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Abstract

In the Netherlands, reactive nitrogen emission (nitrogen oxides and ammonia) from anthropogenic
activity puts pressure on vulnerable ecosystems. Effective policies to curb the emission of reactive
nitrogen require reliable emission and deposition maps. The atmospheric vertical column density of
these molecules can be measured using remote sensing instruments on satellites. In the case of
nitrogen dioxide, this is done using TROPOMI, and in the case of ammonia, this is done using CrIS.
The Flux-Divergence method is able to transform a vertical column density map to an emission map,
allowing for the locating of sources and retrieval of emission rates.
The Flux-Divergence method assumes that all divergence in the flux of the trace gas is caused by

its emission and its sinks. Finding an emission map using the Flux-Divergence method thus requires
the computation of a flux-divergence map and the estimation of a sink term. The method was first
introduced by Beirle et al., and implemented at the KNMI by Henk Eskes [1] [2]. This research focuses
on improving emission estimates using the Flux-Divergence method applied to nitrogen dioxide, using
data from TROPOMI. All steps in the implementation of the Flux-Divergence method were individually
checked to examine their influence on the method. It was also checked if the induced noise from each
step can be reduced to improve the resulting emissions.
A first focus of the research is on the improvement of the flux-divergence map for nitrogen dioxide.

A large noise reduction was achieved by first computing the divergence on TROPOMI data, and then
interpolating to a regular grid to allow for temporal averaging. A second improvement is made by
implementing an algorithm that reduces divergence from the wind data set. This enhances emission
hot spots along the coast, but also shows that the flux-divergence map is less effective at capturing
emission from cargo ships, which are moving targets. The estimation of emission from these sources
rely more on an adequate estimation of the sink term.
The research also examines the result of using a different finite difference method in the computation

of the divergence, using a different vertical profile a-priori for the TROPOMI data, spatially averaging
data on a fine grid, changing the grid resolution and choosing a different wind estimation metric. None
of these adaptations lead to significant noise reductions compared to the original implementation. How-
ever, it is shown that the retrieved flux-divergence maps are very sensitive to the used a-priori profile.
The flux-divergence maps are also moderately sensitive to the used finite difference method, the grid
resolution and using spatial averaging. Using a different metric in the computation of a wind map has
very little influence on the final flux-divergence map.
A second focus of the research is on estimating the sink term of NO2. Two approaches lead to

satisfactory emission maps. The first optimizes the lifetime of NO2 to reduce emissions in emission-free
regions. The second approach uses NO2 lifetimes from the DECSO model currently being developed
at the KNMI [3].
Finally, this thesis shows that the flux-divergencemap contains high amounts of noise when applied to

ammonia data from CrIS. Where nitrogen dioxide is mostly emitted from fixed point sources, ammonia
is emitted across spread-out agricultural regions. This is not detected in the flux-divergence term.
Therefore, the estimation of ammonia emission using the Flux-Divergence method relies strongly on
the estimation of a sink term.
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1
Introduction

The maintenance of biodiversity is an important cornerstone in sustainable development [4]. For this
reason, the member states of the European Union started developing a network of regions in 1992,
called the Natura2000 regions. In these regions, special attention is paid to vulnerable ecosystems,
the conservation of threatened plant and animal species and promotion of biodiversity. This network
now covers 18% of the EU’s land territory, and 8% of its waters [5]. These regions are not nature
reserves, and therefore human activity is not excluded from these regions. However, harmful human
activity within and around these regions, such as agriculture and construction works, must adhere to
strict guidelines, to minimize the pressure put on them [6].

Figure 1.1: Ecologists commissioned by the Ministry of
Agriculture, Nature and Food Quality have determined a
critical deposition value (KDW) for nitrogen in vulnerable
ecosystems: an amount of deposited particles which

should not be surpassed. This map shows by how much
the KDW is surpassed (or undercut). [7]

In the Netherlands, vulnerable Natura2000 regions
are in close proximity to regions with intense anthro-
pogenic activity. One of the largest issues with this
proximity is that much of this activity emits the reactive
nitrogen compounds nitrogen oxides (NOx) and ammo-
nia (NH3). This has detrimental effects on nature as it
raises the acidity level and thereby also the structure
of the ecosystem. This can lead to loss of biodiver-
sity. Figure 1.1 shows a map of all Natura2000 regions
in the Netherlands, and where the nitrogen deposition
exceeds levels set to ensure the conservation of vul-
nerable ecosystems (the so called critical deposition
values, or KDW). It can be seen that for many regions,
this level is surpassed.
To regulate the emission of nitrogen oxides and am-

monia, the Dutch government passed the Programma
Aanpak Stikstof (PAS) in 2015. The PAS is a legal bill
which has been used to grant or reject building permits,
based on their nitrogen emission. In 2019, it was ruled
by the Council of State that the PAS contradicts Euro-
pean legislation, as it was being used to grant building
permits based on future emission reductions [8]. The
bill was discarded, and the licenses for thousands of
projects, from the building of roads and housing to the
fertilization of farming grounds, were retracted and the
projects were forced to a stop. As this occurred simul-
taneous to a growing housing shortage, it led to a crisis,
the so called nitrogen crisis or stikstofcrisis. As a pro-
posed solution, a new law was passed in 2021, called
the Wet stikstofreductie en natuurverbetering, or Stik-

1



2

stofwet for short [9]. Further stringent rules for farmers and plans for buying them out and halving the
livestock in the Netherlands, led to fierce protest from the agricultural community. This included the
blocking of highways and distribution centers [10]. The validity of the nitrogen models used for the
legislation was also publicly doubted by the farmers.
Nitrogen emission is thus a divisive topic in the Netherlands. Something that is often overlooked in

the public discourse in the Netherlands, is the fact that atmospheric nitrogen oxides are also detrimental
for human health, furthering the need for effective policies [11]. Moreover, the most sources of reactive
nitrogen area also sources of greenhouse gases such as carbon dioxide (CO2) and methane (CH4).
Accurate maps for nitrogen emission and deposition are needed to help draft government policies. The
way in which these are derived need to be transparent to foster trust between government and the
people affected by its policies.
The Dutch government is supported in the development of measures by the National Institute for

Public Health and the Environment (RIVM), who in turn uses data sets made available by the Royal
Netherlands Meteorological Institute (KNMI), amongst others. The KNMI delivers concentration, emis-
sion and deposition maps for both NH3 and NOx. These help to quantify the nitrogen burden on the
most vulnerable Natura2000 regions of the Netherlands, and help identify the regions where nitrogen
measures are most effective.
One tool that has recently gained importance is the use of satellite data to measure concentrations of

trace gases in the atmosphere. A trace gas is a gas that makes up only a fraction (less than 1%) of the
atmosphere. For the Earth, the only gases in the atmosphere that are not trace gases, are O2 and N2.
Using spectrometers for infrared radiance (in the case of NOx) and ultraviolet radiance (in the case of
NH3), different instruments have been able to create daily concentration maps for these gases, giving
a previously unobtainable level of detail and global coverage [12] [13]. Examples of instruments used
are the TROPOspheric Monitoring Instrument (TROPOMI, used for NO2) and the Cross-track Infrared
Sounder (CrIS, used for NH3).
However, a concentration map is not the end product that is needed for policy making. Most trace

gases have a background concentration caused by natural sources, and have a certain lifetime in the
atmosphere, during which they are transported by wind. Therefore, an important step in using satellite
data is converting concentration maps to emission maps and deposition maps. One technique first
introduced by Beirle et al. is referred to as the Flux-Divergence method [1]. This method is based on
the steady state continuity equation, and states that all divergence of the flux of a trace gas is caused
by the sum of its sinks and its sources. In other words, all concentration of a trace gas that can not be
explained by its transportation from neighboring regions caused by winds, must be caused by either:

• emission of this trace gas into the atmosphere (in case of a surplus),
• deposition of this trace gas onto the Earth’s surface (in case of a deficit),
• being removed by chemical reactions before it reaches the Earth’s surface (in case of a deficit)

The equation governing the model is:

∇ · f = E − S, (1.1)

where ∇ denotes the divergence operator, f denotes the flux of the trace gas, E represents emission
of the trace gas, and S denotes its removal from the atmosphere.
Applications of this method to NO2 concentration maps have already given promising results in the

past, also in collaboration with researchers from the KNMI [14] [2] [15]. This thesis contributes by pro-
viding a research that further improves the implementation of this method at the KNMI, and that uses
different tools to create flux-divergence maps with less noise, and more distinct emission sources of
NO2 in the Netherlands. The sensitivities of the implementation to different choices in the implemen-
tation are also examined. The current KNMI implementation of the method is used as a baseline, to
which the different modifications are compared. The research will also focus on different ways to esti-
mate a sink term for NO2, in order to construct an emission map. One of the implementations uses the
input from another emission map model being developed at the KNMI: the Daily Emission estimations
Constrained by Satellite Observations method, or the DECSO method [3]. A second goal is to create a
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flux-divergence map for ammonia measurements, something that to the best knowledge of the author
has not been done before.
This leads to the following research questions and subquestions:

Research Question 1: In which ways is it possible to improve the current KNMI implementa-
tion of the Flux-Divergence method when applied to NO2 TROPOMI satellite data above the
Netherlands?

1. Subquestion 1a: How do different choices in the following factors influence the flux-
divergence map:

• grid resolution,
• grid on which divergence is computed,
• finite difference method,
• wind data and
• a priori distribution.

2. Subquestion 1b: How can the NO2 sink term better be estimated by optimizing the NO2

lifetime or using DECSO estimates for the lifetime?

Research Question 2: What is the result of a flux-divergence map for NH3 concentrations
from satellite data above the Netherlands?

Chapter 2 first focuses on the theoretical background of this research. All used data sets and meth-
ods are discussed. After reading this chapter, the reader should be able to understand the terms used
in the research questions. Chapter 3 focuses on the implementation of the experiments done for this re-
search. It is shown how the Flux-Divergencemethod was first implemented at the KNMI, in order to gain
more understanding for how the different choices introduced in the previous chapter can specifically
be included in the implementation. Chapter 4 gives the results obtained by the different experiments,
which are then discussed and concluded in Chapter 5. Figure 1.2 shows the set-up of this thesis report,
and shows how different sections are linked to each research question.
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Figure 1.2: A flowchart showing the set-up of the report. A dashed arrow indicates that a section is used to explain the
validation techniques used for a certain research question. A checkered methodology section indicates that it is based on code

that was implemented prior to this thesis research.



2
Theoretical Background

The goal of this chapter is to give the reader a good understanding of the theoretical background of this
research. First, we will discuss the impact of nitrogen compounds on public health and the environment
in Section 2.1. The focus lies on nitrogen oxides (NOx) and ammonia (NH3), as these are the most
prolific nitrogen compounds in the Netherlands. Then, Section 2.2 describes how the atmospheric
concentration of both compounds ismeasured using satellite-based observations. We focus specifically
on TROPOMI (for NO2 concentrations) and CrIS (for NH3 concentrations). Next, Section 2.3 gives an
insight into how the retrieved atmospheric concentration maps can be converted into emission maps,
using several different techniques. The main focus of the research is the Flux-Divergence method,
which will be thoroughly described in this section. Three aspects of the Flux-Divergence method are
further discussed: the computation of the flux (Section 2.4), the computation of the divergence (Section
2.5) and the computation of the sink term (Section 2.6).

2.1. Reactive Nitrogen Compounds
Nitrogen (N) is the most common chemical element in Earth’s atmosphere, making up 78% of it, in
the form of N2. This molecule is very stable. However, nitrogen can become harmful when it is trans-
formed into reactive nitrogen, Nr. In this form, the chemical reacts with other molecules present in the
atmosphere, to form harmful trace gases. This research focuses on two atmospheric trace gases that
consist of reactive nitrogen compounds: nitrogen oxides (NOx) and ammonia (NH3). NOx is a collective
term used for molecules consisting of a nitrogen atom reacted with a certain amount of oxygen atoms.
In the context of this research, and most literature, it indicates the two most relevant nitrogen oxides
contributing to air pollution: nitric oxide (NO) and nitrogen dioxide (NO2).
Together, NOx and NH3 have garnered attention in the Netherlands as focal point of the stikstofcrisis,

or the nitrogen crisis [16]. More information on this can be found in the introduction of this thesis. This
chapter will first focus on NOx, and then on NH3.
For atmospheric trace gas concentrations, two terms are important: the source and the sink. A

source is any factor that adds the trace gas to the atmosphere. This is usually an emission source on
the Earth’s surface. A sink is any factor that removes the trace gas from the atmosphere. This is usually
a chemical reaction, or deposition onto the Earth’s surface. A sink does not mean that the element is
not harmful anymore. The reactant or the impact on the surface often leads to the most detrimental
consequences of the trace gas. However, after being deposed on the Earth’s surface, the trace gas
is outside of the scope of satellite measurements. For both NOx and NH3, we will discuss its sources
(both anthropogenic and natural) and sinks, and its emission trends. A third section focuses on the
impact on public health and the environment.

5



2.1. Reactive Nitrogen Compounds 6

2.1.1. Nitrogen oxides
The main anthropogenic sources of nitrogen oxides are heavy industry and transport (both road and
sea). Agriculture also produces some NOx [16]. Nitrogen oxides are formed when the usually stable
N2 and oxygen (O2) react with each other under high temperatures, and form nitric oxide:

N2 +O2 −→ 2NO (2.1)

Nitrogen dioxide is then formed as there is a fast conversion of nitrogen dioxide and nitric oxide
into one another, with ozone (O3) as an additional reactant. Under the influence of light (hν), NO2 is
converted to NO. In its turn, ozone reacts with NO to form NO2. This rapid exchange is in balance, also
called a ”null cycle”. This interaction is summarized in the following reactions [17]:

NO2 + hν −→ NO+O (2.2)
O+O2 −→ O3 (2.3)

NO+O3 −→ NO2 +O2 (2.4)

The anthropogenic sources of nitrogen oxide emissions are divided over different sectors. These
are shown in Figure 2.1, for the Netherlands. As can be seen, the last 30 years have shown a general
decline in NOx emissions. Especially the road transport sector has reduced its emissions greatly as
European standards for new vehicles have become more stringent [18]. On the other hand, the ship-
ping sector has not seen a reduction in emissions. There have been some efforts in this industry to
attempt to reduce NOx emissions, such as reducing the speed of the ships (called ”slow steaming”) [19].
However, the size of the global commercial shipping fleet is increasing yearly, so its emissions have not
declined along with the improved cleanliness of the individual ships [20]. Slow steaming is also mostly
an economical consideration. In 2021, a Nitrogen Emission Control Area (NECA) was introduced in the
North Sea. This measure aims to curb nitrogen emission from cargo ships, especially near the coast
[21].

Figure 2.1: Annual NOx emissions in the Netherlands, separated by source. This chart only includes anthropogenic sources.
[22]

There are also some natural sources of NOx. A main natural source of NOx is lightning. The rapid
energy discharge and subsequent heating of gases forms NO particles. In the case of the Netherlands,
this is not an important contributor as lightning is not as common as in other regions. Forest fires are a
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similar source of NOx. However, this does not fully qualify as a natural source, given that a part of these
are due to human activity. Another natural source of NOx are aerobic and anaerobic bacteria in soils.
These bacteria are part of a complex nitrogen cycle, which consists of nitrification (where ammonium is
converted in nitrate) and denitrification (where nitrate is converted into N2) processes. NOx is a natural
byproduct of these processes [23]. It is estimated that globally, NOx emissions originate for 65% from
anthropogenic sources [24].
NOx has a few different sinks. Most NOx is removed from the atmosphere through chemical reactions.

Both NO and NO2 react with atmospheric OH to form HNO3. This is the main sink of NOx. It is mainly
agreed that these reactions contribute to around 60% of worldwide NOx sinks. Another sink of NOx
is its deposition onto the Earth’s surface. This deposition can be both wet and dry. In the case of
wet deposition, NOx mixes with moisture in the air, which is deposed onto the Earth via rain, snow or
fog. This is also known as acid rain. In the case of dry deposition, NOx reaches the Earth’s surface
in gas form, where it is taken up by the surface or inhaled. Deposition is estimated to form around
20% of global sinks. There is quite some uncertainty paired with these estimations, as described by T.
Stavrakou et al. [25].

2.1.2. Ammonia
Where nitrogen oxides are mainly formed during combustion processes in heavy industries and trans-
port, anthropogenic ammonia emissions in the Netherlands can be ascribed almost exclusively to agri-
culture [22]. The largest sources are the use of fertilizer in soil, and the production of animal manure.
Surface ammonia is transported to the atmosphere when the surface concentration of ammonia is
much higher than the atmospheric concentration in the local air layer above. The amount of emission
depends on many factors, including the type of livestock, their feed, how efficiently the nitrogen in their
feed is converted to eggs, dairy and other products, and the density of livestock. The air turbulence
above the manure also plays a role, as the supply of ”fresh” air with lower ammonia concentrations
again increases the difference in ammonia concentration between soil and overlying air. As air tur-
bulence is often hard to characterize, it is not evident to quantify the amount of ammonia emissions
[26].
The largest natural source of ammonia is the ocean. Ammonia can enter the ocean naturally through

air deposition and nitrogen fixation. A similar equilibrium exists to the previously described equilibrium
between surface and atmospheric NH3. When the concentration of NH3 in the ocean exceeds that of
the air layer above, NH3 is emitted to the atmosphere. Though this reaction is bidirectional, studies
show that the oceans are net emitters [27]. It is important to note that ammonia from anthropogenic
sources also enters the ocean, for example in the form of run-off water from agricultural lands. These
raised levels in ammonia concentration also lead to more ammonia emissions from the ocean. For this
reason, oceanic ammonia emissions are not entirely natural.
Figure 2.2 shows NH3 emissions in the Netherlands from human sources. These have reduced

significantly since 1990, but still the agricultural sector remains the main source of emission. The
largest reductions in NH3 emission were made by using different application techniques of manure in
the soil, using less fertilizer, reducing the livestock, and transferring to low-emissions stables. However,
the main effect of these measures was achieved between 1990 and 2000. Since then, the emissions
reductions have stagnated [16].

2.1.3. Impact on the environment and human health
The emission of NO2 and NH3 has several detrimental consequences, both on human health and the
natural environment.
A first impact on the natural environment, is their contribution to global warming. NO2 and NO are not

greenhouse gases: they do not trap radiated heat from the Earth’s surface in the atmosphere. However,
they do contribute to the formation of greenhouse gases, most notably ozone (O3). Some studies even
show that local heightened NOx concentrations can double the amount of ozone present near the
ground and in the troposphere [28]. A surplus of NH3 also leads to a heightened concentration of N2O
(nitrous oxide), a greenhouse gas 300 times more powerful than carbon dioxide. Therefore, reactive
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Figure 2.2: Annual NH3 emissions in the Netherlands, separated by source. This chart only includes anthropogenic sources.
[22]

nitrogen indirectly contributes to climate change.
Another facet of the environmental impact of NOx, is its contribution to surface acidification. NOx

reacts with ozone and SO2, to form acidic aerosol droplets, which are black in color, and are therefore
also referred to as ”acid smut”. NO2 also reacts with OH to form HNO3. When deposed on the Earth’s
surface, both through dry and wet deposition, this contributes to the rise in acidity in oceans, lakes,
forests and soil. Due to the change in acidity, ecosystems start favoring species that prefer an acidic
environment, such as brambles and nettles. A large part of species that are not accustomed to these
circumstances, decline and may become extinct [29]. Animal species dependent on these plants also
decline. NOx is thus a contributor to loss of biodiversity.
Another important effect of a surplus of nitrogen is eutrophication in coastal waters and lakes, re-

sulting in harmful algal blooms. Nutrients such as nitrogen, but also phosphorus, are food sources for
algae. The surplus of these nutrients leads to an exponential bloom of these species which prevents
light from penetrating the water. This means that species who depend on their vision, such as pikes,
decline. Another harmful effect of a surplus of algae is that they require oxygen to decompose. When
the amount of algae is too high, they take up to much oxygen in their decomposition. This leads to an
oxygen deficit and the decline of fish and shellfish populations [16]. It also has an adverse impact on
the quality of drinking water, and its use for agricultural and recreational purposes, as these algae are
potentially poisonous [30]. Another important and harmful effect to the environment is the increased
release of methane from eutrophic lakes. Methane can be up to 34 times more effective than CO2 as
a greenhouse gas [31].
NOx has a direct impact on human health, most prominently on the respiratory system. Different

case studies have shown a direct link between heightened concentrations of NOx, and an increase
in mortality cases and hospitalization linked to respiratory diseases such as bronchitis and asthma
exacerbation [32] [11].
There are also indirect effects to human health. As mentioned above, a byproduct of the disrupted

nitrogen cycle is an increased amount of ozone, which contributes to smog formation. This leads to
problems for the respiratory system, as well as irritations to the eyes, ears and nose. Aerosols formed
by reactive nitrogen lead to complications in the blood circulation and lungs. [16]
It is clear from this section that a surplus of reactive nitrogen and its byproducts has dire consequences
for the environment and human health. Curbing its emission in industry (in the case of nitrogen oxides)
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and agriculture (in the case of ammonia) is thus important. For this, we need reliable measurements of
atmospheric concentrations of both molecules. One way this can be done is using satellite measure-
ments. This will be further explored in the next section.

2.2. Measuring Nitrogen using Satellite Observation
In order to measure the amount of trace gases in the atmosphere, several methods have been used
throughout history. One method is a network of remote installations on the ground which measure
concentrations on the ground. For ammonia, this network contains 300 measuring stations, and for
nitrogen oxides 73 measuring points are available. Additional instruments are available that focus
specifically on wet and dry deposition of nitrogen [16]. The advantage of such a method is that it doesn’t
depend on weather conditions or other external factors to make its measurements, and therefore gives
a coherent time series, with updates at set intervals. A big disadvantage is that the spatial coverage of
this method depends on the number of measuring devices, and the measurements are thus limited to
these locations.
Since the 1970s, the use of satellites to monitor the Earth has started, and now a large fleet of

satellites measure a wide range of indicators. One of the applications of such satellites is measuring
the concentration of trace gases in the atmosphere, including NOx and NH3. A large advantage of using
satellite instruments is that the data procured by one instrument contains measurements covering a
large part of the Earth, including remote regions where placing measuring stations is infeasible. Some
instruments even have global coverage.

Figure 2.3: This figure shows the solar radiation spectrum. The blue line
shows the solar irradiance before passing through the atmosphere, and the

red line shows the solar irradiance after passing through the Earth’s
atmosphere. The absorption spectra of different molecules are also

indicated [33].

