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ABSTRACT: NaTi2(PO4)3 (NTP), a well-known anode material,
could be used as a solid wide-band gap electrolyte. Herein, a novel
solid-state sodium-ion battery (SSIB) with the thickness of
electrolyte up to the millimeter level is proposed. The results of
the difference in charge density investigated by the first-principles
calculations imply that using the NTP nanocrystals as electrolytes
to transport sodium ions is feasible. Moreover, the SSIB exhibits a
high initial discharge capacity of 3250 mAh g−1 at the current
density of 50 mA g−1. As compared with other previously reported SSIBs, our results are better than those reported and suggest that
the NTP nanocrystals have potential application in SSIBs as solid electrolytes.

1. INTRODUCTION

Recently, the shortage of lithium resources, the booming
development of electric vehicles, and intermittent energy
conversions have coerced researchers into hunting for other
rechargeable storage batteries with a better safety, lower costs,
and higher specific energy.1−5 Compared with lithium-ion
batteries, sodium-ion batteries (SIBs) are of low cost and have
plentiful resources and a high half-cell potential of sodium.6−12

Replacing conventional flammable organic liquid electrolytes
with incombustible inorganic solid electrolytes is an efficacious
approach to ameliorate the safety problems of rechargeable
batteries. In this regard, solid-state sodium-ion batteries
(SSIBs) provide a promising possibility to the new-generation
hybrid-electric vehicle due to safety, high-energy storage, high
power densities, low cost, and wide availability of sodium
resources.13−16 However, several challenges should be further
understood and solved in the development of solid-state
electrolytes (SSEs), including a high ionic conductivity (>10−2

S cm−1), chemical stability conjugating with anode and
cathode materials, appropriate electrochemical stability win-
dow, mechanical properties, etc. Solid electrolytes are provided
with the function of an electrolyte and separator simulta-
neously for SSIBs, which determines the safety and cycling life
of batteries.17−21

To ensure solid-state batteries operating at ambient
temperature, solid electrolytes provided with superior room-
temperature sodium-ion conductivity are essential.18 Simulta-
neously, due to the significance of developing large-scale SSIBs,
the substantial decrease in the interparticle resistance of the
electrolyte is significant in the absence of a high-temperature
annealing process. Nevertheless, high conductivity electrolytes

suitable for the room-temperature operation of SSIBs have not
yet been explored.
Over the past few years, the NASICON-type ceramic

materials of NaTi2(PO4)3 (NTP) have been considered as
attractive anodes for SIBs owing to their high theoretical
capacity of 132.8 mAh g−1, room-temperature ionic con-
ductivity of 10−4 S cm−1, wide electrochemical window, and
pronounced thermal stability.22−24 However, this NTP has
only one redox peak at 2.1 V in the 0−10 V range,25−27 which
means that this NTP is a potential electrolyte below the redox
voltage and it can transport sodium ions because the redox
reaction between electrolytes and electrodes does not occur.
As we all know, when the thickness of the electrolyte reaches

the millimeter level, it could avoid the safety problems caused
by dendritic growth and electrolyte penetration. Therefore, a
novel SSIB with the thickness of electrolyte up to the
millimeter level is proposed in this work. This novel SSIB is
configured by the Na anode, NTP nanocrystal electrolytes, and
the α-Fe2O3 cathode. Here, the NTP nanocrystal as an
electrolyte was prepared at 140 °C for 3 h by a solvothermal
method. Its ionic conductivity is 1.1 × 10−3 S cm−1 at room
temperature. The electronic conductivity of the NTP was
investigated by the first-principles calculations, and the results
show that the valence bands are approximately horizontal, and
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the calculated band gap of the NTP is 2.802 eV. Although the
wide band gap of the NTP result in poor electronic
conductivity, it is beneficial for the NTP nanocrystal as an
electrolyte. The results reveal that the SSIB exhibits the initial
discharge capacity of 3250 mAh g−1 at the current density of
50 mA g−1, and the mechanism of this abnormal phenomenon
is explained reasonably by experiments. As compared with
other previously reported SSIBs, our results are better than
those reported and suggest that the NTP nanocrystals have
potential application in SSIBs as solid electrolytes.

