

Delft University of Technology

Greedy optimization of resistance-based graph robustness with global and local edge
insertions

Predari, Maria; Berner, Lukas; Kooij, Robert; Meyerhenke, Henning

DOI
10.1007/s13278-023-01137-1
Publication date
2023
Document Version
Final published version
Published in
Social Network Analysis and Mining

Citation (APA)
Predari, M., Berner, L., Kooij, R., & Meyerhenke, H. (2023). Greedy optimization of resistance-based graph
robustness with global and local edge insertions. Social Network Analysis and Mining, 13(1), Article 130.
https://doi.org/10.1007/s13278-023-01137-1

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s13278-023-01137-1
https://doi.org/10.1007/s13278-023-01137-1

Vol.:(0123456789)1 3

Social Network Analysis and Mining (2023) 13:130
https://doi.org/10.1007/s13278-023-01137-1

ORIGINAL ARTICLE

Greedy optimization of resistance‑based graph robustness with global
and local edge insertions

Maria Predari1 · Lukas Berner1 · Robert Kooij2,3 · Henning Meyerhenke1

Received: 6 April 2023 / Revised: 8 May 2023 / Accepted: 11 September 2023
© The Author(s) 2023

Abstract
The total effective resistance, also called the Kirchhoff index, provides a robustness measure for a graph G. We consider two
optimization problems of adding k new edges to G such that the resulting graph has minimal total effective resistance (i.e.,
is most robust)—one where the new edges can be anywhere in the graph and one where the new edges need to be incident
to a specified focus node. The total effective resistance and effective resistances between nodes can be computed using the
pseudoinverse of the graph Laplacian. The pseudoinverse may be computed explicitly via pseudoinversion, yet this takes
cubic time in practice and quadratic space. We instead exploit combinatorial and algebraic connections to speed up gain
computations in an established generic greedy heuristic. Moreover, we leverage existing randomized techniques to boost
the performance of our approaches by introducing a sub-sampling step. Our different graph- and matrix-based approaches
are indeed significantly faster than the state-of-the-art greedy algorithm, while their quality remains reasonably high and is
often quite close. Our experiments show that we can now process larger graphs for which the application of the state-of-the-
art greedy approach was impractical before.

Keywords  Graph robustness · Optimization problem · Effective resistance · Kirchhoff index · Laplacian pseudoinverse

1  Introduction

The analysis of network topologies has received consider-
able attention in various fields of science and engineering in
the last decades (Barabási and Pósfai 2016; Newman 2018).
Its purpose usually is to better understand the functionality,
dynamics, and evolution of a network1 and its components
(Barabási and Pósfai 2016). One important property of a
network topology concerns its robustness, i.e., the extent to
which a network is capable to withstand failures of one or
more of its components (Freitas et al. 2022). As an example,
one may ask whether the network is guaranteed to remain
connected if an edge is deleted, e.g., due to failure or an
attack. Network robustness is a critical design issue in many
areas, including telecommunication (Rueda et al. 2017),
power grids (Koç et al. 2014), public transport (Cats et al.
2017), supply chains (Perera et al. 2015) and water distribu-
tion (Yazdani and Jeffrey 2011).

Often a critical step in infrastructural maintenance is to
improve the robustness of the network by adding a small
number of edges. The challenge here lies in the selection
of a vertex pair, among all the possible ones, such that

A preliminary version of this paper appeared in the Proc. of
2022 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining (ASONAM) (Predari et al.
2022). We gratefully acknowledge support by German Research
Foundation (DFG) project ALMACOM (Grant ME 3619/4-1) and
by the TU Delft Safety & Security Institute project ARCIN.

 *	 Robert Kooij
	 r.e.kooij@tudelft.nl

	 Maria Predari
	 predarim@hu-berlin.de

	 Lukas Berner
	 lukas.berner@hu-berlin.de

	 Henning Meyerhenke
	 meyerhenke@hu-berlin.de

1	 Department of Computer Science, Humboldt-Universität zu
Berlin, Unter den Linden 6, 10099 Berlin, Germany

2	 Faculty of Electrical Engineering, Mathematics
and Computer Science, Delft University of Technology,
Mekelweg 4, 2628 CD Delft, The Netherlands

3	 UNIT ICT, Strategy and Policy, TNO (Netherlands
Organisation for Applied Scientific Research),
P.O. Box 96800, 2509 JE The Hague, The Netherlands 1  We use the terms network and graph interchangeably in this paper.

http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-023-01137-1&domain=pdf

	 Social Network Analysis and Mining (2023) 13:130

1 3

 130   Page 2 of 20

the insertion of an edge between the vertices increases
the network’s robustness as much as possible. Given a
graph G = (V ,E) and a budget of k links to be added, our
algorithmic formalization of this task asks to find a set
X ⊂

(
V

2

)
⧵E of size k that optimizes the robustness of G.

We call this problem k-GRIP, short for global robustness
improvement problem. A related task fixes a focus node
v ∈ V from which k edges can be inserted into G to other
nodes; we call this problem k-LRIP, short for local robust-
ness improvement problem. Clearly, one must also choose
a measure to capture a sensible notion of robustness; there
are numerous ones proposed in the literature (Barabási and
Pósfai 2016; Rueda et al. 2017).

One established measure for k-GRIP, which was shown to
be a good robustness indicator in various scenarios (Ellens
et al. 2011; Ghosh et al. 2008; Wang et al. 2014), is effec-
tive graph resistance or total effective resistance of a graph.
Effective resistance is a pairwise metric on the vertex set of G,
which results from viewing the graph as an electrical network.
It relates to uniform spanning trees (Angriman et al. 2020),
random walks (Lovász 1996), and several centrality measures
(Mavroforakis et al. 2015; Brandes and Fleischer 2005). In fact,
it works similarly as an objective function for k-LRIP—we are
just restricted in the search space to a particular focus node. To
compute the total effective resistance, one sums the effective
resistance over all vertex pairs in G (for technical details, see
Sect. 2). Intuitively, the effective resistance becomes small if
there are many short paths between two vertices. Removing an
edge in such a case hardly disrupts the connectivity, since there
are usually alternative paths. Due to this favorable property, we
select total effective resistance in this paper as the robustness
measure for k-GRIP and k-LRIP.

The effective graph resistance-based k-GRIP version, recently
shown to be NP hard (Kooij and Achterberg 2023), was already
considered by Summers et al. (2015). It was shown in Summers
et al. (2017) that k-GRIP for the effective graph resistance is not
submodular, hence without an approximation guarantee for the
greedy algorithm (more details in Sect. 3). Still, even without an
approximation guarantee, this greedy algorithm provides very
good empirical results—for small networks it does so in reason-
able time. It should be noted that the example given in Summers
et al. (2017), which proves that k-GRIP for the effective graph
resistance is non-submodular, also proves that k-LRIP is non-
submodular for the effective graph resistance.

The greedy algorithm performs k iterations, at each step
adding the edge with the highest marginal gain. To com-
pute these gains, however, the corresponding effective resist-
ance values are needed. If one acquires them by an initial
(pseudo)inversion of the graph’s Laplacian matrix, this takes
O(n3) time with standard tools in practice (where n = |V| ).
Overall, this approach leads to a running time of O(kn3) ,
which limits the applicability to large networks.

For other problems where this greedy approach works
well, a recent stochastic greedy algorithm (Mirzasoleiman
et al. 2015) has been shown to be potentially much faster—
while usually producing solutions of nearly the same quality.
It does so by sampling from the set of candidates to find the
one with highest gain (from the sample instead of from the
whole set) in each iteration. Our hypothesis for this paper
is that this favorable speed-quality trade-off of stochastic
greedy holds for our k-GRIP as well. We also assume that
other Laplacian approximation techniques can speed up the
required computations. Furthermore, we hope that the tech-
niques that work well for the k-GRIP problem also work well
(if adapted properly) for the related k-LRIP problem. Some
differences in the speed-quality trade-off are to be expected.

Building upon the generic stochastic greedy approach
(Mirzasoleiman et al. 2015), we first devise several heuristic
strategies for k-GRIP that leverage both graph- and matrix-
related properties (Sect. 4). Our approaches accelerate the
greedy algorithm by reducing the candidate set via careful
selection of elements to be evaluated and/or by accelerating
the gain computation. Our experiments (Sect. 6) confirm that
our approaches speed up the state-of-the-art greedy algo-
rithm significantly. At the same time, the k-GRIP solution
quality is more or less preserved, how well depends on the
approach. For instance, testing graphs with < 57K nodes,
we produce results that are on average 2–15% away from the
greedy solution, while running 3.3–68× faster than the state
of the art (SotA). Finally, we demonstrate that we can now
process much larger graphs for which the application of the
SotA greedy approach was infeasible before.

Besides a better update strategy for our heuristic
ColStoch, another extension of this paper compared to
its conference version (Predari et al. 2022) consists of the
k-LRIP part (Sect. 5). The corresponding experiments in
Sect. 6 show that our heuristics (except one) work for this
problem similarly well when the graphs are sufficiently
large. For example, on graphs with more than 10,000 nodes,
one of our new heuristics is ≈ 10% away from the greedy
quality, but on average ≈ 2 − 7× faster (depending on k and
the graph).

2 � Preliminaries

We assume that our input consists first of all of a connected,
undirected, and simple graph G = (V ,E) with n vertices
and m edges. For both k-GRIP and k-LRIP, we also have
an integer k ∈ ℤ>0 for the number of edges to be added to
G; k-LRIP additionally requires the focus node v ∈ V from
which the additional edges are inserted. Our methods can be
easily extended to weighted graphs. However, for the sake

Social Network Analysis and Mining (2023) 13:130 	

1 3

Page 3 of 20  130

of presentation simplicity, we only consider unweighted
graphs.

For the remainder, we use several well-known matrix
representations of graphs. L = D − A is the n × n Lapla-
cian matrix of G, where D is the diagonal matrix of vertex
degrees and A is the adjacency matrix. L is symmetric, posi-
tive semi-definite and has zero row/column sum s.t., L1 = 0
where 1 is the all-ones vector. The m × n incidence matrix
B takes for e ∈ E and a ∈ V the values: B[e, a] = 1 if a is
the destination of e, B[e, a] = −1 if a is the origin of e and
B[e, a] = 0 otherwise. For undirected graphs, the direction
of each edge is specified arbitrarily. Moreover, L = BTB . It
is well known that L is not invertible, so that its Moore–Pen-
rose pseudoinverse ( L† ) is used instead, for which holds:
LL† = L†L = I −

1

n
⋅ 11T (Gutman and Xiao 2004). Since

L is symmetric, it has an orthonormal basis of eigenvectors
U = [��,… , ��].We write the spectral decomposition as:
L =

∑n

i=2
���i��

T , where the eigenvectors ��,… , �� corre-
spond to the ordered eigenvalues 0 < 𝜆2 ≤,… ,≤ 𝜆n (exclud-
ing the zero eigenvalue).

For a graph G, we use LG [ L†

G
 ] to refer to its Laplacian

[Laplacian pseudoinverse]. If there is no subscript in our matrix
notation, the associated graph is inferred by the context.

