EXOSKELETWINDOW

Thin-glass window embedded with soft pneumatic actuator

Congrui Zha
M.Sc. Thesis in Building Technology
Delft University of Technology
Netherlands

Mentor team

First mentor(structure design): Christian Louter

Second mentor(facade design): Tillmann Klein

External consultant (computational design): Serdar Asut

External mentors from ABT(computational design): Frank Huijben and Chris van der Ploeg

Prototype

Content

- 1. Introduction
- 2. Hypothesis-based research
- 3. Draft design
- 4. Mathematical model and assumption
- 5. Simulation and further design
- 6. Conclusion and discussion

Part 1

Introduction

How window open for natural ventilation nowadays

O Unpredictable wind

O Monotonous window openings

O Difficult to control inlet air velocity and direction

Main questions

How can soft pneumatic actuator(SPA) bend thin-glass windows structurally for natural ventilation?

Sub-questions

- O How to prove curved window can decrease predict dissatisfied percentage due to draft (PPDR)
- Considering natural ventilation function, which window configuration can be developed
- What is the relationship between SPA geometry, air pressure and bending radius.
- o How to design window frame

Part 1.1

Methodology

Hypothesis

A: Soft pneumatic actuator can bend insulating thin glass window

B: Curved window can improve predict dissatisfied percentage due to draft

Hypothesis

A: Soft pneumatic actuator can bend insulating thin glass window

B: Curved window can improve predict dissatisfied percentage due to draft

Hypothesis based Research

A: Soft Pneumatic Actuator, thin glass and Window detail

B: Aerodynamic theory and Draught model

Hand calculation based approximation

A: Structure mechanism, SPA morphology generation

B: Inlet air flow rate

Hand calculation based approximation

A: Structure mechanism, SPA morphology generation

B: Inlet air flow rate

Simulation based approximation

A: Soft Fiber-Reinforced Bending Actuator, SPA

B: Mean air velocity and predict dissatisfied percentage due to draft(PPDR)

Experiment based evaluation

A: Model making by increase air pressure to test bending behavior

Part 2

Hypothesis-based research

- o High strength
- o Flexibility
- o Lightweight

Source: (Schott, 2016)

Previous research on thin glass topic

Thin glass adaptive facade Source: (Rafael, 2016)

Water and air tight bending facade Source: (Özhan, 2017)

Folding-canopy roof Source: (Prof. Jürgen Neugebauer, 2014)

Bamboo and thin glass roof

Source: (Priyanka, 2016)

Thin glass sandwich panel

Source: (Iris, 2017)

Chemically strengthened borosilicate glass

	Leoflex (0.85mm)	Thermally tempered (3.2mm)
MECHANICAL CHARACTERISTICS		
Strength / Marginal stress 短期許容応力 (MPa)	260	80
Young modulus ヤング率 (GPa)	74	70
Poisson ratio ポアッソン比	0.23	0.2
Density 密度 (g/cm³)	2.48	2.5

Thin glass mechanical properties

Stress cross-sectional of chemically strengthened glass

Stress on surface by bending curvature

New material possibilities

New material possibilities

Wing-wall concept

Tilt and turn window concept

Variable opening radius adaptable to external environment

CFD simulation comparison

Why curved window

Fanger and Pedersen(1977) experiments shows that a fluctuating air flow is more uncomfortable than a constant flow with the same mean velocity.

CFD simulation comparison

Opening size-A/ Drag force 46/ Drag coefficient 1.64

Opening size-B/ Drag force 28/ Drag coefficient 1.18

Opening size-A/ Drag force 64/ Drag coefficient 2.10

Opening size-B/ Drag force 47/ Drag coefficient 1.78

Soft robotics

Source: (soft robotic toolkit, 2015)

Two soft actuators comparison

Soft Fiber-Reinforced Bending Actuators

Source: (soft robotic toolkit, 2015)

Soft Pneumatic Actuator

Source: (soft robotic toolkit, 2015)

Two soft actuators comparison

Soft Fiber-Reinforced Bending Actuators

Soft Pneumatic Actuator

Source: (soft robotic toolkit, 2015)

Relative Research- SPA- Actuator morphology influences air pressure

Conclusion

To achieve full bending motion, Thinner wall, more chamber numbers and higher segments requires least air pressure

Relative Research- SPA- Variable Stiffness at different localities to conform to the shape

Structural mechanism

 $M_{stretch}=?$

Contacting based bending

Structural mechanism

$$\frac{1}{R_1} = \frac{M_{\text{stretch}}}{EI}$$

$$\frac{1}{R_2} = \frac{M_{contact}}{EI}$$

- O Bending moment (M) by pressure
- O Rubber tensile stress (σ)
- O Thin glass tensile stress(σ)
- O End edge deflection(δ)

