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Abstract

The resolution of conventional ultrasound imaging is fundamentally limited by wave diffrac-
tion. Ultrasound localization microscopy (ULM) is a vascular imaging method capable of
retrieving a 10-fold improvement of resolution compared to the classical diffraction limit.
It relies on the detection, localization, and tracking of intervascular injected synthetic mi-
crobubbles (MB) of sub-wavelength size. The localization of sparse MBs with sub-wavelength
precision is the key factor enabling super-resolution in ULM. Blood flow velocity measure-
ments are obtained by tracking the MBs over consecutive frames. As a result, tracked MBs
act as moving blood flow sensors. Super resolved images of the microvasculature and its av-
erage bloodflow are recovered by accumulating the MB tracks on a fine grid. Because typical
ULM acquisitions accumulate large numbers of MB tracks over hundreds of cardiac cycles,
transient hemodynamic variations such as pulsatility get averaged out. Here we introduce
two independent processing methods that leverage the high temporal sampling of MB tracks
to retrieve pulsatility in ULM data. The first method relies on filtering single track velocity
measurements to reduce the presence of noise resulting from MB localization error. This
method was shown able to recover the blood flow velocity over a pulsatile cycle. The pulsatil-
ity fraction, defined as the relative velocity deviation during a pulsatile cycle, was successfully
retrieved with a root mean squared error (RMSE) of 3.3% in simulated data. The second
reported method is based on the accumulation of velocity measurements by a stationary ob-
server. From theoretical derivation, it was found that pulsatility leads to bimodality in the
velocity distribution, which was only observed for sufficient localization precision. We showed
that the pulsatility fraction can be retrieved from the location of the two velocity distribution
peaks, which correspond to the maximum and minimum velocity during a pulsatile cycle.
The method was validated in simulation resulting in a pulsatility fraction estimation with
an error of 5.2%. Together, our results show that MB track data contains more informa-
tion on the hemodynamics of the blood flow than is represented by conventional ULM image
reconstruction.

Keywords: ultrasound localization microscopy, pulsatility, localization precision, velocity dis-
tribution
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1-1 Two brain images reported with an interval of nearly 80 years. (a) Dussik’s "hyper-
phonogram", the first reported ultrasound image of the body (1942). A sagittal
slice of the human brain was imaged through a transcranial acquisition. From [2]
(b) An ultrasound localization microscopy reconstruction of a coronal slice of the
rat brain (2018). Positive and negative blood flow velocities u represent up- and
downwards direction. From [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1-2 The pulse-echo principle is found both in nature and technical applications. The
surroundings are perceived by transmitting a pulse and capturing echoes resulting
from object interactions. (a) Dolphins apply the pulse-echo principle for echo-
location of their prey. Obtained from https://navalunderseamuseum.org (b) In
ultrasound imaging the pulse-echo principles is utilized to image internal tissue
structures. Lines represent the wavefront. . . . . . . . . . . . . . . . . . . . . . 2

1-3 Illustration of the transmitted wave and its tissue interactions in ultrasound imag-
ing. (a) Two types of acoustic waves. Particles vibrating in longitudinal or trans-
verse direction w.r.t. the direction of propagation for respectively compressional
and shear waves. (b) The ultrasound transducer consists of multiple piezo electric
elements. By firing the elements in a delay pattern, transmit pulses of arbitrary
shape can be constructed. (c) Specular reflection occurs when an incident wave
of pressure pi encounters a smooth interface. Part of the pressure is reflected (pr)
and the remainder is transmitted (pt). θi=θr. (d) Diffuse reflection occurs when
an incident wave encounters a rough interface. (e) Rayleigh scattering by a small
particle results in a sperical echo of pressure ps. . . . . . . . . . . . . . . . . . . 4

