

Delft University of Technology

Accelerating machine learning queries with linear algebra query processing

Sun, Wenbo; Katsifodimos, Asterios; Hai, Rihan

DOI
10.1007/s10619-024-07451-7
Publication date
2025
Document Version
Final published version
Published in
Distributed and Parallel Databases

Citation (APA)
Sun, W., Katsifodimos, A., & Hai, R. (2025). Accelerating machine learning queries with linear algebra query
processing. Distributed and Parallel Databases, 43(1), Article 8. https://doi.org/10.1007/s10619-024-07451-
7

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10619-024-07451-7
https://doi.org/10.1007/s10619-024-07451-7
https://doi.org/10.1007/s10619-024-07451-7

Vol.:(0123456789)

Distributed and Parallel Databases (2025) 43:8
https://doi.org/10.1007/s10619-024-07451-7

Accelerating machine learning queries with linear algebra
query processing

Wenbo Sun1 · Asterios Katsifodimos1 · Rihan Hai1

Accepted: 3 December 2024
© The Author(s) 2025

Abstract
The rapid growth of large-scale machine learning (ML) models has led numerous
commercial companies to utilize ML models for generating predictive results to
help business decision-making. As two primary components in traditional predictive
pipelines, data processing, and model predictions often operate in separate execution
environments, leading to redundant engineering and computations. Additionally, the
diverging mathematical foundations of data processing and machine learning hin-
der cross-optimizations by combining these two components, thereby overlooking
potential opportunities to expedite predictive pipelines. In this paper, we propose
an operator fusion method based on GPU-accelerated linear algebraic evaluation of
relational queries. Our method leverages linear algebra computation properties to
merge operators in machine learning predictions and data processing, significantly
accelerating predictive pipelines by up to 317x. We perform a complexity analysis
to deliver quantitative insights into the advantages of operator fusion, considering
various data and model dimensions. Furthermore, we extensively evaluate linear
algebra query processing and operator fusion utilizing the widely-used Star Schema
and TPC-DI benchmarks. Through comprehensive evaluations, we demonstrate the
effectiveness and potential of our approach in improving the efficiency of data pro-
cessing and machine learning workloads on modern hardware.

Keywords  Database · Query optimization · Machine learning · Operator fusion

 *	 Wenbo Sun
	 w.sun-2@tudelft.nl

	 Asterios Katsifodimos
	 a.katsifodimos@tudelft.nl

	 Rihan Hai
	 r.hai@tudelft.nl

1	 Faculty of EEMCS, TU Delft, 2628ZE Delft, The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-024-07451-7&domain=pdf

	 Distributed and Parallel Databases (2025) 43:8 8   Page 2 of 41

1  Introduction

In recent years we are witnessing unprecedented growth in large-scale ML appli-
cations fueled by rapid advancements in computational capabilities, sophisticated
models, and the increasing availability of vast amounts of data. Enterprises are
now utilizing predictive results to assist in business decision-making and product
design for customers. For instance, banks employ ML models for credit scoring
and fraud detection, while online retailers use customers’ historical behavior to
provide real-time recommendations. In this thriving context, predictive ML appli-
cations call for efficient computation to meet the growing demands for real-time
ML predictions and the substantial data processing workload required by ML
models.

Pitfalls of separating data processing and ML predictions Plenty of research
efforts and commercial products have provided various solutions to accelerate
data processing [3, 12] and ML predictions [4, 23] using modern hardware like
Graphics Processing Units (GPU). Thanks to massive parallelism and hardware
architectures designed for linear algebra (LA) computations, the throughput of
data processing and model predictive pipelines has significantly improved. How-
ever, the mixture of relational operators in data processing pipelines and Linear
Algebraic operators in ML models introduces diverse data structures and software
stacks. Specifically, data processing typically involves tasks such as data trans-
formation and aggregation, which are traditionally solved with relational query
engines. In contrast, model prediction workloads involve vast linear algebraic
operations. The distinct mathematical foundations of data processing and model
predictions often result in using separate software tools, libraries, and hardware
configurations, which can hinder overall performance and efficiency. This sepa-
ration can increase complexity, higher development and maintenance costs, and
potential performance bottlenecks.

Mathematical gap of RA and LA. The different mathematical foundations pre-
sent challenges for cross-optimizations when merging relational and linear alge-
bra. Relational operators primarily process input data as sets of tuples, while LA
computations operate on ordered scalars, vectors, and matrices. The data trans-
formation and I/O cost between these two algebra systems result in significant
overhead. Additionally, the diverging algebra systems imply different logical opti-
mization strategies. Specifically, relational algebra (RA), a specification of first-
order logic, can utilize logical reduction to decrease computational complexity. In
contrast, LA operators can often take advantage of the numerical information of
input matrices to reduce the size of intermediate results and overall complexity.
In short, the foundational differences between LA and RA obstruct further opti-
mization by combining these two systems at both the logical and implementation
levels.

RA operators on top of LA with GPU acceleration A unified data represen-
tation and operators are desirable for ML practitioners. One promising new
approach to address the challenges associated with the inconsistencies between
LA and RA is to process relational data queries using linear algebra operations,

Distributed and Parallel Databases (2025) 43:8 	 Page 3 of 41  8

such as matrix-matrix and matrix–vector multiplication. We term this method as
Linear Algebra Queries (LAQ). By reformulating RA operations as LA opera-
tions, this approach can help bridge the gap between data processing and ML
domains. Matrix multiplication is a linear algebra operation that can be efficiently
parallelized and optimized using modern hardware, such as GPUs, which are
designed to handle large-scale LA computations. By translating relational data
queries into matrix multiplication operations, this approach can take advantage
of the inherent parallelism and computational power of GPUs, leading to signifi-
cant improvements in efficiency and scalability for both data processing and ML
predictions.

Some operators (e.g., join, aggregation) have already been implemented and
evaluated in recent studies [1, 6, 13, 14, 27]. However, these studies do not com-
pare their performance with full-fledged GPU databases, nor do they incorporate
their methods into predictive pipelines involving machine learning predictions.
As a result, the potential performance gains and practical implications of their
methods in the end-to-end data processing and ML predictive pipelines remain
unclear.

In this work, we propose a new approach to optimize performance of ML pre-
diction following relational queries. The new approach leverages the unified rep-
resentation in LAQ and fundamental properties of LA computations. The contri-
butions of this work can be summarized as follows:

•	 We integrate batch model predictions into LAQ through operator fusion. By lev-
eraging the computation properties of LA (i.e., associativity), we push down lin-
ear operators in ML models to dimension tables in a star schema [16] and merge
operators in LAQ and models before prediction. Our operator fusion method
achieves up to 317x speedups when evaluated on synthetic star schemas, as
shown in Fig. 1, compared to the separate execution of queries and predictions.

•	 We present a complexity analysis for operator fusion in the context of star
schema queries followed by model predictions. This analysis provides quantita-
tive insights into the benefits that can be gained from operator fusion, given spe-
cific data and model sizes.

Fig. 1   Speedups of our operator fusion method in four experimental predictive pipelines. The baseline is
cuDF without operator fusion. The maximum attainable speedup is 317.77×

	 Distributed and Parallel Databases (2025) 43:8 8   Page 4 of 41

•	 We thoroughly evaluate LAQ and operator fusion using the widely-adopted SSB
benchmark [21] and TPC-DI [24] benchmark. We report the performance com-
parison with cuDF [26] and HeavyDB [12], two popular GPU-accelerated data
processing systems. Our evaluation helps demonstrate the potential of LAQ and
operator fusion in handling traditional data query workloads and its effectiveness
in the context of end-to-end predictive pipelines.

This paper is organized as follows: Sect. 2 introduces primary operators in LAQ.
These building blocks are based on existing works [10, 13]. Following that, Sect. 3
presents three examples, namely simple linear operators, decision trees, and gradi-
ent boosting decision trees, to demonstrate the usefulness of our approach in pre-
dictive pipelines, which integrates linear operators in ML models into LAQ based
on computation properties of LA. In Sect. 4, we first evaluate the performance of
LAQ using the SSB dataset, and then we test the efficiency of our operator fusion
method with synthetic datasets and TPC-DI benchmark. In the final section, we pro-
vide insights into our research findings through experiments and discuss potential
research directions derived from this study.

2 � Preliminaries: linear algebra based query processing

This section introduces how relational queries can be evaluated through linear alge-
bra. As the preliminaries to our operator fusion method in Sect. 3, we implement
the LAQ based on existing solutions. In particular, Sect. 2.1 and 2.2 elaborates pro-
jection and selection operator proposed in our earlier work [10]. Sections 2.3–2.5
introduces MM-Join, group-by aggregation and sorting operators in TCUDB [13]
and TQP [11].

For clarity, we refer to the input tables of an RA operator (e.g., projection, join)
as source tables and the query results after executing the relational algebras as target
tables. Before we perform LAQ, all input tables are transformed into matrices for
subsequent LA operators. Important notations are listed in Table 1.

2.1 � Projection

We can effectively address the projection operator using matrix multiplication. Pro-
jection entails extracting multiple columns from the source table and obtaining the
target table. We compute projection through matrix multiplication by defining a
column mapping matrix M ∈ {0, 1}c×k [10], where c is the number of columns of
the source table and k denotes the number of projected columns. As a preparation
step, we add ID numbers to columns in the source and target tables. We define M as
follows:

M[i, j] =

{
1, if jth column is the ith column after selection

0, otherwise

Distributed and Parallel Databases (2025) 43:8 	 Page 5 of 41  8

Within one matrix M, for each projected column, its location in the target table
after projection is represented by the vertical index i, while its original location in
the source table is denoted by the horizontal index j. Non-zero values within the
matrix M indicate column correspondences between the source and target tables. As
the source table has been converted to a matrix, column projection can be evaluated
by multiplying the source table matrix and M. Figure 2 shows an example of the pro-
jection process: given source table Patient(weight, height, age), the projection oper-
ator �weight,age(Patient) is transformed to the matrix multiplication of source table
matrix and column mapping matrix M. M indicates that the columns with indexes of
0 and 2 of a source table are mapped to columns 0 and 1 of the target table.

2.2 � Selection

The selection operator produces a subset of tuples based on specific conditions,
essentially filtering rows of the source table according to these conditions. We use a
binary vector with the same length as the number of rows in the source table matrix
to implement the function of selection. For each row, the corresponding entry in the
selection vector will be 1 if the row satisfies the selection condition and 0 other-
wise. Multiplying the source table matrix with the selection vector (or its transpose,
depending on the orientation of the matrices) effectively filters out rows that do not
meet the selection criteria. The resulting matrix will contain only the rows that sat-
isfy the selection condition.

