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Abstract
The total effective resistance, also called the Kirchhoff index, provides a robustness measure for a graph G. We consider two 
optimization problems of adding k new edges to G such that the resulting graph has minimal total effective resistance (i.e., 
is most robust)—one where the new edges can be anywhere in the graph and one where the new edges need to be incident 
to a specified focus node. The total effective resistance and effective resistances between nodes can be computed using the 
pseudoinverse of the graph Laplacian. The pseudoinverse may be computed explicitly via pseudoinversion, yet this takes 
cubic time in practice and quadratic space. We instead exploit combinatorial and algebraic connections to speed up gain 
computations in an established generic greedy heuristic. Moreover, we leverage existing randomized techniques to boost 
the performance of our approaches by introducing a sub-sampling step. Our different graph- and matrix-based approaches 
are indeed significantly faster than the state-of-the-art greedy algorithm, while their quality remains reasonably high and is 
often quite close. Our experiments show that we can now process larger graphs for which the application of the state-of-the-
art greedy approach was impractical before.

Keywords  Graph robustness · Optimization problem · Effective resistance · Kirchhoff index · Laplacian pseudoinverse

1  Introduction

The analysis of network topologies has received consider-
able attention in various fields of science and engineering in 
the last decades (Barabási and Pósfai 2016; Newman 2018). 
Its purpose usually is to better understand the functionality, 
dynamics, and evolution of a network1 and its components 
(Barabási and Pósfai 2016). One important property of a 
network topology concerns its robustness, i.e., the extent to 
which a network is capable to withstand failures of one or 
more of its components (Freitas et al. 2022). As an example, 
one may ask whether the network is guaranteed to remain 
connected if an edge is deleted, e.g., due to failure or an 
attack. Network robustness is a critical design issue in many 
areas, including telecommunication (Rueda et al. 2017), 
power grids (Koç et al. 2014), public transport (Cats et al. 
2017), supply chains (Perera et al. 2015) and water distribu-
tion (Yazdani and Jeffrey 2011).

Often a critical step in infrastructural maintenance is to 
improve the robustness of the network by adding a small 
number of edges. The challenge here lies in the selection 
of a vertex pair, among all the possible ones, such that 
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the insertion of an edge between the vertices increases 
the network’s robustness as much as possible. Given a 
graph G = (V ,E) and a budget of k links to be added, our 
algorithmic formalization of this task asks to find a set 
X ⊂

(
V

2

)
⧵E of size k that optimizes the robustness of G. 

We call this problem k-GRIP, short for global robustness 
improvement problem. A related task fixes a focus node 
v ∈ V  from which k edges can be inserted into G to other 
nodes; we call this problem k-LRIP, short for local robust-
ness improvement problem. Clearly, one must also choose 
a measure to capture a sensible notion of robustness; there 
are numerous ones proposed in the literature (Barabási and 
Pósfai 2016; Rueda et al. 2017).

One established measure for k-GRIP, which was shown to 
be a good robustness indicator in various scenarios (Ellens 
et al. 2011; Ghosh et al. 2008; Wang et al. 2014), is effec-
tive graph resistance or total effective resistance of a graph. 
Effective resistance is a pairwise metric on the vertex set of G, 
which results from viewing the graph as an electrical network. 
It relates to uniform spanning trees (Angriman et al. 2020), 
random walks (Lovász 1996), and several centrality measures 
(Mavroforakis et al. 2015; Brandes and Fleischer 2005). In fact, 
it works similarly as an objective function for k-LRIP—we are 
just restricted in the search space to a particular focus node. To 
compute the total effective resistance, one sums the effective 
resistance over all vertex pairs in G (for technical details, see 
Sect. 2). Intuitively, the effective resistance becomes small if 
there are many short paths between two vertices. Removing an 
edge in such a case hardly disrupts the connectivity, since there 
are usually alternative paths. Due to this favorable property, we 
select total effective resistance in this paper as the robustness 
measure for k-GRIP and k-LRIP.

The effective graph resistance-based k-GRIP version, recently 
shown to be NP hard (Kooij and Achterberg 2023), was already 
considered by Summers et al. (2015). It was shown in Summers 
et al. (2017) that k-GRIP for the effective graph resistance is not 
submodular, hence without an approximation guarantee for the 
greedy algorithm (more details in Sect. 3). Still, even without an 
approximation guarantee, this greedy algorithm provides very 
good empirical results—for small networks it does so in reason-
able time. It should be noted that the example given in Summers 
et al. (2017), which proves that k-GRIP for the effective graph 
resistance is non-submodular, also proves that k-LRIP is non-
submodular for the effective graph resistance.

The greedy algorithm performs k iterations, at each step 
adding the edge with the highest marginal gain. To com-
pute these gains, however, the corresponding effective resist-
ance values are needed. If one acquires them by an initial 
(pseudo)inversion of the graph’s Laplacian matrix, this takes 
O(n3) time with standard tools in practice (where n = |V| ). 
Overall, this approach leads to a running time of O(kn3) , 
which limits the applicability to large networks.

For other problems where this greedy approach works 
well, a recent stochastic greedy algorithm (Mirzasoleiman 
et al. 2015) has been shown to be potentially much faster—
while usually producing solutions of nearly the same quality. 
It does so by sampling from the set of candidates to find the 
one with highest gain (from the sample instead of from the 
whole set) in each iteration. Our hypothesis for this paper 
is that this favorable speed-quality trade-off of stochastic 
greedy holds for our k-GRIP as well. We also assume that 
other Laplacian approximation techniques can speed up the 
required computations. Furthermore, we hope that the tech-
niques that work well for the k-GRIP problem also work well 
(if adapted properly) for the related k-LRIP problem. Some 
differences in the speed-quality trade-off are to be expected.

Building upon the generic stochastic greedy approach 
(Mirzasoleiman et al. 2015), we first devise several heuristic 
strategies for k-GRIP that leverage both graph- and matrix-
related properties (Sect. 4). Our approaches accelerate the 
greedy algorithm by reducing the candidate set via careful 
selection of elements to be evaluated and/or by accelerating 
the gain computation. Our experiments (Sect. 6) confirm that 
our approaches speed up the state-of-the-art greedy algo-
rithm significantly. At the same time, the k-GRIP solution 
quality is more or less preserved, how well depends on the 
approach. For instance, testing graphs with < 57K nodes, 
we produce results that are on average 2–15% away from the 
greedy solution, while running 3.3–68× faster than the state 
of the art (SotA). Finally, we demonstrate that we can now 
process much larger graphs for which the application of the 
SotA greedy approach was infeasible before.

Besides a better update strategy for our heuristic  
ColStoch, another extension of this paper compared to 
its conference version (Predari et al. 2022) consists of the 
k-LRIP part (Sect. 5). The corresponding experiments in 
Sect. 6 show that our heuristics (except one) work for this 
problem similarly well when the graphs are sufficiently 
large. For example, on graphs with more than 10,000 nodes, 
one of our new heuristics is ≈ 10% away from the greedy 
quality, but on average ≈ 2 − 7× faster (depending on k and 
the graph).

2 � Preliminaries

We assume that our input consists first of all of a connected, 
undirected, and simple graph G = (V ,E) with n vertices 
and m edges. For both k-GRIP and k-LRIP, we also have 
an integer k ∈ ℤ>0 for the number of edges to be added to 
G; k-LRIP additionally requires the focus node v ∈ V  from 
which the additional edges are inserted. Our methods can be 
easily extended to weighted graphs. However, for the sake 
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of presentation simplicity, we only consider unweighted 
graphs.

For the remainder, we use several well-known matrix 
representations of graphs. L = D − A is the n × n Lapla-
cian matrix of G, where D is the diagonal matrix of vertex 
degrees and A is the adjacency matrix. L is symmetric, posi-
tive semi-definite and has zero row/column sum s.t., L1 = 0 
where 1 is the all-ones vector. The m × n incidence matrix 
B takes for e ∈ E and a ∈ V  the values: B[e, a] = 1 if a is 
the destination of e, B[e, a] = −1 if a is the origin of e and 
B[e, a] = 0 otherwise. For undirected graphs, the direction 
of each edge is specified arbitrarily. Moreover, L = BTB . It 
is well known that L is not invertible, so that its Moore–Pen-
rose pseudoinverse ( L† ) is used instead, for which holds: 
LL† = L†L = I −

1

n
⋅ 11T (Gutman and Xiao 2004). Since 

L is symmetric, it has an orthonormal basis of eigenvectors 
U = [��,… , ��].We write the spectral decomposition as: 
L =

∑n

i=2
���i��

T , where the eigenvectors ��,… , �� corre-
spond to the ordered eigenvalues 0 < 𝜆2 ≤,… ,≤ 𝜆n (exclud-
ing the zero eigenvalue).

For a graph G, we use LG [ L†

G
 ] to refer to its Laplacian 

[Laplacian pseudoinverse]. If there is no subscript in our matrix 
notation, the associated graph is inferred by the context.