2. EXPERIMENTAL
2.1. Synthesis of Materials. 2.1.1. Synthesis of the NTP

Nanocrystals. The raw materials for synthesizing the NTP
nanocrystals include sodium acetate trihydrate (2 mmol,
99.995% metals basis), titanium butoxide (2 mmol, ≥98.0 wt
%), concentrated phosphoric acid (6 mL, 85 wt %), and
anhydrous ethanol (24 mL). Furthermore, the above raw
materials were mixed completely, and the mixture was
transferred into a Teflon reactor; thereafter, the reactor was
placed in an oven for the solvothermal reaction. The reactor
was naturally cooled down to room temperature, and the
product was washed and collected by a centrifugation method.
Finally, the obtained samples were annealed at 100−600 °C for
3 h.
2.1.2. Synthesis of the Cathode Electrodes. α-Fe2O3

nanoceramics were successfully fabricated by the solvothermal
and calcination process. The raw materials include iron
chloride hexahydrate, dimethyl terephthalate, N,N-dimethyl-
formamide, ethanol, and deionized water. First, 3 mmol iron
chloride hexahydrate and 2.5 mmol dimethyl terephthalate
were completely dissolved in the N,N-dimethylformamide
solution (80 mL). Then, the mixture was transferred into a 100
mL Teflon autoclave and heated at 180 °C for 3 h. After the
autoclave cooled at room temperature, the red product was
washed with ethanol and dried at 80 °C for 24 h. Finally, the
dried red powder was calcined at 380 °C for 4 h under
nitrogen conditions and then annealed at 380 °C for 1 h in air
to obtain α-Fe2O3 nanoceramics.
2.2. Structural and Morphological Characterization.

The structure of the prepared materials was characterized by
X-ray diffraction (XRD, Bruker D8 polycrystalline) with Cu
Kα radiation (V = 30 kV, I = 25 mA, and λ = 1.5418 Å) over
the 2θ range of 20°−80°. The morphology of the samples was
investigated by JEM-2100 transmission electron microscopy
(TEM).
2.3. Calculation Methods. NTP is a hexagonal cell, and

its space group is R C3̅ with experimental lattice parameters a
= b = 8.4854 Å, c = 21.7994 Å, α = β = 90°, and γ = 120°.
First-principles calculations were provided by the spin-

polarized GGA and LDA + U to density functional theory
utilizing the CASTEP program. Using revised Perdew−Burke−
Ernzerhof engenders the exchange correlation energy. The
influences of different k-point sampling and plane-wave cutoff
energies were explored in a series of test calculations. The
Brillouin zone integration was performed approximately using
the special k-point sampling scheme of Monkhorst−Pack, and
a 3 × 3 × 3 k-point grid was used. The cutoff energy of plane
wave was 600.0 eV. The maximum root-mean-square
convergent tolerance was less than 2.0 × 10−5 eV/atom. The
geometry optimization was stopped when all relaxation forces
are less than 0.005 eV/nm. The maximum displacement error
is within 0.002 nm and the maximum stress was less than 0.1
GPa.

2.4. Fabrication Process of the SSIB. The working
electrode for electrochemical properties was prepared by a
mixture of α-Fe2O3 nanoceramics, polyvinylidene fluoride
(PVDF), and acetylene black (8:1:1, mass ratio). In the
presence of trace 1-methyl-2-pyrrolidine (NMP), the above
materials were mixed to produce a slurry. Then, it was evenly
coated on aluminum foil and dried at 80 °C overnight. Finally,
a coin cell of CR 2032 was assembled in an argon-filled glove
box, with metallic sodium as the counter electrode and a
mixture of NTP nanocrystals and PVDF (1:1, mass ratio) as an
electrolyte. Because the electronic conductivity of NTP still
exists, the separator is needed.

2.5. Electrochemical Measurements. The counter and
reference electrodes were cylindrical stainless steel ingots. The
area of all electrolytes is 0.785 cm2. AC impedance
spectroscopy of the coin cell was performed by an electro-
chemical workstation (CHI660E) with the frequency range
from 0.0001 Hz to 100 kHz. The obtained spectra were fitted
using the ZsimDemo software. The discharge−charge cycling
of the coin cell was performed between 0.0 and 1.5 V on the
CT-2001 LAND battery equipment (Wuhan, China). All the
electrochemical measurements were investigated in a dry air
atmosphere at room temperature.