Let ΩG ∶=
(
V

2

)
⧵ E  . For any X ⊂ ΩG , we define

G�∶=G ∪ X = (V ,E ∪ X) as the graph obtained by adding
the edges of X into G. Then, k-GRIP aims at finding a set
X ⊂ ΩG with |X| = k s.t., |f (G) − f (G�)| is as large as pos-
sible for a given robustness function f (⋅) . Here, we use the
effective graph resistance R(G) as robustness function (for
which lower values indicate higher robustness), which is
the sum of pairwise effective resistances rG(⋅, ⋅) between all
vertex pairs:

Thus, k-GRIP for total effective resistance asks to find the set
X of size k that minimizes the resistance of the graph result-
ing from inserting the edges of X. The notion of effective
resistance comes from viewing G as an electrical circuit in
which each edge e is a resistor with resistance 1∕w[e] . Fol-
lowing fundamental electrical laws, the effective resistance
r(a, b) between two vertices a and b is the potential differ-
ence between a and b when a unit current is injected into G
at a and extracted at b.

The second problem we address is the related k-LRIP
problem. It also uses total effective resistance R(G) as the
objective function. The main difference is that it restricts
the search space by limiting the insertion of the k edges to
a particular focus node v ∈ V that is part of the input. The
set X of edges to insert is selected from the vertex pairs
Ωv ∶= {(v, u) | u ∈ V , {v, u} ∉ E}.

(1)R(G) =

n∑

a=1

n∑

b=a+1

rG(a, b).

Computing rG(a, b) can be done via L†:

Combining Eqs. (1) and (2), one gets

For a potential new edge {a, b} , we have G� = G ∪ {a, b}
and LG� = LG + (ea − eb)(ea − eb)

T , where ea is a zero vector
except for e[a] = 1 . The gain in terms of R by the insertion
of {a, b} is R(G) −R(G�) and relies on L†

G� (Sherman–Mor-
rison formula (Sherman and Morrison 1950)):

The gain evaluation gain(a, b) = R(G) −R(G�) is then

where L†

�
[∶, i] is the ith column of L† . We rewrite Eq. (5) as

a function of squared �2 norms:

where ��(⋅, ⋅) is known as the biharmonic distance of
G (Yi et al. 2018; Wei et al. 2021). Finally, we express
these distances via the spectral decomposition of L† (or L ,
respectively):

where � is the diagonal matrix of the eigenvalues of L† .
Similarly,

3 � Related work

Robustness of networks has been an active research area for
decades (Pizzuti and Socievole 2018; Freitas et al. 2022).
Several authors have proposed the use of specific network
metrics to quantify the robustness of a given network, see,
e.g., Rueda et al. (2017), Fiedler (1973), Schneider et al.

(2)rG(a, b) = L†[a, a] + L†[b, b] − 2L†[a, b].

(3)R(G) = n ⋅ tr(L†).

(4)L
†

G� = L
†

G
−

1

1 + rG(a, b)
L
†

G
(ea − eb)(ea − eb)

TL
†

G
.

(5)gain(a, b) = n

‖‖‖L
†

�
[∶, a] − L

†

�
[∶, b]

‖‖‖
2

1 + rG(a, b)
,

(6)gain(a, b) = n

‖‖‖L
†(ea − eb)

‖‖‖
2

1 +
‖‖‖BL

†(ea − eb)
‖‖‖
2
= n

b2
G
(a, b)

1 + rG(a, b)
,

(7)
rG(a, b) =

‖‖‖BL
†(ea − eb)

‖‖‖
2

= (ea − eb)
TL†(ea − eb)

= (ea − eb)
TU�−1UT (ea − eb) =

n∑

i=2

(��[a] − ��[b])
2

�i
,

(8)
b2
G
(a, b) =

‖‖‖L
†(ea − eb)

‖‖‖
2

= (ea − eb)
T (L†)2(ea − eb)

= (ea − eb)
TU�−2UT (ea − eb) =

n∑

i=2

(��[a] − ��[b])
2

�2
i

.

	 Social Network Analysis and Mining (2023) 13:130

1 3

 130   Page 4 of 20

(2011), Cetinay et al. (2020). In a recent survey on the topic,
Freitas et al. (2022) classify robustness metrics into three
types: metrics based on structural properties, such as edge
connectivity or diameter; metrics based on the spectrum of
the adjacency matrix, such as the spectral radius or spectral
gap; and metrics based on the spectrum of the Laplacian
matrix, for instance the algebraic connectivity and the effec-
tive graph resistance. Here, the algebraic connectivity, i.e.,
the second smallest eigenvalue �2 of the graph’s Laplacian
(Fiedler 1973), is known to capture the overall connectivity
of a graph. This metric is also related to synchronization of
networks, including opinion dynamics (Olfati-Saber et al.
2007).

Once the robustness of a network has been established,
a natural next step is to determine how robustness can be
improved. Schneider et al. (2011) view the relative size of
the largest connected component as robustness measure
(after removing a certain fraction of the edges) and rewire
the edges for robustness improvement. A second approach
is to add elements to the network. Several researchers inves-
tigated k-GRIP for specific robustness metrics. For instance,
Wang and Van Mieghem (2008) considered 1-GRIP, with
the robustness metric being the algebraic connectivity. They
suggest several strategies, based upon topological and spec-
tral properties of the graph, to decide which single link to
add to the network in order to increase the algebraic con-
nectivity as much as possible. Reference (He 2020, Chap-
ter 8) also considered algebraic connectivity for k-GRIP.
Under some light conditions, lower bounds for the quality
of the greedy solution were obtained. It might be argued
that the algebraic connectivity is not a proper robustness
metric, because there are examples where adding a link to
a graph does not change the algebraic connectivity, see Jun
et al. (2010). The NP-hardness of k-GRIP for algebraic con-
nectivity was proved in Mosk-Aoyama (2008). Manghiuc
et al. (2020) consider a weighted decision variant of k-GRIP
w.r.t. �2 . They propose an almost-linear time algorithm that
augments the graph by k edges such that �2 exceeds a speci-
fied threshold. A nice overview of algebraic connectivity for
k-GRIP is presented in Li et al. (2018).

Reference Papagelis (2015) shows that k-GRIP with the
average shortest path length as a robustness metric does not
satisfy the submodularity constraint, but accurate greedy
solutions can be obtained. Van Mieghem et al. (2011) con-
sider a link removal problem with the spectral radius (larg-
est eigenvalue of adjacency matrix) as a robustness metric
and prove this problem is NP-hard. Baras and Hovareshti
(2009) consider the problem of adding k links to a given
network, such that the number of spanning trees in the graph
is maximized.

Effective graph resistance as a robustness measure dates
back at least to Ellens et al. (2011). It has been known much
longer, however, that effective resistance is proportional to

commute times of random walks (Ghosh et al. 2008). Wang
et al. (2014) and Pizzuti and Socievole (2018) investigate
heuristics for 1-GRIP with effective graph resistance (both
for edge insertion and removal). Besides deriving theoretical
bounds, Wang et al. (2014) compare spectral strategies for
edge selection with much simpler heuristics. Their experi-
ments confirm that their spectral strategies (particularly the
one based on the highest effective resistance gain) often
yield the largest improvement, indicating a trade-off between
running time and the robustness gain.

Pizzuti and Socievole (2018, 2023) proposed and evalu-
ated several genetic algorithms to find the optimal edge to
add, in order to minimize RG . Clemente and Cornaro (2020)
studied k-GRIP for the effective graph resistance and gave
lower bounds for RG upon the addition of k links, under
some mild conditions for k. For k = 1 , the lower bound in
Clemente and Cornaro (2020) clearly outperforms the lower
bound in Wang et al. (2014).

The state-of-the-art heuristic for k-GRIP is a greedy
algorithm presented by Summers et al. (2015), called here
StGreedy. In its generic form, such a greedy algorithm
adds in each of the k iterations the element (here: edge)
with the largest marginal gain (here: best improvement of
the robustness measure). To this end, StGreedy computes
the full pseudoinverse of L as a preprocessing step. Then, the
marginal gains of all vertex pairs are computed via Eq. (5)
in O(n) time per edge. The edge with best marginal gain is
added to the graph, and the pseudoinverse is updated using
Eq. (4). The time complexity is O(kn3) , which is due to the
evaluation of the gain function in k rounds on O(n2) node
pairs. The preprocessing takes O(n3) time with standard
tools. For monotonic submodular problems, the generic
greedy algorithm has an approximation ratio of 1 − 1∕e .
Even for non-submodular problems such as k-GRIP (see
Summers et al. (2017) for a counterexample), the greedy
algorithm still often leads to solutions of high quality (Sum-
mers and Kamgarpour 2019; Angriman et al. 2021). Sto-
chastic greedy algorithms that improve the time complexity
of the standard greedy approach (in a general setting) were
proposed in Mirzasoleiman et al. (2015); and Hassidim and
Singer (2017). These algorithms use random sampling tech-
niques and reduce the total number of function evaluations
(roughly) by a factor of k. They achieve provable approxima-
tion guarantees in cases where the greedy algorithm admits
them, too.

Also, k-LRIP has been considered by several authors—for
different objectives. Shan et al. (2018) consider the node
resistance (as robustness metric or rather as a centrality
measure), which is the sum of the effective resistance from
one source node v to all other nodes. They assume that the
k links that are to be added are chosen from the set of non-
existing links from the focus node v; not all possible non-
existing links. It is shown by the authors that in this setting,

Social Network Analysis and Mining (2023) 13:130 	

1 3

Page 5 of 20  130

the node resistance is a supermodular set function. Ref.
Bergamini et al. (2018) consider k-LRIP with betweenness
centrality. In fact, k-LRIP has been studied with a variety of
other centrality metrics, such as PageRank (Avrachenkov
and Litvak 2006; Olsen and Viglas 2014), closeness central-
ity (Crescenzi et al. 2016), and eccentricity (Demaine and
Zadimoghaddam 2010; Perumal et al. 2013).

Besides using the stochastic greedy algorithm for both
k-GRIP and k-LRIP, we intend to accelerate the optimiza-
tion process by approximation techniques for the effective
resistance values. While Shan et al. (2018) also employ a
greedy algorithm for k-LRIP, their objective function and
acceleration techniques differ from ours.

4 � Heuristics for k‑GRIP

In this section, we propose different techniques to improve
the performance of the greedy algorithm for k-GRIP. Our
approaches are: SimplStoch, ColStoch, SimplStochJLT,
ColStochJLT and SpecStoch. They all make use of exist-
ing randomized techniques and follow the general greedy
framework of Algorithm 1. Functions named as Obj* relate
to the objective function, while those named as Candidate*
relate to the set of possible candidate elements. Functions
not defined explicitly in the pseudocode are described in
detail in the text. The time and space complexities of all
approaches (assuming standard tools) are shown in Table 1.

