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Abstract

Objective. In head-and-neck cancer intensity modulated proton therapy, adaptive radiotherapy is
currently restricted to offline re-planning, mitigating the effect of slow changes in patient anatomies.
Daily online adaptations can potentially improve dosimetry. Here, a new, fully automated online re-
optimization strategy is presented. In a retrospective study, this online re-optimization approach was
compared to our trigger-based offline re-planning (offlinery re-planning) schedule, including
extensive robustness analyses. Approach. The online re-optimization method employs automated
multi-criterial re-optimization, using robust optimization with 1 mm setup-robustness settings (in
contrast to 3 mm for offlinerg re-planning). Hard planning constraints and spot addition are used to
enforce adequate target coverage, avoid prohibitively large maximum doses and minimize organ-at-
risk doses. For 67 repeat-CT's from 15 patients, fraction doses of the two strategies were compared for
the CTVs and organs-at-risk. Per repeat-CT, 10.000 fractions with different setup and range
robustness settings were simulated using polynomial chaos expansion for fast and accurate dose
calculations. Main results. For 14/67 repeat-CTs, offlinerg re-planning resulted in <50% probability
of Dogo,, > 95% of the prescribed dose (Dp,.;) in one or both CTVs, which never happened with online
re-optimization. With offlinery re-planning, eight repeat-CTs had zero probability of obtaining Dgga,
2 95%Dpyes for CTV 009, while the minimum probability with online re-optimization was 81%. Risks
of xerostomia and dysphagia grade > Il were reduced by 3.5 & 1.7 and 3.9 = 2.8 percentage point
[mean + SD] (p < 10~ for both). In online re-optimization, adjustment of spot configuration
followed by spot-intensity re-optimization took 3.4 min on average. Significance. The fast online re-
optimization strategy always prevented substantial losses of target coverage caused by day-to-day
anatomical variations, as opposed to the clinical trigger-based offline re-planning schedule. On top of
this, online re-optimization could be performed with smaller setup robustness settings, contributing
to improved organs-at-risk sparing.

Introduction

Daily online plan adaptation has the potential to reduce dose degradation caused by inter-fraction anatomy and
position variability (Bertholet et al 2020, Qiu et al 2023, Trnkova et al 2023). This is particularly relevant for
intensity modulated proton therapy (IMPT), where the delivered dose is substantially more sensitive to these
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variations. For head-and-neck (H&N) cancer patients, the large setup robustness settings required to achieve the
desired target coverage in the absence of online plan adaptations can result in significantly increased toxicity
risks (van de Water et al 2016, Oud et al 2022). Therefore, there have been continuous efforts to investigate the
potential and feasibility of various online adaptation strategies.

Several studies have highlighted the feasibility of fast online adaptation for IMPT. Table 1 provides an
overview of proposed online adaptive strategies, and dosimetric evaluations of such strategies, explicitly for
H&N IMPT. Approaches can be divided in four categories, depending on the amount of information inherited
from the original plan (Paganetti et al 2021): (1) online re-planning strategies entail the generation of a full new
treatment plan with the original treatment planning pipeline, as introduced by Matter et al (2019), Nenoff et al
(2019). (2) Online re-optimization strategies adapt the original plan to obtain similar or improved plan quality,
without aiming at reproducing the original dose distribution (Botas et al 2018, Bobi€ et al 2021, 2023, Lalonde
etal2021). (3) Online dose restoration strategies adapt the original plan to obtain a similar dose distribution for
the daily anatomy (Bernatowicz et al 2018, Borderias-Villarroel et al 2022, 2023, Miyazaki et al 2022). (4) Plan
library strategies do not adapt the original plans. Instead, a pre-treatment generated library of plans is employed
with daily selection of the library plan that best fits the geometry-of-the-day (Oud et al 2022).

Effective and efficient online adaptation requires a fully automated algorithm that guarantees adequate
target coverage. However, existing methods can fall short, primarily related to two main factors. First, adapted
plans may not have guaranteed robustness against residual errors such as intra-fraction motion, beam alignment
to the isocenter of the CT, and range errors. Second, the in-room plan re-optimization workflow may be
inefficient, especially in the presence of large anatomical variations. Manual tweaking of objective weights to
balance multiple objectives (target coverage, maximum doses to the CTVs, and organ-at-risk (OAR) doses) may
be required to achieve adequate target coverage. Constraining the minimum robust target coverage of the CTV
during optimization could offer a solution. So far, none of the published online adaptation approaches for H&N
cancer have incorporated a combined approach that integrates robust optimization with imposed hard
constraints on target coverage.