The instruments that are discussed
in this research use back-scattered so-
lar radiation to measure the concen-
trations of different trace gases in the
atmosphere. The sun emits radiation,
that is partially reflected by the Earth.
In doing so, it passes through the atmo-
sphere, where the present molecules
absorb a part of the radiation, depend-
ing on their respective absorption spec-
tra. Figure 2.3 shows this process.
The blue line shows solar radiance be-
fore passing through the atmosphere,
and the red line shows solar radiance
after passing through the atmosphere
and being reflected by the Earth’s sur-
face. The red line is what is then mea-
sured by satellites. Any discrepancy
between the two lines is caused by the
absorption of energy on the Earth’s sur-

face, or by molecules in the atmosphere. If the absorption spectrum of a molecule is known, a discrep-
ancy between the red and blue line in this location can show the presence of this molecule in the
atmosphere. Of course, the reflectivity of the Earth must also be taken into account, with each surface
type having different reflective properties. The conversion of an irradiance spectrum measured by a
remote instrument to an atmospheric concentration is an interesting subject, but not one that is covered
by this research.
Many instruments focus on measuring a part of the radiation spectrum, and therefore are only able

to measure atmospheric concentrations of certain molecules. SCHIAMACHY was the first instrument
to focus on measuring the entire radiation spectrum, from ultraviolet (UV) to infrared (IR), including the
visible spectrum (VIS) [34].
The added value of satellite measurements can not be underestimated. It gives insight into emissions

from countries with unavailable or unreliable emission data. It is also useful to track emissions from
unpredictable sources, such as gas leaks. An example of this use is shown by Pandey et al., who
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found that accidental methane leakage from a gas well in Ohio had a projected emission budget equal
to one quarter of the reported annual emission of the entire state [35]. Such methane leaks would be
impossible to spot using in situ measuring techniques, as their locations are unpredictable and often
remote.
Using satellites to measure atmospheric trace gas concentrations also has certain disadvantages.

For instance, the quality of the measurement depends heavily on the atmospheric and surface condi-
tions. Most trace gases are measured using the spectral radiance of light that reflects from the Earth
and travels back to the satellite through the atmosphere. If this light is hindered by cloud cover, the data
for that measurement is deemed untrustworthy, and can not be used [36]. Elevated surface albedo (or
the reflectance of the Earth’s surface) also deteriorates the quality of measurements of some trace
gases. Elevation of surface albedo can be caused by for example snow and ice-cover. Aerosols also
influence the light path in the atmosphere [37].
Another obstacle when measuring trace gases in the atmosphere, is that using reflected radiation

spectra gives the complete atmospheric column concentration, and not only the concentration of a
trace gas near the surface. There are different methods available to translate the atmospheric column
concentration, such as the use of an averaging kernel. However, this requires much research and
prior knowledge for each specific trace gas that is being measured [38]. More information about the
instruments monitoring NO2 and NH3 specifically will be given further on in the report.
Notwithstanding the obstacles that come with using atmospheric satellite data, this method is a great

asset to environmental monitoring and calculation. For NO2 measurements, the KNMI uses data from
the TROPOspheric Monitoring Instrument (TROPOMI). For NH3, data from the Cross-track Infrared
Sounder (CrIS) is used. The following section will elaborate on these instruments.

2.2.1. Measuring Nitrogen Dioxide (TROPOMI)
The absorption spectrum of nitrogen dioxide falls in the ultraviolet and visible light region. The major-
ity of the absorption occurs for wavelengths between 300 and 600 nanometers, with a peak at 400
nanometers [39].
Different instruments are available to measure nitrogen dioxide from space. The first satellite mea-

surements of nitrogen dioxide were provided by the Global Ozone Monitoring Experiment (GOME),
an instrument aboard the ERS Satellite, which was launched in April of 1995. The resolution of this
instrument was 40x320 km and required three days to provide global coverage [40]. This instrument
provided measurements until 2011.
The previously mentioned SCHIAMACHY instrument improved on this resolution, with pixels of 30x60

km [34]. Its spectral range contains both the UV spectrum as well as the IR spectrum, something that
was not previously attained. The instrument provided measurements until 2012.
A notable improvement to resolution and coverage was made by the Ozone Monitoring Instrument

(OMI), flying on NASA’s satellite Aura, launched in 2004 [41]. OMI was built in the Netherlands in
cooperation with Finnish institutions. The KNMI is the principal investigator of this instrument. The in-
strument provides near-daily global coverage, and has a resolution of 13 km x 24 km ad nadir (vertically
underneath the instrument). It measures spectral radiance in the UV and VIS regions, with a spectral
resolution of 0.5 nm [37]. Its improved resolution allowed for emission detection on an urban scale,
something that was not possible with previous instruments.
OMI remained the standard in resolution and data quality until the 13th of October, 2017. On this

day, the European Space Agency Sentinel 5-Precursor (S5P) satellite was launched, containing the
TROPOspheric Monitoring Instrument, TROPOMI for short. The instrument has three spectrometers.
It measures spectral radiance in both the UV and VIS spectrum (270-500nm), but also contains two
spectrometers in the IR spectrum: one in the near infra-red spectrum (NIR: 675-775nm) and one in the
short-wave infrared spectrum (SWIR: 2305-2385 nm). This allows the instrument to measure a great
range of pollutants, ranging from ozone (O3, with an absorption spectrum beginning around 300 nm)
to carbon monoxide (CO, with an absorption range until 2400). Figure 2.4 shows the three different
spectral ranges measured by TROPOMI, and the atmospheric trace gases measured within each of
these ranges with their respective absorption spectra.
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Figure 2.4: This figure shows the spectral range of TROPOMI, including the different pollutants it is able to measure and their
respective absorption spectra. It also shows the spectral ranges of the heritage instruments preceding TROPOMI. [12]

The S5P satellite flies in an ascending sun-synchronous polar orbit, at a height of 824 km [12]. A
satellite in a polar orbit flies in a North-South direction, passing over the poles on each orbit. A sun-
synchronous orbit is an orbit where the instrument always has the same position relative to the sun. The
advantage of this route, is that the instrument always has the same pass-over time for each location.
For TROPOMI the local equatorial pass-over time is 13:30 PM. This fixed pass-over time makes it
easier to compare time series. An ascending orbit means the instrument flies from South to North
during the daytime overpass, and from North to South in the nighttime overpass. As it is not possible
to measure radiance during the nighttime, all descending observations can be discarded.
The measurement swath of TROPOMI is 2600 km. A swath of a satellite is the surface area that is

covered by one fly-over. Upon launch, it started a new measurement every second, in which time it has
advanced 7 km. This gives a pixel resolution of 7km in the along-track direction (the orbiting direction
of the satellite). On the 6th of August 2019, the along-track distance was improved to a resolution of
5.5 km. The resolution in across-track direction (perpendicular to the orbiting direction) is 3.5 km at
the center of the measurement swath [42]. As the viewing angle of the instrument increases, so does
the across-track pixel size. Towards the edges, the pixel resolution borders 15 km, although some
correction is applied, leading to an irregularity in the across-pixel distance. This is shown in Figure
2.5a. TROPOMI crosses the poles 14 times each day. Combined with the width of the measuring
swath, this gives daily near-global coverage. Figure 2.5b shows an example of a daily path of the
TROPOMI instrument. This image was created for promotional purposes, and missing data due to
cloud cover or other factors has been filled in.
Atmospheric concentraions of a trace gas is also referred to as its column density. TROPOMI directly

measures slant column densities (SCD), or the amount of molecules present in the optical path from
the Sun to the Earth’s surface to the satellite. However, we are interested in knowing the tropospheric
vertical column density (VCD), or the amount of molecules of a trace gas present in the troposphere
column directly above a ground pixel. To convert a SCD to a VCD, the SCD Ns should first be de-
composed into its stratospheric and tropospheric component Nstrat

s and N trop
s . These can then be

converted to VCDs Nstrat
v and N trop

v [42].
Th conversion from SCDs to VCDs is done using air mass factorsM , or the ratio between a SCD and

VCD. These are available for both the troposphere (M trop) and the stratosphere (Mstrat) in look-up
tables. However, the first step in these computations is converting Ns to Nstrat

v . This is done using a
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(a) The across-pixel distance along the measurement swath of the
TROPOMI instrument. [42] (b) Near-world coverage from the TROPOMI instrument. [43]

(c) The relative error for NO2 measurements. [42]

Figure 2.5: The across-pixel distance, the coverage of a single day of measurements, and the relative error of TROPOMI.

data assimilation technique and a-priori vertical NO2 profiles. Using Mstrat, Nstrat
s can be computed

(Nstrat
s = Nstrat

v ·Mstrat. Then, N trop
s = Ns −Nstrat

s , which is then divided by M trop to find N trop
v , or

the VCD we are interested in.
In the first versions of the product, this system used an a-priori vertical NO2 profile information from a

chemical transport model named TM5-MP [44]. However, using this a-priori tended to slightly overesti-
mate relatively small NO2 columns. A higher resolution chemical transport model from the Copernicus
Atmosphere Modelling Service (CAMS) was used in 2020, and gave more accurate results when com-
pared to ground-based measurements [45].
The error of the vertical column density of NO2 is made up of the error in measuring Ns, the error in

separatingN trop
s fromNs and the error inM trop, which is used to computeN trop

v . These errors depend
on many different factors, and therefore differ per pixel. For low values of Ns, the error is dominated by
fitting errors, while for large values ofNs, the error is more often caused by uncertainties in the air-mass
factor. Figure 2.5c shows the relative measurement error. In remote regions where NO2 concentrations
are generally low and the uncertainty is dominated by measurement error, the error is relatively high,
around 100%. For regions with higher NO2 concentrations, the uncertainty is relatively lower, usually
between 20-40%. [42]

2.2.2. Measuring Ammonia (CrIS)
Ammonia (NH3) has an absorption spectrum in the IR spectral range between 8.3 µm and 13.3 µm,
with peak absorption around 10.5 µm. It is therefore outside of the spectral range of TROPOMI. NASA
provided the first instrument capable of measuring NH3 in 2004, the Tropospheric Emission Spectrom-
eter (TES) on the EOS Aura satellite [46]. This was soon followed by an ESA counterpart in 2006,
the Infrared Atmospheric Sounder Interferometer (IASI). This contains multiple instruments aboard the
METOP series of satellites [47]. In 2011, the Suomi NPP satellite was launched by NASA and NOAA,
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Figure 2.6: The footprint of CrIS, with circular pixels. [49]

containing the Cross-track Infrared Sounder (CrIS). This instrument provides the data for ammonia
used in this research. Since then, multiple satellites have been launched that carry CrIS, including the
Joint Polar Satellite System (JPSS). The rest of the section will focus on the specifics of CrIS. As this
research focuses mainly on NO2, this instrument is discussed in less depth than TROPOMI.
A sounder is an instrument capable of measuring vertical profiles, or the value of a variable at different

heights. The application of CrIS is much broader than just ammonia measurements. CrIS measures
vertical profiles of temperatures, moisture and pressure, and is thus used in daily weather forecasts.
It also measures cloud top height, and the height of the Planetary Boundary Layer (PBL). Its vertical
profiles range from 1013 hPa (the Earth’s surface) to 500 (around 5500 meters above the Earth’s
surface). CrIS measures in three spectral bands, one in shortwave IR, one in midwave IR and one in
longwave IR. The longwave IR spectral band (9.13-15.40 µm) is of interest for ammonia measurements
[48].
CrIS has a measuring swath of 2200 km, and provides near-global coverage. The footprint is made

up of arrays of circular pixels, in a 3x3 set-up. The nadir pixels have a diameter of 14 km, and the
centers of the pixels are 16 km apart. At a larger viewing angle, the circles become ellipsoids, and the
3x3 groups are rotated slightly. This is clarified in Figure 2.6.
An important term in the retrieval of atmospheric ammonia vertical profiles, is the averaging kernel,

represented as a matrix A. This kernel describes ”the sensitivity of the retrieval to the true state” [48]. If
x contains the vector of the true vertical column density, and x̂ contains the measured vertical column
density, the averaging kernel is given by:

A =
∂x
∂x̂ (2.5)

In other words, CrIS retrieves a value for the ammonia concentration at different vertical heights. In
case of a perfect instrument, A would be the identity matrix, as each measurement would be exactly the
true ammonia concentration at that height. However, this is not the case in practice. The measurement
for each height contains information about the column density at different heights. The averaging kernel
shows for each measurement, how much information is contained for each vertical layer. [50]
Figure 2.7 shows an example of such an averaging kernel for CrIS. The legend shows to which

measurement height each averaging kernel pertains. It can be seen that most measurements are most
sensitive to ammonia present between a height of 900 hPa and 800 hPa [48]. To conclude, an averaging
kernel is needed to create vertical profiles. This technique is not needed for TROPOMI VCD retrieval,
as TROPOMI is not a sounder and therefore does not give vertical profiles. However, TROPOMI
does require a-priori vertical profiles, as discussed previously, to be able to separate stratospheric
concentration from tropospheric concentration.
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Figure 2.7: The averaging kernel from a
measurement taken by CrIS above the San
Joaquin Valley in California on the 28th of

January, 2013. [48]

Another interesting measure is the area of an averaging ker-
nel. The area is a summation over all averaging kernels for each
model level. This gives an indication of the overall sensitivity of
the instrument to atmospheric ammonia at different heights. [50]
The determination of the averging kernel is a large field of re-

search withing the remote sensing community, and how it is done
for CrIS exactly, is outside the scope of this research.
Another important factor in using ammonia measurements, is

the thermal contrast. This is the difference in temperature be-
tween the surface and the air layer above (planetary boundary
layer). If this difference is too small, CrIS is not able to perform
an accurate measurement. For this reason, nighttime measure-
ments are often not included in analysis, as their error margin is
too large. The Suomi NPP satellite flies in a sun-synchronous or-
bit, with a local overpass time of 13:30 PM on the ascending node
(when flying from South to North). This overpass time is benefi-
cial for the performance of the sounder, as the thermal contrast
is usually at its highest. [48]
The total error of CrIS is made up of two components: the mea-

surement error and the smoothing error. The smoothing error
is related to the fact that the vertical resolution is rather coarse,
and thus requires some interpolation, which introduces an error.
The vertical resolution is the number of layers for which a mea-
surement is obtained. The coarser the vertical resolution is, the
greater the smoothing error. The measurement error of CrIS is

lower than all its predecessors, allowing it to take measurements at lower thermals contrasts than pre-
viously possible. The relative error is larger for low values (<0.5 ppbv, or parts per billion per volume)
than for high values (>2.5 ppbv). The measurement error ranges between 10% to 15% for the total
column density. When the smoothing error is included, it is 30%. When examining ammonia concen-
trations at individual heights, the measurement error is around 10% for high values and 30% for low
values. Including the smoothing error leads to a relative error between 60% and 100%. [51]

This section gave more insight in how remote sensing instruments can yield concentration maps (or
vertical column density maps) for nitrogen oxides (using TROPOMI) and ammonia (using CrIS). The
following section gives an overview of how such concentration maps can be used to create emission
maps.

2.3. Emission retrieval
Using satellite data, it is possible to get a picture of the vertical column density of NO2 and NH3, amongst
others. However, it is important to not only find the concentration of a certain trace gas, but also to
know what the source of the emission is. Some gases, such as methane, have a certain background
concentration caused by natural emission sources. This can make it hard to find the exact location of
sources. Wind and turbulence can also hinder finding the location of an emission source.
There are different methods available to retrieve spatial emissions. The focus of this research is the

Flux-Divergence method, which was first introduced by Beirle et al. [1]. The KNMI has successfully
used this method to create emission maps for NO2. An in-depth explanation of this method can be
found in this next section.
Apart from this method, there are also other availablemethods, which will be used as validation for the

retrieved emission values of the Flux-Divergence method. The first method that will be discussed is the
regional bottom-up emissions retrieval inventory from the Copernicus Atmosphere Modelling Service
(CAMS-REG). Then, the DECSO method, previously mentioned in the introduction, will be discussed.
Finally, the Flux-Divergence method is descirbed.
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Figure 2.8: NOx emissions from the CAMS-REG inventory for 2017. The total for all sectors is shown. Shipping routes, road
networks and large industrial centers are clearly visible. [52]

2.3.1. CAMS-REG emission inventory
A first data set that is used to compare the results of this research to, is the Copernicus Atmosphere
Modelling Service regional inventory (CAMS-REG). This emission inventory is shown in Figure 2.8
for 2017. This inventory provides annual emission maps for the main air pollutants (NOx, SO2 and
NH3 amongst others), on a high resolution (0.05x0.1 degree). The domain of this inventory covers all
European countries, including Turkey and a part of Russia. The grid borders are defined by 30°W to
60° E, and 30 to 72°N. This also includes parts of Northern Africa and the Middle East. The data set
also divides emissions into different industrial sectors. [52]
The largest part of the data is acquired from national emission inventories. These emission inven-

tories are usually acquired by using a bottom-up approach. Such an approach does not depend on
satellite data. Instead, it uses the known emission sources of a certain trace gas, and measured emis-
sion rates for source. These are then spatially located on the CAMS grid. For countries where the
provided emissions were insufficiently accurate, or incomplete, the emissions were supplemented by
the Greenhouse gas Air pollution Interaction and Synergies (GAINS) model. This model has been used
to support previous European policies [53] [54].
For emissions from shipping, a separate model is used, called STEAM [55]. This is needed because

combining shipping inventories from different countries leads to inconsistencies, and international ship-
ping is not included at all.
Similarly, emissions from agricultural waste burning are treated separately. As this activity is forbid-

den in the EU, reporting on these emissions is less accurate and hardly available. Therefore, satellite
data from different instruments on fire radiative power are combined to create emission estimates. This
system is called the CAMS Global Fire Assimilation System [56].
It is hard to quantify the uncertainty of the reported emissions of the CAMS-REG inventory, as the

inventory combines many different methods and data sources, each with a different level of uncertainty
(if reported at all). Notwithstanding, the CAMS-REG inventory provides an excellent source of data to
validate results of European-focused researches, such as this thesis.
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2.3.2. DECSO Method
Another emission retrieval method that is interesting to validate results is currently being developed at
the KNMI. It is called Daily Emissions estimations Constrained by Satellite Observations, or DECSO
for short. The first results were obtained in 2012 by van der A and Mijling [3]. This article used NO2

emission data made available by the OMI and GNOME measuring instruments (TROPOMI was not yet
launched at that time). The research modelled NOx emissions above Eastern China, a region where,
due to the fast growing economy, bottom-up inventories were quickly outdated. The DECSO algorithm
uses a chemical transport model to simulate the transport of emitted particles, taking a recent emission
inventory as a starting point (for the previously mentioned study, the INTEX-B campaign was selected
[57]). A Kalman filter is then used to update the emission inventory, incorporating measured satellite
VCDs in the model inversion step.

Figure 2.9: NOx emissions form the DECSO model above the
East China Sea, after improvements made by Ding et al. [58].

The convergence rate of this method was suffi-
ciently fast that it allowed for detection of monthly
emission trends, specifically the decline in NO2

emissions caused by government policies imple-
mented around the 2008 Beijing Olympics. New
emission sources, such as new power plants, that
were not yet included in the a-priori emission in-
ventory, also emerged using this model. It was
also able to pick up on mobile sources from ship-
ping traffic. As satellite data is available on a
daily temporal resolution, this model uses daily
emission updates. A drawback of this, is that
the satellite retrieval noise leads to more model
noise. Choosing higher emission uncertainties in
the model reduces runtime, but adds more noise
as well. Choosing a lower uncertainty increases
the runtime.
Additions were made to the algorithm by Ding

et al. Using amore recent version of the chemical
transport model, and filtering out outlying satellite
retrieval values further improved the monthly res-
olution on which DECSO shows emission trends
[59]. Better characterization of the sensitivity of
the NO2 observations to NOx emissions led to
a factor ten reduction in the background noise.
This revealed low emission sources that were pre-
viously indistinguishable from background noise.

Moreover, a constraint was set on the emission update, that prohibited unrealistic fluctuations in daily
emissions [58]. The results emission map in shown in Figure 2.9.
This model is of special interest to this research for different reasons. On the one hand, it is an

emission computation approach with similar advantages to the Flux-Divergence method: it uses satel-
lite data and can thus be updated to the latest emission trends, unlike bottom-up emission inventories.
Both models are efficient enough in their computations that they can include daily satellite measure-
ments. Moreover, the DECSO algorithm can find sources not included in the chosen a-priori emission
estimate, and the Flux-Divergence method does not require an a-priori emission estimate.
This research also uses the DECSO algorithm as it contains the lifetime of NOx as an output. As

part of the algorithm, the NOx lifetime is estimated such that the difference between the computed
NOx concentrations and the concentrations simulated by the chemical transport model is minimized
[3]. Given that the Flux-Divergence method also requires a lifetime for NOx to estimate the sink term,
it is interesting to analyse the impact of using the DECSO NOx lifetimes. It must be noted that little
research has been done on the validity of these lifetimes.
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2.3.3. Flux-Divergence Method
The previous section has described two different methods that can be used to find emission rates of
pollutants. This section will zoom in on the Flux-Divergence method, the focal point of this research.
This method is based on the steady state continuity equation. Despite its simplicity, it has successfully
been used in different research papers, which will also be touched upon in this section. First, the
reasoning of the Flux-Divergence method is explained.
The Flux-Divergence method focuses on the transport of an atmospheric pollutant P , also called the

flux f of P . We describe the flux as a 2-dimensional flow, meaning we can define the flux as:

f =
(
fu

fv

)
. (2.6)

u denotes the East-West direction, and v the North-South direction.
We model the horizontal transport of P using the wind velocity. This is a reasonable assumption, as

wind is the main mode of transport of trace gases through the atmosphere. This means that the flux of
P is simply the product of the wind velocity (w) and the vertical column density of P (VP ):

f = VP ·w = VP ·
(
wu

wv

)
(2.7)

Should there be no sources or sinks for P , this assumption dictates that the flow of P is the same
as the flow of wind. However, if there is a source of P in a certain, the heightened concentration leads
to an expansion in the flux field, or a net outflow for the surrounding region. Conversely, a sink of P
in a region leads to a contraction of the flux field, or a net inflow for that region. The expansion or
contraction of the flux field is also called the divergence of the flux, noted as ∇ · f.The divergence of a
flux field is given by:

∇ · f = ∂fu

∂u
+

∂fv

∂v
. (2.8)

A net outflow of the flux field gives positive divergence, while a net inflow of the flux field gives
negative divergence. The assumption made in the Flux-Divergence method is that any divergence in
the flux is caused by either an emission source of P (E, in the case of positive divergence) or a sink of
P (S, in the case of negative divergence). Summarized, this gives:

∇ · f = E − S (2.9)

To give more insight into this statement, imagine a grid cell with positive divergence of the flux of
P . This means that the flux of P in upwind direction is smaller than the flux in downwind direction. In
other words, more P exits this grid cell than enters it and we have net outflow. Assuming that the wind
did not significantly increase in speed within this grid cell (which is plausible, given the fine dimensions
of the grid cells used in this research), it can be supposed that this is caused by P emissions in this
grid cell. Conversely, if a grid cell has negative divergence, it means that the flux in upwind direction
is smaller than the flux in downwind direction. This means that more P enters a grid cell than exits it,
meaning that we have net inflow and there must be some sort of sink within this grid cell. Figure 2.10
also illustrates this.
Equation 2.9 is the crux of the Flux-Divergence method. When one has a satisfactory map of the

flux-divergence of P for a certain region, estimating the sink term for P will give an emission map,
which helps to detect and quantify emission rates from different sources. Conversely, estimating an
emissions term will also give a deposition map for P , something that has a great added value in the
protection of vulnerable ecosystems.
A large advantage of using this method, is the fact that we average over the flux of P , instead of over

its vertical column density. Down-wind plumes present in the VCD maps, lead to smearing around an
emission source when they are averaged temporally. This is avoided when using the divergence of
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Figure 2.10: An illustration of the positive divergence of a grid cell with a source (left), as opposed to the negative divergence
of a grid cell with a sink (right). The wind is shown in blue, and the pollutant flux is shown in red.

flux, because this only peaks at the source of an emission source. Therefore, emission sources are
preserved during temporal averaging.
This is illustrated in Figure 2.11. In Figure 2.11a, the results of averaging the VCD of NO2 over Riyadh

over a year is shown. This leads to a large background concentration, with hardly discernable emission
sources. However, in Figure 2.11, the flux-divergence is averaged over a year. In this case, we still
clearly see all the emission sources. Figure 2.11c shows the effect for a one-dimensional down-wind
plume, with no loss of the trace gas. Both the concentration and the flux remain high in downwind
direction from the source. The divergence of the flux is only heightened around the emission source.
The TROPOMI instrument gives VCD maps for NO2 that are highly suitable for the application of

this method, as first shown by Stefan Beirle et al [1]. They first used this method in 2019 to map
point emission sources near Riyadh, Saudi Arabia. Riyadh has favourable circumstances for satellite
measurements, due to low cloud cover and high surface albedo. In the same paper, the method was
successfully applied on emissions sources in Germany and South Africa, where these factors are less
favourable. The method still performed well, though the uncertainties were higher. This shows that the
method is robust under less ideal circumstances, and is not highly susceptible for noisy data. Statistical
tools was also used to separate point sources from background concentrations. This will not be further
focused on for this research.