1-4 An illustration of the ultrasound data acquisition process in successive steps. (a)
The ultrasonic probe emits a plane wave pulse, depicted by lines of equal phase
(blue), by firing the piezo-electric transducer elements simultaneously. Two scat-
terers are located in the homogeneous tissue. (b) The transmit beam travels in
z-direction through the tissue and encounters a scatterer (orange dot). (c) Rayleigh
scattering of the first scatterer. (d) The echo (red) arrives at the probe and is de-
tected by the yellow element. (e) Due to a difference in TOF the echo is detected
by the elements in an hyperbolic shape. . . . . . . . . . . . . . . . . . . . . . . 7
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1-5 Finding the pixel intensity of the pixel centered around (x, z). The beamforming
grid is overlayed in gray. (a) A plane wave (blue) at an angle α travels a distance
dTX towards the pixel center. The resulting echo resulting from scatterers within
the pixel travels a distance dRX back to transducer element i. (b) An illustration
of DAS beamforming to retrieve the pixel intensity from the recorded RF signal.
Due to a difference in dRX the echo reaches the transducer elements (gray) in
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patch. Transmit frequency f = 17.86 MHz, wavelength λ = 86.2 µm, #f = 1,
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= 1, beamformed pixel size dx = 10 µm. (d-f) Pixel intensity values along the
line z = 0.4mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1-8 Individual ultrasound imaging of point scatterers. (a)-(c) Ultrasound simulations
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gle scatterer at 0.36 mm, a single scatterer at 0.46 mm. Transmit frequency
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1-9 The process of creating a ULM reconstruction from input B-mode frames visual-
ized. During a ULM acquisition, microbubbles (MB) are injected in the vasculature
and a large number of B-mode frames is acquired over time. Static tissue signal is
filtered out, resulting in MB frames that highlight the nonlinear image contribution
of the microbubbles. MB events are detected and localized with sub-wavelength
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over consecutive frames. The MB tracks are accumulated to find the ULM recon-
struction. In the ULM density map displayed here vessels of diameter far below
the wavelength can be distinguished. Scalebar: λ = 102 µm. Data from [4]. . . . 13

2-1 A detailed depiction of the ultrasound localization microscopy processing pipeline.
Input are the B-mode frames I(x, z, n). The outputted super resolved reconstruc-
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interpolation. (c) Weighted average method. (d) 2D Gaussian fitting. (e) Radial
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2-5 The MB tracking problem visualized. (a) MB tracking is performed by linking
MB positions of consecutive frames. (b) In local search methods the linking is
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in the next frame is sought. (c) Combinatorial methods rely on linking the MBs
frame-to-frame. The linking of all MB positions of two consecutive frames is
considered at the same time allowing to find a solution that minimizes the total
linking cost. Cij denotes the cost of linking node i of frame n − 1 to node j of
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2-6 The rendering of MB trajectories consists of three steps: smoothing, interpola-
tion and accumulation. (a) A MB trajectory is formed by linking localizations of
consecutive frames. The maximum linking distance is applied at this stage in the
process. From the found track, raw velocity measurements vR(n) are obtained.
(b) Smoothing of the trajectory by a moving average filter of span s = 3. (c)
Spatial interpolation of the trajectory results in additional data points (red dot).
(d) From the accumulation of all trajectories super resolved ULM reconstructions
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3-1 Simulation study pipeline. (a) Our simulator enabled two simulation scenarios:
Localization and No-Localization. (b) Simulated ground truth flow uGT

n (0) at
the centerline (r = 0) for three values of Pf and a pulsatility frequency of 5
Hz. Flow profiles extracted from [5]. (c) A rigid vessel with a parabolic flow
profile is assumed. r and l are respectively the axial and lateral coordinates.
Flow is independent of l. (d) Two steps of US simulation: first the point spread
functions (PSF) of the MBs are simulated. Second, a B-mode image is generated
by adding speckle. Estimation of the MB position in a region of interest (ROI). The
ground truth MB position (x, z) and the estimated position (x̂, ẑ) are given by the
black and red cross respectivel. (e) In the No-Localization scenario a localization
error (∆x, ∆z) is sampled from two normal distributions and added to the ground
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3-2 Pulsatility retrieval method based on the accumulation of velocity measurements.
(a) For derivation purposes, the steady-state and pulsatile flow case were consid-
ered. In the former the flow uGTss(r) is independent of the time index n. (b)
Illustration of two MB positions ln and ln−1 localized with localization errors ∆ln
and ∆ln−1 respectively. Only the localization error along the axial coordinate l is
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by the histogram of the smoothed ground truth flow uGTf

n (0) at the centerline of
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shows its ability to simulate the full ULM processing pipeline and achieve super-
resolution. Length of all scalebars = λ (a) The simulated average bloodflow ūGT