3. RESULTS AND DISCUSSION

Figure 1a−f shows the TEM images of the NTP nanocrystals
annealed at 100−600 °C for 3 h. With an increase in the
sintering temperature, gradually the pores become larger, but
the geometric size and shape of the crystals remain unchanged.
After calcination at 100 °C for 3 h, the NTP is approximately a
nonporous nanocrystal. However, when the calcination was
performed at 600 °C for 3 h, it obviously becomes porous
NTP nanocrystals because the crystal does not shrink and the
pore shape changes during high-temperature sintering, which is
consistent with the previous study.28−30 This phenomenon
could be explained by the diffusion and transfer of pores in the

Figure 1. TEM images of the NTP nanocrystals annealed at 100−600 °C for 3 h. (a) 100 °C, (b) 200 °C, (c) 300 °C, (d) 400 °C, (e) 500 °C, (f)
600 °C, and (g) XRD patterns of the NTP nanocrystals annealed at 100 °C and 600 °C for 3 h.
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sintering of ceramic particles.28 Figure 1g shows the XRD
patterns of the NTP nanocrystals prepared at 140 °C for 3 h
and annealed at 100 °C and 600 °C for 3 h. All the observed
diffraction peaks perfectly match the standard diffraction peaks
(JCPDS 33-1296),22,25−27 illustrating that the NTP nanocryst-
als have pure phases without any impurities.
Figure 2 shows a schematic diagram of sodium ions in the

transport channel of the NTP nanocrystals. From Figure 2a, it

can be seen that there are many pores inside the NTP
nanocrystals annealed at 600 °C for 3 h, which would lead to
the inhibition of the diffusion of sodium ions and low diffusion
coefficient of sodium ions (DNa+). This is consistent with the
previous study.23,24,26 However, the structure of the nonporous
NTP nanocrystals is much compact, as shown in Figure 2b,
and it would also be in favor of the transport of sodium ions,
resulting in a high ionic conductivity and a high diffusion
coefficient of the sodium ions.
Figure 3a illustrates the electrochemical impedance spec-

troscopy (EIS) of the NTP nanocrystals annealed at 100−600
°C for 3 h. The thickness and area of all of the electrolyte pellet
are 0.055 ± 0.001 cm and 0.785 cm2, respectively. An intercept
implies the ohmic resistance (Rs) in the Z′ axis, which indicates
the resistance of the electrode and the electrolyte. The
Warburg impedance (ω) is characterized by the inclined line of
the low frequency. The semicircle of the middle frequency
range represents the charge-transfer resistance (Rct).

30−32 The
results show that the nonporous NTP nanocrystal has a high
ionic conductivity of 1.1 × 10−3 S cm−1 at 20 °C. The DNa+

was calculated by the reported equations33,34 from the sloping
line of Figure 3b, and the kinetic parameters for the NTP
nanocrystals are listed in Table 1. The DNa+ of the porous

NTP nanocrystals is lower than that of the nonporous NTP
nanocrystals. Also, the results imply that the nonporous NTP
nanocrystals annealed at 100 °C show a lower Rct of 61.25 Ω
and a higher DNa+ value of 2.8326 × 10−10 cm2 s−1, which is
following its outstanding ionic conductivity.
Ulteriorly, to comprehend the electronic conductivity of the

NTP, the band structures and density of states (DOS) of the
NTP crystal were investigated, as shown in Figure 4a,b,
respectively. From Figure 4a, it is clearly seen that the valence
bands are approximately horizontal. The calculated results
show that the band gap of NTP is 2.802 eV, which is the same
as reported in the literature.35 This is probably too large to
allow the transport of electrons at room temperature, which
would clearly imply that the ionic conductivity of NTP is
excellent. The DOS near the Fermi surface for the NTP can be
evidently observed in Figure 4b. The value of the DOS near
the Fermi surface for NTP (2 electrons eV−1) is very low. It is
generally known that only the electrons in the vicinity of the
Fermi level can generate an electric current in the external
electric field, and the wider band gap indicates a lower
electronic conductivity.36 These results are consistent with
their excellent ionic conductivity, as shown in Table 1.
Although the NTP possesses poor electronic conductivity, it is
beneficial for the NTP nanocrystal as an electrolyte.
Simultaneously, the partial density of states (PDOS) of the

NTP crystal with Na, Ti, P, and O is shown in Figure 4c−f,
respectively. The angular momentum (l-dependent) origin of
the various bands is obviously identifiable from the PDOS. The
lowest energy group at around −57.0 eV has mainly Ti-s states.
The second group at around −48.9 eV has significant
contributions from Na-s states. The deeper subband group at
around −33.3 eV originates from Ti-p states. The group at
around −20.0 eV is formed by Na-p, P-s/p, and O-s states with
a small contribution of Ti-p/d and O-p states. The groups
from −10.0 eV up to the Fermi energy (EF) originate from Ti-
p/d, P-s/p, and O-s/p states. The groups from EF and above

Figure 2. Sodium ions in the transport channel of the (a) porous
NTP nanocrystal and (b) nonporous NTP nanocrystal.

Figure 3. (a) EIS of the NTP nanocrystals annealed at 100−600 °C for 3 h (the illustration is an equivalent circuit model) and (b) the relationship
plot of Z′ and ω−1/2 at a low frequency. The area of all the testing samples is 0.785 cm2.