Improvement and implementation Matrix–vector multiplication is a costly float-
ing-point operation. Therefore, in our implementation, we use a vectorized predicate

Table 1   Important notations in
Sects. 2 and 3

Notations Description

c #Columns of a table
r #Rows of a table
i #Rows of the target table after joining
k #Columns of the target table after joining
p #Features of a decision tree
l #Output shape of models
t #Trees in GBDT models
v Feature predicates of a decision tree
h Values of leaves in a decision tree
M Schema mapping matrix
I Row mapping matrix
L A simple linear operator
F Feature mapping matrix of decision tree
H Paths to leaves in a decision tree
T Target table after joining
R, S, B, C, D Tables
MATR , MATS Mapping matrix between keys and common domain

	 Distributed and Parallel Databases (2025) 43:8 8   Page 6 of 41

AND to compute the indices that is in the target table. When LAQ deals with mul-
tiple filtering conditions, it first computes the AND among the filtering vectors and
applies the final result to the source table, reducing the amount of memory move-
ment when generating the target table. In our implementation, we use the out-of-the-
box mask_select operator provided by CuPy [20].

2.3 � MM‑Join

Algorithm 1   Matrix Multiplication Join

The Matrix Multiplication Join (MM-Join) method takes advantage of matrix mul-
tiplication to evaluate join operations, which can be particularly beneficial when
working with large datasets or when using hardware optimized for matrix multi-
plication, such as GPUs. This section introduces the MM-Join implementation in
TCUDB [13]. Apart from the implementation details, we discuss the computational

Fig. 2   An example of projection as matrix multiplication

Distributed and Parallel Databases (2025) 43:8 	 Page 7 of 41  8

complexity of the MM-Join and hash joins. To ensure portability and compatibility
with machine learning workloads, we implement this algorithm using CuPy.

2.3.1 � 2‑Way join

The core principle of MM-Join involves mapping keys in two source tables to a
common key domain, which is the union of keys in source tables, and represent-
ing these mappings as matrices, MATS and MATR . Subsequently, the key mapping
between the two tables can be determined through the multiplication of MATS and
MATR . We illustrate the process of MM-Join with the pseudo-code in Algorithm 1,
which has four steps. We explain Algorithm 1 with the running example in Fig. 3.

(1)	 Suppose R and S are two tables to be joined, we first calculate the union of
keys in R and S to construct the common domain (Lines 1–3), resulting in
{0, 1, 2, 3, 4, 7}.

(2)	 Then we fill non-zero values and positions in sparse matrix format1 to generate
MATR and MATS (Lines 4–17), which are sparse matrices storing relationships
between keys and the common domain. The column indexes of the matrices are
identical to the keys’ positions in the common domain, and the row indexes are
the row numbers of keys in original relations.

Fig. 3   Illustration of a equi-join and b group-by-sum with matrix multiplication

1  We implement the sparse matrices in SciPy CSR: https://​docs.​scipy.​org/​doc/​scipy/​refer​ence/​gener​ated/​
scipy.​sparse.​csr_​matrix.​html.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html

	 Distributed and Parallel Databases (2025) 43:8 8   Page 8 of 41

(3)	 We execute sparse matrix multiplication over MATR and transposed matrix
MATS (Line 18).

(4)	 The result I is a row matching matrix,2 defined as follows.

The row-column pairs with non-zero values are matched rows in R and S.
The high computational complexity and memory consumption have hindered the

application of MM-Joins in CPU-based databases. In Algorithm 1, transforming
relations to matrices requires extra time and memory space based on the number
of tuples and distinct keys, which is infeasible for relations with a large number of
rows.

Approach analysis The domain generation and retrieving process required by
constructing sparse matrices involves a set union and two binary search in a sorted
array, leading to a computational complexity as O(n2 log n) . Moreover, even though
the CSR format can reduce memory usage, the computational complexity of sparse
matrix multiplication (spMM) can not be further reduced: the best-known complex-
ity of spMM is O(n2) [29],3 which is higher than O((|R| + |S|) ∗ log(|R|)) of a radix
hash join algorithm [2], where |R| and |S| represent the cardinalities of the two tables
participating in the join.

Nevertheless, MM-Joins present an optimization opportunity that allows for the
integration of linear operators in ML models with join processing. Convention-
ally, the results of relational queries need to be materialized before being utilized in
model predictions. However, due to the LA representation of relational join process-
ing, we can leverage LA optimization techniques, such as multiplication re-ordering,
to reduce computational complexity and memory usage associated with redundant
materialization. This integration can potentially improve the overall efficiency of
combining relational operations with models.

2.3.2 � Multi‑way join

In principle, multi-way joins can be naturally extended from 2-way joins through
iterative evaluation following a given order. However, this naive implementation
involves the materialization of intermediate tables, overlooking potential optimi-
zation opportunities hidden in the selectivity of join operators. In contrast, we
can skip the materialization and use the matrix I to evaluate subsequent joins. For
instance, let’s assume a join order of Q, R, and S. The matching rows of Q and
R are stored in matrix IQR . The rows that fail to match Q will not appear in the
final result. Therefore, we can directly use the matching row IDs of R to join with

I[i, j] =

{
1, if ith row of R matches the jth row of S

0, otherwise

3  The complexity of spMM depends on matrix shapes and sparsity. Here we use an approximate value to
show the complexity gap between spMM and hash join.

2  Implemented in SciPy COO format: https://​docs.​scipy.​org/​doc/​scipy/​refer​ence/​gener​ated/​scipy.​sparse.​
coo_​matrix.​html.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.coo_matrix.html

Distributed and Parallel Databases (2025) 43:8 	 Page 9 of 41  8

S and generate the matching matrix IRS . This approach can enhance the perfor-
mance between R and S due to the potential low selectivity of Q ⋈ R.

2.3.3 � Materialization

Now we use the row matching matrix I to preserve the matching row IDs of inter-
mediate join results. We could use the IDs to generate a binary vector and treat
the materialization as a selection using the method described in Sect. 2.2.

However, this non-LA operation hinders further optimizations by integrat-
ing ML models with joins. Alternatively, a materialized table can be viewed as
a result of the projection of transposed source tables. In this regard, we need to
construct the mapping matrix M using the result matrix I from MM-Join. Con-
sequently, we require two row sparse mapping matrices for relations R and S, as
follows:

The COO format of I has three attributes: row indexes, column indexes, and the
number of non-zero values (nnz). The nnz is precisely the number of rows in the
materialized table, which implies that the row IDs of the materialized table can be
represented as a vector m = ⟨0, 1, 2,… , nnz − 1⟩ . Consequently, we can construct
two row mapping matrices IR and IS by aligning row indexes and column indexes
with m, respectively.

2.4 � Group‑by aggregation

In certain analytical queries, we may need to perform aggregation based on specific
values after a join operation. Employing a similar technique used for join process-
ing, we can also represent group-by operations concerning a single attribute through
matrix multiplication. However, we cannot directly compute multi-aggregation
following multi-way joins because it lacks the capability to express value interac-
tion among attributes. In this section, we explain the single-column aggregation in
TCUDB [13] and the multi-column aggregation inspired by TQP [11].

2.4.1 � Aggregation by a single column

Figure 3b demonstrates how to evaluate single attribute aggregation using LA.
The fundamental pattern is similar to the MM-Join, but two sparse matrices
require some adjustments. First, MATR is no longer a binary matrix; the value
column of R to be aggregated is filled into the sparse matrix MATR.

I∗[i, j] =

{
1, if jth row of R is the ith row of materialized table

0, otherwise

	 Distributed and Parallel Databases (2025) 43:8 8   Page 10 of 41

As for table S, we begin by finding unique values as groups. MATS is filled
with values of 1, according to relationships between groups and the key domain.
In the example presented in Fig. 3b, values 0, 1, 2 are found as groups. Then
we find relationships between keys of S and the groups, which are {2} → 0 ,
{3, 0} → 1 , {4, 7} → 2 . After filling 1 s according to the relationships, relation-
ships between keys in R to the group can be evaluated by multiplying MATR and
MATS

T . Finally, to perform summation of values in R, we introduce a reduction
vector filled with values of 1, enabling the materialization of the result.

2.4.2 � Aggregation by multiple columns

Aggregation by multiple columns cannot be directly integrated with MM-Join in
the same way as single-column aggregation. As shown in Fig. 3b, we require a
matrix representing relationships between the key domain and groups. For sin-
gle-column aggregation, groups can be evaluated using a numerical unique func-
tion. However, for multi-column aggregation, we must first join tables involved in
groups and then apply the unique function to tuples, which is not consistent with
other numerical operators.

To complete the queries for evaluation in our experiments, we adopt an alter-
native solution proposed in [11], where unique tuples are identified using a sort-
unique procedure.

2.5 � Sorting

Sorting can not be directly represented with LA operators, but we can integrate
sorting into MM-Join if the sorting is performed on keys to be joined. The col-
umn indices in matrices MATS and MATR correspond to the positions of keys in
the key domain. As a result, by sorting the key domain, we can obtain MATR and
MATS with sorted keys. This approach allows us to seamlessly integrate the sort-
ing operation into the MM-Join process.

Summary This section discusses existing methods for evaluating relational
operators using LAQ and identifies their limitations. Some operators, such as
selection, projection, equi-join, and single-column aggregation, can be equiva-
lently represented by linear algebraic computations. However, multi-column
aggregation and sorting cannot be transformed into linear algebra operations. To
address these limitations, we implement alternative GPU-compatible methods for
these two operators, enabling LAQ to evaluate a wider range of relational queries.
This allows us to explore the theoretical unification between data processing and
downstream ML model predictions on GPUs.

Distributed and Parallel Databases (2025) 43:8 	 Page 11 of 41  8

3 � Operator fusion

On the basis of LAQ, in this section, we propose an operator fusion method to merge
operators in ML model predictions and LAQ for the speedup of predictive pipelines.
Specifically, given the fact that operators in LAQ and ML predictions are uniformly
represented as linear algebraic computations, we can leverage the computation prop-
erties of LA, such as associativity of matrix multiplication, to reduce computational
complexity or the size of intermediate results. Moreover, by utilizing the distribu-
tive property of matrix multiplication, ML operators can be pushed down to source
tables and stored as matrices, subsequently decreasing the computational complex-
ity of real-time predictions.

In this section, based on the LAQ operators introduced in Sect. 2, we demonstrate
how does operator fusion perform with three ML models: simple linear operators
(Sect. 3.2), decision trees (Sect. 3.3) and gradient boosting decision trees (Sect. 4).

3.1 � Scenario description

Given a data warehouse containing a star schema with a central fact table A and
dimension tables B, C, and D, we consider the following scenario. Fact table A
stores transactional data, while dimension tables B, C, and D contain contextual
attributes associated with the facts in table A. A star join operation is applied to join
the fact table A with dimension tables B, C, and D, leveraging their respective for-
eign key-primary key relationships. The resulting dataset S from this star join opera-
tion integrates facts and dimension attributes. Subsequent ML operators take dataset
S as input to produce matrices for further applications.