Product mechanism- stretching model

Product mechanism- strain energy method

- Gas compression
- O Elastic rubber deformation
- O Work added by an external load

$$W = W_{air} + W_{silicom} + W_{load}$$
 $h = 50mm$

$$h = 50 \text{mm}$$

$$P = 0.55MPa$$

$$\frac{\delta W_{\text{silicon}}}{\delta \lambda_1} + \frac{\delta W_{\text{air}}}{\delta \lambda_1} + \frac{\delta W_{\text{load}}}{\delta \lambda_1} = 0$$

$$d = 8mm$$

$$M_{\text{stretch}} = 189 \text{Nmm}$$

Product mechanism- contacting model

Product mechanism- contacting model

h = 50mm

d = 8mm

 $M_{contact} = PAe = 2775Nmm$

A= Contacting area

P= Air pressure

Product mechanism- stretching and contacting model

Α

В

M stretch = 189Nmm

M contact = PAe=2775Nmm

Soft Robotics Technology Utilities

o Gripper

Octopus gripper-Festo

Soft Robotics gripper

Soft Robotics gripper

O Rehabilitation

Skewed rotary elastic chambers bending actuator

Soft robotic glove

o Sun shading

Adaptive Solar Façade installed at ETH House of Natural Resources

Soft Pneumatic Actuator-benefit

- o Curvature adaptive
- o Continuous form change
- Lightweight
- Easily controlled and measured
- o Less mechanical equipment

Part 3

Draft design

Hand sketches

Bi-direction opening window

Variable stiffness with jamming chamber

Top hung window

Four opening directions prototype

Design A Design B

Design D

Parametric geometry generation

Part 4

Mathematical model and assumption

Opening size calculation

Opening size = $L(\sin\theta + \sin 2\theta + \sin 3\theta + \dots + \sin n\theta)$

$$\theta = L_2/R_2$$

$$\sigma = \frac{ET}{2R_2}$$
 $\theta = \frac{LM_2}{EI} = \frac{L}{R}$

Product mechanism- rigid spacer

$$I_1 = \frac{b}{12} (h^3 - h_c^3)$$

$$I_2 = \frac{b}{12} h_c^3$$

$$I_1 = \frac{b_1}{12} (h^3 - h_c^3)$$

$$I_2 = \frac{b_2}{12} h_c^3$$

Flexural rigidity = $E_1 I_1 + E_2 I_2$

$$\sigma_{\text{1max}} = \pm \frac{M(h/2)E_1}{E_1 I_1 + E_2 I_2}$$

$$\sigma_{2\text{max}} = \pm \frac{M(h_c/2)E_2}{E_1 I_1 + E_2 I_2}$$

$$R = \frac{E_1 I_1 + E_2 I_2}{M}$$

t = 0.55 mm

 $h_c = 12 \text{mm}$

M= 2775Nmm

R = 346m

Correction: Soft actuator morphology-enlarge bending moment

 $h_c = 4 \text{mm}$

n = 25

M= 210000Nmm

Spacer material-super spacer edgetech

Contact +44 (0) 2476 639931 Email: ukenquiries@edgetechig.com

HOME

PRODUCTS

DEALERSHIP+

PRESS AREA NEWS ROOM

OM

CONTACT US

CUSTOMER LOGIN 🎤

p

Energy Efficient

80% of the energy lost through a window occurs at the edge of the glass because of the highly conductive nature of aluminium spacer. Super Spacer® is 950 times less conductive, blocking heat loss and reducing energy costs. Super Spacer reduces window U-values by up to 0.2W/m2K allowing windows to achieve the highest Window Energy Ratings.

Download the leaflet 👤

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies

Product mechanism- effective flexural stiffness of insulating window-correction

0.55mm thickness thin glass and 12mm super spacer

$$I_1 = \frac{b_1}{12} (h^3 - h_c^3)$$

$$I_2 = \frac{b_2}{12} h_c^3$$
 Flexural rigidity = $E_1 I_1 + E_2 I_2 = 1.9 * 10^9 \text{ N mm}^2$

$$I_2 = \frac{b_2}{12} h_c^3$$
 Flexural rigidity = $2E_1 I_1 + E_2 I_2 = 1.3 * 10^6 \text{ N mm}^2$

Calculation integration

Calculation integration

Part 4.1

Draft experiment

Pouring De-gas

Material property

Tensile strength: 6.5MPa Elongation at break: 700% Break at air pressure: 1 bar

Disadvantage

Low tensile strength: 6.5MPa

Before After

Bubbles – may be a weak spot. Inspect closely.