Let ΩG ∶=
(
V

2

)
⧵ E  . For any X ⊂ ΩG , we define 

G�∶=G ∪ X = (V ,E ∪ X) as the graph obtained by adding 
the edges of X into G. Then, k-GRIP aims at finding a set 
X ⊂ ΩG with |X| = k s.t., |f (G) − f (G�)| is as large as pos-
sible for a given robustness function f (⋅) . Here, we use the 
effective graph resistance R(G) as robustness function (for 
which lower values indicate higher robustness), which is 
the sum of pairwise effective resistances rG(⋅, ⋅) between all 
vertex pairs:

Thus, k-GRIP for total effective resistance asks to find the set 
X of size k that minimizes the resistance of the graph result-
ing from inserting the edges of X. The notion of effective 
resistance comes from viewing G as an electrical circuit in 
which each edge e is a resistor with resistance 1∕w[e] . Fol-
lowing fundamental electrical laws, the effective resistance 
r(a, b) between two vertices a and b is the potential differ-
ence between a and b when a unit current is injected into G 
at a and extracted at b.

The second problem we address is the related k-LRIP 
problem. It also uses total effective resistance R(G) as the 
objective function. The main difference is that it restricts 
the search space by limiting the insertion of the k edges to 
a particular focus node v ∈ V  that is part of the input. The 
set X of edges to insert is selected from the vertex pairs 
Ωv ∶= {(v, u) | u ∈ V , {v, u} ∉ E}.

(1)R(G) =

n∑

a=1

n∑

b=a+1

rG(a, b).

Computing rG(a, b) can be done via L†:

Combining Eqs. (1) and (2), one gets

For a potential new edge {a, b} , we have G� = G ∪ {a, b} 
and LG� = LG + (ea − eb)(ea − eb)

T , where ea is a zero vector 
except for e[a] = 1 . The gain in terms of R by the insertion 
of {a, b} is R(G) −R(G�) and relies on L†

G� (Sherman–Mor-
rison formula (Sherman and Morrison 1950)):

The gain evaluation gain(a, b) = R(G) −R(G�) is then

where L†

�
[∶, i] is the ith column of L† . We rewrite Eq. (5) as 

a function of squared �2 norms:

where ��(⋅, ⋅) is known as the biharmonic distance of 
G (Yi et al. 2018; Wei et al. 2021). Finally, we express 
these distances via the spectral decomposition of L† (or L , 
respectively):

where � is the diagonal matrix of the eigenvalues of L† . 
Similarly,

3 � Related work

Robustness of networks has been an active research area for 
decades (Pizzuti and Socievole 2018; Freitas et al. 2022). 
Several authors have proposed the use of specific network 
metrics to quantify the robustness of a given network, see, 
e.g., Rueda et al. (2017), Fiedler (1973), Schneider et al. 

(2)rG(a, b) = L†[a, a] + L†[b, b] − 2L†[a, b].

(3)R(G) = n ⋅ tr(L†).

(4)L
†

G� = L
†

G
−

1

1 + rG(a, b)
L
†

G
(ea − eb)(ea − eb)

TL
†

G
.

(5)gain(a, b) = n

‖‖‖L
†

�
[∶, a] − L

†

�
[∶, b]

‖‖‖
2

1 + rG(a, b)
,

(6)gain(a, b) = n

‖‖‖L
†(ea − eb)

‖‖‖
2

1 +
‖‖‖BL

†(ea − eb)
‖‖‖
2
= n

b2
G
(a, b)

1 + rG(a, b)
,

(7)
rG(a, b) =

‖‖‖BL
†(ea − eb)

‖‖‖
2

= (ea − eb)
TL†(ea − eb)

= (ea − eb)
TU�−1UT (ea − eb) =

n∑

i=2

(��[a] − ��[b])
2

�i
,

(8)
b2
G
(a, b) =

‖‖‖L
†(ea − eb)

‖‖‖
2

= (ea − eb)
T (L†)2(ea − eb)

= (ea − eb)
TU�−2UT (ea − eb) =

n∑

i=2

(��[a] − ��[b])
2

�2
i

.
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(2011), Cetinay et al. (2020). In a recent survey on the topic, 
Freitas et al. (2022) classify robustness metrics into three 
types: metrics based on structural properties, such as edge 
connectivity or diameter; metrics based on the spectrum of 
the adjacency matrix, such as the spectral radius or spectral 
gap; and metrics based on the spectrum of the Laplacian 
matrix, for instance the algebraic connectivity and the effec-
tive graph resistance. Here, the algebraic connectivity, i.e., 
the second smallest eigenvalue �2 of the graph’s Laplacian 
(Fiedler 1973), is known to capture the overall connectivity 
of a graph. This metric is also related to synchronization of 
networks, including opinion dynamics (Olfati-Saber et al. 
2007).

Once the robustness of a network has been established, 
a natural next step is to determine how robustness can be 
improved. Schneider et al. (2011) view the relative size of 
the largest connected component as robustness measure 
(after removing a certain fraction of the edges) and rewire 
the edges for robustness improvement. A second approach 
is to add elements to the network. Several researchers inves-
tigated k-GRIP for specific robustness metrics. For instance, 
Wang and Van Mieghem (2008) considered 1-GRIP, with 
the robustness metric being the algebraic connectivity. They 
suggest several strategies, based upon topological and spec-
tral properties of the graph, to decide which single link to 
add to the network in order to increase the algebraic con-
nectivity as much as possible. Reference (He 2020, Chap-
ter 8) also considered algebraic connectivity for k-GRIP. 
Under some light conditions, lower bounds for the quality 
of the greedy solution were obtained. It might be argued 
that the algebraic connectivity is not a proper robustness 
metric, because there are examples where adding a link to 
a graph does not change the algebraic connectivity, see Jun 
et al. (2010). The NP-hardness of k-GRIP for algebraic con-
nectivity was proved in Mosk-Aoyama (2008). Manghiuc 
et al. (2020) consider a weighted decision variant of k-GRIP 
w.r.t. �2 . They propose an almost-linear time algorithm that 
augments the graph by k edges such that �2 exceeds a speci-
fied threshold. A nice overview of algebraic connectivity for 
k-GRIP is presented in Li et al. (2018).

Reference Papagelis (2015) shows that k-GRIP with the 
average shortest path length as a robustness metric does not 
satisfy the submodularity constraint, but accurate greedy 
solutions can be obtained. Van Mieghem et al. (2011) con-
sider a link removal problem with the spectral radius (larg-
est eigenvalue of adjacency matrix) as a robustness metric 
and prove this problem is NP-hard. Baras and Hovareshti 
(2009) consider the problem of adding k links to a given 
network, such that the number of spanning trees in the graph 
is maximized.

Effective graph resistance as a robustness measure dates 
back at least to Ellens et al. (2011). It has been known much 
longer, however, that effective resistance is proportional to 

commute times of random walks (Ghosh et al. 2008). Wang 
et al. (2014) and Pizzuti and Socievole (2018) investigate 
heuristics for 1-GRIP with effective graph resistance (both 
for edge insertion and removal). Besides deriving theoretical 
bounds, Wang et al. (2014) compare spectral strategies for 
edge selection with much simpler heuristics. Their experi-
ments confirm that their spectral strategies (particularly the 
one based on the highest effective resistance gain) often 
yield the largest improvement, indicating a trade-off between 
running time and the robustness gain.

Pizzuti and Socievole (2018, 2023) proposed and evalu-
ated several genetic algorithms to find the optimal edge to 
add, in order to minimize RG . Clemente and Cornaro (2020) 
studied k-GRIP for the effective graph resistance and gave 
lower bounds for RG upon the addition of k links, under 
some mild conditions for k. For k = 1 , the lower bound in 
Clemente and Cornaro (2020) clearly outperforms the lower 
bound in Wang et al. (2014).

The state-of-the-art heuristic for k-GRIP is a greedy 
algorithm presented by Summers et al. (2015), called here 
StGreedy. In its generic form, such a greedy algorithm 
adds in each of the k iterations the element (here: edge) 
with the largest marginal gain (here: best improvement of 
the robustness measure). To this end, StGreedy computes 
the full pseudoinverse of L as a preprocessing step. Then, the 
marginal gains of all vertex pairs are computed via Eq. (5) 
in O(n) time per edge. The edge with best marginal gain is 
added to the graph, and the pseudoinverse is updated using 
Eq. (4). The time complexity is O(kn3) , which is due to the 
evaluation of the gain function in k rounds on O(n2) node 
pairs. The preprocessing takes O(n3) time with standard 
tools. For monotonic submodular problems, the generic 
greedy algorithm has an approximation ratio of 1 − 1∕e . 
Even for non-submodular problems such as k-GRIP (see 
Summers et al. (2017) for a counterexample), the greedy 
algorithm still often leads to solutions of high quality (Sum-
mers and Kamgarpour 2019; Angriman et al. 2021). Sto-
chastic greedy algorithms that improve the time complexity 
of the standard greedy approach (in a general setting) were 
proposed in  Mirzasoleiman et al. (2015); and Hassidim and 
Singer (2017). These algorithms use random sampling tech-
niques and reduce the total number of function evaluations 
(roughly) by a factor of k. They achieve provable approxima-
tion guarantees in cases where the greedy algorithm admits 
them, too.