Furthermore, accurate and systematic evaluation of the dosimetric impact of online adaptation is crucial for
the decision-making process regarding its introduction in clinical practice, given the considerable resources
associated with online procedures. The potential dosimetric benefit is currently unclear because published
assessments do not meet one or both of the following two requirements, (1) no evaluation of robustness of
adapted plans against unavoidable residual errors. The omission of such analyzes bears the potential of bias in
the conclusions regarding truly delivered doses in CTVs and OARs. Recently, studies employing polynomial
chaos expansion (PCE) on the planning-CT have shown that large numbers of dose distributions under the
influence of potential residual errors can be generated rapidly and used for statistically accurate plan robustness
analysis (Perké et al 2016, Rojo-Santiago et al 2021, 2023). This has not yet been employed to evaluate plan
adaptation strategies, (2) no comparison with current state-of-the-art clinical treatment planning strategy, such
as robust optimization with trigger-based offline adaptive re-planning. Bobi¢ et al (2023) compared their online
re-optimization strategy to their clinical offline adaptation strategy. However, robustness evaluation was not
performed and they exclusively included patients that needed an offline adaptation, not providing a
representative sample of the patient population. In Oud et al (2022), our plan library strategy was compared in
compliance with the two requirements. However, online dose restoration, re-optimization, and re-planning
strategies can potentially further improve dosimetry.

In this study, a fully automated online re-optimization strategy is proposed that guarantees CTV coverage by
using hard planning constraints and by employing mini-max robust optimization (Fredriksson eral 2011).
Setup robustness settings of 1 mm and automated multi-criterial optimization are used to maximally reduce
OAR doses. Spots are added to the original spot distribution in poorly covered areas of the CTV, to ensure a good
spot distribution while maintaining the original spot configuration as much as possible. Our novel online re-
optimization strategy was validated for H&N cancer by dosimetric comparisons to our current clinical treatment
strategy, which entails trigger-based offline robust re-planning. Dosimetric comparisons between the novel
online re-optimization strategy and trigger-based offline re-planning included extensive robustness analyzes on
repeat-CTs using PCE evaluations (Perké et al 2016, Rojo-Santiago et al 2021).

Methods and materials

Patient data

In this retrospective study, CT-scans of fifteen primary H&N cancer patients treated with IMPT at Holland
Proton Therapy Center in 2019 and 2020 were included. The following inclusion criteria had to be met:

(1) availability of three or more repeat-CTs in treatment position, acquired during the fractionated treatment to
verify the need for offline re-planning due to anatomical changes; and (2) Robust CTV coverage constraints
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Table 1. Overview of publications on overview of proposed online adaptive strategies, and dosimetric evaluations of such strategies in head-and-neck IMPT. PCE = Polynomial chaos expansion (see text). RS = Robustness setting (setup
robustness/range robustness). “ Only patients with offline plan adaptations, ** only used when target coverage constraints were not met on repeat-CTs.

Borderias-
Matter et al Nenoftetal Lalonde et al Bernatowicz Villarroel et al Miyazaki et al Borderias Villar-
(2019) (2019) Botas eral (2018) Bobiéetal (2021) (2021) Bob et al (2023) This study etal (2018) (2022) (2022) roel etal (2023) Oudetal (2022
Online adaptation Re-planning Re-planning Re-optimization Re-optimization Re-optimization Re-optimization Re-optimization -Dose Dose Dose restoration Combined Plan library
approach restoration restoration approach:
dose restora-
tionand re-
optimization
- Re-
optimization
PTV margins or PTV -PTV5 mm None None None PTV1 mm Robust PTV3—4 mm Robust Robust 3 mm/ Robust Robust 1-5 mm/3%
RS for 1 mm/3% 3 mm/3% 3.5% (inher- 4 mm/3%
adaptation ited nominal
dose on plan-
ning-CT)
-PTVI mm+
range-specific
distal margin
of 3%
Spot adjustment New spot New spot Position, energy None None None Energy, spot Energy Energy New spot New spot n.a.
strategy configuration configuration addition configuration configuration
Contours used for Manual Manual Deformably Deformably Deformably Deformably Manual Rigidly Rigidly Rigidly propa- Rigidly propa- Manual (CTV only)
online propagated propagated propagated propagated propagated propagated gated and gated and
adaptation manual deformably
propagated
Number of H&KN 1 5 10 10 10 8" 15 2 10 2 10 15
patients
Number of repeat- 1 1 5-7 31-35 31-35 26-35 3-6 1 4-6 1 35" 3-6
images/patient
Type of repeat- n.a Simulated CTs Scatter-cor- Scatter-cor- Scatter-cor- Scatter- cor- CT CT CT CT Corrected-CBCT CT
images rected CBCT rected CBCT rected CBCT rected CBCT
Evaluation: plan- Full plan- - Non adaptive, Non adaptive, - Non adaptive, - Non adaptive, Offline adaptive, Trigger-based Non adaptive, - Non adap- - Non adaptive, Non adaptive, - Non adaptive, robust
ning strategy ning, PTV 5 mmPTV no margin or no margin or robust 4 mmPTV offline adap- 3—4 mm tive, robust robust robust 1-5 mm/3%
that online robustness robustness 3 mm/0% tive, robust PTV 3 mm/3% 3 mm/3.5% 4 mm/3%
adaptation was - Non adaptive - Weekly online - Non adaptive, 3 mm/3% - Full re-plan- -Full re-planning, - Trigger-based offline
compared to 1 mmPTV + re-optim- anatomical ning, robust adaptive, robust
(adaptive strat- range-specific ization, no robust robust 3 mm/3.5% 3 mm/3%
egy, RSor PTV) distal margin margin or 3 mm/0% 3 mm/3%
of 3% robustness