The query above contains two relational operators: schema projection and join,
which can be expressed in SQL as follows:

Based on the LAQ rewriting introduced in Sect. 2.1 and 2.3, we can generate
indicator matrices through MM-Join and schema mapping matrices with projection
for tables B, C, and D. Thus, the query can be expressed using matrix multiplica-
tions between the indicator matrix, source table, and schema mapping matrix. Spe-
cifically, by converting source tables to matrices, we can express the relational query
with LAQ as follows:

(1)T = I1BM1 + I2CM2 + I3DM3

	 Distributed and Parallel Databases (2025) 43:8 8   Page 12 of 41

In the rest of this section, we will continue using this example to explain how opera-
tor fusion integrates database queries and ML inference.

Operator fusion According to the design principles of star schema data ware-
houses discussed in [16], fact tables tend to exhibit higher update frequencies and
larger data volumes compared to dimension tables. Consequently, fusing down-
stream ML operators with relatively static dimension tables allows for pre-fusing
of partial results, thereby reducing the cost of predictions. We term this approach
operator fusion. In the following sections, we leverage three models to demonstrate
how operator fusion can accelerate predictive pipelines.

3.2 � Fusing simple linear operators

Linear operators, essentially represented as matrices, are not only fundamental
building blocks in linear algebra but also serve as the cornerstone for a wide array
of general linear models. These models are crucial across diverse domains, from
simple data transformations to complex machine learning algorithms. The ability to
efficiently fuse linear operators with data processing queries significantly enhances
computational performance, particularly in high-dimensional data scenarios.

Suppose the result of a star join is T ∈ ℝ
i×k . According to Eq. (1), the query can

be evaluated as T = I1BM1 + I2CM2 + I3DM3 , where I1 ∈ {0, 1}i×r1 , I2 ∈ {0, 1}i×r2 ,
I3 ∈ {0, 1}i×r3 , and M∗ ∈ {0, 1}c×k . c and k denote the number of columns in dimen-
sion tables and selected features for linear operators respectively.

The result S is then multiplied by a linear operator L ∈ ℝ
k×l , resulting in predic-

tions as ℝi×l . For simplification, in the following analysis, we equally separate fea-
tures into each dimension table, which means c = k

3
 . According to the s associativity

of matrix multiplication, we can fuse L to dimension tables using:

We follow the common assumption that dimension tables are less frequently
updated than the fact table, BM1L , CM2L and DM3L can be treated as constants in
a period. Therefore, we can pre-fuse them and only apply row matching matrix I∗
when materialization.

3.2.1 � Complexity analysis

We now perform a complexity analysis for operator fusion in a predictive pipeline
and compare it with non-fused methods. As both fused and non-fused methods share
the same domain generation step, we will omit the complexity of domain generation
in the following analysis for comparison purposes. Additionally, matrix additions
have lower complexity order than matrix multiplications. Therefore, in the complex-
ity analysis for this section and Sect. 3.3, we omit the complexity of matrix additions.

(2)

predictions =TL

=(I1BM1 + I2CM2 + I3DM3)L

=I1BM1L + I2CM2L + I3DM3L

Distributed and Parallel Databases (2025) 43:8 	 Page 13 of 41  8

Given the aforementioned dimensions of matrices, the computational complexity
without operator fusion is:

The non-fusion method performs joining and multiplying linear operators sepa-
rately. The joining step with MM-Join, as elaborated in Sect. 2.3.1 involves two
steps. First, each source table generates the indicator matrices through a sparse mul-
tiplication between the mappings from the source key to the common domain, which
takes ck

∑
j rj . Then, the source tables need to multiply the indicator matrices, which

costs k
∑

j rj . Finally, after obtaining the target table, the complexity of multiplying
the target and linear algebra is ikl.

An alternative way is pushing L down to dimension tables, we will get three
pre-fused partial values of the final result, BM1L ∈ ℝ

r1×l , CM2L ∈ ℝ
r2×l and

DM3L ∈ ℝ
r3×l . Because the dimension tables and schema mappings are less fre-

quently updated, we can store these pre-computed values and regard them as cache,
saving runtime in query execution. As such, the linear operator can be directly
applied to these partial results. Then we have the computation complexity as:

which is the summation of the complexity of three matrix multiplications between
cached matrices and indicator matrices.

Now, we compare two complexity values:

Upon analyzing the information above, it becomes evident that the speedup of oper-
ator fusion is correlated with the shape of the linear operator and the cardinality of
dimension tables. In practical predictive tasks, the total number of rows ( 

∑
rj) is

usually much larger than the number of columns. Therefore, we can safely ignore
the terms k

2

3il
 and k∑

j rj
 . In particular, k

l
 can be considered as the filtering effect of the

linear operator. For instance, a linear regression model can be viewed as a linear
operator with an output shape of 1. By pre-fusing the linear regression model with
dimension tables, the partial values to be composed after a join operation are vectors
instead of matrices. Consequently, the execution time of the join-prediction

Cnon_fusion = Cmmjoin + Cop

= ck
∑

j

rj + ik
∑

j

rj + ikl

=

(
ik +

k2

3

)∑

j

rj + ikl

Cfusion = il
∑

j

rj,

(3)

Cnon_fusion

Cfusion

=

�
ik +

k2

3

�∑
j rj + ikl

il
∑

j rj

=
k

l
+

k2

3il
+

k∑
j rj

	 Distributed and Parallel Databases (2025) 43:8 8   Page 14 of 41

operation can be significantly reduced. In Sect. 5.3, we will examine the speedups of
the fusion method concerning various input settings.

3.3 � Fusing decision trees

Tree models, such as decision trees, are popular among data scientists due to their
interpretability [25]. In this section, we elaborate on our operator fusion method
with more complex decision tree models and explore optimization opportunities
using a matrix representation of decision tree predictions. For clarity, our method is
built on the linear algebraic representation of decision trees proposed by Humming-
bird [19] in Sect. 3.3.1.

3.3.1 � Matrix representation of decision trees

Hummingbird [19] introduces a method to represent decision tree models using lin-
ear algebra operators. The key idea is to transform the tree structure into a set of
linear algebraic operations and vectorized predicates, which can then be efficiently
executed on hardware optimized for such computations, like GPUs.

Figure 4 illustrates the structure of a matrix-represented decision tree and the
computing process for inference. Matrix F is used to map the schema in the tar-
get table to features in the decision tree based on the given feature order. Vector v
represents the decision values of each feature. Matrix H and vector h collectively
represent the structure and decision path of the decision tree. Specifically, in matrix
H , the column indices represent the leaf indices, and the values in each column cor-
respond to the path to reach that leaf. The row indices indicate the encoded nodes.

Suppose we have a batch of vectors S ∈ ℝ
i×k . To represent a tree, we need two

binary matrices, F ∈ {0, 1}k×p and H ∈ {−1, 0, 1}f×l , as well as two vectors, f ∈ ℝ
p

and h ∈ ℝ
l . As Fig. 4 shows, inference over the matrix representation mainly has

4 steps. The final result is a binary encoding for the prediction label, which can be
subsequently retrieved through a lookup table.

•	 Step 1. The binary matrix F is an orthogonal matrix that maps input vectors to
features. Some columns may not be in the selected features; thus, the matrix
serves as a feature selection operator. As the initial linear operator of the deci-
sion tree, its orthogonality enables operator fusion because the result of TF is
a linear combination of the original columns in the input. In practice, F can be

Fig. 4   Prediction with a decision tree with linear algebraic representation adapted from [19]

Distributed and Parallel Databases (2025) 43:8 	 Page 15 of 41  8

integrated into the column mapping matrix M∗ (described in Sect. 2.1), but we
retain it in the rest of the implementation for completeness.

•	 Step 2. Vector v represents the values of nodes in the decision tree. The order
of this vector follows a pre-assigned rank. The output of operator F undergoes
a predicate ‘ > v ’, producing a binary vector. In practice, we often apply pre-
dictions to a batch of vectors; as such, the output of this step turns out to be a
matrix. Notably, since the output of the last step is a linear combination of the
original input, each column can be independently compared to the corresponding
values in v . This means that the predicate can be fused with dimension tables as
well.

•	 Step 3. Matrix H signifies the structure of decision trees. Each column represents
the path of a leaf node. Values in the column indicate the choices of nodes on
this path, where 1 means True, and −1 means False. For instance, the path to
L2 contains two nodes, F1 and F2, both of which choose the False side. Conse-
quently, the values of the corresponding nodes are −1 . Notably, H is a reduction
operator. Fusing H with dimension tables is applicable but only produces a local
sum.

•	 Step 4. Vector h is the column sum of positive values in matrix H. Before com-
paring with h , the pre-fused matrices must be added to obtain a complete vector.
The result vector is compared with h , and a one-hot encoding denoting predic-
tion labels will be produced. We can compute dot product between the output
vector and the vector storing leaf values to get the final prediction.

3.3.2 � Fusing with dimension tables

As we discussed in last section, the prediction results of the decision tree over T can
be represented by:

In the scenario introduced in Sect. 3.1, we can replace the target table T with Eq. (1),
yielding the following:

Subsequently, we explore the strategy for pushing the subsequent operators down
to the individual dimension tables to enable the separate evaluation of partial
results. Initially, the matrix F is identified as a linear operator, a concept previously
addressed in Sect. 3.2. Consequently, Eq. (4) can be reformulated as:

predictions =

step 3

�����������������

(

step 1

���

TF > v
���������

step 2

)H == h

���������������������������
step 4

(4)predictions = (((I1BM1 + I2CM2 + I3DM3)F > v)H == h

	 Distributed and Parallel Databases (2025) 43:8 8   Page 16 of 41

The predicate operator ‘ > v ’ can also be pushed down to the dimension tables. Let’s
examine the binary orthogonal matrix F first. It acts as a mask, extracting vector
elements based on the positions of the non-zero entries in each column of F . For
instance, as depicted in Fig. 5, the outcome of the multiplication between F and the
vector < 0.77, 0.54, 0, 0.33, 0, 0.01, 0 > is < 0, 0.77, 0.91, 0, 0.01 > . Thus, the predi-
cate ‘>’ for each column is independent of the values in other columns, indicating
that the predicate can be evaluated partially within each dimension table. Accord-
ingly, Eq. (5) can be rewritten as:

Continuing with this approach, the matrix H , also a linear operator, can be pushed
down similarly to matrix F , leading to the following:

The predicate ‘ == h ’, however, cannot be further pushed down. Unlike F , matrix H
is not orthogonal, which implies that the outcome of ‘ == h ’ is contingent upon the
entire set of values within the input vector.

In conclusion, we have identified all operators within a decision tree evaluation
that are amenable to being pushed down to dimension tables. For clarity, we sum-
marize the partial results as Ti and define the fused decision tree over the dimen-
sion tables as follows:

Figure 5 illustrates how the first three steps are pushed down to the dimension tables.
In this figure, we split the input vector from Fig. 4 into two parts to represent vec-
tors in two dimension tables. The first three steps can be computed locally, and the
partial results T1, T2, T3 can be cached. Step 4 must be executed as inference because
it depends on the summation of the partial results.