Algorithm 1 General framework for k-GRIP
1: function GreedyFramework(G, k, δ)
2: Input: Graph G = (V,E), k ∈ N>0, accuracy 0 < δ < 1
3: Output: Gk – graph after k edge insertions
4: G0 ← G
5: ComputeObj(G0, . . .) � compute step
6: s ← CandidateSize(m, n, k, δ)
7: for r ← 0, . . . , k − 1 do � main loop
8: S ← Candidates(s, Gr, . . .)
9: for each {a, b} ∈ S × S do � # of evaluations

10: gain(a, b) ← Eval(a, b, . . .) � single evaluation
11: (a∗, b∗) ← argmaxa∈S×b∈S gain(a, b)
12: Gr+1 = Gr ∪ (a∗, b∗)
13: Update(Gr+1, . . .) � update step
14: return Gr+1

Table 1   Time complexities
(assuming standard (pseudo)
inversion tools, linear solvers,
and eigensolvers used in
practice for Laplacians
of general graphs) of all
approaches involved

Columns correspond to major steps of Algorithm 1. In general, the dominant term comes from the total
number of evaluations and their time to be evaluated (second column). The Õ-notation hides log(1∕�) fac-
tors, where � is the accuracy threshold of the linear solver. The O′-notation hides log(1∕�) factors, where
� determines the sample size in the stochastic candidate selection. Note that we consider the Johnson–
Lindenstrauss transform (JLT) parameter � here as a constant. � is the number of uniform spanning trees
(USTs) required for the diagonal approximation in ColStoch, which depends on the diameter of the graph
(Angriman et al. 2020). More details in the text

Compute #Evals × SingleEval All updates Memory

StGreedy O(n3) O(kn2) × O(n) O(kn2) O(n2)

SimplStoch O(n3) O
�(n2) × O(n) O(kn2) O(n2)

ColStoch Õ(sm log n) O
�(n2) ×O(n) Õ(ksm log n) O((s + �)n + m)

SimplStochJLT Õ(m log n) O
�(n2) ×O(log n) Õ(km log n) O((s + log n)n + m)

ColStochJLT Õ(m log n log s) O
�(n2) ×O(log s) Õ(km log n log s) O((log s + �)n + m)

SpecStoch O(cm) O
�(n2) × O(c) O(kcm) O(cn + m)

	 Social Network Analysis and Mining (2023) 13:130

1 3

 130   Page 6 of 20

For submodular functions, the greedy framework can be
combined with a lazy technique (Minoux 1978) that boosts
the performance of the algorithm. This process is based
on the fact that, even though marginal gains of elements
might change between iterations, their order often stays
the same. An observation important for us is: “The lazy
greedy algorithm can be applied to cases with no strict
guarantee (for submodularity) since experience shows
that it most often produces the same final solution as the
standard greedy algorithm” (Minoux 1989). Based on the
above observation and existing, positive results on the
lazy greedy approach for k-GRIP (Summers et al. 2015),
we also employ this technique and do so by means of a
priority queue. Entries in the priority queue are of the
form (e, g(e), r), where e ∈

(
V

2

)
⧵E , g(e) is the marginal

gain of e, and r ∈ ℕ>0 is the round in which the gain was
computed.

All our approaches improve the speed of the greedy
algorithm by reducing the candidate set and/or by accel-
erating the objective function calculation/update. Nearly
inevitably, the above incurs a smaller or larger trade-
off between speed improvement and solution quality
degradation.

4.1 � SimplStoch

Our first idea is to simply apply the generic randomized
technique proposed in generic form by Mirzasoleiman
et al. (2015) in the context of k-GRIP. The main idea of
Mirzasoleiman et al. (2015) is to not inspect all possible
elements for insertion, but only a reduced sample S . For
non-negative monotone submodular functions (which does
not hold for k-GRIP), the stochastic greedy approach pro-
vides an approximation ratio of 1 − e−(1−�) , where 0 ≤ � ≤ 1
is an accuracy parameter.

Regarding SimplStoch, any edge from S × S is a subset
of
(
V

2

)
⧵E ; during each iteration of the main loop, we sam-

ple uniformly at random s∶= n(n−1)∕2−m

k
log (

1

�
) vertex pairs

(Line 8 in Algorithm (1)), resulting in O((n2 − m) log (
1

�
))

function evaluations overall. Those are performed via the
Laplacian pseudoinverse obtained during preprocessing, in
a similar way as in StGreedy. More precisely, L† is com-
puted once before the main loop (Line 5) and is used within
the loop to quickly determine single evaluations (Line 10).
Every time an edge is added to the graph, L† is updated
accordingly via Eq. (4) (Line 13). The cost of the main
loop for SimplStoch is reduced compared to greedy by a
factor of k∕ log(1∕�) . Yet, computing L† is still very time-
and space-consuming.

4.2 � ColStoch

Our first improvement upon SimplStoch avoids the full pseu-
doinversion of L , reducing the cost of Line 5 in Alg. 1. To
this end, we make the following observation: evaluating a
single vertex pair {a, b} via Eq. (5) requires only two col-
umns of L† ; precisely those corresponding to vertices a and
b. That is why, instead of sampling elements from

(
V

2

)
⧵ E ,

ColStoch restricts the sampling process to elements from
V, the set of columns of L† . Carefully selecting S is critical
as it affects the quality of the solution. Even if our problem
is not submodular, we choose the default sample size of
s = n

√
1

k
⋅ log(

1

�
) elements (Line 6), leading to O(n2 log(

1

�
))

evaluations over all iterations, similar to SimplStoch. The
only difference here is that we sample pairs of L† columns,
which is a subset of

(
V

2

)
 and not

(
V

2

)
⧵E . Obviously, we reject

vertex pairs that already exist in the graph as edges.
Moreover, to limit the quality loss, we choose elements

of S following graph-based sampling probabilities (details in
Sect. 4.2.1). These probabilities are initially calculated during
the compute step (Line 5) and are updated accordingly in the
update step (Line 13). Function Candidates() also receives
those sampling probabilities in each iteration (Line 8). Once
S is determined, we compute all columns of L† corresponding
to vertices in S . This step is performed once in the main loop
after Line 8. For the complexity analysis, we consider it as
part of the compute step and for that reason it is not depicted
in the loop of the generic Algorithm 1.

We compute the columns corresponding to S by solv-
ing s linear systems. More precisely, we solve one linear
system for each vertex a ∈ S ∶ Lx = ea −

1

n
⋅ 1 , where

1 = (1,… , 1)T and x ⟂ 1 . Once the sample set S ⊂ V is
determined, ColStoch performs function evaluations only
between vertex pairs in S × S (Line 10). Finally, to further
improve the overall running time, we do not update L†

�
[∶,S]

for all a ∈ S at the end of each round (Line 13 of Algo-
rithm 1). Instead, we update individual columns of L† on
demand; only if the corresponding vertices participate in the
candidate set S of the following round.

To update previously computed columns, we use the out-
dated solver solution and apply the update formula Eq. (4)
iteratively for all (in-between) rounds. To do so, we store
columns together with the associated round number.

4.2.1 � diag(L†) strategy

Let us now explain the sampling probabilities for selecting
S . Following previous studies (Van Mieghem et al. 2017;
Wang et al. 2014), vertex pairs with maximal effective

Social Network Analysis and Mining (2023) 13:130 	

1 3

Page 7 of 20  130

resistance are good candidates for largely decreasing the
total effective resistance of a graph. However, the effective
resistance metric is not directly applicable in our immedi-
ate context. Firstly, because ColStoch requires a vertex-
based metric and secondly (and more importantly) because
computing the effective resistance for all vertex pairs
{a, b} ∈

(
V

2

)
⧵ E would eventually mean to (pseudo)invert

L—with the associated cost. To circumvent these issues,
we sample vertices according to their corresponding diago-
nal entries in L† . Recall from Sect. 2 that these entries are
proportionate to the electrical farness of the corresponding
nodes. In other words, the diagonal entry L†[a, a] of a vertex
a corresponds to the summed effective resistance between a
and all other vertices:

∑
b∈V⧵{a} rG(a, b) . Vertices with maxi-

mum L† diagonal values are connected badly to all other
vertices in the graph (in the electrical sense) (Van Mieghem
et al. 2017), which is why we select them with higher prob-
ability for an edge insertion.

Computing diag(L†) can be performed in almost-linear
time by using the connection of effective resistance to uni-
form spanning trees (USTs) of G. A UST of G is a spanning
tree drawn uniformly at random from the set of all span-
ning trees of G. Angriman et al. (2020) proposed an algo-
rithm that approximates (effective resistances and) diag(L†)
via UST sampling techniques. The algorithm obtains a ±�
-approximation with high probability in O(m log4 n ⋅ �−2)
time for small-world graphs (diameter bounded by O(log n) ).
We provide here some details necessary to understand our
new update strategy (Sect. 4.2.2) when an edge is added.

Following fundamental electrical laws, the effective
resistance r(u, v) of vertices u and v is the potential differ-
ence between u and v when a unit of current is injected into
G at u and extracted at v. According to Ohm’s law, when-
ever there is a potential vector x ∈ ℝ

n×1 on the vertices of
G, there is also an electrical flow f ∈ ℝ

m×1 on the edges
of the graph, equal to the potential differences and leading
from the node with higher to the node with lower potential
value. As a consequence, we can express r(u, v) (for any
vertex pair (u, v)) as the sum of current flows on any path2
⟨u = v0, v1,… , vk−1, vk = v⟩ as:

 Note that the sign of the current flow changes if we traverse
an edge against the flow direction (and thus the sum may
hide negative values when the direction is reversed). Equa-
tion (9) can also be written as, see Bollobás (1998)

(9)r(u, v) =

k−1∑

i=0

f[vi, vi+1]

where Nu,v(vi, vi+1) is the number of spanning trees in which
the (unique) path from u to v contains (vi, vi+1) in that order
and N is the number of all spanning trees of the graph G.
The main idea of Angriman et al. (2020) is to compute a
sufficiently large sample of uniform spanning trees (USTs)
in order to approximate the effective resistances according to
Eq. (10). The resistance values are then used for approximat-
ing the diagonal entries of L† , together with one column of
L† derived from solving one linear system.

4.2.2 � Updating approximate diag(L†) after edge insertions

For updating diag(L†) within k-GRIP, we need to sample
USTs for every new graph Gr+1 (in round r). We do so during
the update step of Algorithm 1 (Line 13) and save computa-
tions by reusing previously computed USTs corresponding
to Gr . This dynamic approximation approach can also be
useful in other contexts. The re-used trees are not uniformly
distributed in the new graph Gr+1 ∶= Gr ∪ {a, b} , however,
and need to be reweighted accordingly. Moreover, we still
need to sample a number of USTs corresponding to trees
of Gr+1 that contain the additional edge {a, b} . To do so, we
use a variant of Wilson’s algorithm (Wilson 1996). The final
sample set is the union of the reweighted USTs (originally
from Gr ) and the newly sampled USTs in Gr+1 . We provide
the details in the following.

To account for an edge insertion into G, let the set of all
spanning trees of G (before the edge insertion) be denoted
as T = TG . When looking at the potential difference between
two nodes u and v within one particular spanning tree T,
then the electrical flow induced on each edge on the unique
path from s to t in T is 1/N. Using the principle of super-
position for the electrical flow in G, we can then write
r(u, v) =

∑k−1

i=0
f[vi, vi+1] =

∑
T∈T

∑k−1

i=0
� (�)[vi, vi+1] , where

� (�)[⋅] restricts the electrical flow to edges of the respective
spanning tree T (edges not in T contribute 0 to the sum).
In the following, we use �(�,�)(T) ∶=

∑k−1

i=0
� (�)[vi, vi+1] as

short-hand notation for the sum of the flows. Now let G′ be
the new graph when an edge e = {u, v} is added to the graph
G. Let � be a random variable from the uniform distribution
over spanning trees of G. Then, r(u, v) = E

[
�(�,�)(�)

]
 and

we are interested in computing their updated values upon
edge insertions.

We define T�∶=TG� . Let �′ be a uniformly distributed val-
ued random variable over T′ . We consider ��

(�,�)
∶ T

�
→ ℝ

and denote by �(�,�) = �
�

(�,�)
|T ∶ T → ℝ its restriction to

spanning trees of G.