suiysiiand dol
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Table 1. (Continued.)
Borderias-
Matter et al Nenoffetal Lalonde et al Bernatowicz Villarroel et al Miyazaki et al Borderias Villar-
(2019) (2019) Botasetal (2018) Bobicetal (2021) (2021) Bobetal (2023) This study etal (2018) (2022) (2022) roel etal (2023) Oudetal (2022)
Evaluation: con- Manual Manual Deformably Deformably Deformably Deformably Manual Rigidly Manual Manual Deformably pro- Manual
touring method propagated propagated propagated propagated propagated pagated and
onrepeat-CTs manual
Evaluation: PTV Simulated Not per- Not per- Not per- Not per- PCE Not per- 1 mm/3% 3 mm/3.5% Not per- Simulated treatments
robustness treatments formed formed (CTV) formed formed formed (worst- (DVH- formed (CTV)
analysis (CTV) (CTV) (CTV) (CTV) case), per- bandwidth)
fraction
Evaluation: per- n.a. Accumulated Per-fraction and Per-fraction and Per-fraction and Per-fraction and Per-fraction Per-fraction Per-fraction Per-fraction Per-fraction and Accumulated
fraction or accumulated accumulated accumulated accumulated accumulated
accumulated
dose
Optimization 23s — 61.7 saverage 720 s median Approximately — 206 saverage [20-80] s 672 s median 372 saverage [780-1020] s —
times (excl. (Paganetti et al 360 s
dose 2021)
computation)
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could be met on the planning-CT without exceeding constraints on serial OARs due to proximity of the CTV.
Prescribed doses (Dpres) were 70 GyRBE to the high-dose CTV, including the GTV and positive lymph nodes
(CTV75000) and 54.25 GyRBE to the elective areas (CTVs4,5) in 35 fractions. A constant relative biological
effectiveness (RBE) of 1.1 was used in planning. For each patient, 3-6 repeat-CT's were available. The acquisition
of repeat-CT's was part of the standard protocol, and the frequency per patient was mostly based on the
availability of personnel and CT scanner.

CTV contours were propagated from the planning-CT to the corresponding repeat-CT's. The CT Vo9 and
the part of the CTV 54,5 that was within a 5 mm margin to the CTV 4o, were rigidly propagated from the
planning-CT to the repeat-CT's and were manually adjusted if contours were outside the external patient
contour or inside bone or if large discrepancies occurred (e.g. the hyoid bone moved resulting in a different
position of the GTV). The remainder of the CTV 5,5 was deformably propagated to the repeat-CTs and
manually adjusted in case of noticeable mismatches with the repeat-CTs. The contours were checked for
consistency by expert clinicians. Contours of the OARs were deformably propagated to the repeat-CTs, and
manually adjusted.

Online re-optimization

The novel online re-optimization strategy consisted of daily adaptation of the initial treatment plan using
contoured repeat-CTs. The initial treatment plan was obtained through full multi-criterial optimization (see
below). The re-optimization algorithm was embedded in our in-house system for automated treatment
planning (Erasmus-iCycle), and used a weighted-sum cost-function and hard constraints for plan generation.
Weights in the applied weighted-sum cost-function were Lagrange parameters obtained from the initial
treatment plan (Breedveld et al 2009). Such weight extractions could be done automatically, prior to the first
treatment fraction. Online re-optimization for repeat-CTs then consisted of five steps: (1) restoration of spot
Bragg peak positions to their intended positions by adjusting their energies to account for changes in water-
equivalent-path-lengths (WEPL) (Jagt et al 2017). Restored energies were interpolated to the same energy grid as
used for initial treatment planning, (2) the online re-optimization strategy employs a novel method to improve
the established original spot distribution, in which new spots were added specifically to target areas that were not
covered by spots after step 1 due to anatomical changes. Hereto, a dense candidate spot distribution with spots
originating from all beam directions was first placed over the CTV + 5 mm expansion, followed by an iterative
selection of 2000 of these spots with a Bragg peak location at 8 mm or more from restored original spots, (3)
computation of dose-deposition matrices for the repeat-CT anatomy for all spots (restored original and added),
(4) constrained robust optimization of the intensities of all spots using the weighted-sum cost-function. The
same robustness settings as the initial plan were used (1 mm/3% setup/range robustness settings in 29
scenarios, see below). The constraints ensured appropriate coverage of the two CTVs, (5) spots that had an
intensity below the minimum required monitor units were removed to ensure deliverability of the

treatment plan.