n (r)
serves as the ground truth with which the ULM velocity map is to be compared. (b)
A patch of a simulated B-mode image with 3 MBs at position (x, z) beamformed
at 50 µm ≈ λ/2. In the regions of interest, the MB position estimates (x̂, ẑ)
are found using the radial symmetry localization algorithm. (c) Diffraction-limited
Power Doppler rendering with cross- sections 1,2 and 3 at which the vessels have a
separation distance of respectively 45, 30 and 15 µm. (d) ULM density rendering.
(e) ULM velocity rendering. (f) ULM orientation rendering. (g) Cross-sections (1)-
(3) of the ULM density rendering and Power Doppler image. (h) Cross-sections
(4)-(6) of the ULM velocity rendering (i) Histograms for measured localization
errors ∆x and ∆z for a total of 29417 localized MBs. . . . . . . . . . . . . . . . 35

3-4 Pulsatility can be retrieved by filtering single-track velocity measurements. (a)-
(b) Three tracks at different lateral positions r1, r2, and r3 in the two vessels
are highlighted. Scalebar = λ (c) The smoothed velocity measurements at r2
show a periodical disturbance. (d) The frequency spectrum of the raw velocity
measurements at r2 shows a peak at frequencies corresponding to the frequency
range fdx (grey). (e) The frequency filtered velocity measurements uf

n(r) follow the
simulated ground truth velocity uGT

n (r). Multiple tracks for each lateral location
are shown. (f) From the filtered measurements of (e) Pf is estimated. . . . . . . 36

3-5 Pulsatility fraction can be retrieved from the bimodal shape of the velocity distri-
bution. The results shown here correspond to the parameters of the single vessel
configuration. (a) The derived velocity distributions for different values of σ with
fixed s = 21. P̂f can be found from the location of the two peaks in the dis-
tribution. Centroids of the distribution are given by asterisks and represent the
conventional ULM measurement. (b)-(c) Similar derivation for Pf = 0.2 and
Pf = 0 respectively. (d) The derivation of (a) was repeated for s = 51. (e) The
effect of localization precision σ on P̂f for fixed s. The line stops when no two
peaks could be detected. (f) The effect of s on P̂f for a fixed σ. The different lines
correspond to different σ values. A maximum (cross) can be found corresponding
to the optimal value of s. Derivation was performed up to s = 51. . . . . . . . . 37

3-6 Validation of the velocity distribution pulsatility retrieval method in simulation. (a)
The histograms were constructed by collecting velocity measurements along the
centerline of the vessel in the single vessel configuration for the No-Localization
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Chapter 1

Introduction

Ultrasound imaging is currently one of the dominant imaging modalities used in diagnos-
tic medicine [6]. By transmitting ultrasonic acoustic waves into the tissue and recording the
backscattered echoes, it is capable of real-time imaging of deep-lying internal tissue structures
in a noninvasive way and without making use of harmful radiation [7]. The first ultrasound
image of the body was reported in 1942 by Dr Karl Dussik. Together with his brother he cre-
ated the transcranial image displayed in Figure 1-1(a) and named it a "hyperphonogram" [6].
Their transducer measurement were read out through optically recording the light intensity
of a connected light bulb that shined proportional to the transducer signal [6]. Comparison
with the ultrasound localization microscopy image of the rat brain in Figure 1-1(b) illustrates
the enormous advances in medical ultrasound imaging since 1942.

Figure 1-1: Two brain images reported with an interval of nearly 80 years. (a) Dussik’s "hy-
perphonogram", the first reported ultrasound image of the body (1942). A sagittal slice of the
human brain was imaged through a transcranial acquisition. From [2] (b) An ultrasound localiza-
tion microscopy reconstruction of a coronal slice of the rat brain (2018). Positive and negative
blood flow velocities u represent up- and downwards direction. From [3]
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2 Introduction

This chapter introduces the theory needed for an understanding of the problem statement. In
Section 1-1 the basic principles of ultrasound imaging are discussed. Section 1-2 introduces
the super resolution technique of ultrasound localization microscopy. The motivation for the
research performed in this thesis is included in Section 1-3. Lastly, Section 1-4 provides the
outline of this text.

1-1 Ultrasound imaging

The pulse-echo principle on which ultrasound imaging relies, is found both in nature where
animals use it to retrieve their location and in other imaging applications such as sonar and
radar, see Figure 1-2 for a visualization. It consists of three main parts: 1. A wave pulse is
transmitted to the area that is to be examined. 2. It encounters objects or obstacles with
which it interacts. This results in echoes travelling back to the observers location, where the
echoes are measured. 3. The measured echo signal provides information about the objects
encountered by the pulse. In particular the time of flight (TOF) is a measure of the distance
to an object. Processing of this signal is necessary to recover an image of the surroundings.