(10)r(u, v) = 1∕N

k−1∑

i=0

(
Nu,v(vi, vi+1) − Nu,v(vi+1, vi)

)
,

2  For the algorithm, it is beneficial to use shortest paths, though

	 Social Network Analysis and Mining (2023) 13:130

1 3

 130   Page 8 of 20

Lemma 1  Let G′ be the graph resulting from inserting
e = {u, v} into G. Then,

Proof  Recall from above that rG� (u, v) = E

[
�

�

(�,�)
(��)

]
 . Also

note that for any edge e� = {u�, v�} , it holds that its effective
resistance equals the probability to be part of a UST. Now
E

[
�

�

(�,�)
(��)

]
 can be computed by distinguishing whether e is

contained in �′ or not:

using P
(
e ∈ ��

)
= rG� (u, v) =

rG(u,v)

1+rG(u,v)
 (the latter equation

follows from (Ranjan et al. 2014, Cor. 3) by setting u = x = i

(11)
r
G� (u, v) =

r
G
(u, v)

1 + r
G
(u, v)

E

[
��
(�,�)

(��) ∣ e ∈ ��
]

+
1

1 + r
G
(u, v)

E
[
�(�,�)(�

�) ∣ �� ∈ T
]
.

(12)

E
[

�′

(�,�)(�
′)
]

= P
(

e ∈ �′
)

E
[

�′
(�,�)(�

′) ∣ e ∈ �′
]

+ P
(

e ∉ �′
)

E
[

�′

(�,�)(�
′) ∣ e ∉ �′

]

= P
(

e ∈ �′
)

E
[

�′
(�,�)(�

′) ∣ e ∈ �′
]

+ P
(

e ∉ �′
)

E
[

�(�,�)(�′) ∣ �′ ∈ 
]

= rG′ (u, v)E
[

�′
(�,�)(�

′) ∣ e ∈ �′
]

+ (1 − rG′ (u, v))E
[

�(�,�)(�′) ∣ �′ ∈ 
]

=
rG(u, v)

1 + rG(u, v)
E
[

�′
(�,�)(�

′) ∣ e ∈ �′
]

+ 1
1 + rG(u, v)

E
[

�(�,�)(�′) ∣ �′ ∈ 
]

,

and v = y = j ) and the fact that T equals T′⧵Te , where Te is
the set of trees containing e. 	� ◻

Adapting the UST Algorithm

The second term in Eq. (12) can be approximated using
the USTs of G, which are already available from previous
rounds of the algorithm. To approximate the first term, one
can sample spanning trees of G′ which contain e. For this,
we use Algorithm 2, which is a slight adaptation of Wilson’s
algorithm with a modified starting state. A spanning tree
which contains {u, v} can be reinterpreted as a forest with
two components by removing {u, v} . Thus, we initialize our
version of Wilson’s algorithm with a forest T with two com-
ponents where each component contains only one of u and
v. Then, in each iteration we generate a loop-erased random
walk from a random vertex until it hits a node in T.

Proposition 2  The distribution of forests T sampled by Algo-
rithm 2 is the uniform distribution on the set of all spanning
trees which contain the edge {u, v}.

Proof  Avena et al. (2018) reformulate Wilson’s algorithm for
uniform spanning forests (USFs) and multiple roots (one for
each tree in the forest). That is why we set u and v as the roots
of two separate trees, and let the algorithm compute a USF
with two trees. The two trees in the USF are then linked by the
edge {u, v} , resulting in a spanning tree T ′ of G′ . By the USF
property of the two trees above the claim follows. 	� ◻

Algorithm 2 Algorithm for sampling a UST of G containing a fixed edge {a, b}
1: function Sampling(G, a, b)
2: Input: Graph G = (V,E), edge {a, b} ∈ E
3: Output: T : UST of G containing {a, b}
4: T1 ← tree consisting of a
5: T2 ← tree consisting of b
6: Let x1, . . . , xn−2 be an arbitrary ordering of V \ {a, b}
7: for i ← 1, . . . , n− 2 do
8: P ← a random walk from xi to either T1 or T2
9: add the loop erasure of P to the tree hit by P

10: return T1 ∪ T2 ∪ {a, b}

Social Network Analysis and Mining (2023) 13:130 	

1 3

Page 9 of 20  130

Algorithm 3 Compute diag(L†
Gr

) upon edge insertion
1: function ApproxUpdateDiag(Gr, r, u, U, t, w,R,Bu)
2: Input: Graph Gr = G ∪ {a, b}, current round r, pivot node u, UST container U [],

total # of USTs t, round weights w[], effective resistance estimates R[], BFS Tree Bu

3: Output: diag(L̃†
G′)

4: Rnew[v] ← 0 ∀v ∈ V \ {u}
5: ω ← rG′(a, b) = rG(a,b)

1+rG(a,b) � computed via L†
G′ [:, a] and L†

G′ [:, b] (linear systems)
6: for i = 0, . . . , r − 1 do
7: w[i] ← (w[i] · (1− ω))
8: U [i].resize(�w[i] · t�) � adjust # of USTs for round i acc. to round weights
9: w.append(ω) � add weight of current round

10: for i ← 1 to �ω · t� do � �ω · t� times
11: Ti ← Sampling(Gr, a, b) � O(mdiam(G))
12: Rnew ← Aggregate(Ti, Rnew, Bu) � O(ndiam(G))
13: U [r].append(Ti)
14: Rnew ← Rnew/ �ω · t�
15: R ← ωRnew + (1− ω) �R Acc. to Lemma 1
16: for v ∈ V \ {u} do � All iterations: O(n)

17: L̃†
G′ [v, v] ← R[v]− L̃†

G[u, u] + 2L̃†
G[v, u]

18: return diag(L̃†
G′)

Putting the Pieces Together

By applying Eq. (12) to the effective resistance estimates, we
obtain Algorithm 3. It obtains an approximation for diag(L†

G�) ,
where G′ is obtained from G by inserting an edge e = {a, b} .
This algorithm is run each time after an edge is added to G.
To obtain an initial set of USTs, the algorithm of Angriman
et al. (2020) is applied to the original graph G. These USTs
are stored in what we call the UST repository, which is used
to also store USTs from graphs resulting from a series of edge
insertions. All spanning trees together in this repository form
a sufficiently large sample of USTs for the graph of the current
round. Lines 4 and 5 initialize the vector of new resistance
estimates and compute the effective resistance � of the inserted
edge {a, b} . The latter is necessary to scale the contribution of
the USTs from this and previous rounds according to Lemma 1
(Line 15). How many USTs each round contributes is gov-
erned by the round weight w; both numbers have to be adapted
according to � (Lines 7 and 8). After sampling and aggregating
the new trees as well as updating R (Lines 10 to 15), the new
diagonal approximation can be computed and returned.

4.3 � *StochJLT

In this section, we propose an improvement to SimplStoch
that exploits the following observation: to evaluate the gain
function for an arbitrary vertex pair {a, b} , we only require
to compute the squared �2-norm of two distance vectors:

b2
G
(a, b) =

‖‖‖L
†(ea − eb)

‖‖‖
2

 and rG(a, b) =
‖‖‖B

TL†(ea − eb)
‖‖‖
2

(Eqs. (7–8)). Viewing b2

G
(a, b) and rG(a, b) as pairwise dis-

tances between vectors in {L†}a∈V and {BTL†}a∈V (respec-
tively) allows us to apply the Johnson–Lindenstrauss trans-
form (JLT) (Johnson 1984). In this case, pairwise distances
among vectors are nearly preserved if we project the vectors
onto a low-dimensional subspace, spanned by O(log n∕�2)
random vectors. The JLT lemma, in the improved version by
Dasgupta and Gupta (2003), can be stated as:

Lemma 3  Given fixed vectors �� … , �� ∈ ℝ
d and 𝜂 > 0 , let

Q ∈ ℝ
q×d be a random Gaussian matrix with entries from

N(0,1) and q > 24 log n∕𝜂2 . Then with probability at least
1 − 1∕n

for all pairs i, j ≤ n.

Using Lemma 3, we can simply project matrices L†
and BL† onto q vectors, i.e., the q rows of some random
matrices P ∈ ℝ

q×n and Q ∈ ℝ
q×m , respectively. To actually

reduce the overall computation time, we need to avoid the
involved pseudoinversion. For that, we resort to efficient
linear system solvers. Thus, combining the random projec-
tions technique with fast linear solvers, one can approximate
distances between vertex pairs within a factor of (1 ± �) in

(13)
(1 − �)

‖‖‖�� − ��
‖‖‖
2

≤
‖‖‖Q�� −Q��

‖‖‖
2

≤ (1 + �)
‖‖‖�� − ��

‖‖‖
2

	 Social Network Analysis and Mining (2023) 13:130

1 3

 130   Page 10 of 20

O(I(n,m) log n∕�2) time, where I(n, m) is the running time
of the Laplacian solver.

Hence to approximate b2
G
(a, b) and rG(a, b) , we compute

t h e p r o j e c t e d d i s t a n c e s ‖‖‖PL
†(ea − eb)

‖‖‖
2

 a n d
‖‖‖QBL†(ea − eb)

‖‖‖
2

 , respectively. One can avoid the solution
of two sets of Laplacian systems by expressing the effective
resistances directly via the projection of (squared) bihar-
monic distances onto the lower-dimensional space. More
precisely, one only solves LY = PT −

1

n
11TPT  . Due to

L†
⋅
1

n
11T = O (the zero matrix), it follows Y = L†PT , so

that we can express effective resistances as follows:

where we assume that Q and P are orthonormal matrices.
Note that there are formulations of the JLT with orthonormal
matrices, including very early ones (Johnson 1984; Frankl
and Maehara 1988). The formulation in Lemma 3 with
random Gaussian entries is only “almost” orthogonal; this
condition is usually sufficient in practice (Achlioptas 2003).
In our case, this would mean that the equality in Eq. (14)
becomes “approximately equal”, which would be sufficient
for our heuristics as well.

We can integrate the JLT approximation both in the context
of ColStoch and SimplStoch (having ColStochJLT and Sim-
plStochJLT, respectively). For both approaches, we set
� ∶= 0.55 in our experiments and thus consider it as a constant
in the time complexity statements regarding *StochJLT. Let
us consider the case of ColStochJLT: Again, the compute step
is performed after selecting set S (just after Line 8). Indeed,
we compute the vectors in {L†}a∈S and {BL†}a∈S for G0 ,
where s ∶= |S| = n

√
1

k
⋅ log(

1

�
) . Since, later, we only perform

evaluations for pairs in S × S , it suffices to consider projec-
tions onto log s rows (via P ∈ ℝ

log s×n and Q ∈ ℝ
log s×m).

During the main loop of Algorithm 1, we perform the same
number of overall function evaluations as in ColStoch, that
is O�(n2) . However, now a single function evaluation for an
arbitrary vertex pair takes O(log s) via the formula

(14)

‖‖QBYP(ea − eb)
‖‖
2
= (ea − eb)

TPTYTBTQTQBYP(ea − eb)

= (ea − eb)
TL†BTBL†(ea − eb) =

‖‖‖BL
†(ea − eb)

‖‖‖
2

,

(15)gain(a, b) ≈

‖‖‖PL
†(ea − eb))

2‖‖‖
1 + ‖‖QBYP(ea − eb)

2‖‖

(up to a relative error of (1 + �) ). For the update step, we
need to sample new projections P and Q and recompute
the two matrices PL† and QBYP . The dominant cost of the
approach is due to the main loop, which takes O�(n2 log s)
time. For SimplStochJLT, the time complexity is O�(n2 log n)

.