Also, k-LRIP has been considered by several authors—for 
different objectives. Shan et al. (2018) consider the node 
resistance (as robustness metric or rather as a centrality 
measure), which is the sum of the effective resistance from 
one source node v to all other nodes. They assume that the 
k links that are to be added are chosen from the set of non-
existing links from the focus node v; not all possible non-
existing links. It is shown by the authors that in this setting, 
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the node resistance is a supermodular set function. Ref. 
Bergamini et al. (2018) consider k-LRIP with betweenness 
centrality. In fact, k-LRIP has been studied with a variety of 
other centrality metrics, such as PageRank (Avrachenkov 
and Litvak 2006; Olsen and Viglas 2014), closeness central-
ity (Crescenzi et al. 2016), and eccentricity (Demaine and 
Zadimoghaddam 2010; Perumal et al. 2013).

Besides using the stochastic greedy algorithm for both 
k-GRIP and k-LRIP, we intend to accelerate the optimiza-
tion process by approximation techniques for the effective 
resistance values. While Shan et al. (2018) also employ a 
greedy algorithm for k-LRIP, their objective function and 
acceleration techniques differ from ours.

4 � Heuristics for k‑GRIP

In this section, we propose different techniques to improve 
the performance of the greedy algorithm for k-GRIP. Our 
approaches are: SimplStoch, ColStoch, SimplStochJLT, 
ColStochJLT and SpecStoch. They all make use of exist-
ing randomized techniques and follow the general greedy 
framework of Algorithm 1. Functions named as Obj* relate 
to the objective function, while those named as Candidate* 
relate to the set of possible candidate elements. Functions 
not defined explicitly in the pseudocode are described in 
detail in the text. The time and space complexities of all 
approaches (assuming standard tools) are shown in Table 1.

Algorithm 1 General framework for k-GRIP
1: function GreedyFramework(G, k, δ)
2: Input: Graph G = (V,E), k ∈ N>0, accuracy 0 < δ < 1
3: Output: Gk – graph after k edge insertions
4: G0 ← G
5: ComputeObj(G0, . . . ) � compute step
6: s ← CandidateSize(m, n, k, δ)
7: for r ← 0, . . . , k − 1 do � main loop
8: S ← Candidates(s, Gr, . . .)
9: for each {a, b} ∈ S × S do � # of evaluations

10: gain(a, b) ← Eval(a, b, . . . ) � single evaluation
11: (a∗, b∗) ← argmaxa∈S×b∈S gain(a, b)
12: Gr+1 = Gr ∪ (a∗, b∗)
13: Update(Gr+1, . . . ) � update step
14: return Gr+1

Table 1   Time complexities 
(assuming standard (pseudo)
inversion tools, linear solvers, 
and eigensolvers used in 
practice for Laplacians 
of general graphs) of all 
approaches involved

Columns correspond to major steps of Algorithm 1. In general, the dominant term comes from the total 
number of evaluations and their time to be evaluated (second column). The Õ-notation hides log(1∕�) fac-
tors, where � is the accuracy threshold of the linear solver. The O′-notation hides log(1∕�) factors, where 
� determines the sample size in the stochastic candidate selection. Note that we consider the Johnson–
Lindenstrauss transform (JLT) parameter � here as a constant. � is the number of uniform spanning trees 
(USTs) required for the diagonal approximation in ColStoch, which depends on the diameter of the graph 
(Angriman et al. 2020). More details in the text

Compute #Evals × SingleEval All updates Memory

StGreedy O(n3) O(kn2) × O(n) O(kn2) O(n2)

SimplStoch O(n3) O
�(n2) × O(n) O(kn2) O(n2)

ColStoch Õ(sm log n) O
�(n2) ×O(n) Õ(ksm log n) O((s + �)n + m)

SimplStochJLT Õ(m log n) O
�(n2) ×O(log n) Õ(km log n) O((s + log n)n + m)

ColStochJLT Õ(m log n log s) O
�(n2) ×O(log s) Õ(km log n log s) O((log s + �)n + m)

SpecStoch O(cm) O
�(n2) × O(c) O(kcm) O(cn + m)
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For submodular functions, the greedy framework can be 
combined with a lazy technique (Minoux 1978) that boosts 
the performance of the algorithm. This process is based 
on the fact that, even though marginal gains of elements 
might change between iterations, their order often stays 
the same. An observation important for us is: “The lazy 
greedy algorithm can be applied to cases with no strict 
guarantee (for submodularity) since experience shows 
that it most often produces the same final solution as the 
standard greedy algorithm” (Minoux 1989). Based on the 
above observation and existing, positive results on the 
lazy greedy approach for k-GRIP (Summers et al. 2015), 
we also employ this technique and do so by means of a 
priority queue. Entries in the priority queue are of the 
form (e, g(e), r), where e ∈

(
V

2

)
⧵E , g(e) is the marginal 

gain of e, and r ∈ ℕ>0 is the round in which the gain was 
computed.

All our approaches improve the speed of the greedy 
algorithm by reducing the candidate set and/or by accel-
erating the objective function calculation/update. Nearly 
inevitably, the above incurs a smaller or larger trade-
off between speed improvement and solution quality 
degradation.

4.1 � SimplStoch

Our first idea is to simply apply the generic randomized 
technique proposed in generic form by Mirzasoleiman 
et al. (2015) in the context of k-GRIP. The main idea of 
Mirzasoleiman et al. (2015) is to not inspect all possible 
elements for insertion, but only a reduced sample S . For 
non-negative monotone submodular functions (which does 
not hold for k-GRIP), the stochastic greedy approach pro-
vides an approximation ratio of 1 − e−(1−�) , where 0 ≤ � ≤ 1 
is an accuracy parameter.

Regarding SimplStoch, any edge from S × S is a subset 
of 
(
V

2

)
⧵E ; during each iteration of the main loop, we sam-

ple uniformly at random s∶= n(n−1)∕2−m

k
log (

1

�
) vertex pairs 

(Line 8 in Algorithm (1)), resulting in O((n2 − m) log (
1

�
)) 

function evaluations overall. Those are performed via the 
Laplacian pseudoinverse obtained during preprocessing, in 
a similar way as in StGreedy. More precisely, L† is com-
puted once before the main loop (Line 5) and is used within 
the loop to quickly determine single evaluations (Line 10). 
Every time an edge is added to the graph, L† is updated 
accordingly via Eq. (4) (Line 13). The cost of the main 
loop for SimplStoch is reduced compared to greedy by a 
factor of k∕ log(1∕�) . Yet, computing L† is still very time- 
and space-consuming.

4.2 � ColStoch

Our first improvement upon SimplStoch avoids the full pseu-
doinversion of L , reducing the cost of Line 5 in Alg. 1. To 
this end, we make the following observation: evaluating a 
single vertex pair {a, b} via Eq. (5) requires only two col-
umns of L† ; precisely those corresponding to vertices a and 
b. That is why, instead of sampling elements from 

(
V

2

)
⧵ E , 

ColStoch restricts the sampling process to elements from 
V, the set of columns of L† . Carefully selecting S is critical 
as it affects the quality of the solution. Even if our problem 
is not submodular, we choose the default sample size of 
s = n

√
1

k
⋅ log(

1

�
) elements (Line 6), leading to O(n2 log(

1

�
)) 

evaluations over all iterations, similar to SimplStoch. The 
only difference here is that we sample pairs of L† columns, 
which is a subset of 

(
V

2

)
 and not 

(
V

2

)
⧵E . Obviously, we reject 

vertex pairs that already exist in the graph as edges.
Moreover, to limit the quality loss, we choose elements 

of S following graph-based sampling probabilities (details in 
Sect. 4.2.1). These probabilities are initially calculated during 
the compute step (Line 5) and are updated accordingly in the 
update step (Line 13). Function Candidates() also receives 
those sampling probabilities in each iteration (Line 8). Once 
S is determined, we compute all columns of L† corresponding 
to vertices in S . This step is performed once in the main loop 
after Line 8. For the complexity analysis, we consider it as 
part of the compute step and for that reason it is not depicted 
in the loop of the generic Algorithm 1.

We compute the columns corresponding to S by solv-
ing s linear systems. More precisely, we solve one linear 
system for each vertex a ∈ S ∶ Lx = ea −

1

n
⋅ 1 , where 

1 = (1,… , 1)T  and x ⟂ 1 . Once the sample set S ⊂ V  is 
determined, ColStoch performs function evaluations only 
between vertex pairs in S × S (Line 10). Finally, to further 
improve the overall running time, we do not update L†

�
[∶,S] 

for all a ∈ S at the end of each round (Line 13 of Algo-
rithm 1). Instead, we update individual columns of L† on 
demand; only if the corresponding vertices participate in the 
candidate set S of the following round.