(a) Temporal averaging of the VCD of NO2

around Riyadh. Data is averaged over a
year [1].

(b) Temporal averaging of the
flux-divergence of NO2 around Riyadh.

Data is averaged over a year [1].

(c) A one-dimensional representation of
flux-divergence around an emission source

[60].

Figure 2.11: These figures illustrate how a flux-divergence map maintains emission sources when temporally averaged
(centre), as opposed to temporally averaging the VCD (left). It is also shown how the flux-divergence is only high around an

emission source, and not for the rest of the downwind plume (right).
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After the proven efficacy of the method, the Flux-Divergence method was later used to create a
global inventory of NO2 point sources, again using TROPOMI data [2]. Researchers of the KNMI were
involved in this paper. The research found that the largest difficulties for the method are linked to gaps
in the VNO2

data set. Complex wind fluxes caused by mountainous regions also lead to difficulties,
as well as background pollution leading to noise for the computation of divergence. The method was
also applied to NOx emission from oil and gas basins in the United States of America [15]. This paper
showed a good agreement between reported emissions from the Flux-Divergence method and different
inventories. It also focused on different methods to estimate NOx lifetimes.
Liu et al. used the method to pinpoint methane (CH4) emissions, showing that the method is not only

suitable for NO2 measurements. Sensitivity testing showed that the method is robust. [14]

2.4. Computing Flux - Wind Input

Figure 2.12: The 137 model levels of the ECMWF data sets [61].

As described in the previous section,
the Flux-Divergence method is gov-
erned by a steady state continuity
equation (Equation 2.9). This section
describes how the flux f (or the trans-
portation) can be computed for NO2.
The flux is computed by multiplying the
satellite trace gas concentration data
and a wind field, in accordance to pre-
vious studies [1] [2]. This section pro-
vides more information on which data
set is chosen, and how this is inter-
polated to the grid on which the Flux-
Divergence method is run.
The wind data is taken from the

data sets from the European Center
for Medium-Range Weather Forecasts
(ECMWF). The ECMWF is an intergov-
ernmental organization that produces
high-quality meteorological data, in-
cluding horizontal wind velocity data
sets. This data set was chosen be-
cause research from the World Mete-
orological Organization (WMO) Lead
centers shows that the ECWMF pro-
vides the most accurate data. [62] The
ERA5 reanalysis of ECMWF historical
data is used.
The ERA5 reanalysis uses a 4DVar

data assimilation model, with 10 en-
semble members. The computa-
tions are done on 137 non-equidistant
model levels, defined by the pressure
layers dividing the levels [63]. Level 1 corresponds with the top of the Earth’s atmosphere, where the
atmospheric pressure is zero. Level 137 corresponds to the Earth’s surface, where the pressure is
equal to the surface pressure (± 1013 hPa). Figure 2.12 shows the distribution of the model levels.
The data is provided in hourly intervals, on 37 pressure levels, and on a regular latitude-longitude grid
with a resolution of 0.25x0.25 degrees (around 30 km). The data runs from 1959 until present day [64].
The ensemble spread and mean are also included in the data set. The ensemble spread shows that

the uncertainty in wind velocity estimates declines with time, as available wind velocity measurements
become more accurate. For the time frame of interest, the ensemble spread ranges between 0.5 m/s
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(at the surface) and 1.0 m/s (at the top of the atmosphere). [65]
The wind data set provided by the ECMWF needs to be interpolated in three dimensions before it is

suitable to use in the Flux-Divergencemethod: spatially (both horizontally and vertically) and temporally.
Temporal and horizontal interpolation is done linearly. In other words, for each TROPOMI orbit, the local
overpass time is chosen (13:30 PM, see Section 2.2), and the closest available hourly data sets are
interpolated linearly. Horizontally, the center of each grid cell is chosen, and the four closest ERA5 grid
cells are selected, and again interpolated linearly.
The vertical interpolation poses the largest challenge, as choosing a representative height at which

to take the wind is not straightforward. Wind has different characteristics at different height layers. The
layer closest to the Earth’s surface is referred to as the Planetary Boundary Layer (PBL). This is the layer
in which wind flow is affected directly by the surface’s topographic features, such as mountain ranges
and coastal lines. The depth of this layer is usually not more than 1000 meters, but it contracts and
expands due to the cooling or heating of air respectively. This effect is seasonal (winter vs. summer),
but also daily (night vs. day). Above the PBL, the wind speed is a lot stronger and more uniform, as
it encounters less friction from the Earth’s surface. The abrupt change in wind velocity often prevents
the majority of trace gases to escape the PBL. [66]
To capture the effects of wind on trace gas emission sources, a representative wind velocity of airflow

within the PBL is thus needed. In past research, Beirle et al. chose to take the wind at a constant height
of 450 m [1]. Choosing different altitudes (730 and 250m) as part of a sensitivity analysis changed the
emission results by 10%. In later research, a lower altitude was chosen (300m), to better capture the
effects of wind transportation closer to the emission source [2].
Section 3.4 will continue on how the wind data was used in the implementation of the Flux-Divergence

method for this research.

2.5. Computing Divergence - Finite Difference Methods
In Section 2.3.3, it was shown how the divergence of the flux of NO2 can be used to compute emission
maps, given that information is available on the sinks of NO2. However, the information available on
the NO2 flux is not continuous. Both the TROPOMI pixels and the wind velocity data is interpolated to
a fixed regular grid, which allows for temporal averaging. This means that the divergence must also
be computed on a two-dimensional grid. The formula for divergence is given in Equation 2.8. Two first
order spatial derivatives of the pollutant concentration are required.
To compute this on a grid, numerical differentiation is needed. There are many different possibilities

in choice for numerical differentiation formulas. This research mainly uses the central difference, both
in second order form and fourth order form. Both these formula’s are deducted in this section, and their
error term is described. The theoretical basis for this section was taken from [67].

Second Order Central Difference
This section focuses on the second order central difference, which is used to find an approximation of
the derivative of a function. The first derivative of a continuous and sufficiently smooth function f(x)
is noted as f ′(x). This can be approximated using the formula for the second order central difference,
noted as Qc,2(h). This is found by averaging the formula for forward difference (Qf (h)) and backward
difference (Qb(h)):

Qc,2(h) =
1

2
(Qf (h) +Qb(h)) (2.10)

=
1

2
(
f(x+ h)− f(x)

h
+

f(x)− f(x− h)

h
) (2.11)

=
f(x+ h)− f(x− h)

2h
, (2.12)

where h denotes the distance between grid cells. The truncation error,

Rc,2(h) = f ′(x)−Qc,2(h), (2.13)
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can be found by analysing the Taylor expansion of f(x) around x in x + h and x − h. Assume f ∈
C3[x− h, x+ h]. We know that there exists a ξ1 ∈ (x, x+ h) and a ξ2 ∈ (x− h, x) such that

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(ξ1) (2.14)

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x)− h3

6
f ′′′(ξ2). (2.15)

Substituting this into the truncation error term, we find:

Rc,2(h) = f ′(x)−
f(x) + hf ′(x) + h2

2 f ′′(x) + h3

6 f ′′′(ξ1)− (f(x)− hf ′(x) + h2

2 f ′′(x)− h3

6 f ′′′(ξ2))

2h
(2.16)

= f ′(x)− f ′(x)− h2

12
f ′′′(ξ1)−

h2

12
f ′′′(ξ2) (2.17)

= −h2

6
(
f ′′′(ξ1) + f ′′′(ξ2)

2
) (2.18)

We know that:

f ′′′(ξ1) ≶
f ′′′(ξ1) + f ′′′(ξ2)

2
≶ f ′′′(ξ2) (2.19)

Using the intermediate value theorem, we then know that there exists a ξ ∈ (ξ2, ξ1) ∈ (x − h, x + h)
such that:

f ′′′(ξ) =
f ′′′(ξ1) + f ′′′(ξ2)

2
(2.20)

This gives us that the truncation error for central difference is given by:

Rc,2(h) = −h2

6
f ′′′(ξ) = O(h2), (2.21)

which is an error of second order.
In the context of this research, it is also important to consider the influence of measurement and

rounding errors. We note the measured vales for f(x) as f̂(x). Assume the measurement error is at
most ϵ, meaning |f(x− h)− f̂(x− h)| is at most ϵ, as well as |f(x+ h)− f̂(x+ h)|.
We take Sc,2(h) to be the combination of measurement error and rounding error of the central differ-

ence approximation of f ′(x). Using the triangle equality to find an upper bound on Sc,2(h) gives:

Sc,2(h) =

∣∣∣∣f(x+ h)− f(x− h)

2h
− f̂(x+ h)− f̂(x− h)

2h

∣∣∣∣ (2.22)

≤
∣∣f(x− h)− f̂(x− h)|+ |f(x+ h)− f̂(x+ h)

∣∣
2h

(2.23)

≤ ϵ

h
(2.24)

The total error Ec,2 is now given by:

Ec,2(h) =
∣∣f ′(x)−Qc,2(h)

∣∣ = ∣∣Rc,2(h)
∣∣+ Sc,2(h) ≤

∣∣∣∣h2

6
f ′′′(ξ)

∣∣∣∣+ ϵ

h
(2.25)

Fourth order central difference
This research also uses a fourth order central difference approximation, as often the data availability
of satellite data for NO2 is high enough that more surrounding data can be included. For this reason,
the fourth order central difference is used, as it has higher theoretical accuracy. This formula is noted
as Qc,4(h).
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Again we want to approximate f ′(x), the first derivative of continuous and sufficiently smooth function
f(x). First, we deduce the formula for Qc,4(h). As differentiation stencil, the two nearest neighboring
data points in both directions are included, meaning the new difference method will have the following
form:

Qc,4(h) =
k−2f(x− 2h) + k−1f(x− h) + k0f(x) + k1f(x+ h) + k2f(x+ 2h)

h
(2.26)

To find values for the constants ki, the Taylor expansion of f(x) around x is used, which is then evalu-
ated in x− 2h, x− h, x, x+ h and x+ 2h:

f(x− 2h) = f(x)− 2hf ′(x) +
4h2

2
f ′′(x)− 8h3

6
f ′′′(x) +

16h4

24
f ′′′′(x) +O(h5) (2.27)

f(x− h) = f(x)− hf ′(x) +
h2

2
f ′′(x)− h3

6
f ′′′(x) +

h4

24
f ′′′′(x) +O(h5) (2.28)

f(x) = f(x) (2.29)

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(x) +

h3

6
f ′′′(x) +

h4

24
f ′′′′(x) +O(h5) (2.30)

f(x+ 2h) = f(x) + 2hf ′(x) +
4h2

2
f ′′(x) +

8h3

6
f ′′′(x) +

16h4

24
f ′′′′(x) +O(h5) (2.31)

Substituting this in for Qc,4(h), and using that we want an approximation of f ′(x), gives the following
set of equations for ci:

f(x) = 0 ⇒ 1

h
(k−2 + k1 + k0 + k1 + k2) = 0 (2.32)

f ′(x) = 1 ⇒ −2k−2 − k−1 + k1 + 2k2 = 1 (2.33)

f ′′(x) = 0 ⇒ h(2k−2 +
1

2
k−1 +

1

2
k1 + 2k2) = 0 (2.34)

f ′′′(x) = 0 ⇒ h2(
−4

3
k−2 −

1

6
k−1 +

1

6
k1 +

4

3
k2) = 0 (2.35)

f ′′′′(x) = 0 ⇒ h3(
2

3
k−2 +

1

24
k−1 +

1

24
+

2

3
k2) = 0 (2.36)

Solving this equation gives the following values:

k−2 =
1

12
k−1 =

−2

3
k0 = 0 k1 =

2

3
k2 =

−1

12
. (2.37)

This leads to the following expression for the difference method:

Qc,4(h) =
f(x− 2h)− 8f(x− h) + 8f(x+ h)− f(x+ 2h)

12h
(2.38)

The truncation error of the method is given byRc,4(h) = f ′(x)−Qc,4(h). Substituting fifth order Taylor
expansions into Qc,4(h), we find that

Rc,4 = − h4

180
(−3f(ξ−2) + f(ξ−1) + f(ξ1)− 3f(ξ2)), (2.39)

where ξ−2 ∈ (x − 2h, x), ξ−1 ∈ (x − h, x), ξ1 ∈ (x, x + h) and ξ2 ∈ (x + 2h). Therefore, this method is
indeed a fourth order method in terms of h.
Again, we assume the error between the actual function f and the measured function f̂ is at most ϵ.

We denote this measurement error as Sc,4(h). Using the triangle inequality, we can then find an upper
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bound on Sc,4(h):

Sc,4(h) =

∣∣∣∣f(x− 2h)− 8f(x− h) + 8f(x+ h)− f(x+ 2h)

12h
(2.40)

− f̂(x− 2h)− 8f̂(x− h) + 8f̂(x+ h)− f̂(x+ 2h)

12h

∣∣∣∣ (2.41)

≤ 1

12h

(∣∣f(x− 2h)− f̂(x− 2h)
∣∣+ 8

∣∣f(x− h)− f̂(x− h)
∣∣ (2.42)

+ 8
∣∣f(x+ h)− f̂(x+ h)

∣∣+ ∣∣f(x+ 2h)− f̂(x+ 2h)
∣∣) (2.43)

≤ 3ϵ

2h
(2.44)

The maximal measurement error for the fourth order central difference is thus slightly larger than the
maximal measurement error for the second order central difference.
Given the fact that this research uses discrete satellite data, we do not know the exact shape of f .

Therefore, choosing h such that it minimizes the total error can not be done in this setting. However, the
total emission term shows that choosing h too large leads to the truncation error taking over. Conversely,
taking h too small gives rise to a large upper bound for the measurement error, meaning noise on the
data takes over. This effect is potentially larger when using Qc,4(h) instead of Qc,2(h). It should also be
noted that f is not very smooth in this setting. This is also a problem for the accuracy of higher order
methods.
Beirle et al. used a fourth order central finite difference scheme to compute the divergence [1]. Later,

Liu et al. used a second order central finite difference scheme [14].

2.6. Computing Sink Terms - Estimating lifetimes
The left hand side of Equation 2.9 has already been discussed in Section 2.4 and 2.5. The last remain-
ing term that is required to compute an emissions map for a trace gas is the sink term S. This term
should give an estimation for the amount of trace gas that is removed from the atmosphere.
For NO2, the largest sink during the local overpass time of TROPOMI is its reaction with OH to form

gaseous nitric acid (HNO3) [68]. On the one hand, the amount of NO2 removed per grid cell depends
on the concentration of NO2 in that grid cell. A higher concentration of NO2 in a grid cell also means
more NO2 is removed in that grid cell. On the other hand, the sink term depends on the duration of
time we assume NO2 remains in the atmosphere before reacting with OH or deposing onto the Earth’s
surface. This time is also referred to as the lifetime of NO2, noted as τ . The higher we assume tau to
be, the less NO2 is removed from a certain grid cell. This leads to the following removal term:

S =
VNO2

τ
(2.45)

Beirle et al. used a constant average lifetime τ . They estimated the lifetime in a previous study, where
downwind plumes of NO2 were analysed, using OMI satellite data. The lifetime was estimated at around
4 hours, with a 95% confidence interval of 0.5 hours. [69] Gaussian fitting on a linear background was
also included to separate peak emissions sources.
In a later study that aimed to catalog NOx emission sources globally, using the Flux-Divergence

method, the sink term was discarded. It was deemed that the divergence was more important for
identifying point sources, as this map includes sharper peaks. Adding the sink term caused a smearing
effect, making it harder to identify smaller sources. Also, there is no reliable measure for NO2 lifetime
that is representative on a global scale. Discarding this term lead to a 25% decrease in emission rates,
thus showing that the Flux-Divergence method is sensitive to the used lifetime. If the method is used to
locate emission sources, discarding the sink term helps, but if the method is used to quantify emission
rates, much care must be put into the estimation of the sink term. [69]
Liu et al. also discarded the sink term in their study on methane emissions, as methane has a

relatively long lifetime of 10 years. [14]



3
Methodology

The previous section introduced the Flux-Divergence method, a method that can be used to generate
emission maps for air pollutants such as NO2, using tropospheric vertical column density (VCD) maps
available from satellite data. A baseline code was already implemented by Henk Eskes at the KNMI.
This implementation is referred to as the baseline method throughout this paper. For this research,
several modifications to the method are explored. The modifications and their implementation are
discussed in this chapter.
Firstly, the used data sets are discussed in Section 3.1, including how this data is filtered. Secondly,

the implementation of the Flux-Divergence method for NO2 is described in Section 3.2. Afterwards,
the finite difference methods that are applied are considered in Section 3.3. In Section 3.4, the use of
wind data in the research, and the removing of divergence within these data sets, will be discussed.
Subsequently, the spatial averaging of grid cells is described in Section 3.5. Then, Section 3.6 is
dedicated to the use of the TROPOMI grid instead of the latitude-longitude grid, with special attention
for wind rotation. Section 3.7 discuses the implementation of using a different vertical NO2 profile.
Next, the approach to estimating the emissions from a flux-divergence map is considered in Section
3.8. Section 3.9 is dedicated to the discussion on how to compare the results of the different flux-
divergence maps, and Section 3.10 shows how we can compare different emission maps. Finally,
Section 3.11 shows how the Flux-Divergence method is adapted to CrIS data.

3.1. Satellite Data Filtering and Domain Settings
Different data sets are used in this research, most importantly data sets from the TROPOMI and CrIS
instruments containing VCDs for NO2 and NH3. This section first describes the domain on which we will
use these data sets, and then the further filtering that is done to ensure the retrieved data has adequate
quality for this research.

3.1.1. Domain Settings
Research question 1 focuses on NO2 emissions in the Netherlands. The chosen research area is
somewhat larger, and also includes Belgium, Luxembourg, Western Germany, North-Eastern France,
and South-Eastern England. The advantage of choosing this larger domain as research area is that it
includes some low-emissions regions (most notably the Ardennes, also extending into France). Includ-
ing the Ardennes allows for a validation of the method, as the assumption for this region is that there
is very little NO2 activity here, and thus the flux-divergence and resulting emission here can mostly be
interpreted as noise. A map of the research area is shown in Figure 3.1. The boundaries of the region
are defined in maximal and minimal latitude and longitude values, which are given by:

lonmin = 0°30′E lonmax = 10°30′E latmin = 48°N latmax = 56°N

24
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Figure 3.1: A map of the research area. The borders of the
research area are marked in orange. (Source: map created

using Google Earth.)

The TROPOMI instrument measures its data in
pixels that differ in location between orbits. This
means that it is not possible to directly average
TROPOMI data over time on the TROPOMI pixel
grid. Therefore, all calculations are done on a reg-
ular latitude-longitude grid. Regular means that
the grid cells are oriented along the latitude and
longitude lines. During calculations, TROPOMI
data is first interpolated to this regular grid, and
then used in the calculations. This interpolation
is done based on the amount of overlap between
a TROPOMI pixel and a grid cell. If a TROPOMI
pixel completely covers a grid cell, this cell takes
over the value of the pixel. However, it often oc-
curs that a grid cell is covered by multiple pix-
els. In this case, an average is taken of these
pixels.The average is weighted depending on the
amount of overlap a certain grid cell has with each
pixel.
Another advantage of using this regular grid, is

the fact that the resolution of the grid can be freely
selected. It is possible to chose grid cells that are close in size to TROPOMI pixels. However, given the
temporal averaging that is done to combine different orbits, is also makes sense to choose smaller grid
cells. This leads to more detailed maps. However, this approach introduces more noise in the map.
For this research, two grid resolutions were chosen for the computations. One lower resolution grid

contains grid cells that are close to 5x5 km in North-South and East-West direction. A second higher
resolution grid is chosen to be twice as detailed, with a resolution close to 2.5x2.5 km.
In the implementation, the grid size is determined by the constants dlat and dlon, which are defined

by the formulas

dlat =
latmax − latmin

nlat
dlon =

lonmax − lonmin

nlon
, (3.1)

where nlat and nlon denote the number of grid cells in latitudinal and longitudinal direction. The distance
between two latitude degrees is 110 km. The distance between longitude degrees decreases with
increasing latitude, but is on average 68 km for the research area. Knowledge of the boundaries of the
research region allows for the computation of nlat, nlon, dlat and dlon:

5x5 km resolution: nlat = 176 nlon = 136 dlat =
1

22
dlon =

5

68
(3.2)

2.5x2.5 km resolution: nlat = 352 nlon = 272 dlat =
1

44
dlon =

5

136
(3.3)

3.1.2. Filtering TROPOMI data
The data set used for NO2 VCDs is the TROPOMI product from the S5P satellite, measured in the time
frame of June 1st 2019 until August 31st 2019. The summer period is characterized by a relatively low
cloud cover, meaning that the data quality and availability is higher.
The data has now been spatially and temporally filtered. However, there are also other checks nec-

essary to filter data based on the quality of the pixels. Most of these data requirements are summarized
by the quality factor, a number between 0 and 1, where 0 indicates that the data can not be used and
1 indicates the data quality is high. The quality factor is included in the TROPOMI product. Different
aspects influence this factor. These aspects are summarized in Table 3.1. The minimal quality factor is
set to 0.75 for this research, excluding cloud-covered or snow/ice-covered pixels. This quality filtering
is recommended for all applications of TROPOMI data [42].
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Criterion Quality Factor
Fatal error encountered 0.0
SAA measurement 0.95

Measurement was taken above South Atlantic Anomaly
Sun Glint Warning 0.93

Interpolation Warning 0.90
Possible bias due to interpolation on partially missing data

Solar Eclipse 0.20
Solar Zenith Angle (SZA) > 81.2° 0.30

SZA> 84.5° 0.10
No snow or ice, surface albedo > 0.3 0.20

No snow or ice, cloud radiance fraction > 0.5 0.74
Cloud-free snow or ice 0.73
Cloudy snow or ice 0.25

Table 3.1: Different factors and their influence on the quality factor of TROPOMI data. The final quality factor for a pixel is
computed by multiplying the quality factors of the applicable criteria. If no criteria are applicable, the quality factor is 1. [42]

A final filter used is the exclusion of any descending pixels. As explained in the previous chapter,
the rotation direction of the satellite ensures that descending measurements are taken during local
night-time, and can therefore not be used.