4.4 � SpecStoch

As the last approach in this section we propose to exploit the
spectral expression of the gain function. More precisely, we
combine the spectral expressions of effective resistance and
(squared) biharmonic distance (Eqs. (8) and (7)) to write Eq. (5)
as

Equation (16) benefits from the fact that both effective resist-
ance and (squared) biharmonic distance only depend on the
spectrum of the same matrix L . Still, the full spectral decom-
position of L incurs O(n3) time and is equally prohibitive as
computing L† for larger G. To reduce the complexity, we
propose an approximation of Eq. (16) using standard low-
rank techniques (Bozzo and Franceschet 2012) and new
bounds for both distances. To do so, we exploit the fact that
the bulk of the eigenvalues tends to concentrate away from
the smallest eigenvalues (Chung and Lu 2004). Moreover,
we compute only a small number of eigenpairs on the lower
side of the spectrum of L . We expect that the smaller eigen-
pairs have a larger influence on the sums of Eq. (16): for
small i, contributions are accentuated by a large weight, 1

�2
i

(recall that we index the eigenvalues ordered non-decreas-
ingly). At the same time, the entries of eigenvector �� fluctu-
ate slowly, so we should carefully select {a, b} to avoid near-
zero contributions. On the other hand, for large i, the
eigenvectors �� fluctuate rapidly, since they correspond to
high-frequency modes of the spectrum (Spielman 2012).
Their contribution to Eq. (16) is undermined by 1

�2
i

 (small for
large i). The above observations suggest that for a new edge
insertion {a, b} , the focus should be on eigenpairs corre-
sponding to small i.

We now show how to derive bounds for b2
G
(a, b) . First

we break Eq. (8) into partial sums where c ≤ n is a cut-off
value.

(16)gain(a, b) = n ⋅

∑n

i=2

1

(�i)
2
⋅ (��[a] − ��[b])

2

1 +
∑n

i=2

1

�i
⋅ (��[a] − ��[b])

2
.

Social Network Analysis and Mining (2023) 13:130 	

1 3

Page 11 of 20  130

The first inequality holds for large enough eigenvalues ( ≥ 1 ),
since �c ≤ �c+i and 1

(�c)
2
≥

1

(�c+i)
2
 for any i. Moreover, the third

line comes from the following observation:

for a ≠ b since U is double-orthogonal. Moreover,

where the inequality in the third line holds, since �n ≥ �c+i
for any i. Following the above, we can easily derive similar
bounds for rG(a, b) . Plugging those bounds together, we can
approximate Eq. (16) using the following inequality:

Adapting the general framework of Algorithm 1 for Spec-
Stoch is rather straightforward: In Line 5, we compute the
first c eigenpairs along with the largest eigenvalue of L
(corresponding to G0 ). We do so using standard iterative

(17)

b2
G
(a, b) =

c∑

i=2

(��[a] − ��[b])
2

�2
i

+

n∑

i=c+1

(��[a] − ��[b])
2

�i
2

≤

c∑

i=2

(��[a] − ��[b])
2

�i
2

+
1

�c
2

n∑

i=c+1

(��[a] − ��[b])
2

≤

c∑

i=2

(��[a] − ��[b])
2

�i
2

+
1

�c
2
(2 −

c∑

i=2

(��[a] − ��[b])
2)

=
2

�c
2
+

c∑

i=2

(
1

�i
2
−

1

�c
2
)(��[a] − ��[b])

2.

(18)

n∑

i=2

(��[a] − ��[b])
2 =

n∑

i=1

(��[a] − ��[b])
2

=

n∑

i=1

��[a]
2 +

n∑

i=1

��[b]
2 − 2

n∑

i=1

��[a]��[b]

=
‖‖‖�

�
�

‖‖‖
2

+
‖‖‖�

�
�

‖‖‖
2

− 2U[a, ∶]UT[∶, b] = 2

(19)

b2
G
(a, b) =

c∑

i=2

(��[a] − ��[b])
2

�2
i

+

n∑

i=c+1

(��[a] − ��[b])
2

�i
2

≥

c∑

i=2

(��[a] − ��[b])
2

�i
2

+
1

�n
2

n∑

i=c+1

(��[a] − ��[b])
2

≥

c∑

i=2

(��[a] − ��[b])
2

�i
2

+
1

�n
2
(2 −

c∑

i=2

(��[a] − ��[b])
2)

=
2

�n
2
+

c∑

i=2

(
1

�i
2
−

1

�n
2
)(��[a] − ��[b])

2,

(20)

2

�c
2 +

∑c

i=2
(

1

�i
2 −

1

�c
2)(��[a] − ��[b])

2

1 +
2

�n
+
∑c

i=2
(
1

�i
−

1

�n
)(��[a] − ��[b])

2
≤ gain(a, b)

≤

2

�n
2 +

∑c

i=2
(

1

�i
2 −

1

�n
2)(��[a] − ��[b])

2

1 +
2

�c
+
∑c

i=2
(
1

�i
−

1

�c
)(��[a] − ��[b])

2
.

methods, such as the Lanczos algorithm (Paige 1980),
which often takes only O(cm) time for sparse matrices (Koch
2011), depending on the desired accuracy and eigenvalue
distribution. During the main loop, the algorithm performs
O

�(n2) function evaluations (dictated by the stochastic
approach). Assuming “well-behaved” eigenvalues, single
function evaluations in Line 10 require only O(c) time using
the bounds in Eq. (20). Finally, we update the eigenpairs of
Gr+1 in Line 13. To speed up the update step, we bootstrap
the solution of the eigensolver with the solution of the previ-
ous round. Under our assumptions, the overall complexity
of SpecStoch is O�(n2c + kcm) and in case both c ∈ O(1)
and k ∈ O(1) , the overall time complexity becomes O�(n2).

5 � Heuristics for k‑LRIP

Recall the idea of the k-LRIP problem: consider a fixed focus
node v. How can the robustness of the graph be improved
when we restrict the edges that may be added to the graph to
those that are incident to v? This problem is a local variant
of k-GRIP in the sense that we can only add edges local to v.
Still, we take a global view of the graph and try to improve
the total graph resistance with no special consideration for v.

Now assume there is a set F of focus nodes and for each
v ∈ F we want to solve the k-LRIP problem independently.
Then, it makes sense to run the preprocessing steps of our
algorithms just once and re-use the results when solving
k-LRIP for each v ∈ F.

In the following subsections, we will describe how we
adapt the heuristics from Sect. 4 to k-LRIP. Let us mention
a few general aspects first. Since we still optimize for the
total graph resistance, the formulas derived for k-GRIP
can generally be re-used; the gain only becomes a function
of one (fixed focus) node now. Also the basic structure of
Algorithm 1 remains the same in general. Some changes
to note: recall from Sect. 2 that the set of all candidates is
Ωv . A candidate edge e = {v, b} from this set is uniquely
identified by b. That is why a equals v in Lines 9 - 12.
Moreover, in Line 9 we sample from S instead of S × S.

Compared to k-GRIP, the candidate set for k-LRIP is con-
siderably smaller. This reduces the number of evaluations
in each iteration of the main loop (per focus node). Table 2
shows the time and space complexities of all approaches for
k-LRIP. For some heuristics, depending on the density of
the graph, the dominant term becomes either the total num-
ber of evaluations (second column) or the update step (third
column). If m is considerably larger than n, SimplStoch may
actually provide the best overall time complexity.

	 Social Network Analysis and Mining (2023) 13:130

1 3

 130   Page 12 of 20

5.1 � SimplStoch

In the case of SimplStoch, preprocessing includes the com-
putation of the full pseudoinverse. When solving k-LRIP for
multiple focus nodes, we store a copy of the pseudoinverse
before we start the main loop of Algorithm 1. This copy is
used to skip the computation of L† for the other focus nodes,
reducing the time complexity of the Compute step to O(

n3

|F|)
per focus node (when amortized over all focus nodes). This
approach is also applied to StGreedy.

Regarding sampling, we still want to inspect a subset S of
Ωv . During each iteration of the main loop, we now sample
uniformly at random s∶= n−1−deg(v)

k
log(

1

�
) vertices (Line 8 in

Algorithm 1), resulting in O�(n) function evaluations overall;
they are performed (as in k-GRIP) via Eq. (4) applied to L†
(obtained during preprocessing). When an edge is added to
the graph, L† is updated in the same way.

5.2 � ColStoch

For ColStoch, S is sampled from Ωv as well. The sample
size is s∶= n−1−deg(v)

k
log(

1

�
) , which is also the same size as

S in the case of SimplStoch. The concept of sampling only
specific vertices (and thus reducing the required number of
columns of L† ) that we described for k-GRIP has no signifi-
cance here, since all edges already have one incident node
(and therefore column of L† ) in common. Hence, the sets
from which we sample for SimplStoch and ColStoch from
k-GRIP are the same when considering a fixed focus node
v. The remaining difference is that we are still using graph-
based sampling probabilities as described in Sect. 4.2.1
(instead of uniform sampling as in SimplStoch) and do not
compute the full pseudoinverse; instead, we solve linear

systems for each column of L† corresponding to S again,
including the lazy update strategy described for k-GRIP.

The preprocessing in ColStoch consists of (i) setting up
a linear solver that computes the required columns of L† and
(ii) computing the initial sampling probabilities for S , which
involves approximating diag(L†) . The initial states of both
the solver and diag(L†) are stored as a copy and can then
be used to setup ColStoch before the main loop instead of
re-computing them.

Regarding the running time of the main loop, ColStoch
may be slower than SimplStoch due to the additional time
for approximating diag(L†) . The overall time needs to con-
sider the preprocessing as well—how costly that is with the
different methods depends (mostly) on the graph size and
its density. We expect ColStoch to provide higher quality
results than SimplStoch, though, since we are using graph-
based probabilities instead of uniform sampling, as dis-
cussed in Sect. 4.2.1.

5.3 � *StochJLT

As in the case of k-GRIP, we calculate rG(v, b) and b2
G
(v, b)

using the JLT technique. In *StochJLT, preprocessing
involves setting up the linear solver and computing the pro-
jection with the two matrices P and Q . Again, results can
be stored and used to initialize the solver for the next focus
node (with G reset to its original state).

5.4 � SpecStoch

As for k-GRIP, the gain function only depends on the spec-
trum of L . The integration of this approach into Algo-
rithm 1 is similar to k-GRIP: in the compute step, the first
c eigenpairs and the largest eigenpair of L are computed

Table 2   Time complexities
(assuming standard (pseudo)
inversion tools, linear solvers,
and eigensolvers used in
practice for Laplacians
of general graphs) of all
approaches involved for k-LRIP
for one focus node

Columns correspond to major steps of Algorithm 1. The Õ-notation hides log(1∕�) factors, where � is the
accuracy threshold of the linear solver. The O′-notation hides log(1∕�) factors, where � determines the sam-
ple size in the stochastic candidate selection. Note that we consider the JLT parameter � as a constant. The
time complexity of the compute step is amortized over all focus nodes F. More details in the text

Compute #Evals × SingleEval All updates Memory

StGreedy O(
n
3

|F|)
O(kn) × O(n) O(kn2) O(n2)

SimplStoch O(
n
3

|F|)
O

�(n) × O(n) O(kn2) O(n2)

ColStoch Õ(
sm log n

|F|) O
�(n) × O(n) Õ(ksm log n) O((s + �)n) + m)

SimplStochJLT Õ(
m log n

|F|) O
�(n) × O(log n) Õ(km log n) O((s + log n)n + m)

ColStochJLT Õ(
m log n log s

|F|) O
�(n) × O(log s) Õ(km log n log s) O((log s + �)n + m)

SpecStoch O(
cm

|F|) O
�(n) × O(c) O(kcm) O(cn + m)

Social Network Analysis and Mining (2023) 13:130 	

1 3

Page 13 of 20  130

using iterative solvers, usually taking O(cm) time. These
are then stored for setting up the next focus node. Then, in
the main loop, we use the eigenpairs to compute the gain
in Eval. When adding an edge to the graph, we compute
the eigenpairs again (Line 13) and (as before) bootstrap
the new solution process with the previous round to speed
up the computation.