In this section the basic principles of conventional ultrasound imaging are described following
these three steps of the pulse-echo principle. Which kind of pulse is used in ultrasound
imaging? How does it interact with the tissue? And how is an image reconstructed from the
measured echoes? The section will conclude with stating the spatial and temporal resolution
limits of conventional ultrasound imaging.

Figure 1-2: The pulse-echo principle is found both in nature and technical applications. The
surroundings are perceived by transmitting a pulse and capturing echoes resulting from object
interactions. (a) Dolphins apply the pulse-echo principle for echo-location of their prey. Obtained
from https://navalunderseamuseum.org (b) In ultrasound imaging the pulse-echo principles is
utilized to image internal tissue structures. Lines represent the wavefront.

1-1-1 Ultrasound waves

Ultrasound waves are defined as acoustic waves with frequencies above the audible range. In
medical ultrasound applications frequencies of 2 MHz to 18 MHz are typically used [8]. These
waves travel through tissue, causing vibration of particles around their resting position with
acoustic particle velocity vp (in m/s) in either the longitudinal or the transverse direction,
resulting in compressional or shear waves respectively, see Figure 1-3(a). In the remainder
of this text, we will consider only compressional waves, which is the type of wave used in
Ultrasound Localization Microscopy (ULM).

The particle displacements in longitudinal direction result in a fluctuating particle density
and thus a fluctuating pressure. Therefore, the compressional waves are also referred to as
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1-1 Ultrasound imaging 3

pressure waves. The sound pressure p (in Pa) is given by [9]

p = ρcvp = Zvp (1-1)

where ρ and Z are respectively the density (in kg·m−3) and acoustic impedance (in Rayls or
Pa·s/m) of the propagation medium and c the speed of sound (in m/s) of the longitudinal
wave in the medium. The acoustic impedance is a measure for the amount of resistance a
tissue presents to the acoustic wave. The speed of sound of the ultrasonic wave depends on
the medium through which it travels and is given by

c =
√

χ

ρ
≈ 1540 ms−1 (1-2)

where χ is the bulk modulus (in Pa) of the propagation medium. The bulk modulus of a
tissue is a measure of its resistance to compression. The given approximate value corresponds
to propagation in soft biological tissues [10]. The resulting wavelength λ of the ultrasound
wave can be computed as [9]

λ = c

f
(1-3)

Where f is the frequency of the wave and c the speed of sound in the medium. The medical
ultrasound frequency range of 2 MHz to 18 MHz corresponds to wavelengths of 770 to 85
µm respectively. Instead of illuminating the tissue with a continuous pressure wave, a short
transmit pulse is applied, with typical duration of one cycle [11] up to a couple of cycles [12].
An ultrasound probe is capable of transmitting such a pulse by its use of piezo-electric trans-
ducer elements, which can convert electric pulses to pressure pulses and vice versa. A linear
alignment of 128 elements is a typical transducer configuration [6]. In transmit, wavefronts of
arbitrary shape can be constructed by adjusting the timing at which each individual element
fires . Two common wave shapes used in ultrasound imaging are the plane wave and the
focused beam, displayed in Figure 1-3(b) [13].
In receive, the transducer element capture the backscattered echoes by measuring the pressure
variations. Here the piezo-electric elements are utilized in the reversed direction, i.e. con-
verting a pressure difference into an electrical signal. The signal measured by the transducer
elements is referred to as the radio frequency (RF) signal.

1-1-2 Tissue interaction

As acoustic waves propagate, interactions with the propagation medium occur. In general
an interaction occurs when the wave encounters an object that has echogenic properties that
deviate from those of the propagation medium. Two types of tissue interactions will be
introduced here: reflection and Rayleigh scatter, see Figure 1-3(c). A distinction between the
two can be made based on the characteristic size a of the object it encounters relative to the
wavelength λ.