3.1.3. Filtering CrIS data
Two satellite instrument data sets are used for ammonia. One of these is data from the CrIS instru-
ment (see also Section 2.2.2). CrIS data is filtered temporally and spatially in the same way we filter
TROPOMI data.
In the same way, there are some quality checks. A part of the CrIS output data is the quality flag. This

is an integer ranging from 1 to 5 (-1 also exists, but these correspond to pixels for which the retrieval did
not converge, and are thus excluded from the data set). Quality flag 5 is the highest available quality
flag. It indicates that the retrieval algorithm converged, large outliers are removed, the signal-to-noise
is larger than 1, the thermal contrast is larger than 0 and all data has a minimum degree-of-freedom for
signal of 0.1. This filter is recommended for any data comparison, as the uncertainty is low and it only
returns persistent VCDs. [70]
An extra filter is also used to remove cloudy pixels (any pixels with a cloud flag equal to 1 are removed).

Pixels retrieved during the night are also removed. Finally, pixels above sea are not included. Data
above oceans is sparse and ammonia concentrations above sea are usually very low, and therefore
harder to retrieve [71].
As previously explained, the footprint of the CrIS instrument is circular, with a diameter of 7 km. In

order to interpolate this to a regular grid, the inner square with diagonals of 7 km is determined and
treated as a pixel, which is then interpolated to the regular grid.

3.2. Flux-Divergence Method
The theoretical background on the Flux-Divergence method has previously been described in Section
2.3.3, as well as the ways in which it has been used in other research. This section expands on how
the method is implemented for this research. The main structure of the implementation of the method
is summarized in a flowchart in Figure 3.2. Fortran90 was used as programming language, as the
previous implementation of the method at the KNMI was already done in this language.
Two data sets are needed in this method: the vertical column density (VCD) of NO2 from TROPOMI

orbits (shown in grey) and wind velocity data sets from ECWMF (shown in yellow). Both data sets are
interpolated to a regular grid, which in the case of TROPOMI data also leads to an array containing
the data availability of the VCD. Before interpolating the wind velocity, it must also be processed to a
two-dimensional data set, as the ECMWF provides the wind velocity at multiple heights. More on this
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Figure 3.2: This image illustrates the implementation of the baseline Flux-Divergence method. Blue boxes indicate data sets
that have been interpolated to the regular grid. Data sets on the TROPOMI grid and the ECWMF grid are shown in grey and
yellow respectively. The flowchart should be read from the top left angle, where the wind and TROPOMI data are imported, to
the bottom, where we arrive at the averaged vertical column density (VCD) of NO2, and the averaged divergence of its flux.

is written in Section 3.4. Before importing the TROPOMI orbits, an a-priori distribution for the vertical
NO2 profile must also be chosen (see also Section 2.2.1). This is further explained in Section 3.7.
Multiplying the VCD with the wind velocity gives the flux of NO2.
A note on one of the intricacies of the implementation should be made, which is not shown in the

flow chart. In the computation of the flux, we also compute the diagonal flux, in order to also compute
the divergence using diagonal neighbors. To this end, the wind velocity on the ECMWF grid (a 3-
dimensional grid) must not only be summarized into a 2-dimensional grid, it must also be rotated 45
degrees.
Having computed the flux of NO2 on the regular grid, it is now possible to compute the divergence

of this flux, using the chosen finite difference method (shown in the green rectangle). This is further
described in Section 3.3. Computing the divergence requires the availability of data in the surround-
ing grid cells. This gives a Boolean array for the grid cells for which it was possible to compute the
divergence.
As we loop over the TROPOMI orbits, we sum the VCD and the divergence of the flux of NO2, and

both its availability. This eventually allows us to average the total sums, giving the average over the
chosen time period of the VCD and the flux-divergence.
The next section elaborates on the used finite difference method.

3.3. Finite Difference Computation of Divergence
A key element in the implementation of this method, is the choice of method that is used to compute
the divergence∇ of the flux f of the NO2 concentration. There are a number of discrete finite difference
formulas that can be used. More information on the accuracy of these formulas can be found in Section
2.5.
The finite difference method used in the baseline implementation, is the second order central dif-

ference method, also including diagonal divergence (∇2,b). This method averages the second order
central finite difference using nearest neighbor cells (in the u (West to East) and v (South to North) di-
rection, ∇2,n), and the second order central finite difference using diagonal neighbor cells (in the u+ v
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(South-West to North-East) direction and v − u (South-East to North-West) direction, ∇2,d).
This means two different representations of the flux f are needed, one on the original grid (fn) and

one on a grid that is rotated 45° (fd). For this, we need two representations of the wind w: one on the
regular grid (wn) and one on the rotated grid (wd).

fn =

(
fu

fv

)
= VNO2

·wn = VNO2
·
(
wu

wv

)
(3.4)

fd =

(
fu+v

fv−u

)
= VNO2

·wd = VNO2
·
(
wu+v

wv−u

)
(3.5)

VNO2
denotes the VCD of NO2. The divergence ∇2,b is then given by the following formula:

D = ∇2,b · f =
1

2
∇2,n · fn +

1

2
∇2,d · fd, (3.6)

where the nearest neighbor divergence ∇2,n for grid cell (i, j) is computed as such:

∇2,n · fn(i,j) =
fu
(i+1,j) − fu

(i−1,j)

2∆x
+

fv
(i,j+1) − fv

(i,j−1)

2∆y
(3.7)

and the diagonal neighbor divergence ∇2,d for grid cell (i, j) is:

∇2,d · fd(i,j) =
fu+v
(i+1,j+1) − fu+v

(i−1,j−1)

2∆d
+

fv−u
(i−1,j+1) − fv−u

(i+1,j−1)

2∆d
(3.8)

∆x denotes the length of a grid cell in its horizontal direction (u, in this case), and ∆y denotes the
length of a grid cell in its vertical direction (v, in this case). ∆d denotes the length of the diagonal of a
grid cell. In theory, it actually denotes the distance between the centers of a grid cell and its horizontal,
vertical and diagonal neighbor respectively, but in this setting, these distances are the same.
For this research, two extensions to the baseline method are evaluated. For one of these, a simpler

approach is used, where only the nearest neighbor second order finite difference is computed:

D = ∇2,n · fn (3.9)

This requires less data availability, which might be an advantage when satellite data is scarce. In
theory, this formula has the same accuracy as the baseline implementation. However, we do lose
information in the diagonal direction. The implementation that uses this finite difference formula is
referred to as the DIVSON experiment.
A second method uses a fourth order central difference method, which also requires the second

neighbor grid cells in the u and v direction (D = ∇4,n). The formula for this method is given by:

∇4,n · fn(i,j) =
fu
(i−2,j) − 8 · fu

(i−1,j) + 8 · fu
(i+1,j) + fu

(i+2,j)

12∆x

+
fv
(i,j−2) − 8 · fv

(i,j−1) + 8 · fv
(i,j+1) + fv

(i,j+2)

12∆y

(3.10)

An advantage of this method is that it has a higher theoretical order of accuracy. Also, including
further data cells can improve the ability of the Flux-Divergence method to recognize more spread-out
emission sources. However, it does require the existence of data in a larger stencil around a grid cell.
It performs well on smooth, continuous functions. The TROPOMI NO2 data set contains a significant
amount of noise and therefore this method can give more noisy results in practice. This implementation
is referred to as the DIVFON experiment.
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Figure 3.3: A plot of the relative difference between wind speed halfway the PBL, and wind speed averaged over the PBL. The
wind speed is measured on the 1st of June 2019, at 11:00 AM.

In summary, two alterations to the baseline implementation are described in this section. One uses
Equation 3.9 to compute the divergence. This implementation will be referred to as DIVSON. The other
alteration uses Equation 3.10 to compute the divergence. This implementation will be referred to as
DIVFON.

3.4. Wind Data Sets
It is assumed that all NO2 flux is caused by transport through wind. Therefore, in computations, the
flux of NO2 is determined by multiplying NO2 concentrations with the local wind velocity for each grid
cell. The ECMWF wind data is used to provide these velocities, at different model heights. As the Flux-
Divergence method reduces the atmosphere to a two-dimensional data set, this height profile must be
reduced to one measure. For background on this topic, the reader can refer to Section 2.4.
In the baseline setting, the wind velocity at the height halfway the Planetary Boundary Layer (PBL)

was chosen to represent the wind velocity within the PBL. However, due to surface drag, the wind
speed distribution in relationship to the height is logarithmic, meaning this height choice can introduce
a positive bias.
To remedy this, a different wind data processing is used, where the wind is averaged over the entire

PBL. This creates a different data set, with on average slightly lower values for the wind. Figure 3.3
shows the relative difference of both data sets (where the mean wind speed is subtracted from the
halfway wind speed, and the half way wind speed is used as a normalizing factor). As can be seen,
the halfway wind is slightly higher, as expected.

3.4.1. Removing Divergence for Wind Data Sets
The Flux-Divergence method assumes that any divergence in the flux of NO2 is caused by sources
and sinks of NO2. However, the flux is the product of the VCD of NO2 and the wind velocity. Using the
chain rule gives:

∇ · f = ∇ · (Vw) = (∇V ) ·w+ V (∇ ·w) (3.11)

A part of the divergence of the flux is therefore caused by divergence in the wind field, which is not
linked to the emission or deposition of NO2. On a global scale, divergence in wind is caused by transport
between low pressure and high pressure areas. On a larger scale, divergence can also be caused by
mountain ranges, coast lines, and other topographic features. On a smaller scale, the interpolation of
the ECMWF grid to the regular grid can also introduce some divergence.
For this research, the wind divergence above the Netherlands was analysed. This was computed

in the same way the divergence of NO2 was previously calculated, using a second order central diver-
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gence scheme, including diagonal divergence. This resulted in the wind map seen in Figure 3.5a. It
can clearly be seen that there is some divergence along the coast of the Netherlands, probably caused
by the sudden change in drag coefficient above land as compared to above sea.
It is interesting to investigate if it is possible to somehow reduce part of this divergence, by slightly

changing the wind field. Considering the scale of the divergence, as compared to the wind velocity, we
see that this is several orders of magnitude smaller, so there is reason to believe that this should be
possible without changing the wind data set in such a way that it becomes unrealistic.
We thus have the following minimization problem:

Optimization Problem 1 Reducing Divergence in a Flux Field.
Let F be a flux field containing divergence. We want to minimize the divergence of F : ∇ · F . Cost
function: (∇ · F )⊤(∇ · F )
Let F ∗ be an optimal solution to the problem.
Constraint: |F − F ∗| < ξ

Figure 3.4 shows a graphic representation of this minimization problem. All possible flux fields are
represented on the x-axis, and their divergence in represented on the y-axis. The tangent of each point
on the minimization function is the gradient of the divergence: ∇(∇·F ). In blue, we shows the optimum
we search: the flux field with lowest divergence. For this point, it holds that ∇(∇·F ) = 0. Of course, in
reality, the divergence is a function that projects Rn → Rn. The cost function can contain many local
minima.

Figure 3.4: A graphic representation of the minimization problem presented in this section. All possible flux fields are
represented on the x-axis, and the divergence of these flux fields is represented on the y-axis.

In order to find a flux-field for which ∇(∇ · F ), Karl Sims described an algorithm [72]. This algorithm
is similar to the Newton-Rhapson technique that iteratively approximates the root of a function [73]
by continuously adding the derivative of a function to an initial guess for the root. For this thesis, the
following algorithm proposed by Karl Sims was implemented:

Algorithm 1 Reducing Divergence in a Flux Field.
Assume flux field F1 contains divergence. Iterate:

1. Compute the divergence of vector field Fk: ∇ · Fk.
2. Compute the gradient of the divergence: ∇(∇ · Fk).
3. Update vector field: Fk+1 = Fk +m∇(∇ · Fk)

m is used to scale the update.
Stopping Criterion: |Fk+1 − Fk| < 10−5 or k > 10000.
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The functioning of this algorithm does not only have an analytical background, but also a physical
background. The principle of reducing the divergence is based on the observation that an area has
negative divergence when more flux enters a domain than leaves it. Conversely, a domain has positive
divergence when it has a net outflow of particles. Therefore, divergence can be diminished by adding
flow away from the area with a negative divergence, and towards areas with a positive divergence.
Repeatedly adding the gradient of the divergence to a vector field achieves this, as the gradient is an
arrow pointing from low-divergence areas to high-divergence areas.
A side note on the implementation of the algorithm is that the units of the original vector field (F ) and

the vector field we use as update (∇(∇·F )) are different. In the specific implementation of wind vector
field, the units of the original vector field are m

s , whereas the gradient of the divergence has units
1

m·s .
To compensate for this, it was chosen to multiply the gradient of the divergence by the dimensions of
the grid cells ∆x and ∆y. So the scaling factor m then becomes m′ ·∆x ·∆y.
It is also important to note that the algorithm must be applied to the wind field after interpolation, as

interpolation also introduces small-scale divergence.
Stopping Criterion
In each iteration, the absolute value of the divergence is summed over the research domain. When the
decline of this metric is smaller than 10−5, the algorithm is terminated. The sum over the divergence
lies in the order of magnitude of 10−1. A limit of 10 000 iterations is also implemented, in case the
metric doesn’t converge. This number was chosen as experimentation shows that the total divergence
has converged for the scale on which this research is done.
Validation of Method
Limited literature was available on this method, so a thorough validation is necessary. In Figure 3.5, the
evolution of different metrics are shown in Figures g-i, that can be used to summarize the performance
of the algorithm. In Figure 3.5i, the mean divergence of all grid cells is shown in red. This shows a clear
decline, which quickly decreases in steepness. However, a decline of the mean does not guarantee
a good performance, as an increase in outlying values is not exempted. Figure 3.5j shows that the
variance of the method also decreases. Combined with the fact that the total sum of all divergence
also decreases (shown in Figure 3.5k), this shows that the algorithm functions properly. In Figure 3.5i,
the divergence for different single grid cells are also plotted. This shows that the divergence is not
strictly declining when looking at a single grid cell. This plot takes on different forms for different data
points. It is possible that for certain grid cells, the divergence may even increase a bit, to allow for an
overall decrease.
As can be seen, it is not possible to remove all divergence. The algorithm was iterated 1 000 000

times, and it seems a certain boundary cannot be surpassed. This is due to the fact that this algorithm
is focused on a certain domain. Within this domain, it is possible to reduce the local divergence sig-
nificantly. However there is also a certain inflow and outflow for the entire domain. As we only modify
the wind field within our domain, this in and outflow does not change. For this reason, this divergence
can not be removed by this algorithm. This does not pose an issue for this research, as the largest
part of the divergence is induced by effects within the domain, such as coast lines. This divergence is
removed using this algorithm.
To see the algorithm in action, examine Figure 3.5. The algorithm was applied to the ECWMF wind

velocity measurements of the 1st of June 2019, at 11:00 AM, interpolated to the fine grid. The initial
divergence of the wind is apparent in Figure 3.5a. There is a clear high divergence zone bordering a
low divergence zone along the coast line, which makes sense, as this represents a drastic change in
surface conditions. Some other high divergence areas can be seen in the Ruhr area. To the right of this
image, we first see the divergence after 100 iterations of the algorithm, and then after 1 000 and 10 000
iterations, with a very clear decline in overall divergence. After 10 000 iterations, all local divergence
has been smoothed out, and only a slightly positive divergence remains throughout the domain.
It is important that the wind velocity does not change too drastically. This means that, while a de-

crease in divergence is the primary goal, the wind velocity should still be close to the original data set,
as the flux-divergence method heavily relies on wind for its results. The altered wind data set should
still have a similar wind speed and wind direction as the original wind data set. In Figure 3.5, Figures
e-h show that the overall structure of the wind velocity does not undergo any erratic changes. This has
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(a) Initial Divergence of wind
velocity

(b)Wind velocity divergence after
100 iterations.

(c)Wind velocity divergence after
1000 iterations.

(d)Wind velocity divergence after
10000 iterations.

(e) Initial Wind Velocity of research
domain.

(f)Wind Velocity after 100
iterations.

(g)Wind Velocity after 1000
iterations.

(h)Wind Velocity after 10000
iterations.

(i) Divergence of single grid cells and mean
divergence. (j) Variance of divergence of all grid cells. (k) Divergence summed over all grid cells

Figure 3.5: This figure validates the efficacy of Algorithm 1 in reducing divergence in the wind field. Figures a-d show the wind
divergence for different algorithm iterations. Figures e-h show the wind velocity, starting with the initial setting, and then after
100, 1000 and 10000 algorithm iterations. The wind data set taken is the halfway wind velocity on 1st of June, 2019, at 11:00

AM. Figures i-k show the value for different metrics on the y-axis, against the algorithm iteration on the x-axis.
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Figure 3.6: A flow chart showing the structure of the implementation of the Flux-Divergence method, using the TROPOMI grid
cells to compute divergence. The data sets on the TROPOMI grid area shown in grey, and the data set on the ECWMF grid is

shown in yellow.
not been implemented as a specific requirement in the coding of the algorithm.

To summarize, two different adjustments to the baseline scenario were implemented as experiments.
One uses a wind data set where the wind is averaged over the PBL, instead of taken at the height
halfway the PBL. This experiment is referred to as WINDMEAN. We also use the initial wind data set,
but with reduced divergence. This experiment is referred to as WINDDIV.

3.5. Spatial averaging
Using a fixed grid allows for TROPOMI pixels to be averaged to an arbitrary resolution, including a
resolution with grid cells that are significantly smaller than the original pixels. However, increasing the
resolution will also lead to an increase in noise. In order to reduce this noise, the divergence was first
computed on a refined grid. Subsequently, a coarser mesh was obtained by averaging over the refined
grid. This was done by first applying the Flux-Divergence method on a 2.5x2.5 km grid, and then taking
the average of a square of four grid cells, to eventually have a 5x5 km grid. The process is referred to
as spatial averaging. The experiment is henceforth referred to as SAVG.

3.6. Using TROPOMI grid cells
So far, all TROPOMI orbits were first mapped to a regular grid, on which the divergence is computed.
However, it is also interesting to examine the consequences of reversing this order, i.e. first computing
the divergence on the TROPOMI pixels, and thenmapping this to a regular grid, to still allow for temporal
averaging. To implement this, the original code had to be adjusted rigorously. Additionally, an option
was added to the code that allowed for separately using either only diagonal neighbors for divergence
computation, or only the nearest neighbors, or taking an average of both. Initially, it was only possible to
add the diagonal divergence to the nearest neighbor divergence, not to use it separately. The structure
of the implementation is shown in Figure 3.6.
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Figure 3.7: A schematic representation of rotating a wind velocity (in green) to a TROPOMI grid cell (in brown). The original u
and v components of the wind velocity are shown in blue. The required U and V components (PU (u) and PV (u) respectively)
of the wind velocity are represented by brown arrows. The angle with which the rotation must be done is denoted by θ. The

distances which must be found to compute θ, a and b, are shown in yellow.

When comparing this figure to the original implementation shown in Figure 3.2, it can be seen that the
main difference is that the majority of the data sets within the TROPOMI orbit loop are on the TROPOMI
grid. In the original implementation, only the imported VCD data set was on the TROPOMI grid.
In the original implementation, the interpolation process of the wind was trivial, as the orientation of

both mesh grids were the same. However, the orientation of the TROPOMI grid is different to the orien-
tation of the ECWMF grid, with each TROPOMI pixel having a different orientation between themselves.
The rotation formulas used are described in Section 3.6.1.
Moreover, the original finite difference method that was used, assumed that all grid cells had constant

dimensions. However, this is not the case for TROPOMI grid cells, where the dimension of a pixel
depends on the viewing angle to the satellite. More details on this are given in Section 3.6.2.

3.6.1. Wind Rotation
As explained previously, computing NO2 flux is done simply by multiplying the VCD of NO2 in that grid
cell by the East-West (u) and North-South (v) component of the wind, which are provided in the ECMWF
data set. No rotation is needed for the wind. However, this is only possible as the grid cells of the regular
grid also have an East-West, North-South orientation. TROPOMI grid cells follow the track of the S5P
satellite, and so, each pixel has a different orientation, and requires a separate rotation of the wind field
to be able to compute the flux in that pixel. Instead of an East-West and North-South component of the
wind velocity, we need to project the wind velocity on the across-track (U ) and along-track (V ) direction
of the TROPOMI pixel.
First, the ECMWF data set needs to be interpolated to the TROPOMI grid. For each TROPOMI pixel,

the four nearest wind grid cells are located. A weighted average of these four values is then taken to
determine the value of the wind in North-South direction (v) and West-East direction (u). The weights
are determined depending on the distance between the center of the TROPOMI pixel and the center
of the wind grid cell.
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After the u and v components for the wind are determined for each TROPOMI pixel, the wind is
rotated. Figure 3.7 shows a schematic representation of the situation at hand. As the coordinates
of the angles of the TROPOMI pixel are available, it is possible to compute the size of a and b, both
marked in yellow. More specifically, a is computed by subtracting the longitude of angle 2 from angle 1,
and b is computed by subtracting the latitude of angle 2 from angle 1. The different possible quadrants
of θ are implemented as separate cases, and also account for the cases in which θ falls exactly on
the boundary of two quadrants (though this will hardly occur in practice). We can then compute θ
using θ = arctan(b/a). Note that we need to take θ in negative direction (so −θ) to get the correct
rotation direction. Finally, the projection of the wind velocity on U and V (noted as PU (u) and PV (u)
respectively) are computed using a rotation matrix:(

PU (u)
PV (u)

)
=

(
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

)
·
(
u
v

)
(3.12)

If the diagonal flux is included in the computation of the divergence, a more complex rotation is
needed. This situation is sketched in Figure 3.8. In the baseline scenario, a simple 45 degree rotation
was needed to determine the direction of the diagonals and obtain the diagonal flux.
However, the across-track distance of TROPOMI pixels varies, as was previously shown in Section

2.2.1, and depends mostly on the viewing angle of the satellite. This causes each diagonal to be non-
orthogonal in relation to the other diagonals. Moreover, opposite diagonals are not in line with each
other, so the diagonals do not represent a coordinate system. Instead of the original diagonals u + v
and v − u, we now have four diagonal directions, formed by the lines connecting the centers of the
central grid cell and its four diagonal neighbors: U + V (or pUpV ), U − V (or pUmV ), −U + V (or
mUpV ) and −U −V (ormUmV ). The corresponding projections of wind velocity u on these diagonals
are noted as PpUpV (u), PmUpV (u), PmUmV (u) and PpUmV (u).
Figure 3.8 shows a schematic representation of wind rotation for diagonal wind velocity computation.