Trigger-based offline re-planning schedule

Our current clinical adaptation strategy consists of trigger-based offline re-planning (offlinery re-planning). For
the simulation of this strategy, treatment plans were generated with full multi-criterial optimization (see below),
and the clinical offline re-planning schedule was followed. In our clinical workflow, triggering offline
adaptations is guided by dose assessments on repeat-CTs and the evaluation of sequential daily CBCTs. In this
dataset, nine plan offline adaptations were performed for seven patients in total. Four of these plan adaptations
were performed on the last repeat-CT. In the simulations, offline adapted plans were used from the next repeat-
CT onwards. Adaptations based on the last repeat-CT were therefore not taken into account in the evaluations.
This resulted in a total of 5 plan adaptations for 5 patients that were taken into account. In supplementary data A,
aschematic representation of the treatment planning schedule in the online re-optimization and offlinerg re-
planning strategies is shown.

Full multi-criterial optimization of treatment plans

For the online re-optimization strategy, initial treatment plans for the planning-CT's were generated with full
multi-objective optimization. For the offlinery re-planning strategy, all treatment plans on the planning-CT and
the 5 plan adaptations were generated with this approach. Wish-list driven fully-automated software was used
for generation of the treatment plans: Erasmus-iCycle (Breedveld et al 2012, van de Water etal 2013). To
simultaneously also ensure plan robustness, these optimizations were mini-max scenario-based (Fredriksson
etal2011, Liu et al 2013). Smaller setup robustness settings were applied for treatment plans used in the online
re-optimization strategy. A resampling approach was used for spot selection (van de Water et al 2013), where
candidate spots are iteratively selected from a dense grid and added to the optimization problem. After each
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iteration of optimization, non-contributing spots are removed from the optimization problem. Details on the
applied wish-list, sequential minimization of prioritized objectives subject to hard constraints, and treatment-
site specific configuration of the employed treatment planning system can be found in Breedveld et al (2012), van
de Water etal (2013), Heijmen et al (2018). Details on the specific configuration of automated plan generation in
this study are described in the supplementary data of Oud et al (2022).

During optimization, the nominal scenario and 28 uncertainty scenarios were used to account for variations
in patient setup and uncertainties in proton ranges (Korevaar et al 2019). For offlineyg re-planning, 3 mm/3%
robustness settings (setup robustness/range robustness) were used, while 1 mm/3% was used for online re-
optimization. The selected setup robustness setting of 3 mm for offliner re-planning is the same as currently
used in our clinic. The 1 mm setup robustness setting for online re-optimization was based on literature (Nenoff
etal 2021, Bobié et al 2023). Both for CTV g9 and for CTVs,,s5, generated treatment plans had to meeta
coverage constraint: Voso, > 98% in the voxelwise minimum dose distribution (Korevaar e al 2019). Note that
voxelwise dose distributions were only used in the planning phase, not for plan evaluations and comparisons
(below).

Evaluation and comparison of online re-optimization and offlinerp re-planning

Dosimetric evaluations and comparisons of the two investigated adaptive strategies were performed for the
available repeat-CTs. The impact of inter-fraction anatomical changes was incorporated through repeat-CTs.
While adaptive approaches can mitigate anatomical changes, they cannot compensate for residual errors: errors
in matching the gantry to the isocenter of the CT, uncertainties in couch positioning, registration errors with the
MR that was used for target delineation, registration errors with the CT, intra-fraction motion and proton range
uncertainties (supplementary data B). On the other hand, dosimetric variations caused by these uncertainties
willin reality occur and need to be accounted for in evaluations and comparisons of optimized/predicted doses.

PCE (Perké et al 2016, Rojo-Santiago et al 2021) was used for extensive evaluation of robustness of generated
dose distributions against residual uncertainties. The rationale to use PCE comes from its ability to accurately
approximate 3D dose distributions for all (i.e. thousands of) uncertainty scenarios of a treatment plan in a matter
of seconds, allowing statistical robustness evaluation instead of using the common nominal or 29 scenarios.
Instead of executing forward dose computations to obtain the 3D dose distribution for all the scenarios, PCE
constructs and employs a computational model to predict dose distributions. This model is a multi-dimensional
polynomial function of the stochastic input variables (geometrical errors and proton range-errors in this study).
Expansion coefficients of the function are obtained by linear regression, see Perk¢ et al (2016), Rojo-Santiago
etal (2021) for details. Our PCE approach is implemented in Matlab (version 2021b) and was previously
validated for the employed ASTROID dose engine (Kooy et al 2010, Perké et al 2016, van der Voort et al 2016). In
this study, the expansion coefficients were obtained based on the input of 208 dose distributions computed in
fixed uncertainty scenarios. Once these computations are completed, computing the expansion coefficients took
around 2 s, and the generation of 10.000 scenario dose distributions for a structure took around 2 s. Time
required for assessment of the DVHs highly depends on the employed settings and organ size. In our case, DVH
computation for the two CTVs took around 30 min for an average patient (analysis performed on an Intel”
Xeon” Gold 6248). PCE models were constructed for each repeat-CT, for both online re-optimization and
offlinery re-planning strategy.