Type of tissue interaction:
{

Reflection, if a >> λ

Rayleigh scattering, if a << λ
(1-4)

As a result of tissue interactions the pressure amplitude of the ultrasonic pulse decreases as
it propagates through tissue. This effect is called attenuation.
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4 Introduction

Figure 1-3: Illustration of the transmitted wave and its tissue interactions in ultrasound imaging.
(a) Two types of acoustic waves. Particles vibrating in longitudinal or transverse direction w.r.t.
the direction of propagation for respectively compressional and shear waves. (b) The ultrasound
transducer consists of multiple piezo electric elements. By firing the elements in a delay pattern,
transmit pulses of arbitrary shape can be constructed. (c) Specular reflection occurs when an
incident wave of pressure pi encounters a smooth interface. Part of the pressure is reflected (pr)
and the remainder is transmitted (pt). θi=θr. (d) Diffuse reflection occurs when an incident
wave encounters a rough interface. (e) Rayleigh scattering by a small particle results in a sperical
echo of pressure ps.
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1-1 Ultrasound imaging 5

Reflection
Reflection generally occurs at a transition from one tissue to another, e.g. at blood vessel
walls, organ boundaries or other objects with characteristic size a that is large with respect to
the wavelength [6]. The mismatch between the acoustic impedances Z of the surrounding ma-
terials determines the amount of reflection and transmission. The reflection and transmission
coefficients are given respectively [9]

r = Z2 cos θi − Z1 cos θt

Z2 cos θi + Z1 cos θt
= pr

pi

t = 2Z2 cos θi

Z2 cos θi + Z1 cos θt
= pt

pi

(1-5)

where Z1 and Z2 are the acoustic impedances of material in which the wave was travelling
and of the new material it encounters, see Figure 1-3. pi, pr and pt are the incident, reflected
and transmitted pressure respectively and θi and θt are the incident and transmittance angles
respectively, as defined in Figure 1-3(c). The transmittance angle follows from Snell’s law
as sin(θi)/ sin(θt) = c1/c2 and the law of reflection dictates that θi = θr [9]. Since most
biological interfaces are somewhat rough, the wave is generally not reflected into a single
direction (specular reflection), but to a range of directions. This is referred to as diffuse
reflection and is visualized in the second panel of Figure 1-3(d).

Rayleigh scattering
Rayleigh scattering occurs when the pressure wave encounters scatterers with a characteristic
length that is small compared to the wavelength. This scatterer then re-emits a spherical
wave. The echo contribution of Rayleigh scatter is typically smaller than that of reflection
[9]. The ratio between the scattered pressure ps and incident pressure pi is given by [6]

ps

pi
= 1

z̃

√
σ

4π
(1-6)

where z̃ is the distance from the scatterer to the point at which ps is to be calculated and σ
is the scattering cross section of the scatterer (in m2). The magnitude of the scattering cross
section depends on several parameters such as the particle size and the contrast in density and
bulk modulus between the material of the scatterer and that of the surrounding material [14].
Furthermore, it scales with the fourth power of the excitation frequency σ ∝ f4. Therefore,
the scattered pressure scales with squared frequency ps

pi
∝ f2 [6]. In contrast to reflection,

Rayleigh scattering is frequency dependent.

Speckle
A detrimental consequence of Rayleigh scattering is speckle, which can be recognized in
an ultrasound image by the grainy texture. Due to its spatial randomness, speckle can be
confused with noise. However, it is a deterministic interference pattern due to the Rayleigh
scattering of multiple small inhomogeneities contained in the same image pixel [7]. The
dominance of either constructive or destructive interference results respectively in an increased
or decreased reconstructed pixel intensity [15]. As a result, the image will contain seemingly
random areas of higher or lower brightness.
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Since speckle is associated with a deterministic process, it does not have noise characteristics
[16]. Indeed, two images taken under exactly identical circumstances (note that this is prac-
tically impossible) will result in the same speckle pattern and therefore the same image [17].
However, to model the noise-like behaviour of speckle, the Nakagami-m distribution can be
used [18].