Table 1. EIS Parameters for the NTP Nanocrystals

annealed
temperature (°C)

annealed
time (h)

Rs
(Ω)

Rct
(Ω) σω

DNa+

(cm2 s−1)

100 3 21.4 61.3 2.5 2.8 × 10−10

200 3 26.5 108.6 12.9 1.0 × 10−11

300 3 40.8 141.5 32.9 1.6 × 10−12

400 3 45.8 145.7 33.0 1.6 × 10−12

500 3 60.4 165.9 25.5 2.7 × 10−12

600 3 64.9 320.4 106.1 1.6 × 10−13
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are mainly of Na-s/p, Ti-s/p, P-s/p, and O-p states. From the
PDOS, we can see that there exist two strong hybridizations
between Na-p and P-s at around −20.4 eV. The P-p states are
hybridized with O-s states at around −17.8 eV. At about 5.0
and 10.0 eV, P-s/p orbitals are hybridized with O-p states. In
addition, the difference in the charge density of the NTP with
the crystal plane (−100) is shown in Figure 4g. It is obvious
that the charge density around the Ti and O atoms is higher
than that around the Na atom, and the Ti and O atoms

maintain local charge distribution and structural stability,
which means that the main contribution of the electronic
conductivity of the NTP is derived from the Ti and O atoms
with fixed positions. Therefore, it is feasible that the NTP
nanocrystals can be used as an electrolyte to transport sodium
ions. No similar results have been reported for the time being.
To prove the scientific nature of the SSIB with the

millimeter-level electrolyte, the electrochemical performance
of the SSIB with the NTP nanocrystal electrolyte was tested.

Figure 4. (a) Total band structures of the NTP crystal. (b) Total DOS of the NTP crystal. (c−f) PDOS of the NTP crystal with Na, Ti, P, and O,
respectively. (g) Electric charge density difference of the crystal plane (−100) of the NTP crystal attached with a local enlargement map.
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As shown in Figure 5a,b, EIS of the SSIB illustrates that the
internal resistance of the solid-state battery decreased
obviously after a long-term cycling of 100 times. Figure 5c
shows the electrochemical stability window of the NTP
electrolytes on nonactive electrodes at different scanning
rates of 100, 200, and 300 mV/s, and the results show that
NTP nanocrystalline electrolytes possess an electrochemical
window between 1.45 and 1.51 V. Figure 5d shows the cyclic

voltammetry (CV) curve of the SSIB; the results imply the
range of the oxidation−reduction potential to be of 0−1.5 and
3−4.5 V, and this SSIB could operate at the voltage range of
0−3 V with a certain capacity and a quasi-reversible process
with a redox reaction (α-Fe2O3 + 6Na+ + 6e− ↔ 2Fe +
3Na2O) between 0.0 and 5.0 V. In addition, the charge storage
of the redox reaction on the surface of the transition metal
oxide electrode leads to the pseudocapacitive behavior. Such a

variation is caused by the unique products in the reduction of
α-Fe2O3. Metallic Fe nanoparticles with high conductivity and
electrochemically inactive Na2O are generated after discharg-
ing the testing batteries. During the following charging process,
the state of Fe and Na2O will change gradually until the
majority of Fe and Na2O converts into α-Fe2O3 at the end of
the oxidation reaction. Thus, during the cycles, the interface of
Fe and Na2O, as well as the conditions and electrochemical
activities of the particle surface, will change slightly as the
reactions progress, influencing the reactions occurring on the
surface, which is exactly the pseudocapacitive reaction. These
are consistent with the results of Figure 7a and the reported
results.37

Furthermore, Figure 7a shows the CV curve of the SSIB, and
the results imply that the range of the oxidation−reduction
potential is of 0.5−1.5 V, which is consistent with the above
results. Figure 7c,d shows the cyclic stability profiles of the Na/
NTP nanocrystals/α-Fe2O3 battery after 11 cycles. The
illustration is a sheet of the electrolyte and diaphragm pressed
by the force of 5 kg cm−2, and the thickness of the electrolyte is
about 1.6 mm (Figure 7d). It is found that the SSIB exhibits
the initial discharge capacity of the first cycle to be 3250 mAh
g−1 at the current density of 50 mA g−1 (Figure 7c), which far
exceeds the theoretical capacity of α-Fe2O3 (1005 mAh g−1)
and NTP (132.8 mAh g−1).54,55 After 10 cycles, the discharge
capacity was 148 mAh g−1. After 10 cycles, the discharge
capacity was 23.4 mAh g−1, which is better than that reported
by Deng et al. in 2019.40 This phenomenon is mainly caused
by the fact that sodium ions are embedded in the NTP
electrolyte and the α-Fe2O3 electrode in the initial stage, and
the structure of the electrolyte was obviously destroyed, which
has been verified by the XRD patterns of the NTP nanocrystals
before and after cycling 100 times (Figure 7b). As compared
with other previously reported SSIBs (Table 2 and Figure 6),