Since we are restricted to a fixed focus node in k-LRIP,
the search space (and number of calls to Eval) is reduced
when compared to k-GRIP. However, for SpecStoch, this
has less of an effect on the overall running time than for
the other heuristics, since in SpecStoch a single evaluation
is rather cheap and the expensive computations are shifted
to the Compute and Update steps (where we compute
eigenpairs). Hence, we expect that SpecStoch performs
worse for k-LRIP than it does for k-GRIP.

6 � Experimental results

We conduct experiments to demonstrate the performance
of our contributions compared to StGreedy. All algorithms
are implemented in C++, using the NetworKit (Staudt
et al. 2016) graph APIs. Our test machine for k-GRIP is a
shared-memory server with a 2x 18-Core Intel Xeon 6154
CPU and a total of 1.5 TB RAM. For k-LRIP, we use a
machine with a Intel Xeon 6126 CPU and 192 GB RAM.
To ensure reproducibility, experiments are managed by
SimexPal (Angriman et al. 2019). Moreover, we use both
synthetic and real-world input instances. The synthetic
ones follow the Erdős–Rényi (ER), Barabási–Albert (BA)
and Watts–Strogatz (WS) models. The real-world graphs
are taken from SNAP (Leskovec and Krevl 2014) and NR
(Rossi and Ahmed 2015), including application-relevant
power grid and road networks, see Table 3. In this con-
text, we consider small graphs those whose vertex count
is < 10 K and medium graphs those whose vertex count is
above that but below 57K. The largest graph has around
129K nodes. To evaluate the quality of the solutions, we
measure gain improvements: R(G) −R(Gk) . To this end,
after selecting a new edge {a, b} for insertion, gain(a, b) is
computed via a Laplacian system, for all approaches. This
allows us to compare the results of different approaches in
fair manner. Our code and the experimental pipeline are
available at https://​github.​com/​hu-​macsy/​2023-​kgrip-​klrip.

We organize our experimental evaluation in three groups:
first, we present experiments for configuring parameters.
Second, we evaluate all approaches for k-GRIP in terms of
quality and running time. Third, we evaluate all approaches
for k-LRIP.

6.1 � Configuration experiments

We start by evaluating the performance of SimplStoch for
different accuracy values on the small and medium graphs
of Table 3. Following the experiments in Mirzasoleiman
et al. (2015), we set the accuracy parameter � to 0.9 and
0.99 (which are reasonable values according to the experi-
ments of Mirzasoleiman et al. (2015) and our own prelimi-
nary experiments). In Table 4, we see that there is a clear
trade-off between quality and running time, controlled by
the accuracy parameter. Still, even for a large � , the solu-
tion of SimplStoch is not far off compared to StGreedy,
being only 8% off in the worst data point ( k = 2 ). We also
note that the solution quality is improved as k becomes
larger. To benefit from that trade-off, in the following
experiments we set � at 0.9 for small and medium graphs
and 0.99 for larger ones.

Additionally, we perform configuration experiments to
determine the quality of the gain approximation via Eq. (20)
for SpecStoch. To do so, we randomly select a vertex pair
and compute Eq. (20) for different numbers of eigenvectors.
We measure the relative error of the approximation com-
pared to a full-spectrum computation. In Fig. 1, we depict
the results for synthetic graphs and eigenvector number
from 1 to n = 1000 . Even for a few tens of eigenvectors, the
relative errors for WS and ER are already quite small. The

Table 3   Summary of graph instances, providing (in order) network
name, vertex count, and edge count

Graph |V| |E|

inf-power 4K 6K
facebook-ego-combined 4K 8.8K
web-spam 4K 37K
Wiki-Vote 7K 100K
p2p-Gnutella09 8K 2.6K
p2p-Gnutella04 10K 39K
web-indochina 11K 47K
ca-HepPh 11K 117K
web-webbase-2001 16K 25K
arxiv-astro-ph 17K 196K
as-caida20071105 26K 53K
cit-HepTh 27K 352K
ia-email-EU 32K 54.4K
loc-brightkite 57K 213K
soc-Slashdot0902 82K 504K
ia-wiki-Talk 92K 360K
flickr 106K 2.31M
livemocha 104K 2.19M
road-usroads 129K 165K

https://github.com/hu-macsy/2023-kgrip-klrip

	 Social Network Analysis and Mining (2023) 13:130

1 3

 130   Page 14 of 20

relative error for BA is larger and would require a couple of
hundreds eigenvectors to achieve a similar approximation.

Finally, we experiment with different solvers for the
solution of Laplacian linear systems. We decided to use
the sparse LU solver from the Eigen library (Guennebaud

et al. 2010) for small and medium graphs and the LAMG
solver (Livne and Brandt 2011) from NetworKit for larger
ones. We do so, because LAMG exhibits a better empiri-
cal running time for larger complex networks than other
Laplacian solvers. For the solution of the eigensystem

Table 4   Quality and speedup of SimplStoch (relative to StGreedy) for different approximation bounds

SimplStoch Relative Quality

k = 2 k = 5 k = 20 k = 50 k = 100

� = 0.9 0.9662 0.9610 0.9696 0.9810 0.9898
� = 0.99 0.9239 0.9241 0.9442 0.9559 0.9694

SimplStoch Relative Speedup

k = 2 k = 5 k = 20 k = 50 k = 100

� = 0.9 2.6 2.6 2.7 2.7 3.1
� = 0.99 4.0 3.9 4.2 4.1 4.6

0 200 400 600 800 1000
Eigenvectors

0

0.005

0.01

0.015

0.02

R
el

at
iv

e
er

ro
r

(a) WS: 40 avg. degree, rewir.
prob. 0.01

0 200 400 600 800 1000
Eigenvectors

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

R
el

at
iv

e
er

ro
r

(b) ER: probability p = 0.01

0 200 400 600 800 1000
Eigenvectors

0

0.2

0.4

0.6

0.8

1

1.2

R
el

at
iv

e
er

ro
r

(c) BA: m0 = m = 4

Fig. 1   Relative error of gain via Eq. (20) for different number of eigenvectors

Fig. 2   Aggregated results (via geometric mean) of k-GRIP on medium graphs ( n < 57K ) for different k. Results are relative to StGreedy 

Social Network Analysis and Mining (2023) 13:130 	

1 3

Page 15 of 20  130

(required by SpecStoch), we use the Slepc library (Hernan-
dez et al. 2005).

6.2 � Results for k‑GRIP

We first compare our approaches on the small and medium
graphs of Table 3, configured according to the previous
section. Closely behind StGreedy, SimplStoch and Col-
Stoch produce the best solutions and they are on average
2% away from the reference (Fig. 2a). Moreover, SpecS-
toch, SimplStochJLT and ColStochJLT are away by 9%,
14% and 15%, respectively. Regarding running time, the
JLT-based approaches are the fastest, being on average
48× (SimplStochJLT) and 68× (ColStochJLT) faster than

StGreedy (Fig. 2b). The scaling of ColStochJLT is worse
than that of SimplStochJLT for large k. This is due to the
update step of Algorithm 1, where ColStochJLT needs to
update both the effective resistance metric and the neces-
sary operations for JLT. Although the slowest, SimplStoch
has a good scaling behavior as it performs only few com-
putations in the update step and thus is (mostly) independ-
ent of k. Overall, SpecStoch may be the best approach for
medium graphs in a wide variety of applications since it
produces good quality results and is on average 26× faster
than StGreedy. Detailed runtime results are available in
Table 5. A disadvantage of SpecStoch is that the running

Table 5   Runtime results in seconds for k-GRIP for k = 2 and k = 100 for medium graphs

For each instance the fastest solver is emphasized in bold

k=2

Algorithm Simpl Simpl Col Col Spec StGreedy

Stoch JLT Stoch JLT Stoch

inf-power 50.0 1.6 10.1 3.2 4.0 118.3
facebook-ego-combined 18.6 1.7 5.8 0.7 4.1 46.0
web-spam 29.2 3.4 17.8 1.8 5.6 68.5
Wiki-Vote 110.1 9.0 65.7 5.4 12.7 357.6
p2p-Gnutella09 137.3 13.0 94.6 8.1 16.3 296.0
p2p-Gnutella04 452.5 38.2 297.0 28.1 40.1 1163.2
web-indochina 489.6 10.6 95.9 1.9 15.2 1700.3
ca-HepPh 479.2 24.1 261.1 15.1 31.8 1312.5
web-webbase-2001 1634.4 20.1 292.5 2.4 25.8 6402.5
arxiv-astro-ph 1696.5 166.4 1426.0 135.4 165.4 5628.3
as-caida20071105 6664.3 93.7 1434.5 8.0 88.9 17544.7
cit-HepTh 4956.7 893.4 6973.9 816.0 871.2 13818.5
ia-email-EU 11719.3 108.5 2491.7 5.2 101.8 32679.4

k=100

Algorithm Simpl Simpl Col Col Spec StGreedy

Stoch JLT Stoch JLT Stoch

inf-power 41.5 3.4 125.3 140.1 63.6 594.6
facebook-ego-combined 19.9 14.3 19.1 23.5 56.6 139.3
web-spam 31.0 18.3 50.8 32.5 80.2 79.3
Wiki-Vote 121.4 45.1 122.1 50.4 133.0 428.9
p2p-Gnutella09 141.3 51.5 173.7 54.7 114.5 314.3
p2p-Gnutella04 448.2 129.3 580.5 133.7 164.6 1298.2
web-indochina 512.6 18.3 137.8 73.6 161.1 3524.8
ca-HepPh 498.4 88.6 439.2 136.9 245.1 1499.1
web-webbase-2001 1520.0 23.9 295.4 74.5 209.9 14802.7
arxiv-astro-ph 1730.6 469.1 2649.4 523.3 467.6 7711.7
as-caida20071105 7712.0 130.2 1630.8 113.1 475.7 18350.9
cit-HepTh 4932.2 1960.1 13094.1 2122.5 1544.7 11253.3
ia-email-EU 11820.4 136.0 3000.7 65.7 428.6 32771.2

	 Social Network Analysis and Mining (2023) 13:130

1 3

 130   Page 16 of 20

time becomes worse as k grows due to the k eigensystem
updates.

Finally, in Fig. 3 we depict results for the large graphs
of Table 3. For this experiment, we report absolute values
since we do not have a clear reference. With a time limit of
12 hours, StGreedy always times out. These results show
that a cubic approach such as StGreedy becomes impracti-
cal once the number of nodes in the graph exceeds a certain
threshold (such as 57K in our tests). The best approaches for
large graphs are ColStochJLT and ColStoch. Both of them

produce the highest quality results, with ColStoch slightly
ahead. ColStochJLT is the fastest approach, requiring on
average 2 [resp. 20] minutes for k = 2 [resp. k = 20 ]. Spec-
Stoch is on average as fast as ColStoch, but its performance
depends a lot on spectral properties (clustered eigenvalues
or not) of each input, as shown by the degree of skewness
in Fig. 3.