To update previously computed columns, we use the out-
dated solver solution and apply the update formula Eq. (4) 
iteratively for all (in-between) rounds. To do so, we store 
columns together with the associated round number.

4.2.1 � diag(L†) strategy

Let us now explain the sampling probabilities for selecting 
S . Following previous studies (Van Mieghem et al. 2017; 
Wang et  al. 2014), vertex pairs with maximal effective 
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resistance are good candidates for largely decreasing the 
total effective resistance of a graph. However, the effective 
resistance metric is not directly applicable in our immedi-
ate context. Firstly, because ColStoch requires a vertex-
based metric and secondly (and more importantly) because 
computing the effective resistance for all vertex pairs 
{a, b} ∈

(
V

2

)
⧵ E would eventually mean to (pseudo)invert 

L—with the associated cost. To circumvent these issues, 
we sample vertices according to their corresponding diago-
nal entries in L† . Recall from Sect. 2 that these entries are 
proportionate to the electrical farness of the corresponding 
nodes. In other words, the diagonal entry L†[a, a] of a vertex 
a corresponds to the summed effective resistance between a 
and all other vertices: 

∑
b∈V⧵{a} rG(a, b) . Vertices with maxi-

mum L† diagonal values are connected badly to all other 
vertices in the graph (in the electrical sense) (Van Mieghem 
et al. 2017), which is why we select them with higher prob-
ability for an edge insertion.

Computing diag(L†) can be performed in almost-linear 
time by using the connection of effective resistance to uni-
form spanning trees (USTs) of G. A UST of G is a spanning 
tree drawn uniformly at random from the set of all span-
ning trees of G. Angriman et al. (2020) proposed an algo-
rithm that approximates (effective resistances and) diag(L†) 
via UST sampling techniques. The algorithm obtains a ±�
-approximation with high probability in O(m log4 n ⋅ �−2) 
time for small-world graphs (diameter bounded by O(log n) ). 
We provide here some details necessary to understand our 
new update strategy (Sect. 4.2.2) when an edge is added.

Following fundamental electrical laws, the effective 
resistance r(u, v) of vertices u and v is the potential differ-
ence between u and v when a unit of current is injected into 
G at u and extracted at v. According to Ohm’s law, when-
ever there is a potential vector x ∈ ℝ

n×1 on the vertices of 
G, there is also an electrical flow f ∈ ℝ

m×1 on the edges 
of the graph, equal to the potential differences and leading 
from the node with higher to the node with lower potential 
value. As a consequence, we can express r(u, v) (for any 
vertex pair (u, v)) as the sum of current flows on any path2 
⟨u = v0, v1,… , vk−1, vk = v⟩ as:

 Note that the sign of the current flow changes if we traverse 
an edge against the flow direction (and thus the sum may 
hide negative values when the direction is reversed). Equa-
tion (9) can also be written as, see Bollobás (1998)

(9)r(u, v) =

k−1∑

i=0

f[vi, vi+1]

where Nu,v(vi, vi+1) is the number of spanning trees in which 
the (unique) path from u to v contains (vi, vi+1) in that order 
and N is the number of all spanning trees of the graph G. 
The main idea of Angriman et al. (2020) is to compute a 
sufficiently large sample of uniform spanning trees (USTs) 
in order to approximate the effective resistances according to 
Eq. (10). The resistance values are then used for approximat-
ing the diagonal entries of L† , together with one column of 
L† derived from solving one linear system.

4.2.2 � Updating approximate diag(L†) after edge insertions

For updating diag(L†) within k-GRIP, we need to sample 
USTs for every new graph Gr+1 (in round r). We do so during 
the update step of Algorithm 1 (Line 13) and save computa-
tions by reusing previously computed USTs corresponding 
to Gr . This dynamic approximation approach can also be 
useful in other contexts. The re-used trees are not uniformly 
distributed in the new graph Gr+1 ∶= Gr ∪ {a, b} , however, 
and need to be reweighted accordingly. Moreover, we still 
need to sample a number of USTs corresponding to trees 
of Gr+1 that contain the additional edge {a, b} . To do so, we 
use a variant of Wilson’s algorithm (Wilson 1996). The final 
sample set is the union of the reweighted USTs (originally 
from Gr ) and the newly sampled USTs in Gr+1 . We provide 
the details in the following.

To account for an edge insertion into G, let the set of all 
spanning trees of G (before the edge insertion) be denoted 
as T = TG . When looking at the potential difference between 
two nodes u and v within one particular spanning tree T, 
then the electrical flow induced on each edge on the unique 
path from s to t in T is 1/N. Using the principle of super-
position for the electrical flow in G, we can then write 
r(u, v) =

∑k−1

i=0
f[vi, vi+1] =

∑
T∈T

∑k−1

i=0
� (�)[vi, vi+1] , where 

� (�)[⋅] restricts the electrical flow to edges of the respective 
spanning tree T (edges not in T contribute 0 to the sum). 
In the following, we use �(�,�)(T) ∶=

∑k−1

i=0
� (�)[vi, vi+1] as 

short-hand notation for the sum of the flows. Now let G′ be 
the new graph when an edge e = {u, v} is added to the graph 
G. Let � be a random variable from the uniform distribution 
over spanning trees of G. Then, r(u, v) = E

[
�(�,�)(�)

]
 and 

we are interested in computing their updated values upon 
edge insertions.

We define T�∶=TG� . Let �′ be a uniformly distributed val-
ued random variable over T′ . We consider ��

(�,�)
∶ T

�
→ ℝ 

and denote by �(�,�) = �
�

(�,�)
|T ∶ T → ℝ its restriction to 

spanning trees of G.

(10)r(u, v) = 1∕N

k−1∑

i=0

(
Nu,v(vi, vi+1) − Nu,v(vi+1, vi)

)
,

2  For the algorithm, it is beneficial to use shortest paths, though
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Lemma 1  Let G′ be the graph resulting from inserting 
e = {u, v} into G. Then,

Proof  Recall from above that rG� (u, v) = E

[
�

�

(�,�)
(��)

]
 . Also 

note that for any edge e� = {u�, v�} , it holds that its effective 
resistance equals the probability to be part of a UST. Now 
E

[
�

�

(�,�)
(��)

]
 can be computed by distinguishing whether e is 

contained in �′ or not:

using P
(
e ∈ ��

)
= rG� (u, v) =

rG(u,v)

1+rG(u,v)
 (the latter equation 

follows from (Ranjan et al. 2014, Cor. 3) by setting u = x = i 

(11)
r
G� (u, v) =

r
G
(u, v)

1 + r
G
(u, v)

E

[
��
(�,�)

(��) ∣ e ∈ ��
]

+
1

1 + r
G
(u, v)

E
[
�(�,�)(�

�) ∣ �� ∈ T
]
.

(12)

E
[

�′

(�,�)(�
′)
]

= P
(

e ∈ �′
)

E
[

�′
(�,�)(�

′) ∣ e ∈ �′
]

+ P
(

e ∉ �′
)

E
[

�′

(�,�)(�
′) ∣ e ∉ �′

]

= P
(

e ∈ �′
)

E
[

�′
(�,�)(�

′) ∣ e ∈ �′
]

+ P
(

e ∉ �′
)

E
[

�(�,�)(�′) ∣ �′ ∈ 
]

= rG′ (u, v)E
[

�′
(�,�)(�

′) ∣ e ∈ �′
]

+ (1 − rG′ (u, v))E
[

�(�,�)(�′) ∣ �′ ∈ 
]

=
rG(u, v)

1 + rG(u, v)
E
[

�′
(�,�)(�

′) ∣ e ∈ �′
]

+ 1
1 + rG(u, v)

E
[

�(�,�)(�′) ∣ �′ ∈ 
]

,

and v = y = j ) and the fact that T  equals T′⧵Te , where Te is 
the set of trees containing e. 	�  ◻

Adapting the UST Algorithm

The second term in Eq. (12) can be approximated using 
the USTs of G, which are already available from previous 
rounds of the algorithm. To approximate the first term, one 
can sample spanning trees of G′ which contain e. For this, 
we use Algorithm 2, which is a slight adaptation of Wilson’s 
algorithm with a modified starting state. A spanning tree 
which contains {u, v} can be reinterpreted as a forest with 
two components by removing {u, v} . Thus, we initialize our 
version of Wilson’s algorithm with a forest T with two com-
ponents where each component contains only one of u and 
v. Then, in each iteration we generate a loop-erased random 
walk from a random vertex until it hits a node in T.

Proposition 2  The distribution of forests T sampled by Algo-
rithm 2 is the uniform distribution on the set of all spanning 
trees which contain the edge {u, v}.