Both for online re-optimization and offlinerg re-planning, PCE was used to calculate for each repeat-CT
10.000 dose distributions, each for a randomly selected total residual setup error for each of the three principal
directions, and a randomly selected range error for offlinerg re-planning and online re-optimization. These
errors were sampled from Gaussian distributions describing total residual geometric uncertainties. The standard
deviations (SD) of these Gaussian distributions were derived from quality assurance (QA) and treatment data at
Holland Proton Therapy Center by quadratically adding SDs of the various residual errors involved. This
resulted in total SDs 0of 1.18, 1.16, and 1.22 mm for the setup errors in lateral, longitudinal, and vertical
directions, respectively. A description of the residual errors and the employed SD can be found in supplementary
data B. The Gaussian distribution of range errors was assumed to have a SD of 1.5% in correspondence to Taasti
etal (2018).

For each repeat-CT, the obtained dosimetric values were multiplied by 35 to arrive at values for full
treatments to improve interpretability. The probabilities for adequate CTV coverage and for exceeding preferred
maximum doses in a fraction were established with the 10.000 PCE dose distributions. The Dggo, was evaluated
asitisan ICRU-recommended metric that is numerically more robust than point minimum doses. Reported
OAR mean doses were obtained by averaging achieved mean doses in the 10.000 PCE dose distributions. For
each repeat-CT, NTCPs were calculated using these OAR doses. The risks of xerostomia and dysphagia grade >
ITand > I1I were evaluated. We used NTCP models described in the Dutch National Indication protocol
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Figure 1. Slices of an example repeat-CT (#38 in figure 3), showing the dose distribution corresponding to the scenario having the
90%-worst-case Dogo, among the 10 000 simulated fractions for the CT V4,5 in the trigger-based offline re-planning (offlinerp re-
planning) strategy. The arrow in the upper left panel points at an underdose in CT V54,5 with the offliners re-planning strategy, while
proper dose is delivered with online re-optimization (upper right). Arrows in the lower panels point at too wide high dose delivery
around CT Vg with offlinery re-planning, which does not happen with online re-optimization.

(National Association for Radiotherapy in the Netherlands 2019), which were constructed using the data of 750
patients using multivariable regression analysis and were validated on an independent dataset.

Online re-optimization times were evaluated on an Intel” Xeon” Gold 6248, ignoring dose computation and
contouring times.

Statistical significance of differences between online re-optimization and offlinerg re-planning was tested
using paired Wilcoxon signed-rank tests for paired data, and Wilcoxon rank sum tests for unpaired
data (o < 0.05).

Results

CTYV coverage for example repeat-CT

Figures 1 and 2 illustrate results for an example repeat-CT. Figure 1 presents the 90%-worst-case obtained with
online re-optimization for CTVs,,s. This particular repeat-CT was selected because it shows the efficacy of
online re-optimization in areas of large anatomical variations (top panels): underdosage in the CTV 54,5 with
offlinerp re-planning, while coverage was maintained with online re-optimization. The example also shows the
ability of online re-optimization to maintain good conformity, which is reduced with offlineyy re-planning
(bottom panels).

Figures 2(a) and (b) show the Dqgo, histogram and the corresponding cumulative Dggo, histogram for the
example repeat-CT in figure 1, derived from the 10.000 fractions obtained with the PCE simulations. With
offlinery re-planning, the probabilities of obtaining at least 95% Dy in CT V405 and CTVqo were 50% and
98% (points Al and A2 in figure 2(b)) while for online re-optimization they were 88% and 83% (points A3, A4 in
figure 2(b)).