(5)predictions = ((I1BM1F + I2CM2F + I3DM3F) > v)H == h

(6)predictions = (I1BM1F > v + I2CM2F > v + I3DM3F > v)H == h

(7)
predictions = ((I1BM1F > v)H + (I2CM2F > v)H + (I3DM3F > v)H) == h

(8)predictions = (I1T1 + I2T2 + I3T3) == h

Fig. 5   Following the example in Fig. 4, this figure showcases fusing dimension tables and inference
using partial results. First 3 steps can be computed locally. Step 4 is computed when a query comes in

Distributed and Parallel Databases (2025) 43:8 	 Page 17 of 41  8

3.3.3 � Complexity analysis

Similar to the complexity analysis for the linear operator, we first present the complex-
ity of non-fusion method:

The non-fusion method needs to materialize the data for inference via MM-Join.
The materialized data is then applied to a sequence of computations with the opera-
tors in a tree. Each item in the equation represents the computational complexity of
matrix-matrix multiplications and matrix–vector multiplications.

With operator fusion presented in Eq. (8), we have three pre-fused matrices whose
dimensions are Rri×l . As such, the remaining part involves a matrix summation for
aggregating the partial results and a matrix–vector predicate to retrieve the output leaf.
The complexity of remaining operations of decision tree’s result can be expressed by:

Then we compare the complexities through Cno−fusion
Cfusion

 , which is:

rj represents the number of rows in a dimension table, while p denotes the number
of features. For simplicity, we assume the number of features (p) equals to length of
input (k). Additionally, considering il ≫ 1 , we remove the constant term. Then, we
have:

Due to the involvement of more linear operators in decision trees, additional tail
terms appear in Eq. (10). When rj is smaller than the number of features, we can
expect that our approach facilitates a certain speedup through operator fusion. In
contrast, when the size of dimension tables is significantly larger than k, the speedup
is correlated with the first term k

l
 . Similar to the discussion in Sect. 3.3, the filtering

effect of decision trees determines the benefit of operator fusion. If a tree has only a
small number of leaves, a significant speedup can be expected. We will further sub-
stantiate this analysis with experimental results in Sect. 5.3.

Cnon_fusion = Cmmjoin + CF + C
v
+ CH + C

h

=

(
k2

3
+ ik

)∑

j

rj + ikp + ip + ipl + il

Cfusion = il
∑

j

rj + il

(9)

�
k2

3
+ ik

�∑
j rj + ikp + ip + ipl

(il + 1)
∑

j rj

(10)

Cnon_fusion

Cfusion

≈

k2

3

il
+

ik

il
+

ik

il
∑

j rj
+

ikl

il
∑

j rj
+

1∑
j rj

=
k

l
+

k2

3il
+

k2

l
∑

j rj
+

k∑
j rj

+
k

l
∑

j rj
+

1∑
j rj

	 Distributed and Parallel Databases (2025) 43:8 8   Page 18 of 41

Our analysis above assumes that all matrices involved in the computation are
dense matrices. In our implementation, matrices I, M, and F are stored in the CSR
format and computed using a sparse matrix multiplication kernel. This approach has
lower computational complexity compared to naive dense matrix multiplication, fur-
ther enhancing the efficiency of the overall computation process.

4 � Fusing gradient boosting decision trees

Building on the foundation of fusing linear operators and decision trees, we extend
our exploration to the more complex and practically significant model of Gradient
Boosting Decision Trees (GBDT) [7]. Recognizing the intricacies and critical role
of GBDT in real-world predictive pipelines, this section delves not only into the
application of our fusion method to GBDT but also introduces our novel tensor rep-
resentation. This representation expands upon the matrix approach used for decision
trees, offering enhanced computational efficiency. By focusing on GBDT, we aim to
present a more comprehensive understanding of fusion techniques in sophisticated
modeling scenarios.

4.1 � Matrix representation of GBDT predictions

In a GBDT model, each decision tree plays a role in shaping the final prediction
through an additive process. This contribution is modeled by extending the matrix
and vector operations that are typically used for a single decision tree. In a GBDT
model comprising t trees, we create a series of structures introduced in Sect. 3.3.1.
The prediction process involves applying each tree’s linear and predicate operators
sequentially, accumulating the results. This can be represented as:

Fig. 6   GBDT models make predictions by summing the numerical results from each constituent decision
tree

Distributed and Parallel Databases (2025) 43:8 	 Page 19 of 41  8

In this context, � represents the learning rate, and the initial prediction is typically
the average value of the target variable. The one-hot encoded vector predictionj , as
defined in Eq. (8), indicates the predicted value for tree j.

Fig. 6 demonstrates the prediction process of GBDT models, which relies on
aggregating the outcomes from each individual decision tree. Essentially, the final
prediction of a GBDT model is computed as a weighted sum of the numerical results
contributed by each tree. The vector wj associated with tree j is derived from the dot
product of the leaf values and the corresponding weight of tree j . Subsequently, the
dot product of wj and predictionj yields the numerical outcome for tree j . The com-
putational complexity of this dot product is directly proportional to the number of
leaves in the tree. Considering that the number of leaves is generally much smaller
than

∑
j rj , for simplicity, we omit this operation from the subsequent complexity

analysis.

4.2 � Fusing with dimension tables

The fusion of GBDT with dimension tables follows a similar approach to decision
trees, with the added complexity of handling the sequential and additive nature of
GBDT. Specifically, Eq. (11) illustrates that the final outcome of the GBDT model
is derived from a weighted summation of the results contributed by each constituent
tree. The summation operator cannot be further pushed down to dimension tables;
hence, the operation fusion process for the GBDT model mirrors the operator fusion
in decision trees. In other words, only the operators we discussed in Sect. 3.3.2 can
be pre-computed in conjunction with dimension tables. With this in mind, utilizing
Eq. (8), we can express operator fusion in GBDT as follows:

In the given equation, Tj

i
 represents a partial result that has been fused with a dimen-

sion table in tree j.

4.3 � Complexity analysis

The complexity analysis for GBDT when applying operator fusion is distinct from
that of a single decision tree, primarily due to the additive nature of the trees in
GBDT. Assuming the complexity of operations for each tree is comparable, the
overall complexity of the GBDT model can be estimated to be about t times that of
a single decision tree. Consequently, the complexity ratio between the non-fusion

(11)GBDT Predictions = Initial Prediction + �

t∑

j=1

wj ⋅ predictionj

(12)

GBDT Predictions = Initial Prediction + �

t∑

j=1

wj ⋅ ((I1T
j

1
+ I2T

j

2
+ I3T

j

3
) == hj)

	 Distributed and Parallel Databases (2025) 43:8 8   Page 20 of 41

and fusion methods, as initially described in Eq. (9), transforms into the following
equation:

Expanding and simplifying this equation, the complexity ratio for GBDT can be
expressed as:

In Eq. (14), the dominant term becomes k
tl
 , which represents the ratio of the number

of input features to the product of the number of trees and the number of leaves in
each tree. Notably, t ∗ l represents the total number of leaves in a GBDT model.
Similar to the ratio k

l
 in decision trees, k

tl
 serves as a key indicator of the potential

speedup through operator fusion for GBDT models. A substantial speedup from the
fusing method is attainable when the count of input features k greatly exceeds total
number of leaves l.

4.4 � Implementation of fusing GBDT

Instead of representing each tree in a GBDT model as a set of matrices and vectors
and calculating their results iteratively, our fused GBDT implementation employs
high-dimensional tensor representation. Given that a GBDT model consists of mul-
tiple trees, each associated with its matrices F , and H , as well as vectors v , and
h , we extend this structure into a three-dimensional tensor space. This tensor-based
approach facilitates more efficient computation, particularly when utilizing the
cuTensorNet4 library for GPU-accelerated hardware, thereby enhancing the overall
computational performance of the GBDT model.

Efficient memory access One of the primary advantages of using tensor represen-
tation in GBDT models is the consolidation of data for each tree within the same
physical memory space. This allocation allows for coalesced memory access, which
is significantly more efficient than accessing separate memory blocks. In traditional
tree representations, data are often scattered across different memory locations,
leading to increased memory access times and reduced computational efficiency.
However, with tensor representation, data retrieval becomes streamlined, as contigu-
ous memory blocks can be accessed in a single, unified operation. This optimization

(13)

�
k2

3
+ ik

�∑
j rj + t(ikp + ip + ipl)

t(il + 1)
∑

j rj

(14)

Cnon_fusion

Cfusion

≈

k2

3

til
+

ik

til
+

tik

til
∑

j rj
+

tikl

til
∑

j rj
+

t

t
∑

j rj

=
k

tl
+

k2

3til
+

k2

tl
∑

j rj
+

k∑
j rj

+
k

l
∑

j rj
+

1∑
j rj

4  https://​docs.​nvidia.​com/​cuda/​cuqua​ntum/​latest/​cuten​sornet/​index.​html.

https://docs.nvidia.com/cuda/cuquantum/latest/cutensornet/index.html

Distributed and Parallel Databases (2025) 43:8 	 Page 21 of 41  8

reduces the overhead associated with memory access, thereby enhancing the overall
performance of fused GBDT.

Efficient computation with tensor algebra Another significant benefit arises from
the high parallelism inherent in GPU architectures and the capabilities of specialized
vendor libraries for tensor computation. The cuTensorNet library, specifically
designed for GPU-accelerated environments, offers a ‘tensor contraction’ function
that plays a vital role in this context. This function enables the library to allocate
resources strategically and optimize computations for a set of tensor algebra opera-

tions. For instance, in a GBDT model with an input data T and a tensor
(
F1

F2

)
 , the

conventional approach involves sequentially computing TF1 and TF2 . However,
cuTensorNet can potentially process these operations in parallel if the workload is
manageable, offering speedups beyond theoretical expectations. Such speedups
depend on specific workloads and data structures. If the workload for each tree
exceeds the resource capacity, the speed degrades that of the iterative approach. This
variability underscores the need for practical modeling to better anticipate the actual
computational cost.

In summary, the implementation of GBDT using high-dimensional tensor alge-
bra, with the aid of cuTensorNet library, represents a significant advancement in
the efficient computation of GBDT models. This approach not only simplifies the
computational process but also opens up possibilities for substantial performance
improvements, particularly in GPU-accelerated environments.

4.5 � Summary

In this section, we proposed an operator fusion method to accelerate predictive pipe-
lines, building on the preliminaries introduced in Sect. 2. Within the context of data
warehouses, we presented two predictive pipelines that demonstrate how operator
fusion accelerates them by pre-fused partial results. Additionally, we compare the
theoretical complexity of fusion and non-fusion methods and identify a preliminary
decision boundary for determining when to apply operator fusion for speedup. In
Sect. 5.3, we will present the speedup of operator fusion in predictive pipelines.

It is important to note that three examples in this section assume dimension tables
are updated less frequently than the fact table, which is a common design principle
in traditional data warehouses. However, many data architectures (e.g., data mesh
[18], data fabric [9]) proposed in recent years have gradually deviated from this
principle. Further investigation is needed to determine the applicability of the opera-
tor fusion method in these scenarios.