Proof  Avena et al. (2018) reformulate Wilson’s algorithm for 
uniform spanning forests (USFs) and multiple roots (one for 
each tree in the forest). That is why we set u and v as the roots 
of two separate trees, and let the algorithm compute a USF 
with two trees. The two trees in the USF are then linked by the 
edge {u, v} , resulting in a spanning tree T ′ of G′ . By the USF 
property of the two trees above the claim follows. 	�  ◻

Algorithm 2 Algorithm for sampling a UST of G containing a fixed edge {a, b}
1: function Sampling(G, a, b)
2: Input: Graph G = (V,E), edge {a, b} ∈ E
3: Output: T : UST of G containing {a, b}
4: T1 ← tree consisting of a
5: T2 ← tree consisting of b
6: Let x1, . . . , xn−2 be an arbitrary ordering of V \ {a, b}
7: for i ← 1, . . . , n− 2 do
8: P ← a random walk from xi to either T1 or T2
9: add the loop erasure of P to the tree hit by P

10: return T1 ∪ T2 ∪ {a, b}
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Algorithm 3 Compute diag(L†
Gr

) upon edge insertion
1: function ApproxUpdateDiag(Gr, r, u, U, t, w,R,Bu)
2: Input: Graph Gr = G ∪ {a, b}, current round r, pivot node u, UST container U [],

total # of USTs t, round weights w[], effective resistance estimates R[], BFS Tree Bu

3: Output: diag(L̃†
G′)

4: Rnew[v] ← 0 ∀v ∈ V \ {u}
5: ω ← rG′(a, b) = rG(a,b)

1+rG(a,b) � computed via L†
G′ [:, a] and L†

G′ [:, b] (linear systems)
6: for i = 0, . . . , r − 1 do
7: w[i] ← (w[i] · (1− ω))
8: U [i].resize(�w[i] · t�) � adjust # of USTs for round i acc. to round weights
9: w.append(ω) � add weight of current round

10: for i ← 1 to �ω · t� do � �ω · t� times
11: Ti ← Sampling(Gr, a, b) � O(mdiam(G))
12: Rnew ← Aggregate(Ti, Rnew, Bu) � O(ndiam(G))
13: U [r].append(Ti)
14: Rnew ← Rnew/ �ω · t�
15: R ← ωRnew + (1− ω) �R Acc. to Lemma 1
16: for v ∈ V \ {u} do � All iterations: O(n)

17: L̃†
G′ [v, v] ← R[v]− L̃†

G[u, u] + 2L̃†
G[v, u]

18: return diag(L̃†
G′)

Putting the Pieces Together

By applying Eq. (12) to the effective resistance estimates, we 
obtain Algorithm 3. It obtains an approximation for diag(L†

G� ) , 
where G′ is obtained from G by inserting an edge e = {a, b} . 
This algorithm is run each time after an edge is added to G. 
To obtain an initial set of USTs, the algorithm of Angriman 
et al. (2020) is applied to the original graph G. These USTs 
are stored in what we call the UST repository, which is used 
to also store USTs from graphs resulting from a series of edge 
insertions. All spanning trees together in this repository form 
a sufficiently large sample of USTs for the graph of the current 
round. Lines 4 and 5 initialize the vector of new resistance 
estimates and compute the effective resistance � of the inserted 
edge {a, b} . The latter is necessary to scale the contribution of 
the USTs from this and previous rounds according to Lemma 1 
(Line 15). How many USTs each round contributes is gov-
erned by the round weight w; both numbers have to be adapted 
according to � (Lines 7 and 8). After sampling and aggregating 
the new trees as well as updating R (Lines 10 to 15), the new 
diagonal approximation can be computed and returned.

4.3 � *StochJLT

In this section, we propose an improvement to SimplStoch 
that exploits the following observation: to evaluate the gain 
function for an arbitrary vertex pair {a, b} , we only require 
to compute the squared �2-norm of two distance vectors: 

b2
G
(a, b) =

‖‖‖L
†(ea − eb)

‖‖‖
2

 and rG(a, b) =
‖‖‖B

TL†(ea − eb)
‖‖‖
2

 
(Eqs. (7–8)). Viewing b2

G
(a, b) and rG(a, b) as pairwise dis-

tances between vectors in {L†}a∈V and {BTL†}a∈V (respec-
tively) allows us to apply the Johnson–Lindenstrauss trans-
form (JLT) (Johnson 1984). In this case, pairwise distances 
among vectors are nearly preserved if we project the vectors 
onto a low-dimensional subspace, spanned by O(log n∕�2) 
random vectors. The JLT lemma, in the improved version by 
Dasgupta and Gupta (2003), can be stated as:

Lemma 3  Given fixed vectors �� … , �� ∈ ℝ
d and 𝜂 > 0 , let 

Q ∈ ℝ
q×d be a random Gaussian matrix with entries from 

N(0,1) and q > 24 log n∕𝜂2 . Then with probability at least 
1 − 1∕n

for all pairs i, j ≤ n.

Using Lemma 3, we can simply project matrices L† 
and BL† onto q vectors, i.e., the q rows of some random 
matrices P ∈ ℝ

q×n and Q ∈ ℝ
q×m , respectively. To actually 

reduce the overall computation time, we need to avoid the 
involved pseudoinversion. For that, we resort to efficient 
linear system solvers. Thus, combining the random projec-
tions technique with fast linear solvers, one can approximate 
distances between vertex pairs within a factor of (1 ± �) in 

(13)
(1 − �)

‖‖‖�� − ��
‖‖‖
2

≤
‖‖‖Q�� −Q��

‖‖‖
2

≤ (1 + �)
‖‖‖�� − ��

‖‖‖
2
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O(I(n,m) log n∕�2) time, where I(n, m) is the running time 
of the Laplacian solver.

Hence to approximate b2
G
(a, b) and rG(a, b) , we compute 

t h e  p r o j e c t e d  d i s t a n c e s  ‖‖‖PL
†(ea − eb)

‖‖‖
2

 a n d 
‖‖‖QBL†(ea − eb)

‖‖‖
2

 , respectively. One can avoid the solution 
of two sets of Laplacian systems by expressing the effective 
resistances directly via the projection of (squared) bihar-
monic distances onto the lower-dimensional space. More 
precisely, one only solves LY = PT −

1

n
11TPT  . Due to 

L†
⋅
1

n
11T = O (the zero matrix), it follows Y = L†PT , so 

that we can express effective resistances as follows:

where we assume that Q and P are orthonormal matrices. 
Note that there are formulations of the JLT with orthonormal 
matrices, including very early ones (Johnson 1984; Frankl 
and Maehara 1988). The formulation in Lemma 3 with 
random Gaussian entries is only “almost” orthogonal; this 
condition is usually sufficient in practice (Achlioptas 2003). 
In our case, this would mean that the equality in Eq. (14) 
becomes “approximately equal”, which would be sufficient 
for our heuristics as well.

We can integrate the JLT approximation both in the context 
of ColStoch and SimplStoch (having ColStochJLT and Sim-
plStochJLT, respectively). For both approaches, we set 
� ∶= 0.55 in our experiments and thus consider it as a constant 
in the time complexity statements regarding *StochJLT. Let 
us consider the case of ColStochJLT: Again, the compute step 
is performed after selecting set S (just after Line 8). Indeed, 
we compute the vectors in {L†}a∈S and {BL†}a∈S for G0 , 
where s ∶= |S| = n

√
1

k
⋅ log(

1

�
) . Since, later, we only perform 

evaluations for pairs in S × S , it suffices to consider projec-
tions onto log s rows (via P ∈ ℝ

log s×n and Q ∈ ℝ
log s×m).

During the main loop of Algorithm 1, we perform the same 
number of overall function evaluations as in ColStoch, that 
is O�(n2) . However, now a single function evaluation for an 
arbitrary vertex pair takes O(log s) via the formula

(14)

‖‖QBYP(ea − eb)
‖‖
2
= (ea − eb)

TPTYTBTQTQBYP(ea − eb)

= (ea − eb)
TL†BTBL†(ea − eb) =

‖‖‖BL
†(ea − eb)

‖‖‖
2

,

(15)gain(a, b) ≈

‖‖‖PL
†(ea − eb))

2‖‖‖
1 + ‖‖QBYP(ea − eb)

2‖‖

(up to a relative error of (1 + �) ). For the update step, we 
need to sample new projections P and Q and recompute 
the two matrices PL† and QBYP . The dominant cost of the 
approach is due to the main loop, which takes O�(n2 log s) 
time. For SimplStochJLT, the time complexity is O�(n2 log n)

.

4.4 � SpecStoch

As the last approach in this section we propose to exploit the 
spectral expression of the gain function. More precisely, we 
combine the spectral expressions of effective resistance and 
(squared) biharmonic distance (Eqs. (8) and (7)) to write Eq. (5) 
as

Equation (16) benefits from the fact that both effective resist-
ance and (squared) biharmonic distance only depend on the 
spectrum of the same matrix L . Still, the full spectral decom-
position of L incurs O(n3) time and is equally prohibitive as 
computing L† for larger G. To reduce the complexity, we 
propose an approximation of Eq. (16) using standard low-
rank techniques (Bozzo and Franceschet 2012) and new 
bounds for both distances. To do so, we exploit the fact that 
the bulk of the eigenvalues tends to concentrate away from 
the smallest eigenvalues (Chung and Lu 2004). Moreover, 
we compute only a small number of eigenpairs on the lower 
side of the spectrum of L . We expect that the smaller eigen-
pairs have a larger influence on the sums of Eq. (16): for 
small i, contributions are accentuated by a large weight, 1

�2
i

 
(recall that we index the eigenvalues ordered non-decreas-
ingly). At the same time, the entries of eigenvector �� fluctu-
ate slowly, so we should carefully select {a, b} to avoid near-
zero contributions. On the other hand, for large i, the 
eigenvectors �� fluctuate rapidly, since they correspond to 
high-frequency modes of the spectrum (Spielman 2012). 
Their contribution to Eq. (16) is undermined by 1

�2
i

 (small for 
large i). The above observations suggest that for a new edge 
insertion {a, b} , the focus should be on eigenpairs corre-
sponding to small i.