CTV coverage in population of repeat-CT's

Figure 3 shows for each repeat-CT for the two adaptive strategies separately, the percentage of the 10.000 PCE
dose distributions with a Dogo,, of at least 95%Dpyes, both for CTVs,,5 and CT V0. While for the majority of
repeat-CTs the chances of reaching Dggo, > 95%D,,s were higher with offline g re-planning, for a large
minority of repeat-CTs, the probability for adequate coverage was zero or close to zero with offlinerg re-
planning because of large changes in patient geometry, while online re-optimization was able to guarantee high
coverage probabilities. For 14/67 repeat-CTs, offlinery re-planning resulted in <50% probability of Dgge/, >
95%D,s in one or both CT'Vs, which never happened with online re-optimization. With offlinerg re-planning,
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Figure 2. For the example repeat-CT in figure 1, histograms showing distributions of Dggs, values in the 10.000 polynomial chaos
expansion (PCE) dose distributions (a) and the corresponding Dggo,-histogram. (b) Points A1—4 are discussed in the text.
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Figure 3. For each of the 67 repeat-CT, the percentage of the 10.000 PCE dose distributions with Dggo, > 95% of the prescribed dose
for the two investigated adaptive strategies, for CT Voo (top) and CTV 54,5 (bottom). Repeat-CTs were sorted based on CTV ;909 Dogo,
in the trigger-based offline adaptive (offlinery re-planning) strategy.

eight repeat-CT's had zero coverage probability for CTV g, while the minimum repeat-CT coverage
probability with online re-optimization was 81%. For online re-optimization, the mean percentages with [10th,
90th percentile] were 93.6% [84.7%, 91.1%] for CTVs,,5 and 87.9% [86.0%), 98.2%] for CTV ;¢q0. For offlinerg
re-planning, this was 87.7% [46.6%, 100%] and 83.0% [0, 99.9%], for CTV 54,5 and CTV (9. Comparing the
10th and 90th percentiles of the distributions for offlinerg re-planning and online re-optimization, target
coverage is more consistent across the repeat-CTs for online re-optimization. With online re-optimization,
probabilities for adequate target coverage in repeat-CTs were highly similar to those in the corresponding
planning-CT plans (supplementary data C), meaning that the intended target coverage from the planning-CT's
was maintained for repeat-CTs. This was certainly not achieved with offlinerp re-planning, as in a large minority
the probability was extremely low.

Figure 4(a) shows cumulative Dogo, histograms for CTVs,,5 and CT Vg0 for the 95th, 90th, 85th, and 5th
percentiles of the population of 67 repeat-CTs. For both CTVs, comparison of the 95th percentile curves points
to enhanced rates of adequate coverage with online re-optimization compared to offlinery re-planning.
Comparisons of the 5th percentile curves’ intersections with 90% probability of Dyge, above dose (B1 with B3
and B2 with B4) in figure 4(a) further point at clear coverage advantages for online re-optimization, as 95% of
the repeat-CTs had >90% chance of receiving a Dogo, of 2249.4 Gy in the CTV 54,5 and >64.0 Gy in the CTV 5900
for offlinery re-planning, while this was >>51.1 Gy and >66.1 Gy for online re-optimization. The 95%D,.
intersections with the 5th percentile also highlight the advantage of online re-optimization, showing that for
95% of the patient population online re-optimization ensures a minimum CTVs4,5 coverage probability as high

8



10P Publishing

Phys. Med. Biol. 69 (2024) 075007 M Oud et al

Cumulative Dssx histogram

T ~
83 a

Cumulative D2x histogram

j)
S
S

]
|

!

o
S
S

]

4
1

)
1
)

59, ON repeat-CT above dose (%)
<
3

]
]
)
)
)
3 !
B
T
]
1
Y

CTVsas || ‘\‘ ! CTV700

Probability of Dz% on repeat-CT above dose (%)

Probability of D9

1

50 55 60

Dosy (Gy) e g TE-PIANAING D2% CTV7000 (Gy)

Online re-optimization

————95% or 107% of prescribed dose}
et 5% of distribution

ssesees 10% of distribution

- 15% of distribution
[=_=_95% of distribution
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by establishing the cumulative histogram for each repeat-CT separately. Next, the 95%, 90%, 85%, and 5% of these 67 cumulative
histograms were taken and displayed. Points B1-4, C1—4 and D1-2 are discussed in the text.

as 84%, while this drops to 31% with offlinery re-planning (points C1 and C3), and for CTV o online re-
optimization ensures a minimum coverage probability of 84% versus 0% with offlinerg re-planning (points C2
and C4). Furthermore, comparisons of the difference between the 5th percentile curves and the 95th percentile
curves between the two adaptive strategies in figure 4(a) show enhanced consistency in target coverage across the
patient population with online re-optimization.

Figure 4(b) displays cumulative population D, histograms for CTV, for the two strategies with
corresponding 5th and 95th percentile curves. The 95th percentile curves (right dashed curves) show a slight
disadvantage for online re-optimization: for >>95% of the repeat-CTs the probability that D,q, exceeded 74.9 Gy

(107%D,.) was only limited at <3%, while this probability was zero for offlinery re-planning (see points D1
and D2 in figure 4(b)).