5 � Experimental evaluation

In this section, we evaluate the performance of LAQ and examine the performance
enhancement achieved through operator fusion. In Sect. 5.2, we use the SSB [21]
dataset to compare the performance of LAQ with two GPU-accelerated relational

	 Distributed and Parallel Databases (2025) 43:8 8   Page 22 of 41

query processing engines. Before presenting the experimental results, we first pro-
vide an overview of the experimental setup, encompassing the implementations
under evaluation, dataset characteristics, and hardware.

5.1 � Experiment settings

Implementation. In this paper, we implement GPU-accelerated LAQ using CuPy
[20]. The implementation involves two-way join, multi-way join, and bi-group
aggregation, all of which are computed using CSR format with CuSparse, which is a
CUDA library for sparse matrix multiplication.5

Baselines To assess the performance of our LAQ implementation, we compare it
with two other GPU-accelerated data processing libraries: HeavyDB [12] and cuDF
[26]. HeavyDB, formerly known as OmniSciDB, is a commercial GPU data man-
agement system that supports a wide range of relational queries on GPUs. It fea-
tures a query optimizer and cache strategy to expedite query execution. cuDF, on the
other hand, is a GPU DataFrame library that provides support for commonly used
relational operators, such as selection, projection, join, and aggregations. Unlike
HeavyDB, cuDF is a vanilla query processor, similar to our LA query implementa-
tion, and serves as an appropriate baseline for our study.

Table 2   Summary for query groups in SSB

Queries Group 1 Group 2 Group3 Group 4

ID of subqueries 11, 12, 13 21, 22, 23 31, 32, 33 41, 42, 43
Joins 1 3 3 4
Aggregations Sum Group-by sum Group-by sum Group-by sum
Sorting No Yes Yes Yes

Table 3   Types and cardinalities
of SSB tables

sf is a parameter controlling data sizes

Tables Type Cardinality

Lineorder Fact sf ∗ 6, 000, 000

Part Dim 200, 000 ∗ floor(1 + log2 sf)

Supplier Dim sf ∗ 2000

Customer Dim sf ∗ 30, 000

Date Dim 7 ∗ 365

5  https://​docs.​nvidia.​com/​cuda/​cuspa​rse/​index.​html.

https://docs.nvidia.com/cuda/cusparse/index.html

Distributed and Parallel Databases (2025) 43:8 	 Page 23 of 41  8

Workload For the evaluation of operator fusion, we use star join queries on a syn-
thetic dataset characterized in Table 4, and the results are subsequently utilized as
input for linear operators.

Hardware All the implementations in these experiments are executed on an
Nvidia A40 (48 GB) GPU, eliminating the need to account for the communication
cost between host memory and device memory. Each experiment is conducted ten
times, and we report the mean values and standard errors.

5.2 � Performance evaluation for LAQ

In this section, we evaluate the performance of LAQ using the SSB dataset on GPUs
and compare the results with two GPU-accelerated data processing engines. First,
we measure the average execution time with respect to varying scale factors (sf),
and then we examine LAQ’s performance on different queries. To identify the most
time-consuming operator, we provide a performance breakdown and suggest an
optimization opportunity for future research.

5.2.1 � SSB dataset

We use Star Schema Benchmark (SSB) [21] to investigate the performance in real-
world workloads. The SSB dataset is a widely-used benchmark for evaluating the
performance of data warehouse systems and database management systems. It was
developed as a simplified version of the TPC-H benchmark, which is also designed

Fig. 7   Selectivity of each query
in SSB

Fig. 8   Average execution time under various scale factors

	 Distributed and Parallel Databases (2025) 43:8 8   Page 24 of 41

for benchmarking data warehouse systems. The SSB dataset focuses on star schema
query processing and comes with a predefined set of queries that test various aspects
of database performance, such as join operations, aggregations, and filtering.

Table 2 provides a summary of the workloads and query groups, while Table 3
displays the types and cardinality settings for each table in the SSB dataset. Addi-
tionally, Fig. 7 illustrates the selectivities of each query for subsequent evaluations.
The parameter sf represents the scale factor that controls data sizes, and it will be
used to denote the scale of data throughout the rest of the paper.

5.2.2 � Evaluation results for LAQ

Q1 ∶ When does LAQperform better than cuDF and HeavyDBw.r.t. varying data sizes?

Observation Fig. 8 illustrates the average execution time of all queries under dif-
ferent scale factors. HeavyDB presents similar average performance with different sf
but has significant standard errors. MM-Join exhibits a significant advantage against
the other two systems at small scale factor.s As the scale factor increases, the perfor-
mance of LAQ turns out to be slower than HeavyDB and approaches cuDF.

Analysis HeavyDB is a well-designed data management system with dedicated
caching mechanisms. When the evaluation executes repeatedly, more data are
cached in global memory, which leads to superior performance at large sf. cuDF and
LAQ are vanilla implementation join algorithms. They can not obtain advantages
through caching strategies during repeated experiments. Another notable finding is
that performance of LAQ degrades faster than cuDF due to the high computational
complexity of the spMM kernel.

Q2 ∶ Howdo speedups of LAQagainst cuDF and HeavyDB varyw.r.t different queries?

Observation Figs. 9a, b show execution time with respect to different queries
under sf = 4 and sf = 16 . We can find out that all systems perform faster in query
group 1. LAQ exhibits noticeable speedups against the other two systems in query
group 1 when sf = 4 . We can also observe that LAQ becomes slower than cuDF in
query 42 and 43 when sf = 16.

Fig. 9   Average execution time of subqueries

Distributed and Parallel Databases (2025) 43:8 	 Page 25 of 41  8

Figure 9a does not show the results of HeavyDB for query group 4 when sf = 16
due to out-of-memory error raised during evaluation. This error was caused by the
size of intermediate results exceeding the memory capacity.

Analysis Matrix multiplication (MM), which is the most common operation in
LAQ, is known to effectively exploit GPU parallelism due to the inherent nature
of LA algorithms. However, this does not eliminate the computational complexity
disadvantage of MM. When processing large-scale data, this increased complexity
causes MM-Join to underperform compared to the partitioned hash join in cuDF.

Moreover, we observed a positive correlation between the performance of LAQ
and the selectivity of the queries, as illustrated in Fig. 7. Among all results, the per-
formance on query 33 is exceptional. Although query 33 has lower selectivity, both
algorithms exhibit slower performance due to an additional join operation. Interest-
ingly, HeavyDB does not display a correlation between performance and selectivity.
Query group 3 involves more joins, resulting in increased data movement in mem-
ory. When the scale factor is small, memory bandwidth is not a bottleneck. How-
ever, when the scale factor reaches 16, the excessive memory access during joins
can degrade overall speed due to becoming memory-bound.

Q3 ∶ Which operator in a query needsmore optimization?

Observation In this experiment, we use query group 4 as an example to present
the breakdown performance of MM-Join. Figure 10a shows the execution time of
different operations in a query. Apparently, join operations dominates the execution
time. In Fig. 10b, we further investigate two primary operations of joins. Domain
generations take a similar portion of execution time within 4 join steps in query
group 4, whereas join operations’ portion decreases as the selectivity decreases.

Analysis In Sect. 2.3, we have learned that the computational complexity of
domain generation is O(n2 log n) , independent of selectivities. This operation
becomes particularly costly when selectivity is low. Nonetheless, the domain con-
sists of a union of tables, allowing us to cache the domain for reuse. Caching proves
advantageous when key updates are infrequent. If updates to the cached domain
are necessary, the complexity of searching and inserting into a sorted array is
O(n + log n) , which is still more efficient than rebuilding the domain from scratch.

Fig. 10   Performance breakdown

	 Distributed and Parallel Databases (2025) 43:8 8   Page 26 of 41

As a result, we can further enhance performance by employing domain caching
strategies.

5.3 � Performance evaluation for operator fusion

In this section, we evaluate operator fusion examples introduced in Sects. 3.2 and
3.3, and 4, to demonstrate the performance improvement that operator fusion brings
to predictive pipelines. In addition to evaluating performance with different sf, we
also examine the impact of model shape. Specifically, we vary the shape of models
with different values of k and l to validate a potential factor, k

l
 , that may influence the

speedup of operator fusion.

5.3.1 � Datasets

To thoroughly assess the performance of operator fusion across a broad range of
data characteristics and within realistic predictive workloads, we employ a synthetic
dataset derived from the Star Schema Benchmark (SSB) and a subset of the TPC-DI
benchmark. This combination allows for a comprehensive evaluation under diverse
data conditions and practical scenarios.

Synthetic dataset SSB queries are well-suited for evaluating operator fusion, as
our scenario setting aligns with the design principles of SSB. Because allocating
SSB dataset and models to be evaluated in the same GPU causes out-of-memory
error, we generate a synthetic dataset based on down-scaled cardinalities of SSB
tables for operator fusion experiments. The detailed table design is shown in Table 4.

In addition to varying settings in Table 4, we also alter the size of models to be
fused in order to test the performance of operator fusion under different computing
workloads. To match the input shape k of models, we adjust the number of columns
accordingly. The parameters of linear operators are demonstrated in Table 5.

We defined two distinct groups of cardinality settings to evaluate performance
under different scenarios: Cardinality setting 1 is characterized by a large volume
of records to be predicted with a smaller model size, while cardinality setting 2
involves fewer input records but uses a larger model.

TPC-DI benchmark To assess the performance of our operator fusion method
in practical settings, we perform experiments on real-world data integration using
the TPC-DI benchmark [24]. This involves four datasets distributed among three

Table 4   Types and cardinalities of synthetic tables

sf is a parameter controlling data sizes

Tables Type Cardinality setting 1 Cardinality setting 2

Lineorder Fact sf ∗ 600, 000 sf ∗ 3000

Part Dim 20, 000 ∗ floor(1 + log2 sf) 2000 ∗ floor(1 + log2 sf)

Supplier Dim sf ∗ 2000 sf ∗ 2000

Date Dim 7 ∗ 365 7 ∗ 365

Distributed and Parallel Databases (2025) 43:8 	 Page 27 of 41  8

Ta
bl

e 
5  

P
ar

am
et

er
s f

or
 li

ne
ar

 o
pe

ra
to

r a
nd

 d
ec

is
io

n
tre

e

Si
m

pl
e

lin
ea

r o
pe

ra
to

r

 C
ar

di
na

lit
y

sf
in

pu
t l

en
gt

h
(k

)
O

ut
pu

t l
en

gt
h

(l)

Se
tti

ng
 1

1,
 2

, 4
, 8

, 1
6

2
[4
…
7
]

2
[1
…

7
]

Se
tti

ng
 2

1,
 2

2
[8
…
1
1
]

2
[1
…

k
]

D
ec

is
io

n
tre

e

 C
ar

di
na

lit
y

sf
in

pu
t l

en
gt

h
(k

)
#F

ea
tu

re
s (

p)
#L

ea
ve

s (
l)

Se
tti

ng
 1

1,
 2

, 4
, 8

, 1
6

2
[4
…
7
]

2
[4
…

7
]

2
[1
…

6
]

Se
tti

ng
 2

1,
 2

2
[8
…
1
1
]

2
[3
…

1
1
]

2
[6
…

1
1
]

G
B

D
T

 C
ar

di
na

lit
y

sf
In

pu
t l

en
gt

h
(k

)
#F

ea
tu

re
s (

p)
#T

re
es

 (t
)

#L
ea

ve
s (

l)

Se
tti

ng
 1

1,
 2

, 4
2
[4
…

7
]

2
[4
…

7
]

5,
 1

5,
 2

0
8,

 1
6,

 3
2

Se
tti

ng
 2

1,
 2

2
[8
…

1
1
]

2
[3
…

1
1
]

25
, 5

0,
 1

00
8,

 1
6,

 3
2

	 Distributed and Parallel Databases (2025) 43:8 8   Page 28 of 41

distinct sources, each holding different segments of data. The datasets are joined
using keys in the fact table, namely Trade. The resulting target table has 27 output
features. Table 6 details the cardinalities of each table under various scale factors,
providing a comprehensive view of the data landscape across different scenar-
ios. This setup enables us to thoroughly evaluate the effectiveness of the fusion
method in a realistic, multi-source data integration context.