We now show how to derive bounds for b2
G
(a, b) . First 

we break Eq. (8) into partial sums where c ≤ n is a cut-off 
value.

(16)gain(a, b) = n ⋅

∑n

i=2

1

(�i)
2
⋅ (��[a] − ��[b])

2

1 +
∑n

i=2

1

�i
⋅ (��[a] − ��[b])

2
.
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The first inequality holds for large enough eigenvalues ( ≥ 1 ), 
since �c ≤ �c+i and 1

(�c)
2
≥

1

(�c+i)
2
 for any i. Moreover, the third 

line comes from the following observation:

for a ≠ b since U is double-orthogonal. Moreover,

where the inequality in the third line holds, since �n ≥ �c+i 
for any i. Following the above, we can easily derive similar 
bounds for rG(a, b) . Plugging those bounds together, we can 
approximate Eq. (16) using the following inequality:

Adapting the general framework of Algorithm 1 for Spec-
Stoch is rather straightforward: In Line 5, we compute the 
first c eigenpairs along with the largest eigenvalue of L 
(corresponding to G0 ). We do so using standard iterative 

(17)

b2
G
(a, b) =

c∑

i=2

(��[a] − ��[b])
2

�2
i

+

n∑

i=c+1

(��[a] − ��[b])
2

�i
2

≤

c∑

i=2

(��[a] − ��[b])
2

�i
2

+
1

�c
2

n∑

i=c+1

(��[a] − ��[b])
2

≤

c∑

i=2

(��[a] − ��[b])
2

�i
2

+
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methods, such as the Lanczos algorithm (Paige 1980), 
which often takes only O(cm) time for sparse matrices (Koch 
2011), depending on the desired accuracy and eigenvalue 
distribution. During the main loop, the algorithm performs 
O

�(n2) function evaluations (dictated by the stochastic 
approach). Assuming “well-behaved” eigenvalues, single 
function evaluations in Line 10 require only O(c) time using 
the bounds in Eq. (20). Finally, we update the eigenpairs of 
Gr+1 in Line 13. To speed up the update step, we bootstrap 
the solution of the eigensolver with the solution of the previ-
ous round. Under our assumptions, the overall complexity 
of SpecStoch is O�(n2c + kcm) and in case both c ∈ O(1) 
and k ∈ O(1) , the overall time complexity becomes O�(n2).

5 � Heuristics for k‑LRIP

Recall the idea of the k-LRIP problem: consider a fixed focus 
node v. How can the robustness of the graph be improved 
when we restrict the edges that may be added to the graph to 
those that are incident to v? This problem is a local variant 
of k-GRIP in the sense that we can only add edges local to v. 
Still, we take a global view of the graph and try to improve 
the total graph resistance with no special consideration for v.

Now assume there is a set F of focus nodes and for each 
v ∈ F we want to solve the k-LRIP problem independently. 
Then, it makes sense to run the preprocessing steps of our 
algorithms just once and re-use the results when solving 
k-LRIP for each v ∈ F.

In the following subsections, we will describe how we 
adapt the heuristics from Sect. 4 to k-LRIP. Let us mention 
a few general aspects first. Since we still optimize for the 
total graph resistance, the formulas derived for k-GRIP 
can generally be re-used; the gain only becomes a function 
of one (fixed focus) node now. Also the basic structure of 
Algorithm 1 remains the same in general. Some changes 
to note: recall from Sect. 2 that the set of all candidates is 
Ωv . A candidate edge e = {v, b} from this set is uniquely 
identified by b. That is why a equals v in Lines 9 - 12. 
Moreover, in Line 9 we sample from S instead of S × S.

Compared to k-GRIP, the candidate set for k-LRIP is con-
siderably smaller. This reduces the number of evaluations 
in each iteration of the main loop (per focus node). Table 2 
shows the time and space complexities of all approaches for 
k-LRIP. For some heuristics, depending on the density of 
the graph, the dominant term becomes either the total num-
ber of evaluations (second column) or the update step (third 
column). If m is considerably larger than n, SimplStoch may 
actually provide the best overall time complexity.
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5.1 � SimplStoch

In the case of SimplStoch, preprocessing includes the com-
putation of the full pseudoinverse. When solving k-LRIP for 
multiple focus nodes, we store a copy of the pseudoinverse 
before we start the main loop of Algorithm 1. This copy is 
used to skip the computation of L† for the other focus nodes, 
reducing the time complexity of the Compute step to O(

n3

|F| ) 
per focus node (when amortized over all focus nodes). This 
approach is also applied to StGreedy.

Regarding sampling, we still want to inspect a subset S of 
Ωv . During each iteration of the main loop, we now sample 
uniformly at random s∶= n−1−deg(v)

k
log(

1

�
) vertices (Line 8 in 

Algorithm 1), resulting in O�(n) function evaluations overall; 
they are performed (as in k-GRIP) via Eq. (4) applied to L† 
(obtained during preprocessing). When an edge is added to 
the graph, L† is updated in the same way.

5.2 � ColStoch

For ColStoch, S is sampled from Ωv as well. The sample 
size is s∶= n−1−deg(v)

k
log(

1

�
) , which is also the same size as 

S in the case of SimplStoch. The concept of sampling only 
specific vertices (and thus reducing the required number of 
columns of L† ) that we described for k-GRIP has no signifi-
cance here, since all edges already have one incident node 
(and therefore column of L† ) in common. Hence, the sets 
from which we sample for SimplStoch and ColStoch from 
k-GRIP are the same when considering a fixed focus node 
v. The remaining difference is that we are still using graph-
based sampling probabilities as described in Sect. 4.2.1 
(instead of uniform sampling as in SimplStoch) and do not 
compute the full pseudoinverse; instead, we solve linear 

systems for each column of L† corresponding to S again, 
including the lazy update strategy described for k-GRIP.

The preprocessing in ColStoch consists of (i) setting up 
a linear solver that computes the required columns of L† and 
(ii) computing the initial sampling probabilities for S , which 
involves approximating diag(L†) . The initial states of both 
the solver and diag(L†) are stored as a copy and can then 
be used to setup ColStoch before the main loop instead of 
re-computing them.

Regarding the running time of the main loop, ColStoch 
may be slower than SimplStoch due to the additional time 
for approximating diag(L†) . The overall time needs to con-
sider the preprocessing as well—how costly that is with the 
different methods depends (mostly) on the graph size and 
its density. We expect ColStoch to provide higher quality 
results than SimplStoch, though, since we are using graph-
based probabilities instead of uniform sampling, as dis-
cussed in Sect. 4.2.1.

5.3 � *StochJLT

As in the case of k-GRIP, we calculate rG(v, b) and b2
G
(v, b) 

using the JLT technique. In *StochJLT, preprocessing 
involves setting up the linear solver and computing the pro-
jection with the two matrices P and Q . Again, results can 
be stored and used to initialize the solver for the next focus 
node (with G reset to its original state).

5.4 � SpecStoch

As for k-GRIP, the gain function only depends on the spec-
trum of L . The integration of this approach into Algo-
rithm 1 is similar to k-GRIP: in the compute step, the first 
c eigenpairs and the largest eigenpair of L are computed 

Table 2   Time complexities 
(assuming standard (pseudo)
inversion tools, linear solvers, 
and eigensolvers used in 
practice for Laplacians 
of general graphs) of all 
approaches involved for k-LRIP 
for one focus node

Columns correspond to major steps of Algorithm 1. The Õ-notation hides log(1∕�) factors, where � is the 
accuracy threshold of the linear solver. The O′-notation hides log(1∕�) factors, where � determines the sam-
ple size in the stochastic candidate selection. Note that we consider the JLT parameter � as a constant. The 
time complexity of the compute step is amortized over all focus nodes F. More details in the text

Compute #Evals × SingleEval All updates Memory

StGreedy O(
n
3

|F| )
O(kn) × O(n) O(kn2) O(n2)

SimplStoch O(
n
3

|F| )
O

�(n) × O(n) O(kn2) O(n2)

ColStoch Õ(
sm log n

|F| ) O
�(n) × O(n) Õ(ksm log n) O((s + �)n) + m)

SimplStochJLT Õ(
m log n

|F| ) O
�(n) × O(log n) Õ(km log n) O((s + log n)n + m)

ColStochJLT Õ(
m log n log s

|F| ) O
�(n) × O(log s) Õ(km log n log s) O((log s + �)n + m)

SpecStoch O(
cm

|F| ) O
�(n) × O(c) O(kcm) O(cn + m)
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using iterative solvers, usually taking O(cm) time. These 
are then stored for setting up the next focus node. Then, in 
the main loop, we use the eigenpairs to compute the gain 
in Eval. When adding an edge to the graph, we compute 
the eigenpairs again (Line 13) and (as before) bootstrap 
the new solution process with the previous round to speed 
up the computation.