OARs

Differences between online re-optimization and offliner re-planning in OAR mean doses are shown in

figure 5(a). Online re-optimization was superior for all dose differences (p < 10” for all). The highest reduction
was observed for the middle constrictor muscle (—5.0 Gy on average, ranging from —23.8 to 3.8 Gy). Figure 5(b)
shows to what extent the superiority of online re-optimization in OAR doses impacts NTCPs. The risk of
xerostomia and dysphagia grade > II could be reduced significantly by 3.5 4= 1.7 percentage pointand 3.9 £+ 2.8
percentage point [mean & SD] (p < 10° for both). The risk of xerostomia and dysphagia grade > III could be
reduced by 1.1 4 0.6 percentage point and 1.0 & 1.0 percentage point (p < 10 for both).

Optimization times
In the online re-optimization strategy, restoration of the planned WEPL took 2.5 & 0.6 s [mean =+ SD] per
repeat-CT. Spot addition took 14.8 £ 2.8 s. Re-optimization times were 189 £ 31 s.

Discussion

In this study, we have proposed a novel approach for online adaptive dose re-optimization in IMPT and
evaluated this for patients with H&N cancer. To enforce adequate target coverage and minimize OAR dose, the
online re-optimization method employs automated constraint-based multi-criterial re-optimization, mini-max
robust optimization with a 1 mm setup-robustness setting, spot restoration and spot addition. Dose
distributions obtained with online re-optimization were benchmarked against our current offline adaptive re-
planning protocol. To obtain an accurate and relevant comparison of the two strategies, a representative patient
population and realistic robustness settings during optimization were used, and a comprehensive statistical
analysis of the robustness against residual errors was performed.

Three important advantages of the online re-optimization strategy compared to offlineyy re-planning were
identified: first, with the novel online re-optimization strategy, the intended planning-CT target coverage was
maintained in the repeat-CTs. Second, online re-optimization resulted in full avoidance of very low probabilities
for adequate target coverage, while with offlinerg re-planning in 21% of the analyzed repeat-CT's the chance of
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Figure 5. Differences between online re-optimization and trigger-based offline adaptive planning (offlinery re-planning) in (top)
OAR mean doses and (bottom) resulting NTCPs. Box plots show distributions for the 67 evaluated repeat-CTs, every dot indicates a
repeat-CT. Whiskers extend to the 10th and 90th percentiles of the distributions. All differences in OAR mean doses and in NTCPs
were statistically significant with p < 10°.

adequate target coverage was <50% in one or both CTVs. Third, online re-optimization significantly reduced
OAR doses, which resulted in reduced NTCPs. On the other hand, two dosimetric advantages of offlinerp re-
planning were found: first, near-maximum doses in the CTV oo were slightly advantageous with offlinery re-
planning. Second, apart from very low coverage probabilities with offlinery re-planning for some repeat-CTs
(above), there is also a substantial fraction of repeat-CT's with coverage probabilities approaching 100% (48% of
repeat-CTs with 100% CTVqq coverage probability, see figure 3). However, very high coverage probabilities in
the latter are a result of the population-based setup robustness settings determined by the near-worst
performing patients. The overall increased NTCPs with offlinerg re-planning are likely (partly) related to these
high coverages. With online re-optimization such higher-than-requested coverage probabilities were avoided:
they were more in line with intended coverage probabilities in the corresponding planning-CT plans.

For online re-optimization, obtained probabilities for adequate target coverage (Dogo, >95%D)res) on the
repeat-CTs were 87.9% [86.0%, 98.2%] (mean [10th, 90th percentile]) for CTV ;409 and 93.6% [84.7%,91.1%]
for CTVs4,s. Further research, including dose accumulation studies, is needed to establish the optimal choice for
the metrics used to assess adequate target coverage, as well as for the optimal probabilities of obtaining adequate
target coverage. With the proposed online re-optimization approach, steering the Dqggo, is possible with the
applied setup robustness settings in planning-CT plan generations (1 mm in the current study, as proposed in
literature).

Guaranteeing adequate target coverage without prohibitively high maximum doses requires an appropriate
spot distribution. An improved spot distribution in the daily situation can be obtained by complete replacement
of the spot configuration (Borderias Villarroel et al 2023), but generating this distribution can be time-
consuming and large changes in spot configurations are undesirable for online QA purposes. Previous studies
found that restoration could be performed by keeping the original spot distribution (Bobi¢ et al 2021, Lalonde
etal 2021) or only changing the energies of the spots (Botas et al 2018). However, our findings were that spot
addition was necessary to achieve dose distributions with acceptable target coverages and acceptable maximum
doses in targets and surroundings. This is related to the imposed dosimetric constraints on target coverage in our
strategy. Contrary to our findings, imposed constraints on target coverage in Lalonde et al (2021) without the use
of spot addition resulted in acceptable near-maximum doses in the high-dose CTV. Possibly, this is related to
their larger number of spots in original treatment plans, the omission of robust optimization and evaluation, or a
different degree of variability in patient anatomies. Although the near-maximum doses with our online re-
optimization strategy were still slightly higher compared to offlinerp re-planning, it may not be clinically
relevant to further improve these.