Fig. 3   Aggregated results (via geometric mean) of k-GRIP on large graphs ( n ≥ 57K ) for different k 

Fig. 4   Aggregated quality results (using geometric mean) of k-LRIP
on small and medium graphs ( n < 57K ) for different k. Results are
relative to StGreedy 

Fig. 5   Preprocessing times for different graphs, taking the arithmetic
mean over all k. See Table 3 for size information

Social Network Analysis and Mining (2023) 13:130 	

1 3

Page 17 of 20  130

6.3 � Results for k‑LRIP

For k-LRIP, we use the same parameter settings determined
in Sect. 6.1 and choose 25 focus nodes at random to run our
algorithms on, with a 6-hour time limit for each experiment.
We evaluate k ∈ {2, 5, 20} , which means that we have to
compute up to 20 ⋅ 25 = 500 Update steps overall—up to
5× more than for k-GRIP. At the same time, the number of
Eval computations is reduced as described in Sect. 5. (One
could of course increase k and decrease the number of focus
nodes at the same time and reach about the same number of
Update and Eval calls.)

Quality and speedup shown in this section are the geo-
metric mean of the results for all focus nodes (in relation to
the baseline StGreedy). Absolute running times are aggre-
gated using the arithmetic mean. When comparing the run-
ning time of k-LRIP, we compute the running time for a
focus node by taking the actual execution time of the main
loop of Algorithm 1 for that focus node and add to this 1

|F|
( 1
25

 in our case) of the preprocessing time, such that the pre-
processing time is amortized over all focus nodes.

For the evaluation, we first compare the solution qual-
ity for the small and medium graphs of Table 3, see Fig. 4.
Here, ColStoch produces the best results, followed by Col-
StochJLT. Depending on k, ColStoch produces results that
are on average 4%–12% away from StGreedy. The Simpl-
Stoch* results are 20%–30% away from StGreedy, showing
that our graph-based sampling technique applied in Col-
Stoch does improve the quality of the solution. SpecStoch
appears to be not competitive.

Next, we take a look at the preprocessing time for
our approaches (Fig. 5). As expected, we can see a clear

difference between the approaches that compute the full
pseudoinverse (stGreedy and simplStoch) and those that
set up a linear solver. The preprocessing time for the solver-
based heuristics depends on the density of the graph. A
good example of this observation is the difference in pre-
processing time for the two instances web-indochina-2004
and arxiv-heph. Both graphs have about the same number of
nodes, but arxiv-heph contains about 2.5 times more edges,
which increases the preprocessing time for ColStoch, Col-
StochJLT and SimplStochJLT by an order of magnitude.
Still, the solver setup is considerably faster than calculating
L† , being up to three orders of magnitude faster for larger,
sparse graphs. Generally, the preprocessing of the *JLT vari-
ants is slightly slower than without JLT, since we have to
set up the projection as well. Computing the eigenpairs for
SpecStoch is faster than calculating L† , but slower than set-
ting up linear solvers. One should keep in mind, though, that
for SpecStoch this preprocessing computation is mostly the
time to calculate the eigenpairs, which is the same computa-
tion required for the edge insertion update for SpecStoch.

Finally, we compare the running time of our approaches.
We split the speedup results into two figures for small and
medium graphs, respectively (Fig. 6). For both cases, SpecS-
toch has an average speedup of less than one. This is due to
the large number of eigenpair computations required, which
are slow, as we have seen in preprocessing. For this reason,
most experiments with medium graphs and k = 20 did not
finish for SpecStoch.

Regarding the other heuristics: for small graphs, Sim-
plStoch is the fastest algorithm, with an average speedup
of 1.01. The other algorithms are slower than StGreedy,
because computing L† for a small graph is still fast enough
in practice and the update step generally is fast as well.

(a) Small Graphs (b) Medium Graphs

Fig. 6   Aggregated speedup results of k-LRIP on small and medium graphs for different k. Results are relative to StGreedy 

	 Social Network Analysis and Mining (2023) 13:130

1 3

 130   Page 18 of 20

Considering that all approaches finish in at most 12 sec-
onds (Fig. 7a), StGreedy is fast enough, so that these small
graphs do not require (and do not benefit from) more com-
plicated heuristics.

For the medium graphs, SimplStochJLT is the fastest
approach with a speedup of up to 9× for k = 2 . This is
to be expected, since the JLT strategy generally reduces
computation time. The second fastest solution is Col-
StochJLT, which is explained by the additional time
required to approximate diag(L†) . ColStoch is still faster
than SimplStoch for small k, but for k = 20 both are almost
equal. We also notice that for the cit-HepTh graph, which
is considerably denser than all other graphs ( m = 352K),
the solver-based heuristics (simplStochJLT, colStochJLT
and colStoch) time out, while the L†-based heuristics do
not. The reason for this is that the time complexity of the
solver update step depends on m.

Even though the preprocessing itself is more expen-
sive for SimplStoch, once L† is computed, the update step
is considerably cheaper than in the case of linear solvers
and as such SimplStoch is competitive for larger k ⋅ |F| ,
where there are many updates, as long as computing L† is
feasible. Of course, for large enough graphs, one cannot
compute L† in reasonable time as we have seen for the
large graphs in k-GRIP.

Overall, based on these results the choice of the best
heuristic depends on k, |F|, and the density of the graph.
In general, there is a trade-off between running time and
quality. For the fastest solution, one should choose Simpl-
StochJLT. When quality is the larger concern, ColStoch

provides good results. With ColStochJLT, there is also
an option in the middle, providing good quality and time.

7 � Conclusions

To conclude, our randomized techniques for speeding up the
state-of-the-art greedy algorithm for k-GRIP do pay off. For
medium-sized graphs, ColStoch provides already a decent
6× acceleration with a quality close to greedy’s. Here, a
subset of vertices i is selected for which L†[i, i] and, thus,
their summed effective resistances are large. When favor-
ing speed over quality, SpecStoch, which exploits spectral
properties of the graph, offers an alternative (on average 28×
faster than greedy). For larger graphs and whenever high
quality is desirable, the best option is ColStoch. When run-
ning time is important and a decrease in quality is allowed,
ColStoch can still be significantly accelerated by JLT, i.e.,
ColStochJLT.

Similar results can be observed for the related k-LRIP
problem. Some differences occur, though: for small graphs
(roughly 10,000 nodes or less), StGreedy is fast enough
since the running time and space consumption of the pseu-
doinversion are still tolerable and can be amortized over the
numerous focus nodes. When the graphs become larger, our
new heuristics pay off for k-LRIP as well—except SpecS-
toch, which is dominated in terms of quality and running
time.

Our future plans include the extension of the problem
to edge deletions. This problem is related to the protection

(a) Small Graphs (b) Medium Graphs

Fig. 7   Aggregated running time results of k-LRIP on small and medium graphs for different k. Results for SpecStoch are orders of magnitude
larger and not shown here for readability

Social Network Analysis and Mining (2023) 13:130 	

1 3

Page 19 of 20  130

of infrastructure and also important in corresponding
applications.

Acknowledgements  We are grateful for coding support in early
development stages by HU Berlin student Matthias Görg. Under the
supervision of MP and HM, he also developed important ideas for the
diag(L†) update strategy. Moreover, we thank Massimo Achterberg
from Delft University of Technology for helpful discussions on several
aspects of the paper.

Author contribution  HM and MP designed the k-GRIP part of the
research project. MP devised and implemented the k-GRIP heuristics,
carried out the corresponding experiments, and wrote the k-GRIP
part of the manuscript. HM, RK, and LB designed the k-LRIP part
of the research project. LB adapted and implemented the heuristics
for k-LRIP, carried out the corresponding experiments, and wrote the
k-LRIP part of the manuscript. HM and RK wrote non-technical parts
of the manuscript and edited all the other parts.

Declarations 

Conflict of interest  Competing interests The authors declare no com-
peting interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Achlioptas D (2003) Database-friendly random projections: Johnson-
Lindenstrauss with binary coins. J Comput Syst Sci 66(4):671–687

Angriman E, Becker R, D’Angelo G, Gilbert H, van der Grinten A,
Meyerhenke H (2021) Group-harmonic and group-closeness
maximization - approximation and engineering. In: Proc of the
Symp on Algorithm Engineering and Experiments, ALENEX,
2021. SIAM, pp 154–168

Angriman E, Predari M, van der Grinten A, Meyerhenke H (2020)
Approximation of the diagonal of a Laplacian’s pseudoinverse
for complex network analysis. In: ESA 2020, Italy, vol 173, pp
6:1–6:24

Angriman E, van der Grinten A, von Looz M, Meyerhenke H, Nöl-
lenburg M, Predari M, Tzovas C (2019) Guidelines for experi-
mental algorithmics: a case study in network analysis. Algorithms
12(7):127

Avena L, Castell F, Gaudillière A, Mélot C (2018) Random forests and
networks analysis. J Stat Phys 173:985–1027

Avrachenkov K, Litvak N (2006) The effect of new links on google
pagerank. Stoch Model 22(2):319–331

Barabási A-L, Pósfai M (2016) Network science. Cambridge University
Press, Cambridge

Baras JS, Hovareshti P (2009) Efficient and robust communication
topologies for distributed decision making in networked sys-
tems. In: Proceedings of the 48h IEEE conference on decision

and control (CDC) held jointly with 2009 28th Chinese control
conference, pp 3751–3756

Bergamini E, Crescenzi P, D’angelo G, Meyerhenke H, Severini L,
Velaj Y (2018) Improving the betweenness centrality of a node
by adding links. ACM J Exp Algorithmics 23:1–32

Bollobás B (1998) Modern graph theory. Graduate texts in mathemat-
ics, corrected. Springer, Heidelberg

Bozzo E, Franceschet M (2012) Effective and efficient approximations
of the generalized inverse of the graph Laplacian matrix with an
application to current-flow betweenness centrality. arXiv:​1205.​
4894

Brandes U, Fleischer D (2005) Centrality measures based on current
flow. In: STACS. Springer, Berlin, pp 533–544

Cats O, Koppenol G-J, Warnier M (2017) Robustness assessment of
link capacity reduction for complex networks: application for pub-
lic transport systems. Reliab Eng Syst Saf 167:544–553

Cetinay H, Mas-Machuca C, Marzo JL, Kooij R, Van Mieghem P
(2020) Comparing destructive strategies for attacking networks.
Springer, Cham, pp 117–140

Chung F, Lu L (2004) Complex graphs and networks. American Math-
ematical Society, Providence

Clemente GP, Cornaro A (2020) Bounding robustness in complex net-
works under topological changes through majorization techniques.
Eur Phys J B 93(114):1–12

Crescenzi P, D’angelo G, Severini L, Velaj Y (2016) Greedily improv-
ing our own closeness centrality in a network. ACM Trans Knowl
Discov Data (TKDD) 11(1):1–32

Dasgupta S, Gupta A (2003) An elementary proof of a theorem of John-
son and Lindenstrauss. Random Struct Algorithms 22(1):60–65

Demaine ED, Zadimoghaddam M (2010) Minimizing the diameter of a
network using shortcut edges. In: Algorithm theory-SWAT 2010:
12th Scandinavian symposium and workshops on algorithm the-
ory, Bergen, Norway, June 21–23, 2010. Proceedings 12. Springer,
pp 420–431

Ellens W, Spieksma F, Van Mieghem P, Jamakovic A, Kooij
R (2011) Effective graph resistance. Linear Algebra Appl
435(10):2491–2506

Fiedler M (1973) Algebraic connectivity of graphs. Czechoslov Math
J 23:298–305

Frankl P, Maehara H (1988) The Johnson-Lindenstrauss lemma and the
sphericity of some graphs. J Combin Theory Ser B 44(3):355–362