Since we are restricted to a fixed focus node in k-LRIP, 
the search space (and number of calls to Eval) is reduced 
when compared to k-GRIP. However, for SpecStoch, this 
has less of an effect on the overall running time than for 
the other heuristics, since in SpecStoch a single evaluation 
is rather cheap and the expensive computations are shifted 
to the Compute and Update steps (where we compute 
eigenpairs). Hence, we expect that SpecStoch performs 
worse for k-LRIP than it does for k-GRIP.

6 � Experimental results

We conduct experiments to demonstrate the performance 
of our contributions compared to StGreedy. All algorithms 
are implemented in C++, using the NetworKit (Staudt 
et al. 2016) graph APIs. Our test machine for k-GRIP is a 
shared-memory server with a 2x 18-Core Intel Xeon 6154 
CPU and a total of 1.5 TB RAM. For k-LRIP, we use a 
machine with a Intel Xeon 6126 CPU and 192 GB RAM. 
To ensure reproducibility, experiments are managed by 
SimexPal (Angriman et al. 2019). Moreover, we use both 
synthetic and real-world input instances. The synthetic 
ones follow the Erdős–Rényi (ER), Barabási–Albert (BA) 
and Watts–Strogatz (WS) models. The real-world graphs 
are taken from SNAP (Leskovec and Krevl 2014) and NR 
(Rossi and Ahmed 2015), including application-relevant 
power grid and road networks, see Table 3. In this con-
text, we consider small graphs those whose vertex count 
is < 10 K and medium graphs those whose vertex count is 
above that but below 57K. The largest graph has around 
129K nodes. To evaluate the quality of the solutions, we 
measure gain improvements: R(G) −R(Gk) . To this end, 
after selecting a new edge {a, b} for insertion, gain(a, b) is 
computed via a Laplacian system, for all approaches. This 
allows us to compare the results of different approaches in 
fair manner. Our code and the experimental pipeline are 
available at https://​github.​com/​hu-​macsy/​2023-​kgrip-​klrip.

We organize our experimental evaluation in three groups: 
first, we present experiments for configuring parameters. 
Second, we evaluate all approaches for k-GRIP in terms of 
quality and running time. Third, we evaluate all approaches 
for k-LRIP.

6.1 � Configuration experiments

We start by evaluating the performance of SimplStoch for 
different accuracy values on the small and medium graphs 
of Table 3. Following the experiments in Mirzasoleiman 
et al. (2015), we set the accuracy parameter � to 0.9 and 
0.99 (which are reasonable values according to the experi-
ments of Mirzasoleiman et al. (2015) and our own prelimi-
nary experiments). In Table 4, we see that there is a clear 
trade-off between quality and running time, controlled by 
the accuracy parameter. Still, even for a large � , the solu-
tion of SimplStoch is not far off compared to StGreedy, 
being only 8% off in the worst data point ( k = 2 ). We also 
note that the solution quality is improved as k becomes 
larger. To benefit from that trade-off, in the following 
experiments we set � at 0.9 for small and medium graphs 
and 0.99 for larger ones.

Additionally, we perform configuration experiments to 
determine the quality of the gain approximation via Eq. (20) 
for SpecStoch. To do so, we randomly select a vertex pair 
and compute Eq. (20) for different numbers of eigenvectors. 
We measure the relative error of the approximation com-
pared to a full-spectrum computation. In Fig. 1, we depict 
the results for synthetic graphs and eigenvector number 
from 1 to n = 1000 . Even for a few tens of eigenvectors, the 
relative errors for WS and ER are already quite small. The 

Table 3   Summary of graph instances, providing (in order) network 
name, vertex count, and edge count

Graph |V| |E|

inf-power 4K 6K
facebook-ego-combined 4K 8.8K
web-spam 4K 37K
Wiki-Vote 7K 100K
p2p-Gnutella09 8K 2.6K
p2p-Gnutella04 10K 39K
web-indochina 11K 47K
ca-HepPh 11K 117K
web-webbase-2001 16K 25K
arxiv-astro-ph 17K 196K
as-caida20071105 26K 53K
cit-HepTh 27K 352K
ia-email-EU 32K 54.4K
loc-brightkite 57K 213K
soc-Slashdot0902 82K 504K
ia-wiki-Talk 92K 360K
flickr 106K 2.31M
livemocha 104K 2.19M
road-usroads 129K 165K

https://github.com/hu-macsy/2023-kgrip-klrip
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relative error for BA is larger and would require a couple of 
hundreds eigenvectors to achieve a similar approximation.

Finally, we experiment with different solvers for the 
solution of Laplacian linear systems. We decided to use 
the sparse LU solver from the Eigen  library (Guennebaud 

et al. 2010) for small and medium graphs and the LAMG 
solver (Livne and Brandt 2011) from NetworKit for larger 
ones. We do so, because LAMG exhibits a better empiri-
cal running time for larger complex networks than other 
Laplacian solvers. For the solution of the eigensystem 

Table 4   Quality and speedup of SimplStoch  (relative to StGreedy) for different approximation bounds

SimplStoch Relative Quality

k = 2 k = 5 k = 20 k = 50 k = 100

� = 0.9 0.9662 0.9610 0.9696 0.9810 0.9898
� = 0.99 0.9239 0.9241 0.9442 0.9559 0.9694

SimplStoch Relative Speedup

k = 2 k = 5 k = 20 k = 50 k = 100

� = 0.9 2.6 2.6 2.7 2.7 3.1
� = 0.99 4.0 3.9 4.2 4.1 4.6
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(b) ER: probability p = 0.01
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(c) BA: m0 = m = 4

Fig. 1   Relative error of gain via Eq. (20) for different number of eigenvectors

Fig. 2   Aggregated results (via geometric mean) of k-GRIP on medium graphs ( n < 57K ) for different k. Results are relative to StGreedy 
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(required by SpecStoch), we use the Slepc library (Hernan-
dez et al. 2005).

6.2 � Results for k‑GRIP

We first compare our approaches on the small and medium 
graphs of Table 3, configured according to the previous 
section. Closely behind StGreedy, SimplStoch and Col-
Stoch produce the best solutions and they are on average 
2% away from the reference (Fig. 2a). Moreover, SpecS-
toch, SimplStochJLT and ColStochJLT are away by 9%, 
14% and 15%, respectively. Regarding running time, the 
JLT-based approaches are the fastest, being on average 
48× (SimplStochJLT) and 68× (ColStochJLT) faster than 

StGreedy (Fig. 2b). The scaling of ColStochJLT is worse 
than that of SimplStochJLT for large k. This is due to the 
update step of Algorithm 1, where ColStochJLT needs to 
update both the effective resistance metric and the neces-
sary operations for JLT. Although the slowest, SimplStoch 
has a good scaling behavior as it performs only few com-
putations in the update step and thus is (mostly) independ-
ent of k. Overall, SpecStoch may be the best approach for 
medium graphs in a wide variety of applications since it 
produces good quality results and is on average 26× faster 
than StGreedy. Detailed runtime results are available in 
Table 5. A disadvantage of SpecStoch is that the running 

Table 5   Runtime results in seconds for k-GRIP for k = 2 and k = 100 for medium graphs

For each instance the fastest solver is emphasized in bold

k=2

Algorithm Simpl Simpl Col Col Spec StGreedy

Stoch JLT Stoch JLT Stoch

inf-power 50.0 1.6 10.1 3.2 4.0 118.3
facebook-ego-combined 18.6 1.7 5.8 0.7 4.1 46.0
web-spam 29.2 3.4 17.8 1.8 5.6 68.5
Wiki-Vote 110.1 9.0 65.7 5.4 12.7 357.6
p2p-Gnutella09 137.3 13.0 94.6 8.1 16.3 296.0
p2p-Gnutella04 452.5 38.2 297.0 28.1 40.1 1163.2
web-indochina 489.6 10.6 95.9 1.9 15.2 1700.3
ca-HepPh 479.2 24.1 261.1 15.1 31.8 1312.5
web-webbase-2001 1634.4 20.1 292.5 2.4 25.8 6402.5
arxiv-astro-ph 1696.5 166.4 1426.0 135.4 165.4 5628.3
as-caida20071105 6664.3 93.7 1434.5 8.0 88.9 17544.7
cit-HepTh 4956.7 893.4 6973.9 816.0 871.2 13818.5
ia-email-EU 11719.3 108.5 2491.7 5.2 101.8 32679.4

k=100

Algorithm Simpl Simpl Col Col Spec StGreedy

Stoch JLT Stoch JLT Stoch

inf-power 41.5 3.4 125.3 140.1 63.6 594.6
facebook-ego-combined 19.9 14.3 19.1 23.5 56.6 139.3
web-spam 31.0 18.3 50.8 32.5 80.2 79.3
Wiki-Vote 121.4 45.1 122.1 50.4 133.0 428.9
p2p-Gnutella09 141.3 51.5 173.7 54.7 114.5 314.3
p2p-Gnutella04 448.2 129.3 580.5 133.7 164.6 1298.2
web-indochina 512.6 18.3 137.8 73.6 161.1 3524.8
ca-HepPh 498.4 88.6 439.2 136.9 245.1 1499.1
web-webbase-2001 1520.0 23.9 295.4 74.5 209.9 14802.7
arxiv-astro-ph 1730.6 469.1 2649.4 523.3 467.6 7711.7
as-caida20071105 7712.0 130.2 1630.8 113.1 475.7 18350.9
cit-HepTh 4932.2 1960.1 13094.1 2122.5 1544.7 11253.3
ia-email-EU 11820.4 136.0 3000.7 65.7 428.6 32771.2
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time becomes worse as k grows due to the k eigensystem 
updates.