Table 6   Data sizes of the
realistic data integration
scenario based on TPC-DI
benchmark

The table shows the number of rows in sources ( rj ) and the target
table w.r.t varying scale factors

Scale factors Source 1 Source 2 Source 3 Target

Trade Customer Stock Reports

3 390,979 4729 2620 98,778 528,798
5 650,413 7801 4202 198,263 949,623
7 911,674 10,865 5802 297,748 1,347,168
9 1,171,674 13,896 7401 397,022 1,738,255
11 1,430,674 16,984 9003 496,820 2,139,083

Fig. 11   Average execution time of join with and w/o fusing linear operators under different scale factors.
The experimental scenario is cardinality setting 1

Fig. 12   Average execution time
of predictive pipeline of simple
linear operator with and w/o
operator fusion when sf = 4 .
The experimental scenario is
cardinality setting 1

Distributed and Parallel Databases (2025) 43:8 	 Page 29 of 41  8

5.3.2 � Evaluation results for simple linear operators

This example exhibits a scenario where the output of join operations is fed to a
linear operator producing a matrix. We separately evaluate two conditions: input
with large sf, where the cardinality setting 1 is enabled, followed by a small linear
operator, and input with small sf (cardinality setting 2) connected to a relatively
large operator.

Q4 ∶ Howmuch speedup can fusing linear operators deliver in cardinality setting 1?

Observation In this experiment, we compare the execution time of a star join
with operator fusion to LA-after-join implementations. Figure 11 displays the
average execution time under various scale factors. It is evident that HeavyDB’s
execution time consistently exceeds that of cuDF by a factor of more than five, on
average, at scale factors 1 and 2. Furthermore, at a scale factor of 16, the perfor-
mance gap widens significantly, with HeavyDB’s execution time lagging behind
cuDF by an order of magnitude.

In the subsequent sections of this paper, unless there are compelling reasons to
do otherwise, we have chosen to exclude HeavyDB’s performance results when
they are markedly inferior to those of the other methods under comparison.

The fusion method outperforms the other two implementations. In Fig. 12,
we hold all parameters constant except for the output shape of the linear opera-
tor. Both cuDF and the non-fusion method do not exhibit significant changes in
execution time compared to the fusion method. Although the fusion method still
demonstrates speedups, these speedups continue to decrease as the output shape
grows larger.

Fig. 13   Heatmap of speedup
w.r.t lengths of input and output
when sf = 8

Fig. 14   Average execution time
of predictive pipeline of deci-
sion tree with and w/o operator
fusion when sf = 2 . The experi-
mental scenario is cardinality
setting 2

	 Distributed and Parallel Databases (2025) 43:8 8   Page 30 of 41

Analysis Through Eq. (3), we understand that the speedup is negatively correlated
with output shape l and positively correlated with input width k. Due to the large
input size in this experiment, the lower order terms k

2

3il
 and k∑

j rj
 in the equation are

neglectable. Consequently, in Fig. 12, we observe that the speedup of the fusion
method gradually decreases as l increases. Additionally, we illustrate the speedup
values concerning different k and l, while maintaining sf = 8 , in Fig. 13. The highest
speedup occurs at the largest k and smallest l, whereas the lowest speedup is found
along the diagonal. This result validates our analysis derived from Eq. (3).

Q5 ∶ Howmuch speedup can fusing linear operators deliver in cardinality setting 2?

Observation In this experiment, we set the base cardinality to 1/1000 of SSB and
enlarge the output shape l up to 211 . Comparing Figs. 13 and 11, we can clearly
observe much more significant speedups of operator fusion in small dimension
tables in cardinality setting 2.

Furthermore, while HeavyDB consistently underperformed in the results of
Query Q4 , it outperformed cuDF in the cardinality setting 2, as depicted in Fig. 14.
Given that both HeavyDB and cuDF employ non-fusion methods, the observed per-
formance discrepancy can be attributed to differences in query execution times.

Analysis In our test scenario, dimension table columns are initially joined
together, followed by multiplying a schema mapping matrix to perform projections.
This approach requires extensive column manipulation during the join operation.

In cardinality setting 2, the target table contains a substantially greater number
of columns than in cardinality setting 1. cuDF, which manages tables as row-
major numeric arrays, faces increased computational costs for column-wise data
manipulation, particularly when joining wide tables compared to those with a
smaller number of columns. On the other hand, HeavyDB, as a fully-fledged data-
base system, segments columns into more granular fragments and chunks.6 This
design enhances performance when handling the extensive column manipulations
typical of cardinality setting 2. However, this advantage comes with a trade-off:
when dealing with high rj values, the conversion of block-based data structures
to arrays requires additional time, leading to degraded performance compared to

Fig. 15   The execution time that
pre-fusion stage and join-com-
putation stage take in prediction
with linear operator after joining

6  https://​github.​com/​heavy​ai/​heavy​db/​blob/​master/​docs/​source/​data_​model/​colum​nar_​layout.​rst.

https://github.com/heavyai/heavydb/blob/master/docs/source/data_model/columnar_layout.rst

Distributed and Parallel Databases (2025) 43:8 	 Page 31 of 41  8

the array-native cuDF. Similar trends were observed in subsequent sections when
evaluating decision trees and GBDT models in cardinality setting 2.

Q6 ∶ Howmuch time does the pre − fusion phase take?

Analysis As indicated by Eq. (3), a reduction in input cardinality corresponds
to a smaller value for

∑
j rj , resulting in a larger speedup. Furthermore, HeavyDB

is slower than both LAQ with and without operator fusion due to data structure
conversions across different runtimes between the database and ML systems.
Thus, we can conclude that the fusion method is more advantageous when pro-
cessing linear queries with small dimension tables.

Fig. 16   Average execution time of join with and w/o fusing decision trees regarding different scale fac-
tors. The experimental scenario is cardinality setting 1

Fig. 17   Average execution time
of predictive pipeline of deci-
sion tree with and w/o operator
fusion when sf = 4 . The experi-
mental scenario is cardinality
setting 1

Fig. 18   Heatmap of speedup
w.r.t numbers of features and
leaves when sf = 8

	 Distributed and Parallel Databases (2025) 43:8 8   Page 32 of 41

Observation and analysis While the operator fusion method provides consider-
able speedup, it is crucial to consider the cost of the pre-fusion step, as shown in the
underlined parts of Eq. (2). This is because dimension tables, although updated less
frequently than fact tables, are not static constants. Moreover, the pre-fused tables
may be larger than the original dimension tables when the output shape exceeds the
number of columns, resulting in increased memory usage. Consequently, a quantita-
tive trade-off between fusion and non-fusion methods still calls for further study in
practice.

Figure 15 presents a stacked plot illustrating the relative proportion between pre-
fusion and subsequent multiplication with I∗ . Based on the parameter settings in
Q5, we observe that when the output shape l is less than or equal to 512, the linear
operation dominates the total execution time. As a result, if memory constraints are
present, we can prioritize query completion without encountering out-of-memory
errors, considering the diminishing speedup with larger output shapes.

5.3.3 � Evaluation results for decision trees

In this experiment, we substitute the simple linear operator with a more intricate
decision tree model to explore the performance advantages resulting from operator
fusion. Following a similar experimental approach for simple linear operators, we
separately assess the performance of two scenarios: cardinality setting 1 followed by
a simple decision tree and cardinality setting 2 followed by a relatively large model.

Q7 ∶ Howmuch speedup can fusing decision trees deliver in cardinality setting 1?

Observation and analysis Figs. 16, 17 and 18 display the results for large input
scenarios. Figure 16 demonstrates that the average execution time of the fusion
method is significantly faster than the other two methods across all scale factors.
Notably, both cuDF and the non-fusion method fail to execute due to out-of-memory
errors, while the fusion method completes a larger portion of evaluations. In Fig. 17,
we vary parameter l while keeping sf = 4 . It is evident that LAQ with fusion outper-
forms other methods when l is low, but its performance deteriorates as l increases.
Another observation is that the performance of both LAQ without fusing and cuDF
without fusing is not significantly influenced by the number of leaves. According
to the complexity analysis detailed in Sect. 3.3.3, the primary complexity factors
for non-fusion methods are k and rj . In contrast, the fusion method’s complexity is

Fig. 19   Average execution time
of predictive pipeline of deci-
sion tree with and w/o operator
fusion when sf = 2 . The experi-
mental scenario is cardinality
setting 2

Distributed and Parallel Databases (2025) 43:8 	 Page 33 of 41  8

also impacted by the number of leaves l . Therefore, performance degradation can be
observed for the fusion method, but not for the non-fusion methods, as the number
of leaves grows.

The performance degradation can be explained using Eq. (10). We focus on
k

l
 because the remaining terms can be disregarded with large

∑
j rj . As l increases,

k

l
 decreases, leading to a reduced speedup compared to the non-fusion method. In

Fig. 18, we examine the speedup concerning different values of k and l. The high-
est speedup occurs at the largest k and smallest l, which validates our complexity
analysis that the speedup is correlated with k

l
 . A large k and small l suggest that

the model functions as a data compressor, indicating that the fusion method can be
advantageous when applying a narrow-down model to a large amount of data. From
a hardware perspective, a pre-fusion method with a filtering effect actually reduces
the size of input data, which further decreases memory usage and memory I/O in
subsequent computations. Therefore, the value of k

l
 can serve as a potential indicator

for determining whether pre-fusion should be applied.

Fig. 20   The execution time that
pre-fusing stage and join-com-
putation stage take in prediction
with decision tree after joining

Fig. 21   Average execution time
of predictive pipeline of GBDT
regarding scale factors. The
experimental scenario cardinal-
ity setting 1

Fig. 22   Average execution time
of predictive pipeline of GBDT
regarding scale factors. The
experimental scenario cardinal-
ity setting 2

	 Distributed and Parallel Databases (2025) 43:8 8   Page 34 of 41

Q8 ∶ Howmuch speedup can fusing decision trees deliver in cardinality setting 2?