Freitas S, Yang D, Kumar S, Tong H, Chau DH (2022) Graph vulner-
ability and robustness: a survey. IEEE Trans Knowl Data Eng

Ghosh A, Boyd S, Saberi A (2008) Minimizing effective resistance of
a graph. SIAM Rev 50(1):37–66

Guennebaud G, Jacob B et al (2010) Eigen v3. http://​eigen.​tuxfa​mily.​
org

Gutman I, Xiao W (2004) Generalized inverse of the Laplacian matrix
and some applications. Bulletin Classe Des Sciences Mathema-
tiques et Naturalles 129:15–23

Hassidim A, Singer Y (2017) Robust guarantees of stochastic greedy
algorithms. In: Proc of the 34th intl conference on machine learn-
ing, vol 70. PMLR, pp 1424–1432

He Z (2020) Performance of complex networks. PhD thesis. Delft Uni-
versity of Technology

Hernandez V, Roman JE, Vidal V (2005) SLEPc: a scalable and flexible
toolkit for the solution of eigenvalue problems. ACM Trans Math
Softw 31(3):351–362

Johnson WB (1984) Extensions of Lipschitz mappings into Hilbert
space. Contemp Math 26:189–206

Jun W, Barahona M, Yue-Jin T, Hong-Zhong D (2010) Natural con-
nectivity of complex networks. Chin Phys Lett 27(7):078902

Koç Y, Warnier M, Van Mieghem P, Kooij RE, Brazier FM (2014) A
topological investigation of phase transitions of cascading failures
in power grids. Physica A 415:273–284

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1205.4894
http://arxiv.org/abs/1205.4894
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org

	 Social Network Analysis and Mining (2023) 13:130

1 3

 130   Page 20 of 20

Koch E (2011) The Lanczos method. In: Pavarini E, Vollhardt D, Koch
E, Lichtenstein A (eds) The LDA+DMFT approach to strongly
correlated materials. Forschungszentrum Jülich, Jülich

Kooij RE, Achterberg MA (2023) Minimizing the effective graph
resistance by adding links is NP-hard. arXiv:​2302.​12628

Leskovec J, Krevl A (2014) Stanford large network dataset collection.
SNAP Datasets. http://​snap.​stanf​ord.​edu/​data

Li G, Hao ZF, Huang H, Wei H (2018) Maximizing algebraic connec-
tivity via minimum degree and maximum distance. IEEE Access
6:41249–41255

Livne O, Brandt A (2011) Lean algebraic multigrid (LAMG): fast
graph Laplacian linear solver. SIAM J Sci Comput 34

Lovász LM (1996) Random walks on graphs: a survey. Combinatorica
1–46

Manghiuc B, Peng P, Sun H (2020) Augmenting the algebraic connec-
tivity of graphs. In: 28th European Symp. on Algorithms, ESA,
volume 173 of LIPIcs. Schloss Dagstuhl, pp 70:1–70:22

Mavroforakis C, Garcia-Lebron R, Koutis I, Terzi E (2015) Span-
ning edge centrality: large-scale computation and applications.
In: Proc. of the 24th Intl. Conference on World Wide Web. Intl.
World Wide Web Conferences Steering Committee, pp 732–742

Minoux M (1978) Accelerated greedy algorithms for maximizing sub-
modular set functions. In: Stoer J (ed) Optimization techniques.
Springer, Berlin, pp 234–243

Minoux M (1989) Networks synthesis and optimum network design
problems: models, solution methods and applications. Networks
19(3):313–360

Mirzasoleiman B, Badanidiyuru A, Karbasi A, Vondrák J, Krause A
(2015) Lazier than lazy greedy. In: Proceedings of the 29th AAAI
conference on artificial intelligence, AAAI’15. AAAI Press, pp
1812–1818

Mosk-Aoyama D (2008) Maximum algebraic connectivity augmenta-
tion is NP-hard. Oper Res Lett 36(6):677–679

Newman M (2018) Networks, 2nd edn. Oxford University Press,
Oxford

Olfati-Saber R, Fax JA, Murray RM (2007) Consensus and coopera-
tion in networked multi-agent systems. Proc IEEE 95(1):215–233

Olsen M, Viglas A (2014) On the approximability of the link building
problem. Theoret Comput Sci 518:96–116

Paige C (1980) Accuracy and effectiveness of the Lanczos algorithm
for the symmetric eigenproblem. Linear Algebra Appl 34:235–258

Papagelis M (2015) Refining social graph connectivity via shortcut
edge addition. ACM Trans Knowl Discov Data. https://​doi.​org/​
10.​1145/​27572​81

Perera S, Bell MGH, Bliemer MCJ (2015) Modelling supply chains
as complex networks for investigating resilience: an improved
methodological framework

Perumal S, Basu P, Guan Z (2013) Minimizing eccentricity in com-
posite networks via constrained edge additions. In: MILCOM
2013-2013 IEEE military communications conference. IEEE, pp
1894–1899

Pizzuti C, Socievole A (2018) A genetic algorithm for enhancing the
robustness of complex networks through link protection. In: Inter-
national conference on complex networks and their applications.
Springer, pp 807–819

Pizzuti C, Socievole A (2023) Incremental computation of effective
graph resistance for improving robustness of complex networks:
a comparative study. In: Cherifi H, Mantegna RN, Rocha LM,
Cherifi C, Micciche S (eds) Complex networks and their applica-
tions XI. Springer, Cham, pp 419–431

Predari M, Kooij R, Meyerhenke H (2022) Faster greedy optimization
of resistance-based graph robustness. In: 2022 IEEE/ACM inter-
national conference on advances in social networks analysis and
mining (ASONAM), Los Alamitos, CA, USA, Nov 2022. IEEE
Computer Society, pp 1–8

Ranjan G, Zhang Z, Boley D (2014) Incremental computation of
pseudo-inverse of Laplacian and applications—8th international
conference, COCOA 2014, Wailea, Maui, HI, USA, December
19–21, 2014, Proceedings. Lecture notes in computer science. In:
Zhang Z, Wu L, Xu W, Du D (eds) Combinatorial optimization,
vol 8881. Springer, pp 729–749

Rossi RA, Ahmed NK (2015) The network data repository with inter-
active graph analytics and visualization. In: Proceedings of the
29th AAAI conference on artificial intelligence, AAAI’15. AAAI
Press, pp 4292–4293

Rueda DF, Calle E, Marzo JL (2017) Robustness comparison of 15 real
telecommunication networks: structural and centrality measure-
ments. J Netw Syst Manag 25(2):269–289

Schneider CM, Moreira AA, Andrade JS, Havlin S, Herrmann HJ
(2011) Mitigation of malicious attacks on networks. Proc Natl
Acad Sci 108(10):3838–3841

Shan L, Yi Y, Zhang Z (2018) Improving information centrality of a
node in complex networks by adding edges. In: Proceedings of
the 27th international joint conference on artificial intelligence,
IJCAI-18, pp 3535–3541. International joint conferences on arti-
ficial intelligence organization, 7. https://​www.​ijcai.​org/​proce​
edings/​2018/​0491.​pdf

Sherman J, Morrison WJ (1950) Adjustment of an inverse matrix cor-
responding to a change in one element of a given matrix. Ann
Math Stat 21(1):124–127

Spielman D (2012) Spectral graph theory. In: Combinatorial scientific
computing, vol 18. CRC Press, Boca Raton, p 18

Staudt CL, Sazonovs A, Meyerhenke H (2016) NetworKit: a tool suite
for large-scale complex network analysis. Netw Sci 4(4):508–530

Summers T, Shames I, Lygeros J, Dörfler F (2015) Topology design for
optimal network coherence. In: 2015 European control conference
(ECC). IEEE, pp 575–580

Summers T, Shames I, Lygeros J, Dorfler F (2017) Correction to
“Topology design for optimal network coherence”. https://​perso​
nal.​utdal​las.​edu/​~ths15​0130/​papers/​ECC_​Corre​ction.​pdf

Summers TH, Kamgarpour M (2019) Performance guarantees for
greedy maximization of non-submodular controllability metrics.
In : 17th European Control Conf., ECC. IEEE, pp 2796–2801

Van Mieghem P, Devriendt K, Cetinay H (2017) Pseudoinverse of
the Laplacian and best spreader node in a network. Phys Rev E
96:032311

Van Mieghem P, Stevanović D, Kuipers F, Li C, van de Bovenkamp R,
Liu D, Wang H (2011) Decreasing the spectral radius of a graph
by link removals. Phys Rev E 84:016101

Wang H, Van Mieghem P (2008) Algebraic connectivity optimiza-
tion via link addition. In: Proceedings of the 3rd international
conference on bio-inspired models of network, information and
computing systems, BIONETICS’08, Brussels, BEL, 2008.
ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering). https://​www.​nas.​ewi.​tudel​
ft.​nl/​people/​Huiju​an/​Huiju​an_​paper/​Bione​tics2​008_​Algeb​raicC​
onnec​tivity.​pdf

Wang X, Pournaras E, Kooij RE, Mieghem PV (2014) Improving
robustness of complex networks via the effective graph resist-
ance. Eur Phys J B 87:1–12

Wei Y, Li R-h, Yang W (2021) Biharmonic distance of graphs. arXiv
preprint arXiv:​2110.​02656

Wilson DB (1996) Generating random spanning trees more quickly
than the cover time. In Proc of the 28th annual ACM symposium
on theory of computing, STOC’96. Association for Computing
Machinery, pp 296–303

Yazdani A, Jeffrey P (2011) Complex network analysis of water distri-
bution systems. Chaos (Woodbury N.Y), 21:016111

Yi Y, Shan L, Li H, Zhang Z (2018) Biharmonic distance related cen-
trality for edges in weighted networks. In: IJCAI, pp 3620–3626

http://arxiv.org/abs/2302.12628
http://snap.stanford.edu/data
https://doi.org/10.1145/2757281
https://doi.org/10.1145/2757281
https://www.ijcai.org/proceedings/2018/0491.pdf
https://www.ijcai.org/proceedings/2018/0491.pdf
https://personal.utdallas.edu/%7eths150130/papers/ECC_Correction.pdf
https://personal.utdallas.edu/%7eths150130/papers/ECC_Correction.pdf
https://www.nas.ewi.tudelft.nl/people/Huijuan/Huijuan_paper/Bionetics2008_AlgebraicConnectivity.pdf
https://www.nas.ewi.tudelft.nl/people/Huijuan/Huijuan_paper/Bionetics2008_AlgebraicConnectivity.pdf
https://www.nas.ewi.tudelft.nl/people/Huijuan/Huijuan_paper/Bionetics2008_AlgebraicConnectivity.pdf
http://arxiv.org/abs/2110.02656

	Greedy optimization of resistance-based graph robustness with global and local edge insertions
	Abstract
	1 Introduction
	2 Preliminaries
	3 Related work
	4 Heuristics for k-GRIP
	4.1 SimplStoch
	4.2 ColStoch
	4.2.1 strategy
	4.2.2 Updating approximate after edge insertions

	4.3 *StochJLT
	4.4 SpecStoch

	5 Heuristics for k-LRIP
	5.1 SimplStoch
	5.2 ColStoch
	5.3 *StochJLT
	5.4 SpecStoch

	6 Experimental results
	6.1 Configuration experiments
	6.2 Results for k-GRIP
	6.3 Results for k-LRIP

	7 Conclusions
	Acknowledgements
	References