Finally, in Fig. 3 we depict results for the large graphs 
of Table 3. For this experiment, we report absolute values 
since we do not have a clear reference. With a time limit of 
12 hours, StGreedy always times out. These results show 
that a cubic approach such as StGreedy becomes impracti-
cal once the number of nodes in the graph exceeds a certain 
threshold (such as 57K in our tests). The best approaches for 
large graphs are ColStochJLT and ColStoch. Both of them 

produce the highest quality results, with ColStoch slightly 
ahead. ColStochJLT is the fastest approach, requiring on 
average 2 [resp. 20] minutes for k = 2 [resp. k = 20 ]. Spec-
Stoch is on average as fast as ColStoch, but its performance 
depends a lot on spectral properties (clustered eigenvalues 
or not) of each input, as shown by the degree of skewness 
in Fig. 3.

Fig. 3   Aggregated results (via geometric mean) of k-GRIP on large graphs ( n ≥ 57K ) for different k 

Fig. 4   Aggregated quality results (using geometric mean) of k-LRIP 
on small and medium graphs ( n < 57K ) for different k. Results are 
relative to StGreedy 

Fig. 5   Preprocessing times for different graphs, taking the arithmetic 
mean over all k. See Table 3 for size information
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6.3 � Results for k‑LRIP

For k-LRIP, we use the same parameter settings determined 
in Sect. 6.1 and choose 25 focus nodes at random to run our 
algorithms on, with a 6-hour time limit for each experiment. 
We evaluate k ∈ {2, 5, 20} , which means that we have to 
compute up to 20 ⋅ 25 = 500 Update steps overall—up to 
5× more than for k-GRIP. At the same time, the number of 
Eval computations is reduced as described in Sect. 5. (One 
could of course increase k and decrease the number of focus 
nodes at the same time and reach about the same number of 
Update and Eval calls.)

Quality and speedup shown in this section are the geo-
metric mean of the results for all focus nodes (in relation to 
the baseline StGreedy). Absolute running times are aggre-
gated using the arithmetic mean. When comparing the run-
ning time of k-LRIP, we compute the running time for a 
focus node by taking the actual execution time of the main 
loop of Algorithm 1 for that focus node and add to this 1

|F| 
( 1
25

 in our case) of the preprocessing time, such that the pre-
processing time is amortized over all focus nodes.

For the evaluation, we first compare the solution qual-
ity for the small and medium graphs of Table 3, see Fig. 4. 
Here, ColStoch produces the best results, followed by Col-
StochJLT. Depending on k, ColStoch produces results that 
are on average 4%–12% away from StGreedy. The Simpl-
Stoch* results are 20%–30% away from StGreedy, showing 
that our graph-based sampling technique applied in Col-
Stoch does improve the quality of the solution. SpecStoch 
appears to be not competitive.

Next, we take a look at the preprocessing time for 
our approaches (Fig. 5). As expected, we can see a clear 

difference between the approaches that compute the full 
pseudoinverse (stGreedy and simplStoch) and those that 
set up a linear solver. The preprocessing time for the solver-
based heuristics depends on the density of the graph. A 
good example of this observation is the difference in pre-
processing time for the two instances web-indochina-2004 
and arxiv-heph. Both graphs have about the same number of 
nodes, but arxiv-heph contains about 2.5 times more edges, 
which increases the preprocessing time for ColStoch, Col-
StochJLT and SimplStochJLT by an order of magnitude. 
Still, the solver setup is considerably faster than calculating 
L† , being up to three orders of magnitude faster for larger, 
sparse graphs. Generally, the preprocessing of the *JLT vari-
ants is slightly slower than without JLT, since we have to 
set up the projection as well. Computing the eigenpairs for 
SpecStoch is faster than calculating L† , but slower than set-
ting up linear solvers. One should keep in mind, though, that 
for SpecStoch this preprocessing computation is mostly the 
time to calculate the eigenpairs, which is the same computa-
tion required for the edge insertion update for SpecStoch.

Finally, we compare the running time of our approaches. 
We split the speedup results into two figures for small and 
medium graphs, respectively (Fig. 6). For both cases, SpecS-
toch has an average speedup of less than one. This is due to 
the large number of eigenpair computations required, which 
are slow, as we have seen in preprocessing. For this reason, 
most experiments with medium graphs and k = 20 did not 
finish for SpecStoch.

Regarding the other heuristics: for small graphs, Sim-
plStoch is the fastest algorithm, with an average speedup 
of 1.01. The other algorithms are slower than StGreedy, 
because computing L† for a small graph is still fast enough 
in practice and the update step generally is fast as well. 

(a) Small Graphs (b) Medium Graphs

Fig. 6   Aggregated speedup results of k-LRIP on small and medium graphs for different k. Results are relative to StGreedy 
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Considering that all approaches finish in at most 12 sec-
onds (Fig. 7a), StGreedy is fast enough, so that these small 
graphs do not require (and do not benefit from) more com-
plicated heuristics.

For the medium graphs, SimplStochJLT is the fastest 
approach with a speedup of up to 9× for k = 2 . This is 
to be expected, since the JLT strategy generally reduces 
computation time. The second fastest solution is Col-
StochJLT, which is explained by the additional time 
required to approximate diag(L†) . ColStoch is still faster 
than SimplStoch for small k, but for k = 20 both are almost 
equal. We also notice that for the cit-HepTh graph, which 
is considerably denser than all other graphs ( m = 352K), 
the solver-based heuristics (simplStochJLT, colStochJLT 
and colStoch) time out, while the L†-based heuristics do 
not. The reason for this is that the time complexity of the 
solver update step depends on m.

Even though the preprocessing itself is more expen-
sive for SimplStoch, once L† is computed, the update step 
is considerably cheaper than in the case of linear solvers 
and as such SimplStoch is competitive for larger k ⋅ |F| , 
where there are many updates, as long as computing L† is 
feasible. Of course, for large enough graphs, one cannot 
compute L† in reasonable time as we have seen for the 
large graphs in k-GRIP.

Overall, based on these results the choice of the best 
heuristic depends on k, |F|, and the density of the graph. 
In general, there is a trade-off between running time and 
quality. For the fastest solution, one should choose Simpl-
StochJLT. When quality is the larger concern, ColStoch 

provides good results. With ColStochJLT, there is also 
an option in the middle, providing good quality and time.

7 � Conclusions

To conclude, our randomized techniques for speeding up the 
state-of-the-art greedy algorithm for k-GRIP do pay off. For 
medium-sized graphs, ColStoch provides already a decent 
6× acceleration with a quality close to greedy’s. Here, a 
subset of vertices i is selected for which L†[i, i] and, thus, 
their summed effective resistances are large. When favor-
ing speed over quality, SpecStoch, which exploits spectral 
properties of the graph, offers an alternative (on average 28× 
faster than greedy). For larger graphs and whenever high 
quality is desirable, the best option is ColStoch. When run-
ning time is important and a decrease in quality is allowed, 
ColStoch can still be significantly accelerated by JLT, i.e., 
ColStochJLT.

Similar results can be observed for the related k-LRIP 
problem. Some differences occur, though: for small graphs 
(roughly 10,000 nodes or less), StGreedy is fast enough 
since the running time and space consumption of the pseu-
doinversion are still tolerable and can be amortized over the 
numerous focus nodes. When the graphs become larger, our 
new heuristics pay off for k-LRIP as well—except SpecS-
toch, which is dominated in terms of quality and running 
time.

Our future plans include the extension of the problem 
to edge deletions. This problem is related to the protection 

(a) Small Graphs (b) Medium Graphs

Fig. 7   Aggregated running time results of k-LRIP on small and medium graphs for different k. Results for SpecStoch are orders of magnitude 
larger and not shown here for readability
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of infrastructure and also important in corresponding 
applications.
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