Observation and analysis In scenarios where dimension tables with small cardi-
nality are processed using a large model, the operator fusion method exhibits a more
significant speedup compared to the other three methods, as illustrated in Fig. 19.
When the input scale factor is reduced to 1% of that in Q8 , the residual terms in
Eq. (10) can no longer be ignored, leading to a greater speedup. However, as the
model size increases, the cost of pre-operator fusion becomes more expensive rela-
tive to subsequent computations, as shown in Fig. 20. Considering that dimension
tables are not entirely static but updated according to changes in the dimension
tables, the actual benefits of the operator fusion method depend on the update fre-
quency of the dimension tables.

5.3.4 � Evaluation results for GBDT

Building upon the decision tree evaluation, we extend our evaluation to the more
complex GBDT model. Given the extensive space complexity inherent to GBDT,
our experiments focused on speedup metrics under relatively small scale factors.

Q9 ∶ Howmuch speedup can fusingGBDT deliver in different cardinality settings?

In both cardinality settings, our operator fusion method demonstrates a marked
superiority in performance compared to cuDF and HeavyDB. Notably, our method’s
efficiency is not only reflected in its speedup but also in its memory usage.

Fig. 23   Average execution time
of predictive pipeline of GBDT
regarding total number of leaves
when sf = 2. The experimental
scenario cardinality setting 1

Fig. 24   Average execution time
of predictive pipeline of GBDT
regarding total number of leaves
when sf = 1. The experimental
scenario cardinality setting 2

Distributed and Parallel Databases (2025) 43:8 	 Page 35 of 41  8

Figure 21 shows the execution time with cardinality setting 1. At a scale factor
of 4, both cuDF and HeavyDB encountered out-of-memory errors, whereas our
fusion method continued to operate effectively. This underscores our fusion meth-
od’s capability in reducing memory footprint by avoiding redundancy from joins.
When it comes to cardinality setting 2 (Fig. 22), speedup achieved by our fusion
method becomes even more remarkable. Although the speedup presents a trend of
decreasing when scale factor increases, the low memory footprint feature still make
our method applicable in scenarios with limited resources.

cuDF performs worse in cardinality setting 2 compared to HeavyDB. This is due
to its underlying data structure not being optimized for vast column manipulations.
We had an extensive discussion of the reason that HeavyDB outperforms cuDF
reversely in Q5.

Q10 ∶ What are the dynamics of speedup in relation to varying input sizes and model scales ?

As illustrated in Figs. 23 and 24, our findings for the GBDT models align with
those observed with decision trees. Specifically, we noticed that, given a set k,
the speedup generally decreases as the model complexity increases. This trend of
speedup degradation is more significant in cardinality setting 1, characterized by
large-scale input data and smaller models. However, it’s crucial to understand that
the total number of trees in a GBDT model doesn’t straightforwardly correlate to
the speed attained. This variation in performance is attributed to the computational
efficiencies that are specific to the shapes of the tensors involved.

Q11 ∶ Howdoes the implementation of GBDT affect speedups?

Further insights are provided in Figs. 25 and 26, which illustrate the speedup
relative to k and various combinations of tree and leaf counts. Beyond the general

Fig. 25   Heatmap of speedups
regarding input length and
combinations of number of trees
and leaves. The experimental
scenario is cardinality setting 1
and sf=2

Fig. 26   Heatmap of speedups
regarding input length and
combinations of number of trees
and leaves. The experimental
scenario is cardinality setting 2
and sf=1

	 Distributed and Parallel Databases (2025) 43:8 8   Page 36 of 41

trends, a particularly interesting observation arises in cardinality setting 2, especially
when comparing models with an identical total number of leaves, such as configu-
rations of 16 trees with 50 leaves each versus 8 trees with 100 leaves each. Models
with a larger number of trees but fewer leaves per tree exhibit better performance.

As discussed in Sect. 4.4, this can be attributed to the potential for optimization
in tensor computing when individual trees are smaller in size. Since the compu-
tational workload for a single tree doesn’t fully utilize all available resources, the
cuTensorNet library can efficiently parallelize multiple tensor computations within a
single kernel launch. This explains why, even with the same k

t∗l
 ratio, a GBDT model

with fewer leaves per tree and more trees overall performs faster. This phenomenon
underscores the impact of tensor shape on actual computational complexity in our
fused GBDT model implementation.

Summary Our analysis indicates that for a small k, larger GBDT models tend
not to deliver faster results. However, it’s important to consider the typical data

Fig. 27   Average execution time of decision trees in TPC-DI benchmark regarding scale factors and num-
ber of leaves

Fig. 28   Average execution time of GBDT in TPC-DI benchmark regarding scale factors and total number
of leaves

Distributed and Parallel Databases (2025) 43:8 	 Page 37 of 41  8

preprocessing steps involved in using GBDT models, such as vectorization or one-
hot encoding. These steps often substantially increase the number of features, which
is where our fusing method demonstrates its strengths. Consequently, this empha-
sizes the method’s potential utility in practical scenarios, particularly in data-inten-
sive fields where preprocessing expands feature space significantly, thereby aligning
with the advantages of our fusion-based approach.

5.4 � Performance evaluation on TPC‑DI

In this experiment, we integrate our operator fusion approach into a real-world pre-
dictive pipeline, using data from the TPC-DI benchmark. The TPC-DI benchmark
simulates real-world data integration scenarios using a realistic data model based
on a retail brokerage firm. Therefore, we use TPC-DI to evaluate the performance of
operator fusion in realistic data integration scenarios.

The dataset we used for evaluation involves four tables distributed across three
disjoint parties, with the target table serving as the input for predictive tasks. We
evaluate the performance of fusing both decision tree and GBDT models on this
dataset, focusing on varying scale factors. Given our previous evaluations, which
consistently showed the LAQ without fusing to be slower than our fusion approach,
we have chosen to omit the results for LAQ without fusing.

Figure 27 presents the results of fusing decision trees. Consistent with patterns
observed in synthetic datasets, the fusion method continuously outperforms cuDF
in terms of speed. However, the speedup decreases with increasing scale factors.
Notably, since k is only 27, the speedup is less significant than what we observe in
synthetic data scenarios.

In the results for fusing GBDT, detailed in Fig. 28, we observe the same trend as
in the fusing decision tree results. Specifically, when the total number of tree leaves
reaches 480, our fusion method starts to be slower than cuDF without fusion. This is
also attributed to the small k.

This experiment demonstrates the usability of our fusion method in real-world
predictive pipelines, but it also highlights that the fusion method is not a one-size-
fits-all solution. It is suitable particularly in predictive tasks with a large k, as dis-
cussed in Sects. 3.3 and 4, highlighting that while powerful, the operator fusion is
most effective in specific types of data-intensive tasks.

6 � Related work

GPU relational data processing GPU-accelerated query processing has been
extensively researched in recent decades. As GPU architectural design and mem-
ory bandwidth between hosts and GPUs have advanced, several database manage-
ment systems (DBMS) have incorporated GPU acceleration to optimize their query
processing capabilities. Notable examples of GPU-based systems include Crystal,
OmniSci (now known as HeavyDB) [12], BlazingSQL [3], and PG-Strom. These
systems take advantage of the parallel processing capabilities of GPUs to perform

	 Distributed and Parallel Databases (2025) 43:8 8   Page 38 of 41

operations such as filtering, aggregation, and join processing at a significantly faster
rate compared to traditional CPU-based systems.

However, these works do not change the nature of relational data processing. The
theoretical and practical gap between relational data and linear algebraic input for
machine learning still hinders potential integration and optimization opportunities.

Hummingbird [17, 19] is a system capable of compiling a wide range of tradi-
tional ML models into modern tensor-based runtimes designed specifically for deep
learning models. In addition to providing a unified runtime, Hummingbird employs
deep learning compilers to optimize the overall efficiency of the ML pipeline.

However, despite the benefits of tensor representation, the operators in Hum-
mingbird do not implement joins and aggregations commonly found in data integra-
tion and training data generation processes.

Inspired by Hummingbird, TQP [11] further extends tensor programs for rela-
tional operations, including sort-merge join and hash join, enabling it to handle the
full TPC-H benchmark [28]. TQP leverages a widely-used tensor computing runt-
ime, to optimize and execute workflows containing both relational data processing
and model prediction on GPUs. Following this research, TDP [8] expands capabili-
ties to encode multi-modal data processing. Nevertheless, the physical implementa-
tion of join and aggregation operators remains in the relational style rather than LA.
This diversity prevents the differentiability from being further pushed down to the
source data before joins and also misses optimization opportunities brought about
by LA rewriting. Our research implements joins and aggregations in linear algebra
and proposes an operator fusion method leveraging this unified theoretical language,
significantly accelerating predictive pipelines.

Query processing using matrix multiplication Matrix multiplication has been
widely adopted in graph query processing. Earlier research [1, 6] proposed LA-
based algorithms for computing an equi-join followed by a duplicate-eliminating
projection, which yields smaller intermediate results and more efficient memory
I/O than conventional relational operators. One recent paper [14] proposed DIM3
to address several performance bottlenecks in [6]. DIM3 introduces partial result
caching and support for join-aggregation operations. However, this line of research
focuses primarily on join operations rather than a general method of processing rela-
tional queries with linear algebra (LAQ) discussed in our research.

TCUDB [13] is the first GPU query engine that primarily uses LAQ as its query
engine, which implements equi-join and single-column aggregation using LAQ. The
design principle of the join-aggregation operator in TCUDB is similar to that of [1,
6], but it is embedded within a query planner that supports a wide range of SQL que-
ries and analytic queries. In the TCUDB paper, the authors evaluate its performance
with graph query workloads, but they do not provide insights into its performance
into the cost of each operator in LAQ. In contrast, our work extensively evaluates
LAQ on a wide range of data and reports detailed performance breakdown.

To support an integrated pipeline of data integration and ML model training,
in our previous work [10], we have defined matrix-based representations for map-
ping columns and rows between source and target tables. With the logical repre-
sentations, we identify the method to evaluate outer-join, inner-join, left-join, and
union in data integration tasks using linear algebra operators. Building upon this

Distributed and Parallel Databases (2025) 43:8 	 Page 39 of 41  8

foundation, in the current research, we evaluate the extended LAQ using relational
query benchmark datasets to assess its performance in traditional data queries and
predictive pipelines.

Cross-optimization of ML and relational data processing Raven [22] and
LaraDB [15] implemented cross-optimization methods for batch prediction tasks
that follow relational data processing. The optimizer, built on a unified intermedi-
ate representation, enables the exchange of information between relational opera-
tors and ML models. However, in this research, the relational and linear components
must execute in separate runtimes, which may involve potential data transformation
and communication overhead. In contrast, our method unifies the data processing
and ML model prediction in representation as well as runtime.