The directions U and V divides the field into four quadrants, referred to as the original quadrants, and
denoted as 1, 2, 3 and 4. The diagonals divide the field into four new, non-orthogonal quadrants (from
hereon out called diagonal quadrants) and are named I, II, III and IV.
As was previously mentioned and can also be seen in the figure, the diagonal does not form an

orthogonal coordinate system, and opposite diagonals are not in line with each other. Instead, it is
possible to project the wind onto the closest diagonals, which gives relevant values that can be used
to quantify the diagonal wind. So, the flux will have two components, one on either pUpV or mUmV
and one on either mUpV and pUmV . pUpV and mUpV are taken to be the positive directions, and
mUmV and pUmV are taken to be the negative directions.
A first step is therefore to determine between which diagonals the wind falls. This can be done by

comparing the slope of the wind and the diagonals. In the example shown in Figure 3.8, the projections
of interest are PpUpV (u) and PmUpV (u) and are shown in red.
In order to compute these projections, the angles α and β need to be calculated. These represent

the angles between the flux and the diagonal directions. α can be computed by calculating τ and σ. τ
is the angle between u and U . σ is the angle between pUpV and U . Subtracting these two gives the
angle between u and pUpV . Additionally, calculating ρ gives the value for β. ρ is the angle between U
and mUpV . Therefore, τ , ρ and β should add up to π, allowing us to derive the value for β.
In order to compute σ and ρ, the arctangent of these angles can be used. For this, we need to

compute the distance between the centers of the nearest neighbors pixels and the central pixel. The
distance between central pixel (i, j) and pixel (i + 1, j) is noted as pU . Similarly, pV denotes the
distance between pixel (i, j) and (i, j + 1), mU denotes the distance between the central pixel and
(i− 1, j) and mV denotes the distance between the central pixel and pixel (i, j − 1). These are shown
in the figure in violet. Computing these distances can be done using the formula for Euclidean distance
as the coordinates of the central point of each pixel are given. This gives the following values:
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Figure 3.8: A schematic representation of wind projected onto diagonals. The brown background cells represent a TROPOMI
pixel at location i, j and its diagonal and nearest neighbors. The wind velocity u is shown in green, and the components of its
rotation to the TROPOMI grid (U and V in brown) are shown in blue. The projections of interest (PpUpV (u) and PmUpV (u))

are shown in red. The distances between the nearest neighbor TROPOMI pixels mU, pU,mV and pV are shown in violet. The
black arrow denotes the flying direction of the TROPOMI instrument.

pU =
√
(loni+1,j − loni,j)2 + (lati+1,j − lati,j)2 (3.13)

pV =
√
(loni,j+1 − loni,j)2 + (lati,j+1 − lati,j)2 (3.14)

mU =
√
(loni−1,j − loni,j)2 + (lati−1,j − lati,j)2 (3.15)

mV =
√
(loni,j−1 − loni,j)2 + (lati,j−1 − lati,j)2 (3.16)

loni,j and lati,j denote the longitude and latitude coordinates for pixel (i, j).
τ can also be computed using the arctangent, as PU (u) and PV (u) are known.
Combining this information, the following formulas are needed to compute all relevant angles:

τ = arctan(PV (u)
PU (u)

) (3.17)

σ = arctan(pV
pU

) (3.18)

ρ = arctan( pV
mU

) (3.19)

α = τ − σ (3.20)
β = π − τ − ρ (3.21)

Using that the length of u is known (|u| =
√

PU (u)2 + PV (u)2), the cosine of α and β can be used to
compute PpUpV (u) and PmUpV (u):

PpUpV (u) = |u| · cosα (3.22)
PmUpV (u) = |u| · cosβ (3.23)

Depending on the original quadrant and diagonal quadrant in which the flux falls, different arctangent
values are needed to compute σ, ρ and τ . It also differs per diagonal quadrant which diagonal is used



3.6. Using TROPOMI grid cells 37

Figure 3.9: A schematic representation of wind projected onto diagonals, with β larger than π
2
.

to project onto, whether α or β is needed to compute this direction and if this direction is positive or
negative. The different formulas are summarized in Appendix B, in Table B.1. The first two columns
show which projections are needed, and how these can be computed using α and β. Projection 1 is the
projection onto either pUpV or mUmV and Projection 2 is the projection onto either pUmV or mUpV .
The last three columns then show how to compute τ , σ and ρ, which are used to compute α and β.
This is always done using α = τ − σ and β = π − τ − ρ.
A final note that must be made on wind rotation. Due to the non-orthogonality of the diagonals, it is

possible that β is larger than π
2 . In this case, the projection is made onto the extension of the diagonal.

This is shown in Figure 3.9 In this case, the projection PmUpV (u) would need to use − cos(π − β).
However, using trigonometric identities for reflection, it is given that this is the same as cos(θ), so this
requires no additional implementation work.

3.6.2. Computing the Divergence
In Equation 3.6, in Section 3.3, the formula for second order divergence is given, where both the diago-
nal and nearest neighbor divergence is included. This formula can not be simply reused in this setting,
as the pixels vary in size.
First, the distance between the centers of two pixels is not the same distance as the across track

size of a pixel, which is the information that is available. The diagonals give the same problem. The
along track size does not vary in size, so in this direction, it does not matter if the distance between two
centers is taken, or if the dimension of the pixel is used.
The central finite difference formula that is used for the nearest neighbor divergence, is actually the

mean of the forward first order finite difference and the first order backward finite difference:

∇nfni,j =
fu
(i+1,j) − fu

(i−1,j)

2∆x
+

fv
(i,j+1) − fv

(i,j−1)

2∆y
(3.24)

=
1

2
(
fu
(i+1,j) − fu

(i,j)

∆x
+

fu
(i,j) − fu

(i−1,j)

∆x
) +

1

2
(
fv
(i,j+1) − fv

(i,j)

∆y
+

fv
(i,j) − fv

(i,j−1)

∆y
) (3.25)

In the forward difference term, ∆x and ∆y represent the distance between the center of the central
pixel and the center of the pixel to the right and above respectively. For the backward difference term,
∆x and ∆y represent the distance between the center of the central pixel and the pixel to the right
and below. However, in both instances of ∆x, this coincides with the across pixel length and in both
instances of ∆y, this coincides with the along pixel length. Therefore, the equation can be simplified
to the first form. Similarly, the diagonal delta’s all have the same length, so a simplified version of the
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Figure 3.10: A schematic representation of the different lengths between centers of TROPOMI pixels.

formula can also be used.
However, in the case of TROPOMI pixels, only the along pixel length stays the same. Moreover,

the dimensions of the pixels no longer coincide with the distances between centers of pixels. This is
further illustrated in Figure 3.10 It can be seen that only in along track direction, ∆y remains constant.
However, a distinction must be made between ∆x on the right and ∆x on the left. These will now be
named ∆xr and ∆xl. The same distinction is made for the diagonal dimensions ∆dl and ∆dr. These
values differ for each pixel. The following formulas are then used to compute these values:

∆xri =
1

2
(∆xi+1 +∆xi) (3.26)

∆xli =
1

2
(∆xi+1 +∆xi) (3.27)

∆dri =
√
∆x2

r +∆y2 (3.28)

∆dli =
√
∆x2

l +∆y2 (3.29)

Here, the subscripts of ∆x indicate the exact pixel of which the across track distance is used. This
leads to the more complex form for the nearest and diagonal divergence:

∇2,n · f(i,j) =
1

2
(
fU
(i+1,j) − fU

(i,j)

∆xri
+

fU
(i,j) − fU

(i−1,j)

∆xli
) +

fV
(i,j+1) − fV

(i,j−1)

2∆y
(3.30)

∇2,d · f(i,j) =
1

2
(
fpUpV
(i+1,j+1) − fpUpV

(i,j)

∆dri
+

fpUpV
(i,j) − fpUpV

(i−1,j−1)

∆dli
) +

1

2
(
fmUpV
(i−1,j+1) − fmUpV

(i,j)

∆dli
+

fmUpV
(i,j) − fmUpV

(i+1,j−1)

∆dri
)

(3.31)

∇ · f(i,j) =
1

2
(∇2,n · f(i,j) +∇2,d · f(i,j)) (3.32)

The second order central difference using both nearest and diagonal neighbors is implemented, but
an option is also used that allows us to select only the diagonal neighbors, or only the nearest neigh-
bors. This gives rise to three adaptations, one using only the diagonal neighbors to compute the diver-
gence (TROPD), one using only nearest neighbors (TROPN) and one using all surrounding neighbors
(TROPDN).



3.7. A-priori Information 39

(a) CAMS A-Priori (b) TM5-MP A-Priori

Figure 3.11: This figure shows the NO2 tropospheric column, gridded to a regular lat-lon grid with a 2.5x2.5 km resolution, and
averaged over three months (Jun 2019 to August 2019). Figure 3.11a shows the tropospheric column using the CAMS a-priori

product, and 3.11b shows the tropospheric column using the original TM5-MP tropospheric column.

3.7. A-priori Information
As explained before in Section 2.2.1, the chosen retrieval a-priori NO2 vertical profile plays a vital
role in determining the tropospheric column of NO2. This research compares two a-priori profiles: the
CAMS a-priori and the TM5-MP a-priori. This comparison has been made previously, including a paper
describing the comparison between TROPOMI NO2 observations and ground-based measurements in
Helsinki [45], and a paper that presented a new TROPOMI product, where the TM5-MP a-priori profile
is replaced by the CAMS a-priori profile [74].
The baseline scenario uses the CAMS a-priori, as both papers mentioned above reported that this

data set has a smaller bias when compared to ground-based observations. As an experiment, the
original TM5-MP a-priori is used. Figure 3.11 plots the NO2 tropospheric column, averaged over three
months. Figure 3.11a shows the result when using the CAMS a-priori, and Figure 3.11b uses the
TM5-MP a-priori. It is clear that the CAMS a-priori yields higher NO2 concentrations. Therefore, it is
expected that applying the Flux-Divergence method using the TM5-MP a-priori profile will yield lower
emissions.
Separate VCD data sets using both a-priori distribution are available as part of the TROPOMI product.

Therefore, implementation of this experiment was trivial.
To conclude, this section introduces one new experiment, using a different NO2 vertical profile a-priori.

The experiment is henceforth referred to as DAP.

3.8. Estimating Emissions - Sink Term
The focus of the previous sections in this chapter have shown different possible alterations to the
computation of the divergence of NO2 flux. The final product that of interest is an emission map. This
section discusses how this map is made, and how the choice of different parameters can influence the
final result.
As described in the central paper of Beirle et al. [1], the NO2 emission term (or source) is the sum of

the sink term and the NO2 flux-divergence. The crux of this section is thus estimating the sink.
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At the TROPOMI overpass time, the largest cause of NO2 loss is the chemical reaction of NO2 with
hydroxide (OH), which forms nitric acid (HNO3) [68]. A time constant τ is used to model this, which
describes the expected life time for a NO2 molecule to be present in the atmosphere before having
reacted with hydroxide.
A complication that should be addressed, is the fact that, at lower altitudes, NO2 is photodissociated

into NO and O. Conversely, NO and O3 react to form NO2 and O2. Therefore, instead of computing NO2

emissions, we calculate NOx emissions, as both chemicals are so closely linked. The final emission
term is thus multiplied with a conversion factor m, which is the fraction of NOx to NO2. This gives the
following equation for the emission term:

E = m · (∇ · f+ VNO2

τ
) (3.33)

Different ways to choose m and τ are discussed in this section.

3.8.1. Constant values
Beirle et al. reported on values form and τ , calculated by analysing plume formation from power plants
in Riyadh [69]. Form they found a value of 1.32, with an error margin of 20%. For τ , they found 4 hours,
with an error margin of 35%. First emission maps are made using these values of m and τ . However,
this is not optimal, as lifetime of NO2 depends on many factors, most notably the temperature, and the
amount of OH and NO2 present. The experiments using this fixed lifetime of 4 hours are referred to as
EMISB.

3.8.2. Optimized constant values
Another approach in choosing τ and m, is optimizing them in such a way that they match expected
values for emissions. On the one hand, we want emissions in low-emission regions to be minimized.
Asm is simply a scaling factor, this requirement can not be used to optimize m, as the optimal value is
achieved by choosing m as small as possible. However, this requirement can be used to optimize τ .
This is done by selecting a lightly-trafficked part of the North Sea and computing the total emissions

in this region. As the Flux-Divergence method does not exclude negative emissions, it is necessary to
minimize the sum of the absolute value of the emissions in this region.
The CAMS emission inventory (Section 2.3.1) gives us an expected value for emissions for certain

point sources of NO2. Therefore, this data set can be used to optimize m in such a way that the
difference in emission values for certain point sources is minimized when comparing the reported values
of the Flux-Divergence method and the CAMS inventory. As point sources, seven different emitters
were chosen that are visible on the scale of computation used in this research: Tata Steel, Rotterdam,
Antwerp, Paris, the Ruhr area, Hamburg and Rouen (included to also have a smaller point source). A
surrounding region is selected for each point source, in such a way that any smearing as a result of the
implementation of the method is taken into account. The experiments using this optimized lifetime are
further referred to as EMISBO.

3.8.3. Using DECSO lifetimes
As discussed in Section 2.3.2, one of the output data sets of the DECSO emission retrieval method
is the lifetime of NO2. It is used to minimize differences in VCDs between the DECSO output and the
chemical transport model that is central to the method. As mentioned in the Theoretical Background,
not much research is available on the validity of these values. However, it does display the expected
seasonal patterns, with higher lifetimes in winter and lower lifetimes in summer. This can also be seen
in Figure 3.12.
The DECSO data set provides monthly data values for τ . As the research time span is three months,

from June 2019 until August 2019, the DECSOdata set is averaged over thesemonths. It is then linearly
interpolated to the regular grid. The experiments using DECSO are further referred to as EMISD.
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(a) τ averaged over January, 2019, in hours. (b) τ averaged over July, 2019, in hours.

Figure 3.12: The lifetime τ of NOx, retrieved from the DECSO algorithm, in hours. Comparing both figures shows the higher
NOx lifetimes in the winter, as compared to the summer.

3.9. Metrics to Quantify Results Flux-Divergence Maps
Defining whether or not a certain experiment provides an improvement to the baseline scenario of the
Flux-Divergence method is not straightforward. One of the main points of attention is that noise is
reduced. However, it is also important that this noise reduction is not caused by a bias in the method,
leading to an overall reduction of divergence, and consequently also in emissions. Several metrics are
used to analyse the consequence of each alteration to the baseline scenario, which will be described
in this section.

3.9.1. Total emissions
One metric used is the total amount of emissions (TE) over the entire domain. It is important that there
is no severe decline or increase in the total amount of emissions, as this would indicate a possible bias
in the alteration. Based on the work described in Section 3.8.1, a constant value of 4 hours was chosen
for τ , and a constant value of 1.32 was chosen form. The unit of NO2 emissions is mol/m2/s. The area
of each grid cell is computed, multiplied with the emission value of the grid cell, and these are summed
over the entire domain, leading to a unit of mol/s.

3.9.2. Standard deviation
The TE of an experiment is not enough to adequately quantify its performance, as it is possible that
an increase in noise does not change the emissions. Therefore, a second statistic is used to compare
methods: the standard deviation of the divergence in a low emissions region (SDN). Ideally, this stan-
dard deviation should be very low. It was chosen to compute the standard deviation of the divergence
instead of the emission, as an exact indication of emission is hard to give. The selected low emission
region is the Ardennes, also extending into Northern France. To be more exact, the region chosen is
the region between the longitudes 3.72 and 5.64 degrees East and 49.66 and 50.14 degrees North.
It is assumed that any divergence here is noise, and so the standard deviation is ideally as low as
possible. This assumption is debatable, considering it is possible that nearby sources of NO2, such as
Paris, may cause some deposition. Therefore, the mean divergence here should be at most slightly
negative. This is indeed the case for each method. It is important to consult this value in combination
with the TE value, as a reduction in noise can also be caused by a bias in the method, which will also
lead to lower emissions values.

3.9.3. Scatterplots
Finally, scatter plots are a useful tool to provide more insight into the impact of each adaptation of the
baseline scenario. For each pixel, the baseline flux-divergence is scattered against the flux-divergence
value acquired by the adaptation. This scatterplot is then fitted using a Theil-Sen regressor.
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Figure 3.13: An example of a scatterplot used in this research. The baseline flux-divergence values are on the x-axis, and the
flux-divergence values of the modification to the baseline scenario are on the y-axis. The green line represents the Theil-Sen

regressor for small values. The red solid line represents the Theil-Sen regressor for large values. The red dotted line
represents the separation between large and small values.

The Theil-Sen regressor was first introduced in 1950 [75]. The concept is simple: the slope between
each pair of points is computed, and the median of these slopes is then taken as the regression slope.
The intercept is determined using the median slope, passing it through each observation, and then
again taking the mean of all resulting intercepts. An addition was made later by Sen, extending the case
to situations where multiple observations have the same value on the x-axis [76]. This regressor was
chosen as it is robust, symmetric, and hardly influenced by outliers. Especially the symmetric quality is
an advantage in this setting, as both data sets do not necessarily represent the truth. Regressors such
as the well-known least squares regressor use one of the variables as the truth scenario, and are thus
not symmetric.
Two regressions were performed on each scatter plot. One regressor was fitted on the smaller

divergence values (all values that meet the constraint [baseline value < - altered value +10 ]), and one
on the larger divergence values (all other values). An example of this is shown in Figure 3.13. This
separation was used, as the previous analysis on the low emission region indicated that most noise
falls within the smaller divergence values. This distinction allowed for a separate analysis on large
emitters and noise. Ideally, the slope of the regression line of the smaller values (RSS) should fall
below 1, as this indicates a decline in noise. On the other hand, the regression line of the larger values
(RSL) should be larger than the RSS value, and preferably near 1. This indicates that large emissions
are maintained, and the reduction in noise is not caused by some bias in the method. However, an
RSL value that is a bit smaller than 1, does not necessarily indicate that a part of the emission is lost.
It is possible that a method leads to emission peaks that are more spread out over a region, but do not
lead to lower emission values. Therefore, this statistic should also always be consulted in combination
with the other statistics provided.

3.10. Validating Results for Emission Maps
The previous section elaborated on the different ways that the quality of flux-divergence maps are
quantified for different experiments. This section does the same, but for emissions maps. The focus
for emission maps is less focused on noise quantification, as most noise is introduced by the flux-
divergence map. The other source of noise is the VCD, but as the different choices made for the
emission experiments do no impact this map, noise will not vary much.
The main focus is whether the emission maps meet the expectations in terms of emission rates. This

entails three factors. The first factor is how high emission is in regions where we do not expect much
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emissions. The second factor is whether the emission rates of different point sources match reported
emission rates of validated inventories. The final factor is how well the overall emission distribution
matches the emission distribution of validated inventories.

Figure 3.14: Reported NOx emissions from the CAMS-REG
emission inventory for 2017. The red square denotes the

chosen low-emission region used to validate the results of the
different emission experiments. Point sources used to compare

emission inventories are also indicated: Tata Steel (T),
Rotterdam (RO), Ruhr area (RA, also marked with black

square), Hamburg (H), Antwerp (A), Reims (RE) and Paris (P).

Two inventories are used to validate the re-
sults: the DECSO method (which incorporates
TROPOMI data) and the CAMS-REG emis-
sion inventory (which uses a bottom-up ap-
proach to compute emissions). We interpo-
late both emission inventories linearly to the
regular grid and convert the data sets so the
units match. The CAMS has yearly emis-
sion data bases, but unfortunately not for 2019.
The closest year available is 2017. This
is the data set we use. For the DECSO
data set, the reported emissions are avail-
able on a daily basis, and thus require av-
eraging from June 2019 to August 2019 (the
time frame for which the emission maps us-
ing the Flux-Divergence method were cre-
ated).

Emission in low-emission region
After analysing the emission map of the CAMS-
REG emissions inventory, a low-emission zone
above the North-Sea is selected as validation re-
gion. This region is shown in Figure 3.14, in
red. Emissions are summed over this region. An
overestimation of the lifetime of NO2 can lead
to negative emission, which should not be fa-
vored. Therefore, the absolute value of emis-
sions is taken.

Emissions from point sources
A second metric chosen to validate the emission
maps, is analysing the emissions for NOx point
sources. The selected point sources are: Tata

Steel, Rotterdam (including the harbour region), Antwerp (including the harbor region), Paris, the Ruhr
area, Hamburg and Rouen (a smaller city in Northern France). For each region, a larger surrounding
area is chosen to account for possible smearing effects for any of the methods. All emissions within this
area are summed and weighted with the corresponding area of the grid cell to find the total emissions
of the point source.

Overall emission distribution
To quantify the overall emission distribution of the Flux-Divergence emission map, the Pearson cor-
relation coefficient is used. Each grid cell is taken as a separate data entry, with one value from the
Flux-Divergence emission map, and one value from the validation emission inventory.The formula for
the correlation coefficient r is then given by:

r =

n∑
i=1

fivi −
n∑

i=1

fi

n∑
i=1

vi√√√√n

n∑
i=1

fi
2 − (

n∑
i=1

fi)2 ·

√√√√n

n∑
i=1

vi2 − (

n∑
i=1

vi)2

, (3.34)
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Figure 3.15: The structure of the code for the Flux-Divergence method as implemented for NH3.

where n is the number of grid cells in the domain, fi are the Flux-Divergence emission data points
and vi are the validation data set emission points. The correlation coefficient varies from -1 to 1. A
negative correlation coefficient indicates an inverse relationship between the two data sets. The closer
the correlation is to 1, the stronger the relationship is between both data sets [77].

3.11. Adaptations Flux-Divergence Method for Ammonia
Research question 1 of this thesis is focused on implementing and improving the Flux-Divergence
method for NO2 VCDs, from TROPOMI. However, we are also interested in whether or not the method
can also be used for an atmospheric trace gas with very different characteristics, NH3. This section will
focus on how the method is adjusted to be able to implement it for ammonia VCDs. The largest part of
the experiments was performed on data of the CrIS instrument (see also Section 2.2.2). Unfortunately,
data from the CrIS instrument for the summer of 2019 is not available, as the CrIS instrument malfunc-
tioned during this time. For this reason, data from the summer of 2016 has been used to perform the
experiments.
The experiments are computed on two different resolutions: 10x10 km and 20x20 km. The resolution

is chosen coarser than the experiments for TROPOMI, as previous emission retrieval methods for NH3

were also performed a coarser grid (for example, the DECSO method). Moreover, ammonia is mostly
emitted by the agricultural sector in the Netherlands. The emission points are therefore larger for NH3

than for NOx (an agricultural region instead of a company or industrial region).