Attenuation
Attenuation describes any losses in amplitude of acoustic waves when propagating through
tissue [6]. It originates from several causes such as reflection, scattering and absorption. In
the latter, the wave energy is converted to thermal energy and dissipates in the tissue [13].
Generally, attenuation is modeled by an exponential decay. The pressure amplitude of the
ultrasound wave over the travelled distance z is then given by

p(z) = p0e−a(f)z (1-7)

where p0 is the initial pressure amplitude of the wave as emitted by the ultrasonic probe, a(f)
is the frequency dependent attenuation coefficient (in m−1). For biological tissues a(f) can
be assumed to linearly depend on the frequency f [9]. Note that for pulse echoes, attenuation
is both relevant for the path of the transmitted pulse and for the return path of the echo.
Therefore, the round-trip attenuation is found from applying ((1-7)) twice.
Tissue attenuation introduces a limitation on the attainable penetration depth of the ultra-
sound image. As we try to image deeper into the tissue, the received echoes are more heavily
attenuated resulting in increasingly lower amplitude and corresponding poorer signal to noise
ratio (SNR). This effect becomes more stringent for increasing transmit frequencies, due to
the increased attenuation coefficient.

1-1-3 Image formation

An example of an ultrasound data acquisition is visualized in Figure 1-4. The ultrasound
transmit pulse can be recognized by the blue wavefront. In this example two scattering events
occur resulting in spherical echoes. The echoes are captured by the individual transducer
elements and stored as radio frequency (RF) data, visualized by the red pulses in Figure 1-
4(d) and Figure 1-4(e). The different time of flights (TOF) of the echo to the different
transducers causes the echo to be detected along a hyperbolic profile in the (x,t)-plane, where
t is time [19].
The raw RF data has to be processed to acquire a brightness mode (B-mode) image of
the internal tissue structure. Multiple processing steps are applied: IQ demodulation to
reduce the frequency of the RF data [20], beamforming to create an image [19] and mul-
tiple post-processing steps such as (optional) filtering operations, envelope detection and
log-compression to increase readability [16]. The process of beamforming is highlighted in the
remaining, since it is the crucial step for going from data expressed on the (x,t)-plane to an
image expressed in the (x,z)-plane

Beamforming
The RF signals si(t) measured by the individual transducer elements i itself lack interpretabil-
ity, they simply are a measurement of the pressure over time that reaches transducer element
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Figure 1-4: An illustration of the ultrasound data acquisition process in successive steps. (a) The
ultrasonic probe emits a plane wave pulse, depicted by lines of equal phase (blue), by firing the
piezo-electric transducer elements simultaneously. Two scatterers are located in the homogeneous
tissue. (b) The transmit beam travels in z-direction through the tissue and encounters a scatterer
(orange dot). (c) Rayleigh scattering of the first scatterer. (d) The echo (red) arrives at the
probe and is detected by the yellow element. (e) Due to a difference in TOF the echo is detected
by the elements in an hyperbolic shape.

i. An image can be created from the RF signal by identifying the amount of tissue interaction
that took place at each pixel location.

Beamforming permits to define the image grid during processing of the data, in contrast to
optical imaging where the image grid is predefined by the sensor grid. Typically B-mode
images are reconstructed with a beamformed pixel size of λ or λ/2.

Delay and Sum (DAS) beamforming differentiates between the signal contributions of different
scattering locations based on their time of flight. The round-trip travel time corresponding
to pixel location (x, z) and transducer element i given by [19]

τi (x, z) = dTX (x, z) + dRX (x, z, i)
c

(1-8)

where dTX(x, z) is the travelled distance from the transducer to (x, z) and dRX(x, z, i) the
distance back to transducer element i, see Figure 1-5(a). These distances can be computed
respectively as [21]

dTX = z cos(α) + x sin(α)

dRX =
√

z2 + (x − xi)2
(1-9)

where xi is the x-coordinate of the transducer element i. Since dRX is dependent on i, the
echo from a scatterer reaches the individual elements at different time instances, resulting in
a hyperbolic signature [19].
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Figure 1-5: Finding the pixel intensity of the pixel centered around (x, z). The beamforming
grid is overlayed in gray. (a) A plane wave (blue) at an angle α travels a distance dTX towards
the pixel center. The resulting echo resulting from scatterers within the pixel travels a distance
dRX back to transducer element i. (b) An illustration of DAS beamforming to retrieve the pixel
intensity from the recorded RF signal. Due to a difference in dRX the echo reaches the transducer
elements (gray) in a hyperbolic shape. IQ demodulation is applied to find the complex envelope
of the transducer signal. At the appropriate delay, the values of the IQ demodulated signals are
read out and added to find the pixel intensity.

To find the pixel value of location (x, z) the echo signals si(t) are first delayed by τi(x, z) to
account for the hyperbolic shape and then summed. This has to be repeated for each pixel
location, resulting in the beamformed image

sbf(x, z) =
Ne∑
i=1

si(τi(x, z)) (1-10)

where Ne is the number of transducer elements. Since si(t) is sampled at discrete points in
time and τi(x, z) is a continuous value, interpolation is necessary to obtain si(τi(x, z)) [19].