7 � Conclusion and future research

In this paper, we present the operator fusion method to optimize the speed of pre-
dictive pipelines consisting of data processing and ML model predictions. The fun-
damental principle of LAQ involves fusing dimension tables with linear operators
within a part of the model and caching the intermediate results. When executing
queries with ML inference, the cached results serve as the input for the remaining
part of the model, thereby reducing the execution time of queries with ML inference.

Furthermore, through the analysis of the complexity of operator fusion and LAQ
without operator fusion, we find that the length ratio of input vector and output vec-
tor, described as k

l
 as discussed in Sect. 3, may influence the speedup of our method

in the context of the star schema. In our evaluation, we use SSB, TPC-DI, and a
synthetic dataset to test the performance of LAQ and operator fusion. Based on the
experimental results, we draw the following conclusions:

•	 LAQ outperforms cuDF, a standard GPU relational query processor, in most
evaluations except for query group 4 when sf is 16. The inherent high computa-
tional complexity of domain construction and matrix multiplication dominates
the execution time, causing performance degradation when data sizes increase.
However, we can expect performance improvement by caching key domains.

•	 In experiments for predictive pipelines in Sect. 5.3, operator fusion exhibits
significant speedups up to 317x compared to the traditional predictive pipeline
without operator fusion. Moreover, the experiment results confirm the hypoth-
esis that k

l
 in Eqs. (3), (10) and 14 affects the speedup of operator fusion.

•	 The speedup of operator fusion also depends on the sizes of input matrices. Fus-
ing large models is costly, but it can be beneficial when the update frequencies
and cardinality of dimension tables are low. We need to make trade-offs between
operator fusion and non-operator fusion based on update patterns and data sizes.

Limitations The performance advantage of operator fusion, as proposed in this
paper, depends on size differences between dimension tables and the fact table.
When the dimension table increases in size, the intermediate results from operator

	 Distributed and Parallel Databases (2025) 43:8 8   Page 40 of 41

fusion also expand. Consequently, the remaining portion of the model must process
a substantially larger input, which may lead to memory-bound operations. Addition-
ally, the residuals in the computational complexity become non-negligible, thereby
reducing the efficacy of the LAQ method with fusion. Determining the decision
boundary for this performance benefit calls for a more comprehensive and detailed
performance model.

Future research Although we have preliminarily shown that fusing linear opera-
tors in ML models with LAQ is beneficial, a detailed cost estimation that can assist
with automatic pipeline optimization is still missing.

Furthermore, in the context of thriving large-scale deep learning, more opera-
tor fusion rules that can optimize deep learning operators are urgently needed. The
challenges of applying the operator fusion proposed in this work to deep learning
models lie in the non-linear activation functions, such as sigmoid and tanh. Non-
linear activations are not additive and therefore cannot be pushed down to dimension
tables, as the final result of operator fusion is the summation of fused model-dimen-
sion tables. However, ReLU, which is widely used in deep learning models, can be
regarded as a piecewise linear function. This characteristic has been successfully
exploited for model inference and training over normalized data [5]. In future work,
we will apply the operator fusion method to neural networks where ReLU is the acti-
vation function to expand the usability of our method.

Author contributions  W. Sun wrote the main manuscript text. R. Hai and A. Katsifodimos helped review-
ing and refining the content.

Data availability  No datasets were generated or analysed during the current study.

Declarations 

Conflict of interest  The authors declare no Conflict of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Amossen, R.R., Pagh, R.: Faster Join-Projects and Sparse Matrix Multiplications. In: ICDT 2009,
pp. 121–126. Association for Computing Machinery, New York (2009). https://​doi.​org/​10.​1145/​
15148​94.​15149​09

	 2.	 Balkesen, C., Teubner, J., Alonso, G., et al.: Main-memory hash joins on multi-core CPUs: tuning to
the underlying hardware. ICDE 2013, 362–373 (2013)

	 3.	 BlazingDB: BlazingSQL. https://​github.​com/​Blazi​ngDB/​blazi​ngsql (2020)
	 4.	 Chen, T., Moreau, T., Jiang, Z., et al.: TVM: an automated End-to-End optimizing compiler for deep

learning. OSDI 2018, 578–594 (2018)

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/1514894.1514909
https://doi.org/10.1145/1514894.1514909
https://github.com/BlazingDB/blazingsql

Distributed and Parallel Databases (2025) 43:8 	 Page 41 of 41  8

	 5.	 Cheng, Z., Koudas, N., Zhang, Z., et al.: Efficient construction of nonlinear models over normalized
data. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 1140–1151
(2021). https://​doi.​org/​10.​1109/​ICDE5​1399.​2021.​00103

	 6.	 Deep, S., Hu, X., Koutris, P.: Fast join project query evaluation using matrix multiplication. SIG-
MOD 2020, 1213–1223 (2020)

	 7.	 Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5),
1189–1232 (2001). http://​www.​jstor.​org/​stable/​26999​86

	 8.	 Gandhi, A., Asada, Y., Fu, V., et al.: The tensor data platform: towards an ai-centric database sys-
tem. In: CIDR 2023 (2023)

	 9.	 Ghiran, A.M., Buchmann, R.A.: The model-driven enterprise data fabric: a proposal based on con-
ceptual modelling and knowledge graphs. In: Douligeris, C., Karagiannis, D., Apostolou, D. (eds.)
Knowledge Science, pp. 572–583. Springer, Engineering and Management (2019)

	10.	 Hai, R., Koutras, C., Ionescu, A., et al.: Amalur: data integration meets machine learning. In: ICDE
2023, p To appear (2023)

	11.	 He, D., Nakandala, S.C., Banda, D., et al.: Query Processing on Tensor Computation Runtimes.
vol 15, pp. 2811–2825. VLDB Endowment (2022)

	12.	 Heavy.ai: HeavyDB. https://​github.​com/​heavy​ai/​heavy​db (2022)
	13.	 Hu, Y.C., Li, Y., Tseng, H.W.: Tcudb: accelerating database with tensor processors. SIGMOD 2022,

1360–1374 (2022)
	14.	 Huang, Z., Chen, S.: Density-optimized intersection-free mapping and matrix multiplication for

join-project operations. vol 15, pp. 2244–2256. VLDB Endowment (2022)
	15.	 Hutchison, D., Howe, B., Suciu, D.: LaraDB: a minimalist kernel for linear and relational algebra

computation. In: Proceedings of the 4th ACM SIGMOD Workshop on Algorithms and Systems for
MapReduce and Beyond, BeyondMR’17 (2017)

	16.	 Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Definitive Guide to Dimensional Mod-
eling, 3rd edn. Wiley Publishing (2013)

	17.	 Koutsoukos, D., Nakandala, S., Karanasos, K., et al.: Tensors: an abstraction for general data pro-
cessing. Proc. VLDB Endow. 14(10), 1797–1804 (2021)

	18.	 Machado, I.A., Costa, C., Santos, M.Y.: Data mesh: concepts and principles of a paradigm shift in
data architectures. Procedia Comput. Sci. 196, 263–271 (2022)

	19.	 Nakandala, S., Saur, K., Yu, G.I., et al.: A tensor compiler for unified machine learning prediction
serving. In: OSDI 2020. USENIX Association (2020)

	20.	 Okuta, R., Unno, Y., Nishino, D., et al.: CuPy: a NumPy-compatible library for NVIDIA GPU cal-
culations. In: NIPS 2017 Workshop: LearningSys (2017)

	21.	 O’Neil, P., O’Neil, E., Chen, X., et al.: The star schema benchmark and augmented fact table index-
ing. In: Performance Evaluation and Benchmarking: 1st TPC Technology Conference, TPCTC
2009, pp. 237–252. Springer (2009)

	22.	 Park, K., Saur, K., Banda, D., et al.: End-to-end optimization of machine learning prediction que-
ries. SIGMOD 2022, 587–601 (2022)

	23.	 Paszke, A., Gross, S., Massa, F., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: NeurIPS 2019 (2019)

	24.	 Poess, M., Rabl, T., Jacobsen, H.A., et al.: Tpc-di: the first industry benchmark for data integration.
Proc. VLDB Endow. 7(13), 1367–1378 (2014). https://​doi.​org/​10.​14778/​27330​04.​27330​09

	25.	 Psallidas, F., Zhu, Y., Karlas, B., et al.: Data science through the looking glass: analysis of millions
of GitHub notebooks and ML.NET Pipelines. SIGMOD Rec 51(2), 30–37. https://​doi.​org/​10.​1145/​
35524​90.​35524​96 (2022)

	26.	 Rapidsai: cuDF. https://​github.​com/​rapid​sai/​cudf (2022)
	27.	 Sun, W., Katsifodimos, A., Hai, R.: An empirical performance comparison between matrix multi-

plication join and hash join on GPUs. In: ICDE 2023 Workshop: HardBD & Activep (to appear)
(2023)

	28.	 Transaction Processing Performance Council TPC Benchmark H. http://​tpc.​org/​tpc_​docum​ents_​
curre​nt_​versi​ons/​pdf/​tpc-h_​v2.​18.0.​pdf (2018)

	29.	 Yuster, R., Zwick, U.: Fast sparse matrix multiplication. ACM Trans. Algorithms 1(1), 2–13 (2005).
https://​doi.​org/​10.​1145/​10774​64.​10774​66

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1109/ICDE51399.2021.00103
http://www.jstor.org/stable/2699986
https://github.com/heavyai/heavydb
https://doi.org/10.14778/2733004.2733009
https://doi.org/10.1145/3552490.3552496
https://doi.org/10.1145/3552490.3552496
https://github.com/rapidsai/cudf
http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf
http://tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf
https://doi.org/10.1145/1077464.1077466

	Accelerating machine learning queries with linear algebra query processing
	Abstract
	1 Introduction
	2 Preliminaries: linear algebra based query processing
	2.1 Projection
	2.2 Selection
	2.3 MM-Join
	2.3.1 2-Way join
	2.3.2 Multi-way join
	2.3.3 Materialization

	2.4 Group-by aggregation
	2.4.1 Aggregation by a single column
	2.4.2 Aggregation by multiple columns

	2.5 Sorting

	3 Operator fusion
	3.1 Scenario description
	3.2 Fusing simple linear operators
	3.2.1 Complexity analysis

	3.3 Fusing decision trees
	3.3.1 Matrix representation of decision trees
	3.3.2 Fusing with dimension tables
	3.3.3 Complexity analysis

	4 Fusing gradient boosting decision trees
	4.1 Matrix representation of GBDT predictions
	4.2 Fusing with dimension tables
	4.3 Complexity analysis
	4.4 Implementation of fusing GBDT
	4.5 Summary

	5 Experimental evaluation
	5.1 Experiment settings
	5.2 Performance evaluation for LAQ
	5.2.1 SSB dataset
	5.2.2 Evaluation results for LAQ

	5.3 Performance evaluation for operator fusion
	5.3.1 Datasets
	5.3.2 Evaluation results for simple linear operators
	5.3.3 Evaluation results for decision trees
	5.3.4 Evaluation results for GBDT

	5.4 Performance evaluation on TPC-DI

	6 Related work
	7 Conclusion and future research
	References