3.11.1. Computing Divergence
The availability of satellite data for ammonia is much sparser than for nitrogen dioxide. This is mainly
caused by the shape of the footprint of the CrIS instrument. It has a circular footprint. Therefore,
computing the divergence on a single orbit is infeasible. For this reason, the divergence computation
is taken outside of the orbit loop, and done on the averaged NO2 flux. This code structure is shown in
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Figure 3.15.
Given the seasonality in ammonia emissions, the averaging time must be chosen with care. There-

fore, the first experiment analyses the impact of choosing different averaging times: 1 month (June
2019), 3 months (June-August 2019) and 5 months (May-August 2019). These experiments are re-
ferred to as NH3TIME1, NH3TIME3 and NH3TIME5.
It is also possible to compute the divergence multiple times after averaging over a certain amount of

time, and then averaging the divergence. For this experiment, data from the summers of 2015, 2016,
2017 and 2018 is used. The averaging is done in two ways: yearly and monthly. In other words, the
yearly experiment computes the divergence after averaging the VCDs from all orbits from the summer
of a certain year. This is done four times (for 2015, 2016, 2017 and 2018). These four data sets are
then averaged again, to find the final divergence. The monthly experiment averages all VCD data for
the months June, July and August of the years 2015-2018 separately. This leads to three averages
on which the divergence is computed, and again averaged. These experiments are referred to as
NH3YEARAVG and NH3MONTHAVG.
This chapter introduced multiple experiments. These are presented in an overview in the following

tables. All experiments that focus on the computation of the flux-divergence map for NOx are shown in
Table 3.2. The experiments that compute emission maps for NOx are shown in Table 3.3. Finally, the
experiments that focus on NH3 are shown in Table 3.4. The next chapter provides the results for these
experiments.
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Name Resolution A-Priori FDM Wind Data Computation Grid Section

BASE-5 5x5 km CAMS D = 1
2∇2,n · fn + 1

2∇2,d · fd Wind Half-PBL Regular grid 3.2

BASE-2.5 2.5x2.5 km CAMS D = 1
2∇2,n · fn + 1

2∇2,d · fd Wind Half-PBL Regular grid 3.2

DIVSON-5 5x5 km CAMS D = ∇2,n · fn Wind Half-PBL Regular grid 3.3

DIVSON-2.5 2.5x2.5 km CAMS D = ∇2,n · fn Wind Half-PBL Regular grid 3.3

DIVFON-5 5x5 km CAMS D = ∇4,n · fn Wind Half-PBL Regular grid 3.3

DIVFON-2.5 2.5x2.5 km CAMS D = ∇4,n · fn Wind Half-PBL Regular grid 3.3

WINDMEAN-5 5x5 km CAMS D = 1
2∇2,n · fn + 1

2∇2,d · fd Wind Mean of PBL Regular grid 3.4

WINDMEAN-2.5 2.5x2.5 km CAMS D = 1
2∇2,n · fn + 1

2∇2,d · fd Wind Mean of PBL Regular grid 3.4

WINDDIV-5 5x5 km CAMS D = 1
2∇2,n · fn + 1

2∇2,d · fd
Wind Half-PBL,

reduced divergence

Regular grid 3.4

WINDDIV-2.5 2.5x2.5 km CAMS D = 1
2∇2,n · fn + 1

2∇2,d · fd
Wind Half-PBL,

reduced divergence

Regular grid 3.4

SAVG 5x5 km CAMS D = 1
2∇2,n · fn + 1

2∇2,d · fd Wind Mean of PBL
Regular grid, interpolated

from 2.5x2.5 km to 5x5 km resolution

3.5

TROPDN-5 5x5 km CAMS D = 1
2∇2,n · fn + 1

2∇2,d · fd Wind Half-PBL TROPOMI grid 3.6

TROPDN-2.5 2.5x2.5 km CAMS D = 1
2∇2,n · fn + 1

2∇2,d · fd Wind Half-PBL TROPOMI grid 3.6

TROPD-5 5x5 km CAMS D = ∇2,d · fd Wind Half-PBL TROPOMI grid 3.6

TROPD-2.5 2.5x2.5 km CAMS D = ∇2,d · fd Wind Half-PBL TROPOMI grid 3.6

TROPN-5 5x5 km CAMS D = ∇2,n · fn Wind Half-PBL TROPOMI grid 3.6

TROPN-2.5 2.5x2.5 km CAMS D = ∇2,n · fn Wind Half-PBL TROPOMI grid 3.6

DAP-5 5x5 km TM5-MP D = 1
2∇2,n · fn + 1

2∇2,d · fd Wind Half-PBL Regular grid 3.7

DAP-2.5 2.5x2.5 km TM5-MP D = 1
2∇2,n · fn + 1

2∇2,d · fd Wind Half-PBL Regular grid 3.7

Table 3.2: A summary of the baseline extensions on the computation of the flux-divergence map for NO2 presented in Sections
3.2 to 3.7.
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Name Resolution Computation of τ Computation of m

EMISB 5x5 km 4 hours 1.32

EMISO 5x5 km
Minimizes emissions

in low-emission region

Optimized to match peak emissions

from CAMS inventory

EMISD 5x5 km Taken from DECSO model run
Optimized to match peak emissions

from CAMS inventory

Table 3.3: A summary of the approaches for computing NOx emissions presented in Section 3.8.

Name Resolution Satellite Instrument Timeframe VCD averaged over

NH3TIME1-x 10x10 km and 20x20 km CrIS June 2016 All Data

NH3TIME3-x 10x10 km and 20x20 km CrIS June-August 2016 All Data

NH3TIME5-x 10x10 km and 20x20 km CrIS April-August 2016 All Data

NH3YEARAVG-x 10x10 km and 20x20 km CrIS June-August 2015-2018 Each Year Separately

NH3MONTHAVG-x 10x10 km and 20x20 km CrIS June-August 2015-2018 Each Month Separately

Table 3.4: A summary of the approaches for computing NH3 flux-divergence maps presented in Section 3.11. The x in the
method name indicates the resolution on which the results are presented.
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Results

Experiment name Methodology Results Appendix
BASE 3.2 4.1 A.1

DIVSON/DIVFON 3.3 4.2 A.2
WINDDIV 3.4 4.3.1 A.3

WINDMEAN 3.4 4.3.2 A.4
SAVG 3.5 4.4 A.5

TROPD/TROPN/TROPDN 3.6 4.5 A.6
DAP 3.7 4.6 A.7

EMISB/EMISO/EMISD 3.8 4.7 A.8
NH3TIME 3.11 4.8.1 A.9

NH3MONTHAVG/NH3YEARAVG 3.11 4.8.2 A.10/A.11

Table 4.1: This table shows the section in which the used implementation and results can be found for each method. It also
shows in which appendix the flux-divergence and emission maps can be found.

Figure 4.1: A map containing all locations
mentioned in this chapter: Amsterdam (Am),
Antwerp (A), Brussels (B), Chemelot (Ch),
Charleroi (Cr), The Channel (C), Dortmund
(Do), Düsseldorf (Ds), Duisburg (Du), Essen
(E), Ghent (G), Hamburg (H), Liege (L),
Paris(P), Ruhr Area (RA), Reims (RE),

Rotterdam (RO), Tata Steel (T) and Utrecht
(U).

In this chapter, the results of all adaptations to the base-
line Flux-Divergence method are discussed. In Table 4.1, an
overview is provided of all experiments, and the section in which
their implementation and results are discussed. It also shows
the appendix in which the resulting flux-divergence or emission
maps are located.
Research question 1a focuses on analyzing the impact of dif-

ferent choices for the flux-divergence map of NOx. This is fo-
cused on in Sections 4.1 to 4.6. The metrics described in 3.9 are
used to characterize the performance of each adaptation. The
values found for these methods are summarized in Table 4.2.
Research question 1b is aimed at analyzing the impact of us-

ing different approaches to approximate a lifetime for NOx. The
results of these experiments are given in Section 4.7. The met-
rics used to quantify these results are given in Section 3.10. The
values for this metrics are given in Table 4.3.
Finally, the results for the ammonia flux-divergence maps are

presented in Section 4.8. This section answers research ques-
tion 2.
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Method TE [1018 kmol/s] SDN RSS RSL

BASE-2.5 2.50 kmol/s 1.142 (100%) 1 1

DAP-2.5 2.16 kmol/s 1.229* (107%) 0.829 0.775

DIVFON-2.5 2.49 kmol/s 1.611 (141%) 1.225 1.250
DIVSON-2.5 2.51 kmol/s 1.356 (119%) 1.085 1.103

TROPD-2.5 2.50 kmol/s 0.510 (45%) 0.223 0.730
TROPN-2.5 2.49 kmol/s 0.715 (63%) 0.440 0.825
TROPDN-2.5 2.49 kmol/s 0.535 (47%) 0.349 0.761

WINDDIV-2.5 2.49 kmol/s 1.088 (95%) 0.904 0.946
WINDMEAN-2.5 2.50 kmol/s 1.113 (97%) 0.959 0.963

BASE-5 2.51 kmol/s 0.523 (100%) 1 1

DAP-5 2.16 kmol/s 0.548* (104%) 0.778 0.702

DIVFON-5 2.46 kmol/s 0.775 (148%) 1.230 1.152
DIVSON-5 2.50 kmol/s 0.661 (126%) 1.091 1.058

SAVG 2.53 kmol/s 0.911 (174%) 1.205 1.169

TROPD-5 2.50 kmol/s 0.452 (86%) 0.676 0.926
TROPN-5 2.49 kmol/s 0.616 (118%) 0.927 1.016
TROPDN-5 2.49 kmol/s 0.490 (94%) 0.816 0.950

WINDDIV-5 2.48 kmol/s 0.527 (101%) 0.781 0.965
WINDMEAN-5 2.50 kmol/s 0.520 (99%) 0.961 0.976

Table 4.2: The reported metrics of all experiments on NO2 flux-divergence maps. The metrics are the Total Emissions (TE),
the Standard Deviation of Low-emission regions (SDN), the Theil-Sen Regression Slope for Small values (RSS) and the

Theil-Sen Regression Slope for Large values (RSL). The values with an asterix (*) rescaled using TE. More information on the
used metrics can be found in Section 3.9.
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PCC - CAMS 0.598 0.577 0.579 1 0.478

PCC - DECSO 0.820 0.730 0.854 0.478 1

Low-Emissions 7.59 0.47 0.46 0.29 N.A.

Emissions - Tata Steel 3.78 2.27 2.80 5.48 2.37

Emissions - Rotterdam 20.49 12.63 16.00 24.47 12.80

Emissions - Antwerp 24.30 16.76 23.61 18.63 16.23

Emissions - Ruhr area 178.85 99.15 156.16 97.88 125.61

Emissions - Paris 60.82 39.15 66.24 21.01 61.48

Emissions - Hamburg 15.34 11.02 16.74 10.10 10.67

Emissions - Reims 3.30 1.80 1.84 1.43 2.07

Table 4.3: The results of the metrics chosen to evaluate the NOx emission maps (see Section 3.10). The emissions are given
in 1018 mol/s. The PCC (Pearson’s Correlation Coefficient) is dimensionless.
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4.1. Baseline Method
This first result section discusses the output of the baseline Flux-
Divergence method. This method was implemented at the KNMI
by Henk Eskes prior to this research. All adjustments to this method that are included in this research
paper will be compared to this setting.
Figure 4.2 shows the computed flux-divergence on a relatively coarse grid (5x5 km) and a more

refined grid (2.5x2.5 km). The flux-divergence was averaged over three months, from June 1st 2019
until August 31st 2019. Both results show a spatial distribution that meets expectations, given the
known NO2 sources in the Netherlands.
Prominent industrial zones light up: Tata Steel, the Ruhr Area in Germany, and the harbours of

Rotterdam, Hamburg and Antwerp. Some smaller industrial zones are also visible, including Chemelot
in Dutch Limburg, and the area of Charleroi in Belgium.
Flux-divergence from transport is also visible on the map, most evidently the heavily trafficked North

Sea along the coast of the Netherlands, Belgium and The Channel. Some effects from land transport
are also visible, such as the highway connecting Utrecht and Amsterdam. Heavily trafficked city centers
are also discernible, such as Brussels, Liège, Utrecht, Paris and Ghent.
Comparing the two resolutions gives a good insight in the advantages of a coarse grid and a fine grid.

The coarse grid gives a good representation of the spatial distribution and, more importantly, shows
less noise that the fine grid, making it easier to find flux-divergence hot spots that are slightly less easy
to discern. This observation is reflected in the SDN, as shown in Table 4.2. The SDN is a lot lower for
all experiments performed on the coarse grid than the SDN of the experiments performed on a fine grid.
On the other hand, the fine grid does give a better refining of the location of flux-divergence. A clear
example of this is the Northern hot spot in the Ruhr Area. On the coarse grid, this is condensed to one
point source, but examining the finer grid shows multiple peaks within the hot spot, which correspond
to the several cities within this region: Duisburg, Dortmund, Essen and Düsseldorf.

(a) BASE-5 (b) BASE-2.5

Figure 4.2: The flux-divergence map of running the baseline models, on a 5x5 km resolution (left) and a 2.5x2.5 km resolution
(right).
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4.2. Finite difference method
The current baseline method computes the divergence using a second order finite difference method,
including diagonal neighbors and nearest neighbors. As described in Section 3.3, two alternatives
have been implemented to the method. The first one uses only the nearest neighbors to compute the
divergence (DIVSON), and the second one uses a fourth order finite difference method including the
second neighbors (DIVFON).

4.2.1. Second Order Nearest neighbors (DIVSON)

Figure 4.3: The flux-divergence map for
DIVSON-5

Consulting Table 4.2 shows that this adaptation does not signifi-
cantly change the total emissions. However, it does increase the
amount of noise on the image, which is reflected in the SDN and
the RSS. All maps and scatterplots for the DIVSON experiment
can be found in Appendix A.2, in Figure A.2.
On the fine resolution grid, shown in Figure A.3b, the SDN

increases with 19%. This increase in noise is visible above
Northern France, and is also reflected in the RSS. Moreover, the
RSL is larger than 1 for the fine resolution, meaning the emis-
sion points also increase along with the noise. The maps show
slightly emission peaks with slightly clearer borders, although
this is hardly visible. This result is most clear above Amsterdam,
where two hot spots can be discerned, instead of one.
For the coarse resolution, the increase in SDN is even larger

(26%). Given the relative lower noise-level of the coarse grid, this
increase is better visible than for the fine resolution. The results
for the coarse resolution are shown in Figure 4.3. Interestingly,
the RSL is somewhat lower than the RSS, albeit still higher than
1. This was not the case for the fine resolution model. Looking
at the map, the emission hot spots are slightly more well-defined
than for the baseline scenario. This is especially clear in the Ruhr
area.

Figure 4.4: The flux-divergence map for
DIVFON-5

In conclusion, using only nearest neighbors to compute the
second order central divergence introduces noise, and is there-
fore not an improvement to the Flux-Divergence method, al-
though it does better refine the emission hot spots.

4.2.2. Fourth Order Finite Difference (DIVFON)
The results of the DIVFON experiments mirror the results of the
DIVSON experiment, although the increase in noise is more pro-
found. The flux-divergence maps and scatterplots for DIVFON
can be found in Appendix A.2, in Figure A.3.
On the fine resolution grid, the SDN increases by 41%. The

map of this experiment is shown in Figure A.3b. Accompanied
by an RSS value of 1.225, this indicates that the noise increases
significantly in comparison to the baseline scenario. This is con-
firmed by the flux-divergence map, where low-emission regions
like the North of France now consist almost entirely of noise. The
RSL increases as well, shown in the map by more well-defined
point sources. However, smaller cities like Reims are now indis-
cernible from the noisy background.
Figure 4.4 shows the flux-divergence map on the coarse grid

for the DIVFON experiment. The noise increase for the coarse
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resolution is 48%, which is even larger than for the fine grid. It is also larger than the coarse results
of the DIVSON experiment. This is also seen when comparing Figure 4.3 and 4.4. Again, the RSL is
slightly lower than the RSS. The emission sources are more detailed than in the baseline scenario.
In conclusion, DIVFON introduces even more noise than DIVSON, and is therefore not considered

to be an improvement to the baseline scenario in the setting of this research. The Flux-Divergence
method is moderately sensitive to the finite difference method used to compute the divergence.

4.3. Wind Dataset
Two new data sets of the wind have been used as an adaptation to the baseline scenario, leading
to the WINDDIV and WINDMEAN experiments. The results for these experiments are described in
this section. All WINDDIV maps can be found in Appendix A.3. All WINDMEAN maps are included in
Appendix A.4.

4.3.1. WINDDIV

Figure 4.5: The flux-divergence map for
WINDDIV-5

Figure 4.5 shows the results for the WINDDIV experiment
on the coarse resolution grid. The most interesting result is
the distribution of the flux-divergence along the coast. The
flux-divergence within regions with previously high wind di-
vergence has almost disappeared. There are still a few
emission hot spots above the sea, such as the Channel
route from Calais to Dover. The regions with negative flux
along the coast have also been reduced, most notably along
the French coast. These regions lie in regions with strong
negative divergence in the wind. Peak emitters within these
regions, most notably Tata Steel and the port of Rotterdam,
are better visible in theWINDDIV setting. The same effect is
present in the high-resolutionmaps, but the higher noise lev-
els caused by the computation of divergence on this scale
makes the effect harder to discern.
Figure 4.5 also shows that using this divergence-free data

set does not influence the inland NO2 emission hot spots.
They are still distributed in the same way, and seem to have
the same intensity. This is confirmed in Table 4.2, which
shows that the total emission rate is almost the same, com-
pared to the baseline scenario. The RSL is slightly lower
than 1 for both resolutions. Figure 4.6 also shows that the
highest emission values lie along the x=y line for the coarse
resolution, which confirms this observation.
The level of noise does not alter much for most regions

when compared to the baseline. The SDN hardly changes
for the coarse resolution, and diminishes only slightly for the fine resolution. However, Figure 4.6
shows regression lines that indicate an improvement to the baseline scenario on the coarse grid. The
regression line for large values is close to the x=y line, meaning emissions are not lost. Conversely,
the regression line for small values is significantly less steep, meaning noise is reduced. As the value
of the flux-divergence along the North Sea coast lies partially within the chosen noise boundary, it is
well possible that this reduction in RSS is caused by the decline in this flux-divergence along the coast.
This means that the overall noise levels do not necessarily change significantly. For the fine resolution,
the reduction in RSS is much less, perhaps also because the effect of the WINDDIV experiment is less
strong for this resolution.
In conclusion, theWINDDIV experimentmarkedly dampens both positive and negative flux-divergence

values along the coast, which is the region where the divergence in wind flow is at its strongest. This im-
proves the visibility of coastal emitters within regions with negative wind divergence, such as Tata Steel.
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Inland emissions and overall noise are not significantly affected by this experiment, as the wind diver-
gence here is low. The effect is most prominent on the coarse resolution maps. This experiment shows
that the presence of divergence in wind data set has a large impact on the resulting flux-divergence
map of NOx.

4.3.2. WINDMEAN

Figure 4.6: Scatterplot for WINDDIV-5

In Section 3.4, it was already shown that averaging the
ECMWF data set over the Planetary Boundary Layer (PBL)
gave slightly lower wind velocity values than taking the wind
velocity at the height halfway the PBL. The resulting flux-
divergence maps hardly differ from one another, and the
scatterplots are more or less on the x=y line. These maps
are shown in Figure A.5. The metrics show a slight bias:
both the RSS and RSL are slightly lower than 1, and the
SDN has a slightly lower percentage than the baseline SDN.
This bias is directly linked to the overall slight decline in
wind velocities used for these maps. The differences are
so small, that there is no decline in total emission (or hardly,
in the case of the fine resolution grid). The Flux-Divergence
method is thus hardly sensitive to the method used to sum-
marize wind velocity within the PBL. This thesis suggests
that both methods can be used interchangeably.

4.4. Spatial Averaging

Figure 4.7: The flux-divergence map for
SAVG.

This section discusses the result of spatially averaging the output
of the baseline model run from a fine resolution grid to a coarse
resolution grid. An explanation of this technique is given in Sec-
tion 3.5. All figures for this experiment can be found in Appendix
A.5.
Using this method has an overall poor influence on the output.

The total emission does not change significantly, but the amount
of noise does. This is clearly visible in Figure 4.7, which displays
the flux-divergence map for this experiment. The SDN increases
with 74%, and the RSS is well above 1.0.
One interesting improvement is the fact that the centers of hot

spots become more well defined. Zooming in on the northern
part of the Ruhr area shows this most clearly, where one large
hot spot is separated into two, corresponding with the location of
Duisburg and Düsseldorf. The RSL is above 1, but lower than
the RSS. However, a regression slope does not properly capture
more distinct emission sources, as a more well-defined emission
source will contain some grid cells that are lower, and a few that
are higher than the original, less well-defined emission source.
In conclusion, it is not recommended to use the spatial aver-

aging approach in the context of this research, as it enhances
noise considerably, although peak sources are also enhanced.
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4.5. TROPOMI grid
As described in Section 3.6, it is possible to compute the flux and resulting divergence on the TROPOMI
grid instead of on the regular grid. This reverses the order in which data is interpolated to the regular grid
and the divergence is computed. The results of this approach will be shown in this section, describing
three different experiments, TROPD, TROPN and TROPDN. Each method differs in which neighboring
pixels were used when computing the flux-divergence. TROPD uses only diagonal neighbors, TROPN
uses only nearest neighbors and TROPDN uses both. The method was implemented on two different
grid resolutions: a fine grid of 2.5x2.5 km and a coarse grid of 5x5 km.
On the coarse grid, the SDN reduces for both TROPD and TROPDN, but increases for TROPN.

However, all of the RSS values are lower than 1, indicating that these methods generally dampen the
noise. The RSL is close to 1 for all three experiments, showing that emissions are not lost using this
method. This is also reflected in the TE, as this is the same as for the baseline results. It is important to
include the diagonal divergence, as this reduces the noise. The clearest example of this can be seen
above the North Sea. All coarse grid flux-divergence maps are included in Appendix A.6, in Figure A.7.
The scatterplots are shown in Figure A.9.
The noise reduction is even more clear when examining the method on the 2.5x2.5 km grid resolution.

When including the diagonal flux, the SDN is halved. TROPN also leads to a significant noise reduction.
The RSS values are all significantly smaller than any other method that has been used. However, the
RSL values are also smaller than 1, especially for the methods including diagonal divergence. This
could indicate that emission peaks are horizontally smeared, as the TE values show that emissions are
not lost.
From Table 4.2, it would seem that using only diagonal divergence (TROPD) is beneficial, as it has

the lowest SDN and RSS, whereas using only nearest neighbors (TROPN) has higher values for these
metrics. However, it is still advisable to include all neighbors (TROPDN), as TROPD has less well-
defined emission peaks. This is most evident when examining Rotterdam and Tata Steel. The centers
of these peaks are hard to distinguish on the TROPD map, and are more clear on the TROPDN map.
The results for TROPDN are shown in Figure 4.8. Here, we clearly see the noise reduction in com-
parison to the baseline map. The peak emitters are still clear on the TROPDN map, although they
have somewhat less well-defined centers (a clear example of this is seen in Paris). All fine grid flux-
divergence maps can be found in Appendix A.6, in Figure A.8, with the scatterplots included in Figure
A.9.

