doses were
multiplied by the number of fractions during the complete treatment. Analyzes of accumulated dosewould
provide insight in the total delivered dose during the treatment. Currently, single-fraction dosimetric
constraints in adaptive treatments are not available. Accumulated doses, in combinationwith comparisons to
current clinically applied strategies, could potentially aid in determining whether the obtained coveragewith
online re-optimization is adequate. Investigation of accumulated dosewas hampered in this study bymanual
contour adjustments that invalidated deformable vector fields obtained fromHUmatching.

The contours that were used on the repeat-CTswere obtained by automatic propagation of planning-CT
contours, followed bymanual correction in case of observed inaccuracies. Editing of the automatically
propagated contours was performed to enhance the accuracy of the performed dosimetric analyzes for the
comparison of online re-optimizationwith offlineTB re-planning. In an online setting, available time for editing
may be limited. Further enhancement of image quality and contour propagation algorithmsmay limit the time
needed for editing. Possibly, the dosimetric impact of using non-edited orminimally-edited contours for online
adaptive IMPTobtained frompropagation or AI-based solutions is small and only CTV contoursmay require
manual adjustments (Guo et al 2021, Smolders et al 2023).

In this study, the impact of inter and intra-observer variations in contouring on planning and repeat-CTs
was ignored during simulations. Inter and intra-observer variations in target volume delineations are one of the
largest contributors to variations in dose delivery (Barbara Segedin 2016, Apolle et al 2019, van der Veen et al
2019,Nash et al 2022). Furthermore, contouring on repeat-CTswithoutMRI also introduces extra uncertainty
as the target is not always well visible.

Implementation of this online re-optimization strategy requires not only fast re-optimization, high quality
imaging, and appropriate contours, but also fast onlineQAprocedures, which are currently unavailable in
clinical settings. However, recent advancements in independent dose computations and log-file-basedQA
strategies have beenmade (Li et al 2013,Meier et al 2015,Meijers et al 2020, Burlacu et al 2023). Clinical
application of online adaptive approaches also requires fast dose computation algorithms. Fortunately,
algorithms that provide fast dose computations are becoming available (Pastor-Serrano and Perkó 2022).

Conclusion

In this study, we introduced a fast and fully automated online robust re-optimization strategy for daily
adaptation of initial treatment plans to copewith day-to-day anatomical variations forH&N IMPT.Hard
constraints and spot additionwere used tomaintain adequate CTVdose. Based on a comprehensive robustness
evaluation, we conclude that substantial loss of target coverage, as observedwith our current clinical trigger-
based offline adaptive (offlineTB re-planning) strategy, could be fully avoidedwith the online re-optimization
strategy, while using small setup robustness settings. This resulted in improvedOARdoses and reducedNTCPs
compared to offlineTB re-planning.
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