Figure 5. (a, b) EIS of the SSIB before and after cycling 100 times; (c) electrochemical stability window of NTP electrolytes on nonactive
electrodes. Measurements were taken by CV on stainless steel working electrodes between 0.0 and 3.0 V at 100, 200, and 300 mV/s, respectively.
The area of the nonactive electrodes is 0.785 cm2. (d) CV curve of the SSIB.

Figure 6. Electrochemical behaviors of SSIBs.14,38−53
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the results imply that the NTP nanocrystals have potential
application in the SSIBs as a solid electrolyte.

4. CONCLUSIONS
In summary, the nonporous NTP nanocrystals annealed at 100
°C show a high diffusion coefficient of sodium ions, which is in
accordance with their excellent ionic conductivity. The

calculated band gap of the NTP (2.802 eV) is broad, resulting
in the NTP possessing poor electronic conductivity, but it is
beneficial for the NTP nanocrystal as an electrolyte. It is found
that the SSIB exhibits the initial discharge capacity of the first
cycle to be 3250 mAh g−1 at the current density of 50 mA g−1.
As compared with other previously reported SSIBs, our results
are better than those reported and suggest the NTP

Figure 7. (a) Voltage profile of the SSIB. (b) XRD patterns of the NTP nanocrystals before and after cycling 100 times. (c, d) Cyclic stability
profiles of the Na/NTP nanocrystals/α-Fe2O3 battery after 100 cycles. The illustration is a sheet of electrolyte and diaphragm pressed by the force
of 5 kg cm−2, and the area is 0.785 cm2.

Table 2. Electrochemical Behaviors of SSIBs14,38−53

battery structure thickness of electrolyte operating temperature (°C) stable-specific capacity (mAh g−1) reference

Na3PS4-Na2S-C|Na3PS4|Na-Sn-C 60 810 (50 mA g−1, 50 cycles) 39
NaTi2(PO4)3|H-NASICON|Na 65 94 (0.5 C, 70 cycles) 40
Na3V2(PO4)3|NZTO-C0.02|Na 80 21 (0.2 C, 20 cycles) 41
Na|CPE|Na3V2(PO4)3 70 85 (0.5 C, 350 cycles) 42
TiS2|Na3NH2B12H12/Na3NH2B12H12|Na 80 77 (0.1 C, 200 cycles) 43
Na3V2(PO4)3|CPE-ILO|Na 60 30 (2 C, 100 cycles) 44
Na-Sn|Na3PS4-Na1.08Sn1.9PSi11.8|TiS2 80 120 (4.8 mA g−1, 10 cycles) 45
Na3V2(PO4)3|Na2Zn2TeO6|Na 80 50 (0.2 C, 10 cycles) 46
NVP|NVPF and NVP|NVP 61 (1 C, 50 cycles) 47
δ-NaxV2O5|SPE|Na 80 75 (60 mA g−1, 50 cycles) 48
Na15Sn4|Na3PS4 glass-ceramic|NaCrO2 0.5 RT 40 (64 μA cm−2, 10 cycles) 49
NaxCoO2|NASICON|Na RT 40 (8 μA cm−2, 100 cycles) 50
Carbon|Na2SO4|NaTi2(PO4)3-C RT 61.9 (2 C, 100 cycles) 51
NaCrO2|c-Na3SbS4|Na15Sn4 RT 50 (0.064 mA cm−2, 10 cycles) 52
Na2+2δFe2‑δ(SO4)3|Na3.1Sn0.1P0.9S4|Na2Ti3O7 RT 16 (2 C, 100 cycles) 53
Na-Sn|Na3PS4-Na11Sn2PSe12|TiS2 RT 66.2 (0.1 C, 100 cycles) 54
Na0.67Ni0.23Mg0.1Mn0.67O2|Na-SPE|Na RT 47 (48 mA g−1, 1000 cycles) 55
α-Fe2O3|NaTi2(PO4)3|Na 1.6 RT 148 (50 mA g−1, 10 cycles) This work

63 (50 mA g−1, 20 cycles)
34.5 (50 mA g−1, 50 cycles)
28.3 (50 mA g−1, 70 cycles)
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nanocrystals have potential application in the SSIBs as solid
electrolytes.
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