(a) Flux-divergence map for BASE-2.5 (b) Flux-divergence map for TROPDN-2.5 (c) Scatterplot TROPDN-2.5

Figure 4.8: The flux-divergence maps of the baseline scenario (a) and the result of the TROPDN experiment on a 2.5x2.5 km
grid resolution (b), including the scatterplot of these results (c). The green line in the scatterplot is the Theil-Sen regressor for

small values, and the red line is the Theil-Sen regressor for large values.
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In conclusion, TROPN, TROPD and TROPDN all offer a significant improvement on the baseline
scenario, especially when considering fine resolution maps. TROPDN is the preferred option of these
three, as it significantly reduces the noise (more so than TROPN), while it maintains well-defined emis-
sion points (more than TROPD).

4.6. A-priori Information
In Section 3.11 it was described how a different a-priori choice for the NO2 vertical column profile could
be introduced in the implementation of the Flux-Divergence method. As described, the CAMS a-priori
is used in the baseline scenario, which yields a higher overall NO2 concentration than the TM5-MP
a-priori. This last a-priori was used as an adaptation to the baseline. All figures for this experiment can
be found in Appendix A.7.
As can be expected, this lower NO2 concentration used in the Flux-Divergence method also leads

to lower flux-divergence values. This bias is clear in every metric used to measure the performance
of methods. The TE for this experiment is 86% of the TE of the baseline scenario, and the regression
slopes of both the larger and smaller values are well below 1.0. What is interesting to note for both
resolutions, is that the RSL is lower than the RSS, meaning that the decrease in flux-divergence in the
hot spots is more prominent than the flux-divergence in the areas where noise predominates.
As the TE differs significantly for this method from the baseline TE, the SDN was scaled using the

ratio between both TE values, to allow for a fair comparison with the baseline scenario. We note that for
both resolutions, the scaled SDN value is slightly higher than the original SDN. In conclusion, using the
TM5-MP a-priori does not benefit the Flux-Divergence method. This experiment also shows that the
Flux-Divergence method is very sensitive for the a-priori vertical profiles used in the TROPOMI retrieval.
The a-priori profiles should thus be carefully chosen when using the Flux-Divergence methods.

4.7. Emission Estimation
The previous sections of this chapter discussed the results of different alternatives proposed to the
baseline method for creating the flux-divergence map. As explained in Section 3.8, the next step in
the Flux-Divergence method is estimating a sink term for NO2, in order to compute emissions. The
focus is on the estimation of the lifetime for NO2. The NO2 emissions will also be converted to NOx
emissions, using a mixing ratio. This section discusses three different approaches in estimating the
sink term: EMISB, EMISO and EMISD. Table 3.3 summarizes the differences between these methods.

(a) CAMS-REG NOx emission (b) DECSO NOx emission

Figure 4.9: NOx emissions from the two validation data sets used in the research, CAMS-REG and DECSO. Both have been
interpolated to the regular grid, at a resolution of 5x5 km.
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Section 3.10 discusses the metrics used to quantify the results of each approach. These metrics
are summarized in Table 4.3. Two data sets are used to compare the results of this approach to: the
CAMS-REG emission inventory (as presented in Section 2.3.1) and the DECSO algorithm results (see
also Section 2.3.2). The metrics for these data sets are included in Table 4.3 as well.

Figure 4.10: NOx emission map for
EMISB.

Figure 4.9 shows the NOx emissions for both validation data sets,
interpolated to the regular grid. CAMS-REG is based on a bottom-up
inventory, which is clear from the well-defined emission points, and
continuous emissions lines from sea transport. DECSO uses satel-
lite data to create emission maps, and shows a more smeared emis-
sion map. The correlation coefficient between these two data sets
is 0.478, indicating a moderate correlation. For most coastal point
sources (Tata Steel, Rotterdam and Antwerp), CAMS-REG reports
higher emission values than DECSO. For inland point sources (Ruhr
area, Reims and especially Paris), DECSO shows higher emission
values. Hamburg has a similar emission rate for both data sets. Note
that both methods do not allow for negative emissions.
In order to compute the emission maps, the flux-divergence map

from the TROPDN experiment was selected (Section 4.5), as this
adaptation performs best in the setting of this research. The follow-
ing sections will discuss the results of each method used to estimate
the sink term. All emission maps can be found in Appendix A.8.

4.7.1. EMISB
The first emission maps were created using a reported multiplication factor of m = 1.32 and lifetime
of τ = 4.00, found in the paper of Beirle et al. [1]. These values lead to an emission map with very
high background concentrations. This is clear from the high emission rate for the low-emission region.
For the analysed point sources, the emission rates are mostly higher than the reported rates of both
DECSO and CAMS-REG, with a few exceptions: EMISB and DECSO agree for Paris, and CAMS-REG
reports higher emission rates for Tata Steel and Rotterdam. The emission map from Figure 4.10 on a
coarse grid shows a high level of background emissions. This indicates that the chosen lifetime and
multiplication factor do not succeed in adequately estimating the sink term. Larger point sources are
still visible, but smaller point sources such as Reims are not.

Figure 4.11: NOx emission map for
EMISO-5

Overall, it is not recommended to use this approach in comput-
ing the sink term. Most emission rates are overestimated, and
the high background emissions reduce the visibility of smaller
point sources.

4.7.2. EMISO
The second approach to estimate the NO2 sink term, optimizes
the lifetime τ in such a way that emissions in areas where no
emissions are expected are reduced as much as possible. The
value of τ was varied between 1 and 24, and the optimum is
reached for τ = 10.062. The optimal value for m is then chosen
in such a way that the analyzed emission peaks are as close
as possible to the reported emission peaks of the CAMS-REG
inventory. The value of m is varied between 1 and 4, and the
optimum is reached form = 1.390, which is close to the reported
value from the EMISB experiment.
This approach works well to remove emissions in low-emission

regions: for the analyzed low-emission region, the total emis-
sions are around 16 times lower than for the EMISB experiments,
and only 1.5 times as high as the CAMS-REG inventory. Figure
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4.11 shows the resulting emissions. The strong background emissions found for EMISB have indeed
decreased significantly. Emission sources are still visible on this map, including smaller sources like
Reims.
Interestingly, the correlation coefficient with the DECSO data set is the lowest across all sink term

estimation experiments in this thesis. The coastal hot spots (Tata Steel, Rotterdam, Antwerp and
Hamburg) correlate well between these two data sets, but the Ruhr area and Paris differ strongly, with
the DECSO reported value being significantly higher. TheCAMS-REGdata set shows similar emissions
for the Ruhr area, although its reported emissions for Paris are half those of the EMISO experiment.
On the other hand, emissions for Antwerp, and especially Tata Steel and Rotterdam, are higher in the
CAMS-REG inventory.

4.7.3. EMISD

Figure 4.12: NOx emission map for
EMISD-5

The final approach implemented to estimate the sink term, uses
NO2 lifetimes modelled by the DECSO algorithm. It must be
noted that the maximal available latitude degree covered by the
DECSO model is 55° N, which excludes most of the used low-
emission region. All grid cells to the North of this latitude use
a lifetime of 10 hours for the EMISD Experiment. This is the
value found in the EMISO experiment. For this reason, the low-
emission values reported in Table 4.3 are not representative for
the validity of this approach. However, Figure 4.12 shows that
emission in other low-emission regions, such as the region be-
tween France and the border of Belgium, contain hardly any
emissions. Small-scale emitters in this region, such as Reims,
are still visible. This shows that this approach does not underes-
timate lifetimes too much, as it removes unwanted background
emissions, whilst still displaying strong signals from known peak
emitters. It also does not overestimate lifetimes, as this would
lead to large areas with negative emission values, which is now
only the case for small parts of Northern Netherlands and East-
ern England.
The reported correlation coefficient betweeen EMISD and the

CAMS-REG dataset is comparable to the correlation coefficient
of the other two methods. The correlation coefficient between DECSO and EMISD is the highest across
all experiments, and shows a strong relationship between the two data sets.
The emission rates for most peak emitters are higher than both DECSO and CAMS-REG for Ham-

burg, Paris, the Ruhr area and Antwerp. Tata Steel and Rotterdam are two emitters for which the
CAMS-REG data set reports emissions rates that are double of the reported values of DECSO. Con-
versely, DECSO has a reported emission higher than the CAMS-REG data set for Reims. For these
locations, EMISD reports values that are between the two data sets, but closer to the DECSO values.

To conclude, EMISB has the strongest correlation with the CAMS-REG data set, but shows large
amounts of background emissions, and is therefore not a suitable approach to estimate lifetimes. This
background emission is strongly reduced for EMISD and EMISO, with EMISD showing a strong corre-
lation with the DECSO data set. The resulting emissions from the flux-divergence map are clearly very
sensitive to the lifetimes used in the computation of the sink term.

4.8. Flux-Divergence Maps Ammonia
The final part of this research focuses on finding flux-divergence maps for ammonia satellite data, from
the CrIS instrument (Section 2.2.2) . Section 3.11 elaborates on how some adjustments were made
to the method, to make it more appropriate for the structure of the CrIS data set. The results of these
experiments are discussed in this section. All experiments were performed on a coarser grid than the
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previous experiments: the fine grid now has a resolution of approximately 10x10 km and the coarse
grid now has a resolution of 20x20 km. This was done to match the coarser satellite data that is used.

4.8.1. NH3TIMEx
The largest obstacle in computing the divergence is the fact that CrIS measures its VCD in circular
footprints, which are at a distance from one another. This is in contrast with the continuous footprint of
TROPOMI. This means that the VCDs should be averaged over a certain amount of time, in order to
accumulate data and remove holes in the data set. The first experiment focuses on selecting a suitable
period of time over which to average the VCD before computing the divergence. Three different aver-
aging times are used: 1 month (June 2016), 3 months (June-August 2016) and 5 months (April-August
2016). These experiments are referred to as NH3TIME1, NH3TIME3 and NH3TIME5 respectively. All
maps for these results are included in Appendix A.9.

(a) NH3 flux-divergence NH3TIME1-10 (b) NH3 flux-divergence NH3TIME3-10 (c) NH3 flux-divergence NH3TIME5-10

Figure 4.13: Results of NH3TIME experiments, on a 10x10 km resolution.

Figure 4.13 shows the results of the three different averaging times. After one month of averaging,
there are still some gaps in the data. These gaps have disappeared after three months of averaging.
After five months of averaging, the seasonal variation in ammonia emissions has significantly changed
the flux-divergence intensity. Therefore, it is recommended to use three months of data, from a period
of time with similar emission patterns.
These results also show that the Flux-Divergence method is not nearly as effective for ammonia

as it is for nitrogen oxides. Averaging the data makes it possible to capture the VCD concentrations
effectively. However, using the Flux-Divergence method leads to a noisy result. For the fine resolution
model, some areas with higher emissions are still discernible, although the background regions are very
noisy. For the coarse resolution model, the difference between noise and flux-divergence is unclear.

4.8.2. NH3MONTHAVG and NH3YEARAVG
In an effort to remove noise from the flux-divergence map, all CrIS summer data from 2015-2018 is
downloaded. This allows for the computation of multiple flux-divergence maps, which can then be
averaged to find a final result.
Two different options were implemented. On the one hand, we averaged all available data for every

month separately, meaning there are three flux-divergence maps which we can average: June, July
and August. On the other hand, we averaged all available data for each year separately, meaning



4.8. Flux-Divergence Maps Ammonia 60

there were four flux-divergence maps that were then averaged. These experiments are referred to as
NH3MONTHAVG and NH3YEARAVG, respectively. The resulting maps are shown in Appendix A.10
and A.11.
The VCD maps profit from the addition of more data, with a clear high-concentration region that

matches bottom-up inventories. The filter that should flag data above sea does not work properly for
all data sets.

(a) NH3 flux-divergence NH3MONTHAVG-20 (b) NH3 flux-divergence NH3YEARAVG-20

Figure 4.14: Results of NH3AVG experiments, on a 20x20 km resolution.

The flux-divergence maps for the coarse resolution grid in Figure 4.14 show that this approach does
not change the noise level significantly. There is little distinction between the NH3YEARAVG and
NH3MONTHAVG experiment, and the level of noise ensures that the maps do not contain useful infor-
mation that allows for the computation of ammonia emissions.
In conclusion, the flux-divergence method is highly suitable for pollutants with fixed, local emitters,

such as NO2. Ammonia has much larger emitters (agricultural areas), with lower emission rates per
square meter. Therefore, the flux-divergence maps is too much influenced by the noise-to-signal ratio,
and are not suitable for the estimation of emissions. Using the Flux-Divergence method for ammonia
data depends on an accurate estimation of a lifetime for ammonia. This is a more promising approach
than using flux-divergence maps, as the VCD maps are more well-structured, and show heightened
ammonia concentrations where we expect them.
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Conclusion and Discussion

This research focused on improving the current implementation of the Flux-Divergence method at the
KNMI, and examining its sensitivities to different factors within the implementation. The current imple-
mentation is also referred to as the baseline scenario, to which different modifications are compared.
In the introduction, three research questions were stated, which have been answered in this report.
This section will formulate a clear conclusion for each question, using the results and methodology
presented in Chapter 3 and 4. The first research question was:

Research Question 1: In which ways is it possible to improve the current KNMI
implementation of the Flux-Divergence method when applied to NO2 TROPOMI

satellite data above the Netherlands?

The Flux-Divergence method is governed by the following steady-state continuity equation:

∇ · f = E − S

The Flux-Divergence method consists of two different terms that need to be estimated in order to find
an emission map (E): the flux-divergence map (∇ · f) and the sink term (S). The flux-divergence term
is the focus of the first sub-question:

Research Question 1a: How do different choices in the following factors influence the
flux-divergence map:

• grid resolution,
• grid on which divergence is computed,
• finite difference method,
• wind data and
• a priori distribution.

Each factor will be discussed separately.
Grid Resolution
Two grid cell resolutions were used for this research, one coarse grid (5x5 km) and one fine grid

(2.5x2.5 km). The first resolution is similar to the TROPOMI footprint. In the baseline implementation,
the fine grid introduced more noise than the coarse grid. Two factors contribute to this extra noise.
The first factor is that the interpolation of the vertical columns density (VCD) of NO2 to a fine grid

introduces slightly more noise than the interpolation to a coarse grid. A possible explanation for the
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extra noise on the fine grid as compared to the coarse grid in the interpolation step could be its large
difference in size with the original TROPOMI pixel. One TROPOMI pixel covers on average at least four
fine grid cells, as opposed to only one grid cell on the coarse grid. In areas with low NO2 concentrations,
where the signal-to-noise ratio is higher ([42]), one noisy TROPOMI pixel therefore influences more
pixels on the fine grid, creating more noisy concentration maps in these regions. As the used finite
difference methods are sensitive to this noise, this has a larger influence on the computation of the
flux-divergence map for the fine grid cells.
The second factor is that the division in the flux-divergence computation has less of a smoothing

property. To compute the finite difference flux-divergence, the formula shown in Equation 3.6is used.
We divide the difference in flux between neighboring grid cells by the distance between their centers.
Dividing by the distance between grid cells has a dampening effect on flux-divergence. As the distance
between grid cells in the fine grid is smaller, this dampening effect is also smaller, and the noise is more
persistent.
A major advantage of using the fine grid, is that it better defines the boundaries of emission hot spots.

Regions with multiple emission sources close together, such as the Ruhr area, are smeared into one
emission source on a coarse grid. However, they can still be distinguished on a fine grid. Therefore, a
method that contains this information of the fine grid, but limits its noise, is optimal.
The spatial averaging step introduced in Section 3.5 (Experiment SAVG) does not provide a solution

to reduce noise during the interpolation step. In fact, it adds more noise to the coarse resolution map.
It seems that this extra noise is caused by using noisy data from a fine grid as an input. Therefore, it
is better to initially grid the satellite data directly to a coarser resolution. However, the refined emission
sources are also still visible after spatially averaging to a coarse grid. A method that includes the
reduced noise of a coarse grid with the precision of a fine grid would be optimal, but spatial averaging
is not adequate, and creates maps that are not an improvement to the original method.
In conclusion, the Flux-Divergence method is highly sensitive to the resolution on which it is used.

A fine resolution leads to noisy results in low-emission areas, but also better defines regions with a
high emission rate. Oversampling better positions emission sources, and benefits from the changing
location of TROPOMI pixels.
Grid on which divergence is computed
In the baseline implementation, the NO2 VCD was first interpolated to a regular grid, on which the flux

and divergence was then computed. In the TROPN, TROPD and TROPDN experiments, this order was
reversed. The flux and divergence were computed on the TROPOMI pixels, or TROPOMI grid. The
divergence was then interpolated to a regular grid, to allow for temporal averaging. TROPN used only
nearest neighbors to compute the divergence, TROPD used only diagonal neighbors, and TROPDN
used both. These experiments were successful at reducing noise, both on a coarse grid and most
drastically on a fine grid. This can be seen visually, but is also reflected in metrics such as the SDN
and RSS.
The first reason for this noise reduction is that the interpolation step does not impact the finite differ-

ence method. This is visible in the results for the coarse grid. A second reason for the noise reduction
is that the damping effect of the division is larger, especially for the fine grid. The distance between
TROPOMI grid cells is larger than the distance between grid cells on the regular fine grid. The total
emission does not change significantly, so this noise reduction is not caused by an overall bias. The
results of TROPDN on a fine grid are shown in Figure 4.8.
We also show that including diagonal divergence when computing the flux-divergence dampens

noise. This is caused by the larger distance between the diagonal neighbors as opposed to the near-
est neighbors. However, when using only diagonal neighbors, the damping was so strong, that the
smearing effect on the peak emitters counteracted the positive effect of using a fine grid. Including
both diagonal divergence and nearest neighbor divergence, allows for a significant reduction in noise,
and maintains well-defined emission points.
To conclude, the setting of the TROPDN experiment yields a significant improvement compared to

the original baseline implementation. The total amount of emission is not sensitive to the order of
interpolation and divergence computation, but the amount of noise is.
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Finite Difference Method
The finite difference method used in the baseline scenario, is the second order central difference

method, including diagonal divergence. Two other finite different methods were used: the second
order central difference method using only nearest neighbors (DIVSON), and the fourth order central
difference method (DIVFON). In the setting of this research, the original baseline scenario yielded the
best results. Both DIVFON and DIVSON yielded more noise.
In the case of DIVSON, a possible explanation for this noise-inducing effect can be due to the fact that

only the nearest neighbors are considered for the divergence computation, and the diagonal divergence
is omitted. The difference terms in these calculations are divided by a distance term, more precisely the
distance between the centers of the grid cells and the centers of the neighboring/diagonal grid cells. In
the case of diagonal divergence, this distance is higher, meaning diagonal divergence has a somewhat
dampening effect. When the diagonal divergence is omitted, this dampening effect on the noise is also
lost. The dampening effect of the diagonal neighbors also somewhat smears the emission hot spots.
The DIVFON experiment gives more noise than the DIVSON experiment, although the used finite

difference method has a higher theoretical accuracy. However, part of the error term of the finite dif-
ference method is caused by noise, as shown in Equation 2.44. This part of the error term gets larger
for smaller terms of h, which explains the extra noise present on the fine grid. This measurement error
term is also larger than the measurement error term of the second order central finite difference method.
It appears this error term has a larger impact than the truncation error.
In conclusion, the finite different method used in the baseline scenario to compute the results, yields

the least noisy result when compared to other central finite difference methods.
Wind data
In order to compute the flux, a wind data set is needed. The baseline scenario uses a wind data set

where the wind speed is taken halfway the Planetary Boundary Layer (PBL). This thesis analysed the
impact of using two other wind data sets. One wind data set took an average over the wind speeds
within the PBL (Experiment WINDMEAN). For the other wind data set, we implemented an algorithm
that reduces local divergence in a flux field (WINDDIV).
The WINDMEAN experiment shows that using a different metric to project the 3D wind field within

the PBL to a 2D wind field does not have a large impact on the final flux-divergence map. This is shown
in the value for the SDN, which is almost the same as the SDN of the baseline scenario. The RSS and
RSL are both close to 1.The slightly lower values for the averaged wind data set as opposed to the
baseline wind data set also leads to a slightly lower flux-divergence. However, it does not structurally
change the resulting flux-divergence map.
The WINDDIV experiment shows that it is beneficial to use a wind data set with reduced divergence.

In the Netherlands, the largest divergence in wind is experienced along the coast. The abrupt change
in surface fraction leads to a high-divergence region along the coast above sea, and a low-divergence
region along the coast above land. As the Flux-Divergence method assumes all positive divergence
in the flux is caused by emission and deposition, the coastal divergence is incorrectly attributed. The
effect causes a strong increase in estimated emission above sea, but also a decrease for emitters that
are located along the coast, such as Tata Steel and the port of Rotterdam. A fast algorithm is provided
that partially removes local divergence effects, while maintaining the overall structure of the wind. As
a result, only the strongest emission remains above the sea, such as emission along the connection
between Dover and Calais. The emission rates of Tata Steel and the port of Rotterdam are enhanced.
Compared to the CAMS-REG inventory, the emission of these hot spots are underestimated using the
normal wind data set, as shown in Table 4.3. The flux-divergence map of the WINDDIV experiment on
a coarse grid is compared to the baseline results in Figure 4.5.
The WINDDIV experiment also shows that the flux-divergence map does not capture emissions from

mobile sources well, such as big cargo ships. Using divergence-free wind results in a slight amplification
along the coast, but this is hardly distinguishable from noise. Less-heavily trafficked routes, such as the
route connecting the Netherlands and Scandinavia, are not visible. This shows that the flux-divergence
map is very good at picking up emissions from fixed, local emitters, such as power plants or cities. The
gradient of the flux near such sources is high, as there is a large difference between neighboring grid
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cells. However, for emission sources such as ships, the emission of NO2 is done at a lower rate per ship,
and is spread out over a large region. This is not properly captured in the flux-divergence term. Such
emissions rely mostly on a reliable estimation of the sink term to be captured using the Flux-Divergence
method. However, this is typically much harder than estimating a flux-divergence map.
Road traffic is better detected than ship transport on flux-divergence maps, presumably because of

its denser concentration. Highways that are visible on the map are the A4 highway, connecting The
Hague and Amsterdam, and the Route du Soleil in southerly direction from Luxembourg.
To conclude, the Flux-Divergence method is not very sensitive to using a different estimate of the

wind velocity within the PBL. However, removing divergence from the wind data set does have a large
influence and benefits emission estimates from emitters in regions with negative wind divergence, such
as Tata Steel and the port of Rotterdam.
A-Priori
The baseline implementation uses a high resolution vertical column profile a-priori for TROPOMI’s

NO2 retrieval algorithm. This a-priori profile is called the CAMS a-priori and was developed by Douros
et al. [74]. This research applied a different low-resolution a-priori, called the TM5-MP a-priori (the DAP
experiment). The DAP experiment shows that the Flux-Divergence method is highly sensitive to the
used a-priori. The CAMS a-priori gives higher vertical column density values than the TM5-MP a-priori.
This also leads to higher flux-divergence values and a 17% increase in emission values. As literature
shows, the CAMS a-priori gives better emission values upon validation, and should therefore be used
[45] [74].