Due to the directivity of the transducer elements, the amplitude of the echo signal si(t)
achieves its maximum at the top of the hyperbolic signature, i.e. at the transducer elements
of similar x coordinate as the pixel [19]. Moving further away along the hyperbola, the signal
amplitude decreases resulting in a decreased SNR. Therefore, one can choose to only select
the top of the hyperbola in beamforming by using the f-number f#. The f-number describes
the ratio between the size of the receive aperture and the imaging depth as [19]

f# = z

Aperture size (1-11)

were z corresponds again to the z-coordinate of the pixel to be reconstructed. Instead of
summing over the total number of elements Ne in (1-10), a selection of the elements centered
around x is made. Only the RF signal measured by this new set of elements is used to
compute the pixel intensity as in (1-10).

The process of DAS beamforming is illustrated in Figure 1-5(b, where an additional step is
recognized: in-phase quadrature (IQ) demodulation. The high frequency RF signal is IQ
demodulated to find its low frequency complex envelope [19]. One can interpret the process
of IQ demodulation as the separation of the signal of interest from the carrier signal, here the
high frequency pulse [16].
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Figure 1-6: The point spread function (PSF) shows the blurring caused by diffraction. (a)
Simulated image of the PSF, created by simulating a point scatterer (black cross) located at
(0.25,0.25) mm expressed in the local coordinates of the extracted patch. Transmit frequency
f = 17.86 MHz, wavelength λ = 86.2 µm, #f = 1, beamformed pixel size dx = 10 µm. (b)
The cross-section of the PSF along z = 0.25mm. Dotted line gives the location of its peak.

1-1-4 Spatial resolution

Due to its use of waves to image the tissue, the spatial resolution of ultrasound images is
limited by diffraction. The blurring effect of diffraction becomes clear when inspecting the
point spread function (PSF) of an imaging system, which is given by the systems response to a
point source. In Figure 1-6 the PSF of an ultrasound acquisition at 17.86 MHz was simulated
using the Verasonics Research Ultrasound Simulator (VRUS) (Verasonics, Kirkland, WA,
USA). Instead of a sharp point, the image of the point source has a blob-like spread with a
full width at half maximum (FWHM) along x of 78 µm.

Generally, the formation of an image I of object O is described by the convolution [22, 23]

I = PSF ∗ O (1-12)

where ∗ is the convolution operator. This convolution of the object with the PSF of the
imaging system creates a blurring of the image. The convolution operation can be interpreted
by using a thick marker with the shape of the PSF to draw a detailed image. The size of the
PSF is proportional to the used wavelength. For the PSFs considered in the remainder of this
text, its main lobe will be assumed to have a Gaussian shape.

The blurring caused by the PSF creates a fundamental limit on the obtainable spatial resolu-
tion, i.e. the diffraction limit. Spatial resolution is defined as the minimum distance between
two objects that still allows the objects to be distinguished. A limit to the spatial resolution
of a general imaging system is given by the Rayleigh criterion [24]

R = 1.22λ
fL
D

(1-13)

here R is the resolution limit (in m), fL the focal length (in m) and D the aperture diameter
(in m). For application to ultrasound modalities we can replace the fraction by f# resulting
in

R = 1.22λf# (1-14)

Point sources that are closer together than R can not be individually resolved, as is visualized
in Figure 1-7, where R equals 105 µm. The two point scatterers at 100 µm interdistance
appear as a single blur on the US frame.
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Figure 1-7: Objects closer than the Rayleigh resolution limit can not be individually distinguished.
Here R = 105 µm (a-c) Simulated B-mode images of two point scatterers (black cross) with
separation distances of respectively: 100 µm, 110 µm and 120 µm. Transmit frequency f = 17.86
MHz, wavelength λ = 86.2 µm, f -number = 1, beamformed pixel size dx = 10 µm. (d-f) Pixel
intensity values along the line z = 0.4mm.

Due to this spatial resolution limit and typical US wavelengths of ∼ 100 µm, many small
anatomical structures of the human body remain imperceptible. Increasing the transmit
frequency results in an improved resolution due to a shorter wavelength. However, the high
frequency wave experiences an increased attenuation, as modeled by (1-7), resulting in a lower
attainable penetration depth of the imaging modality. Therefore, in conventional diffraction-
limited ultrasound imaging a trade-off between spatial resolution and penetration depth exists.