In our comparisons, the clinical trigger for offline re-planning was based on plans generated with a 5 mm
setup robustness setting while we used 3 mm setup robustness settings as this complies with current standard
clinical care of H&N proton treatment in the Netherlands. This may have contributed to a relatively lower
coverage in the trigger-based offline adaptive approach.
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For both strategies, all treatment plans were generated with Erasmus-iCycle, intentionally omitting the use
of the clinical treatment plan. The rationale behind this decision was to allow for fully-automated plan
generation for both adaptive strategies and to keep optimization differences between the strategies minimal, e.g.
using the same dose calculation algorithm, the same implementation of cost functions, etc. Employing
treatment plan generation with identical optimization settings (except the setup robustness setting) ensured a
systematic and consistent dosimetric evaluation. Erasmus-iCycle generates treatment plans with comparable-
to-better quality compared to clinical treatment plans, as shown by Huiskes et al (2023).

Our comparison of online re-optimization and offlineyy re-planning was based on 3—6 repeat-CTs per
patient, while other studies (table 1) performed their analyzes of online re-optimization using corrected CBCTs.
Alimitation of our study was that evaluating with a limited number of repeat-CTs may have led to the possibility
that offline adaptations were initiated earlier in clinical practice, potentially resulting in an overrepresentation of
the number of fractions with inadequate target coverage in this study. On the other hand, corrected CBCT's
provide daily information on the anatomy. However, HU in corrected CBCTs are less accurate compared to
repeat-CTs (Park et al 2015, Lalonde et al 2020, Thummerer et al 2020). Therefore, using corrected CBCT also
introduces potential bias because online re-optimization will compensate for inaccuracies in HU in contrast to
offline re-planning.

This study only compared single-fraction delivered doses. For interpretability, fraction doses were
multiplied by the number of fractions during the complete treatment. Analyzes of accumulated dose would
provide insight in the total delivered dose during the treatment. Currently, single-fraction dosimetric
constraints in adaptive treatments are not available. Accumulated doses, in combination with comparisons to
current clinically applied strategies, could potentially aid in determining whether the obtained coverage with
online re-optimization is adequate. Investigation of accumulated dose was hampered in this study by manual
contour adjustments that invalidated deformable vector fields obtained from HU matching.

The contours that were used on the repeat-CTs were obtained by automatic propagation of planning-CT
contours, followed by manual correction in case of observed inaccuracies. Editing of the automatically
propagated contours was performed to enhance the accuracy of the performed dosimetric analyzes for the
comparison of online re-optimization with offlinerp re-planning. In an online setting, available time for editing
may be limited. Further enhancement of image quality and contour propagation algorithms may limit the time
needed for editing. Possibly, the dosimetric impact of using non-edited or minimally-edited contours for online
adaptive IMPT obtained from propagation or Al-based solutions is small and only CTV contours may require
manual adjustments (Guo et al 2021, Smolders et al 2023).

In this study, the impact of inter and intra-observer variations in contouring on planning and repeat-CT's
was ignored during simulations. Inter and intra-observer variations in target volume delineations are one of the
largest contributors to variations in dose delivery (Barbara Segedin 2016, Apolle et al 2019, van der Veen et al
2019, Nash et al 2022). Furthermore, contouring on repeat-CT's without MRI also introduces extra uncertainty
as the target is not always well visible.

Implementation of this online re-optimization strategy requires not only fast re-optimization, high quality
imaging, and appropriate contours, but also fast online QA procedures, which are currently unavailable in
clinical settings. However, recent advancements in independent dose computations and log-file-based QA
strategies have been made (Liet al 2013, Meier et al 2015, Meijers et al 2020, Burlacu et al 2023). Clinical
application of online adaptive approaches also requires fast dose computation algorithms. Fortunately,
algorithms that provide fast dose computations are becoming available (Pastor-Serrano and Perké 2022).

Conclusion

In this study, we introduced a fast and fully automated online robust re-optimization strategy for daily
adaptation of initial treatment plans to cope with day-to-day anatomical variations for H&N IMPT. Hard
constraints and spot addition were used to maintain adequate CTV dose. Based on a comprehensive robustness
evaluation, we conclude that substantial loss of target coverage, as observed with our current clinical trigger-
based offline adaptive (offlinery re-planning) strategy, could be fully avoided with the online re-optimization
strategy, while using small setup robustness settings. This resulted in improved OAR doses and reduced NTCPs
compared to offlineyp re-planning.

Data availability statement
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public distribution. The data that support the findings of this study are available upon reasonable request from
the authors.
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