The second subquestion of this research focused on the sink term of NO2:

Research Question 1b: How can the NO2 sink term better be estimated by optimizing the
NO2 lifetime or using DECSO estimates for the lifetime?

This research used three different approaches to estimate the lifetime of NOx in order to compute the
sink term. The first approach used a fixed lifetime of NO2 of 4.0h, which was retrieved from empirical
studies in Riyadh [69]. The experiment is referred to as EMISB. The second approach used a con-
stant optimized lifetime, which minimizes the emissions in a low-emission region (EMISO). The third
approach, called EMISD, uses NOx lifetimes retrieved from the DECSO algorithm which is currently
being developed at the KNMI [3]. The retrieved emissions are compared to two emission inventories:
the CAMS-REG inventory, which uses a bottom-up approach to compute emissions, and the DECSO
inventory, which uses data assimilation to incorporate satellite data.
All resulting emission maps from the lifetime experiments show a strong correlation with the DECSO

data set, and a mildly strong correlation with the CAMS-REG inventory. This makes sense, as the
DESCO data set also uses satellite data, and is thus structured similarly. The CAMS-REG data set
mostly uses a bottom-up approach, and therefore provides a more localized version of peak emitters.
Especially transport emission from ships and road traffic are better structured in that way. The values
reported show that all data sets largely agree on the location of emitters.
We show that the fixed lifetime used in EMISB is an underestimation of the lifetime for the region of

the Netherlands, and leads to an overestimation of emissions. This is best seen in the low-emissions
value shown in Table 4.3. Analysis of low-emission regions shows that using the optimized lifetimes
and the DECSO lifetimes gives better results than using the lifetimes found in literature. Both values
are similarly low, and only twice as high as the CAMS-REG inventory.
The emission rate found by EMISO and EMISD for certain hot spots, shown in Table 4.3, largely

correspond to the emission rates found by the CAMS-REG inventory. Only the reported emissions
of coastal hot spots Tata Steel and Rotterdam are underestimated using both the optimized lifetimes
and DECSO lifetimes, possibly due to the presence of negative divergence in the wind fields of this
region. On the other hand, the reported emissions for Paris aremuch higher for satellite-basedmethods,
including the DECSO data set.
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These experiments show that the emission rates found using the Flux-Divergence method are highly
sensitive to the estimation of the sink term and the linked NOx lifetime. This value should thus be
chosen with care. For each used lifetime estimation, the Flux-Divergence method emission map has a
high correlation with the DECSO emission map, and a moderately high correlation with the CAMS-REG
emission inventory.

Research question 2 focused on applying the Flux-Divergence method to ammonia emission data
from the CrIS instrument.

Research Question 2: What is the result of a flux-divergence map for NH3

concentrations from satellite data above the Netherlands?

Different approaches were implemented to find a flux-divergence map for ammonia emission. The
VCD was averaged over one month, three months and five months, in the NH3TIME experiments.
Two different ways to average flux-divergence were used in the NH3MONTHAVG and NH3YEARAVG
experiments. None of these experiments led to a useful flux-divergence map.
The emission of ammonia in the Netherlands occurs mostly above agricultural land, as shown in the

VCD maps in Figure A.15. This emission source is much more spread out than the compact point-
sources of NO2. A flux-divergence map is not able to capture this as a source. The grid size being
used is much smaller than the size of the region emitting ammonia. Therefore, when computing the
divergence of the flux, no difference is found between neighboring grid cells, and the region is not
recognized as a source. This is clear when examining the resulting flux-divergence maps in Figures
A.12, A.13, A.14 and A.15. Taking a larger grid size does not yield better results. Moreover, choosing a
grid size that matches the size of the emitting region counteracts the resolution of the available CrIS data
set. When using the Flux-Divergence method for ammonia, the importance of a sink term is thus even
higher. Given that it is possible to create VCD maps that meet expectation of ammonia concentration,
we can conclude that an accurate lifetime also leads to a useful emission map.
Another issue with CrIS data that hinders the performance of the Flux-Divergence method on NH3,

is the fact that the pixels are not adjacent to each other. This means that the flux must first be averaged
over a certain period of time, before the divergence can be computed. This raises some issues, as
measurements from different time stamps are compared and used to find the divergence.
To conclude, the flux-divergence map does not properly capture NH3 emissions. When applying the

Flux-Divergence method to NH3, the sink term contains the most useful information in computing an
emission map.

Discussion and Future Research
This thesis raises some interesting questions that requires more research. This section discusses some
issues that should be examined in future research within this topic.
This method assumes a steady state continuity equation. However, this is not necessarily the case,

as the amount of a certain trace gas can fluctuate. In the case of NO2 and NH3, this fluctuation is
linked amongst others to temperature. Therefore, future research could include a time derivative in the
continuity equation.
As was remarked in Section 2.2.1, the relative uncertainty for low concentrations of NO2 can be

as high as 100%. This was not accounted for in this research. Pixels were filtered based on their
quality factor. However, experiments should be done to analyse the influence of such pixels with high
uncertainty. Especially when this method is used to give concrete estimations of emission rates, this
should be assessed.
The metrics used to analyse the influence of a certain factor on the Flux-Divergence method were the

total emission, the standard deviation in a low-emission region, and the slopes of Theil-Sen regressor
fitted on large and small flux-divergence values. However, in future research, an extra metric should
be included that deteriorates when emission hot spots are less well-defined. This is a quality that was
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assessed visually for this research, but this should also be done analytically. A possible approach could
be to use a peak-fitting algorithm on certain hot spots.
The algorithm used to remove divergence from wind has only been validated for the current research

domain. For this region, we showed that the algorithm removes divergence locally. However, the region
does not have strong topographic features, such asmountain ranges. The validity of this method should
therefore also be validated for other regions with different orographic features. It is also interesting
to evaluate the algorithm at different wind speed heights. It would also be interesting to examine the
location of the high- and low-divergence regions for the wind and how this location changes for different
wind directions.
Using this wind data with reduced divergence seems to improve emission in regions where the wind

divergence is negative. However, this method assumes two-dimensional transport of trace gases. In
practice, the transport of air through the Planetary Boundary layer is three-dimensional. Divergence
in the wind field could also indicate vertical transport of air, and thus also of trace gases. Clean air is
added to the grid cell from above, while polluted air is transported horizontally. More research should
be done on whether or not divergence in wind should be included, and if it properly models vertical
pollutant transport. If it turns out that wind divergence does not capture vertical transport, perhaps a
different method should be found to incorporate this.
Looking at sensitivity of the Flux-Divergence method for the lifetime of NOx shows that much future

research should be done to include better lifetimes. The optimized lifetime approach assumes a fixed
lifetime for NO2. In real life, however, this is not the case. The lifetime of NO2 also depends on the
amount of OH available. It is also strongly seasonally dependent. This should therefore be included
in future models. The DECSO lifetime does not assume a fixed lifetime. However, little research has
been done to validate the retrieved lifetimes. This could be a solution for future models used at the
KNMI.
This research analyzed the sensitivity of the flux-divergence map to different factors in its implemen-

tation. However, this was not translated to sensitivity of the emission rates to these choices. Is should
definitely be included in future research.
Despite the difficulties in estimating the lifetime of NO2, the Flux-Divergence method is a very promis-

ing tool in the creation of emission maps for NO2 using TROPOMI data. It is a computationally efficient
method to implement. Another big advantage is that the method is based on a simple principle, thereby
making the computation of emission values more transparent to the public.
In the case of NH3, this thesis only focused on the flux-divergence term. This gave a noisy result.

However, the VCD map did meet expectations set by previous NH3 concentration maps. Therefore, it
could be possible to find an adequate sink term, and use this in the computation of an emission map.
This should be researched.
The circular structure of the current available NH3 data is not well suited for the Flux-Divergence

method. It is not possible to reverse the order of interpolation and divergence computation, which
yielded an improvement for this method when applied to NO2. If satellite data becomes available that
has a measuring swath comparable to that of TROPOMI, the method could be more successful, as
temporal averaging before divergence computation is not necessary anymore. However, othermethods
seem to be more promising. An important example is the DECSO method, which uses Kalman filters
to estimate ammonia emissions [3].
At the moment of writing this thesis, satellite data is not yet used in the Netherlands to help form

policies. However, in September 2022, the NKS-SAGEN research program commenced. In this pro-
gram, different research institutes such as KNMI, but also TNO, ULeiden, WUR and the RIVM, bundle
their knowledge to start incorporating satellite data in the creation of emission maps used for the de-
velopment of Dutch policies. The Flux-Divergence method is one of the tools that will be used by this
research program.
In conclusion, this research shows the strengths of the Flux-Divergence method in an improved

implementation, applied to TROPOMI data for NO2 concentrations. This improved implementation
reduces noise, most drastically on a fine grid, by reversing the order of divergence computation and
interpolation to a regular grid. The research also develops a tool to better detects point sources in
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regions with negative wind divergence, by reducing divergence in the wind data set. The sensitivities
of the flux-divergence map to different implementation choices are analysed. The limits of the flux-
divergence map are also explored, in the application to NH3 data of the CrIS instrument. Figure 5.1
shows a final comparison of the improved Flux-Divergence method emission maps, the CAMS-REG
inventory, and the DECSO algorithm. Table 5.1 qualitatively summarizes the impact of different factors
on the Flux-Divergence method.

(a) EMISO (5x5 km) (b) CAMS-REG (5x5 km) (c) DECSO (5x5 km)

Figure 5.1: A comparison of the improved Flux-Divergence method implementation (TROPDN experiment using EMISO
lifetime approach), the CAMS-REG inventory and the DECSO inventory (currently still being developed at the KNMI).
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Low impact

Using different wind metric
(WINDMEAN)

Moderate impact

Finite Difference method
(DIVFON/DIVSON and TROPDN/TROPD/TROPN)

Reducing Wind Divergence
(WINDDIV)

Spatial Averaging
(SAVG)

High impact

A-priori vertical profile
(DAP)

Computing divergence on TROPOMI grid
(TROPDN/TROPD/TROPN)

Lifetime estimation
(EMISB/EMISO/EMISD)

Table 5.1: This table qualitatively summarizes the impact of different choices on the result of the Flux-Divergence method
applied to NOx. The division is made on a combination of the values found for the SDN, TE, RSS, RSL, visual analysis and

reported emission rates.
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A
Maps of Results

A.1. Baseline Method - Averaging Time
The averaging time for the baseline Flux-Divergence method and all implemented extensions to the
method is set at three months. This section shows the effect of varying this averaging time. As can
be expected, taking a longer averaging time filters out a large part of the noise. However, the method
scales linearly with time. Running the model for the chosen research area for three months takes
approximately 20-30 minutes.
Figure A.1 shows the effect of three different averaging times, on a resolution of 5x5 km. The first

image depicts an averaging time of one (particularly sunny) day. Although the weather conditions are
favorable, there are still some significant spatial gaps in the data. The data is very noisy, notably above
the North Sea to the West of Denmark. Some hot spots do already light up, such as Paris, Hamburg
and the Ruhr Area. It should be noted that most days will only contain a fraction of the data available
in this image.
The middle image shows the effect of using a week as averaging time. The gaps in the data have

almost disappeared, but the data is still very noisy. After averaging over a month of data (Figure A.1c),
all gaps in the data have gone, and the noise has also greatly diminished. However, three months is
still preferable, as it makes the distinction between noise and small-scale sources more clear.

(a) 1 day (June 1st 2019) (b) 1 week (June 1st-7th 2019) (c) 1 month (June 2019)

Figure A.1: The flux-divergence map of the baseline model, using three different averaging times. The model is run on a
resolution of 5x5 km.
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A.2. Finite Difference method

(a) Baseline 2.5x2.5 km. (b) DIVSON-2.5 (c) Scatterplot DIVSON-2.5

(d) Baseline 5x5 km. (e) DIVSON-5 (f) Scatterplot DIVSON-5

Figure A.2: Results when using only the nearest neighbours for second order finite difference on a 5x5 km resolution
(DIVSON-5).
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(a) Baseline 2.5x2.5 km. (b) DIVFON-2.5 (c) Scatterplot DIVFON-2.5

(d) Baseline 5x5 km. (e) DIVFON-5 (f) Scatterplot DIVFON-5

Figure A.3: Results when using a fourth order finite difference method on a 5x5 km resolution (DIVFON-5).
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A.3. WINDDIV

(a) Baseline 2.5x2.5 km. (b)WINDDIV-2.5 (c) Scatterplot WINDDIV-2.5

(d) Baseline 5x5 km. (e)WINDDIV-5 (f) Scatterplot WINDDIV-5

Figure A.4: Results when using the wind data set after diminishing its divergence, on a 2.5x2.5 km resolution (WINDDIV-2.5).
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A.4. WINDMEAN

(a) Baseline 2.5x2.5 km. (b)WINDMEAN-2.5 (c) Scatterplot WINDMEAN-2.5

(d) Baseline 5x5 km. (e)WINDMEAN-5 (f) Scatterplot WINDMEAN-5

Figure A.5: Results when using the averaged wind over the PBL, instead of the half-way wind, on a 2.5x2.5 km resolution
(WINDMEAN-2.5).
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A.5. SAVG

(a) BASE-5 (b) SAVG (c) Scatterplot SAVG

Figure A.6: Results when spatially averaging the 2.5x2.5 km resolution baseline dataset to a 5x5 km resolution (SAVG).
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A.6. TROPOMI Grid

(a) BASE-5 (b) TROPDN-5

(c) TROPN-5 (d) TROPD-5

Figure A.7: Results using divergence computed on the TROPOMI grid on a 5x5 km grid. The baseline scenario, where the
divergence is computed on the regular latitude-longitude grid, is included for comparison in (a).
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(a) BASE-2.5 (b) TROPDN-2.5

(c) TROPN-2.5 (d) TROPD-2.5

Figure A.8: Results using divergence computed on the TROPOMI grid on a 2.5x2.5 km grid. The baseline scenario, where the
divergence is computed on the regular latitude-longitude grid, is included for comparison in (a).
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(a) Nearest and diagonal flux-divergence. (b) Nearest flux-divergence.

(c) Diagonal flux-divergence. (d) Nearest and diagonal flux-divergence.

(e) Nearest flux-divergence. (f) Diagonal flux-divergence.

Figure A.9: Scatterplots comparing baseline values and values where the TROPOMI grid was used to compute divergence, on
a gridding resolution of 5x5 km.
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A.7. DAP

(a) Baseline 2.5x2.5 km. (b) DAP-2.5 (c) Scatterplot DAP-2.5

(d) Baseline 5x5 km. (e) DAP-5 (f) Scatterplot DAP-5

Figure A.10: Results when using the default retrieval a-priori instead of the CAMS a-priori (DAP-5).
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A.8. Emissions

(a) EMISB (b) EMISO (c) EMISD

(d) CAMS (e) DECSO

Figure A.11: Results of emission experiments on a resolution of 5x5 km.
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A.9. Ammonia - NH3TIMEx

(a) Flux-divergence NH3TIME1-10 (b) Flux-divergence NH3TIME3-10 (c) Flux-divergence NH3TIME5-10

(d) NH3 VCD NH3TIME1-10 (e) NH3 VCD NH3TIME3-10 (f) NH3 VCD NH3TIME5-10

Figure A.12: Results of NH3TIME experiments, on a 10x10 km resolution.
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(a) Flux-divergence NH3TIME1-20 (b) Flux-divergence NH3TIME3-20 (c) Flux-divergence NH3TIME5-20

(d) NH3 VCD NH3TIME1-20 (e) NH3 VCD NH3TIME3-20 (f) NH3 VCD NH3TIME5-20

Figure A.13: Results of NH3TIME experiments, on a 20x20 km resolution.
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A.10. Ammonia - NH3MONTHAVG

(a) Flux-divergence NH3MONTHAVG-10 (b) Flux-divergence NH3MONTHAVG-20

(c) NH3 VCD NH3MONTHAVG-10 (d) NH3 VCD NH3MONTHAVG-20

Figure A.14: Results of NH3MONTHAVG experiments.
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A.11. Ammonia - NH3YEARAVG

(a) Flux-divergence NH3YEARAVG-10 (b) Flux-divergence NH3YEARAVG-20

(c) NH3 VCD NH3YEARAVG-10 (d) NH3 VCD NH3YEARAVG-20

Figure A.15: Results of NH3YEARAVG experiments.
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Projection 1 Projection 2 τ σ ρ

Original Quadrant: 1, Diagonal Quadrant: 1

PpUpV = |u| · cosα PmUpV = |u| · cosβ arctan(PV (u)
PU (u) ) arctan(pVpU ) arctan( pVmU )

Original Quadrant: 2, Diagonal Quadrant: 1

PpUpV = |u| · cosβ PmUpV = |u| · cosα arctan(PV (u)
PU (u) ) arctan( pVmU ) arctan(pVpU )

Original Quadrant: 2, Diagonal Quadrant: 2

PmUmV = −|u| · cosβ PmUpV = |u| · cosα arctan(PU (u)
PV (u) ) arctan(mU

pV ) arctan(mU
mV )

Original Quadrant: 3, Diagonal Quadrant: 2

PmUmV = −|u| · cosα PmUpV = |u| · cosβ arctan(PU (u)
PV (u) ) arctan(mU

mV ) arctan(mU
pV )

Original Quadrant: 3, Diagonal Quadrant: 3

PmUmV = −|u| · cosα PpUmV = −|u| · cosβ arctan(PV (u)
PU (u) ) arctan(mV

mU ) arctan(mV
pU )

Original Quadrant: 4, Diagonal Quadrant: 3

PmUmV = −|u| · cosβ PpUmV = −|u| · cosα arctan(PV (u)
PU (u) ) arctan(mV

pU ) arctan(mV
mU )

Original Quadrant: 4, Diagonal Quadrant: 4

PpUpV = |u| · cosβ PpUmV = −|u| · cosα arctan(PU (u)
PV (u) ) arctan( pUmV ) arctan(pUpV )

Original Quadrant: 1, Diagonal Quadrant: 4

PpUpV = |u| · cosα PpUmV = −|u| · cosβ arctan(PU (u)
PV (u) ) arctan(pUpV ) arctan( pUmV )

Table B.1: Overview of the formulas needed to compute the diagonal wind projections in order to use TROPOMI grid cells to
compute divergence. This is an addition to the computations described in Section 3.6

.
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Used Notation Meaning
hν Photon energy
Ns Slant column density (also SCD)
N trop

s Tropospheric slant column density
Nstrat

s Stratospheric slant column density
Nv Vertical column density
N trop

v Tropospheric vertical column density
Nstrat

v Stratospheric vertical column density
M Air mass factor
M trop Tropospheric air mass factor (or VCD)
Mstrat Stratospheric air mass factor
A Averaging kernel
x True vertical column density
x̂ Measured vertical column density
Qc,2(h) Formula for second order central finite difference
Qc,4(h) Formula for fourth order central finite difference
Rc,2(h) Truncation error for second order central finite difference
Rc,4(h) Truncation error for fourth order central finite difference
Sc,2(h) Measurement and rounding error for second order central finite difference
Sc,4(h) Measurement and rounding error for fourth order central finite difference
Ec,2(h) Total error for second order central finite difference
Ec,4(h) Total error for fourth order central finite difference
C3 Set of three times continuously differentiable continuous functions
R Set of real numbers
O Order of magnitude
P An atmospheric trace gas
f The 2-dimensional flux of P
VP Vertical column density of trace gas P
w 2-dimensional flow of the wind
fx/wx Component of f/w in x-direction
u East-West direction
v North-South direction
U Across-track direction
V Along-track direction
pUpV U + V direction
pUmV U − V direction
mUpV V − U direction
mUmV −U − V direction
E Emissions/sources of P
S Sinks/loss term of P
∆x/∆y Distance between pixels regular grid
∆xr/∆xl/∆y/∆dr/∆dl Distance between pixels TROPOMI grid
lonmin/lonmax Minimal and maximal longitude of research area
latmin/latmax Minimal and maximal latitude of research area
dlon Grid size in longitudinal direction
dlat Grid size in latitudinal direction
nlon Number of grid cells in longitudinal direction
nlat Number of grid cells in latitudinal direction
∇ The divergence term
∇2,c Divergence computed using second order central divergence

(Both diagonal and nearest neighbors)
∇4,c Divergence computed using fourth order central divergence
∇2,n Divergence computed using second order central divergence

(nearest neighbors only)
∇2,d Divergence computed using second order central divergence

(diagonal neighbors only)
m Mixing ratio NOx/NO2

τ Lifetime

Table C.1: Used notation in this thesis.
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Used Abbreviation Meaning
BASE See Table 3.2
CAMS Copernicus Atmosphere Monitoring Service
CAMS-REG Copernicus Atmosphere Modelling Service REGional inventory
CrIS Cross-track Infrared Sounder
DAP See Table 3.2
DECSO Daily Emissions estimations Constrained by Satellite Observations
DIVSON/DIVFON See Table 3.2
DOFS Degrees of Freedom
EMISO/EMISB/EMISD See Table 3.3
ECMWF European Centre for Medium-Range Weather Forecasts
EOS Earth Observing System
ERA5 ECMWF Reanalysis v5
ERS European Remote-sensing Satellite
ESA European Space Agency
EU European Union
GAINS Greenhouse gas Air pollution Interaction and Synergies model
GOME Global Ozone Monitoring Experiment
IASI Infrared Atmospheric Sounder Interferometer
INTEX-B Intercontinental Chemical Transport Experiment-B
IR Infrared
JPSS Joint Polar Satellite System
KDW Kritische Depositiewaarde

Critical Deposition Values
KNMI Koninklijk Nederlands Meteorologisch Instituut

Royal Netherlands Meteorological Institute
METOP Meteorological Operational satellite
NASA National Aeronautics and Space Administration
NECA Nitrogen Emission Control Area
NH3TIME See Table 3.4
NH3MONTHAVG See Table 3.4
NH3YEARAVG See Table 3.4
NIR Near Infrared
NOAA National Oceanic and Atmospheric Administration
NPP National Polar-orbiting Partnership
OMI Ozone Monitoring Instrument
PAS Programmatische Aanpak Stikstof

Programmatic Approach Nitrogen
PBL Planetary Boundary Layer
PCC Pearson’s Correlation Coefficient
RIVM Rijksinstituut voor Volksgezondheid en Milieu

National Institute for Public Health and the Environment
RSS Regression Slope for Small flux-divergence values
RSL Regression Slope for Large flux-divergence values
SAA South Atlantic Anomaly
SAVG See Table 3.2
SCD Slant Column Density
SCIAMACHY SCanning Imaging Absorption spectroMeter

for Atmospheric CHartographY
SDN Standard Deviation for Low-emission region
STEAM Ship Traffic Emissions Assessment Model
SWIR Short-wave Infrared
SZA Solar Zenith Angle
S5P Sentinel 5-Precursor
TE Total Emission
TES Tropospheric Emission Spectrometer
TROPDN/TROPN/TROPD See Table 3.2
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TROPOMI Tropospheric Monitoring Instrument
UV Ultravoilet
VCD Vertical column Density
VIS Visible Spectrum
WINDDIV/WINDMEAN See Table 3.2
WMO World Meteorological Organization

Table C.2: Used abbreviations in this thesis.
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