Cure

The lat Yes Setting Decision Rights Pederson Nels CUCCI Propore Montator © Cut of thems User type District Pederson Some Trace of the Cut of thems Some Trace of the Cut of thems The Some Trace of the Cut of the Cu

Cura simulation

Ultimaker 3

TPU 95A

Soft robotics prototype

Material property

Tensile stress at yield: 8.6MPa Elongation at break: 580%

Maximum air pressure: 4 bars

Disadvantage

High tensile modulus: 26MPa Leakage between layers

Production and cost

Description	x y z extents (mm)	Quantity	Unit
FDM: Material= Nylon 12	77.209*46.511*30 0.000	Ī.	\$377
FDM: Material= ABS	77.209*46.511*30 0.000	1	\$324

Material property

Tensile stress at yield: 11MPa Elongation at break: 600% Maximum air pressure: 7 bars

Part 4.2

Further design

Inspiration- Bellows grippers Festo

Inspiration- Bellows grippers Festo

Bellows connection remove

Bellows geometry generation

Design A

Design B

Bellows geometry generation

- O Decreasing segments height
- O Keep contacting area same
- O Decreasing segments thickness
- O Fillet bellow corners

Mould making and Production

Mould making and Production

Design A

Top view

Clamping edge Rendering

Design B

Design C- bottom edge clamping method

Opening on side edge

Bottom edge

Inside view

Outside view

Part 4.3

Installing process

Thin glass panel edge painting

Part 5

Simulation

Structure equivalent

Flexural rigidity = $2E_{thin glass} I_{thin glass} + E_{super spacer} I_{super spacer}$ = $E_{equivalent} I_{equivalent}$

Thickness = 1.1mm

 $E_{\text{equivalent}} = 84556MPa$

Geometry

Separate segments

Connected segments

Whole segment

Pressure correction

Validation

Material inflating comparing

Natural rubber

Elastosil silicone

(1, 13, 69ee0)
(1-5, 29ee0)
(1-6, 29ee0)
(1-6,

Natural rubber Elastosil silicone

Segments inflating deformation

Segments inflating stress simulation

Tensile strength: Natural rubber 28MPa
Elastosil silicone 6.5MPa

Part 5.1

Indoor comfort simulation

Relationship between air speed and air temperature in comforting human

Comfort From Moving Air vs. Temperature Rise, For Different Radiant Temperatures

Inlet air temperature

5°C lower than radiant temperature

0 3°C increasing need 0.8m/s increasing

5°C higher than radiant temperature

0 3°C increasing need 1.6m/s increasing

• Maximum allowable elevated airspeed is 1.5 m/s

How to quantify indoor comfort by ventilation

- O Air temperature (ta)
- Mean air velocity (v)
- O Turbulence intensity (Tu)

Percentage Dissatisfied due to draft

PD=
$$3.143(34-t_a)(\overline{V}-0.05)^{0.6223} + 0.3696\overline{V}Tu(34-t_a)$$

$$(\overline{V}-0.05)^{0.6223}$$

for \overline{v} <0.05 m/s insert \overline{v} =0.05 m/s

for PD>100% use PD=100%

Fig. 19. A three-dimensional representation of the draught-risk model. The surfaces shown correspond to 10%, 15% and 20% dissatisfied respectively. The axes are turbulence intensity, mean air velocity and air temperature.

Source: (Fanger, 1988)

Standard room configurations

Air exhausting

Air circulation

Single side ventilation

Standard room for simulation

Phoenics CFD simulation 0.45m Room A 3.0m 2.4m PPDR in room A 4.5m Room B PPDR in room B

Phoenics CFD simulation

Phoenics CFD simulation

Part 5.2

Benchmark Exoskeletwindow

Window opening configurations

Product features

- Smooth air flow rate changing ratio
- Adaptive hinge system
- Low maintenance compared to kinetic façade
- Easy to control and measured
- Meet different architecture function and aesthetic

Part 5.3

Case study

Google map view

TPM Building facade

Window hinge system

RT 82 HI+

IDEAL 5000

RT 82 HI+

Exoskeletwindow

Future window

Future window

Part 6

Conclusion and discussion

Advantage

- Automatically indoor environment
- improving by responding to the external environment
- No motors and mechanical equipment
- Lightweight
- Potential on geometry generation

Disadvantage and limitation

Low insulation value

Too large window frame

- The low durability of rubber material
- Risk of delamination between silicone and thin glass

Conclusion: Not ready for the market, but worth further researching

Limitation of research

Wind load and wind direction effect on structure are not considered

Rubber material biaxial and uniaxial testing for Abaqus simulation

- CFD analysis in different configurations
 - Different window opening size
 - Different window locations
 - Different outlet locations

Future research

- Geometry generation
- Effects of wind load and direction

- Window location and opening size optimization to improve indoor comfort
- SPA material exploration
- Sun shading integration

Physical model

Exploration

Wing wall configurations