1-1-5 Temporal resolution

The frame rate at which consecutive B-mode images can be acquired is limited by the round-
trip travel time of the pulse-echo. As a result the temporal resolution decreases for imaging
deeper tissues.

In the previous sections, the examples show a plane wave illumination, where the entire field
of view (FOV) is illuminated with a single transmit pulse. Using plane wave imaging, a full
image can be created from a single transmission. This makes plane wave imaging signifi-
cantly faster than the traditional focused beam method that creates only a single line of the
image for every transmission. To improve the resolution of the low quality plane wave images,
Montaldo et al. [21] proposed to coherently compound several images acquired with plane
wave illuminations at varying angles. This method was shown able to regain spatial resolu-
tion while remaining superior in temporal resolution as compared to focused beam imaging.
The coherent plane-wave compounding method has been an important breakthrough. Its im-
proved temporal resolution enabled the development of multiple ultrasound modalities such
as functional ultrasound imaging (fUS) [25] and ULM [12, 26].
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Figure 1-8: Individual ultrasound imaging of point scatterers. (a)-(c) Ultrasound simulations of
three scenarios respectively: two scatterers at 0.36 mm and 0.46 mm, a single scatterer at 0.36
mm, a single scatterer at 0.46 mm. Transmit frequency f =17.86MHz, wavelength λ = 86.2
µm,f -number= 1. Simulation created on a 10 µm grid. (d)-(f) The pixel intensity values along
the line z = 0.4mm. The dotted line gives the x value at which the maximum is achieved.

1-2 Ultrasound localization microscopy

1-2-1 Introduction to the technique

ULM is a super resolution ultrasound technique to image the vasculature. To break the
classical diffraction limit, it was inspired by its optical counterpart single molecule localization
microscopy (SMLM) [27]. Both methods rely roughly on the same steps. Sources of sub-
wavelength size are isolated such that their response is unaffected by interference. These
sources, considered as point sources, are individually imaged and their location is estimated
with a sub-wavelength precision. The localizations of a large number of frames is accumulated
to create the final super resolution image.

The effect of this individual imaging of point sources is visualized in Figure 1-8, where the
simulation with the VRUS of two point scatterers at 100 µm is repeated. The two point scat-
terers were found unresolvable when imaged simultaneously. If able to capture the response
of one point source at a time, the two point sources can be distinguished. Both ULM and
SMLM rely on the isolation of point sources to improve resolution.

The invention of SMLM in 2006 formed a breakthrough enabling the field of super-resolution
microscopy to enter the nanometer realm [27, 28]. Eric Betzig and William E. Moerner who
developed the principles of SMLM were awarded the Noble price for their work [29, 30]. In
2010 Couture et al. [31] proposed to apply the concept of SMLM in ultrasound imaging, it
marked the start of the ULM research field. In Table 1-1 a comparison between several basic
characteristics of the two techniques is made. In the remainder we will solely focus on ULM.
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Table 1-1: Comparison between ULM and SMLM

ULM SMLM

Imaging wave Ultrasonic wave Optical wave
λ ∼100 µm ∼ 500 nm
Penetration depth ∼10 mm ∼100 nm
Imaged sources Gas-encapsulated

microbubbles (MB)
Fluorescent molecules

Motion of sources Moving with blood flow Static
Application in-vivo imaging of the

vasculature and its blood
velocity

in-vitro imaging of cells or
proteins

Microbubbles (MB): the point sources in ultrasound localization microscopy
In ULM, a low concentration of gas-encapsulated microbubble (MB) of size 3-8 µm is in-
jected into the vasculature. Due to their small size compared to the ultrasonic wave length,
microbubbles can be considered as point sources in ultrasound imaging and their response
resembles the system’s PSF [32, 33]. Meanwhile their size is too large to permit the perfusion
into the tissue, causing the MBs to stay intravascular untill they collapse.

The ULM process is based on the detection of the MBs in the input B-mode frames by
filtering out static tissue signal, the localization of the MBs with sub-wavelength precision,
and the tracking of MBs over consecutive frames, see Figure 1-9. The acquired MB tracks
are accumulated on a fine grid to construct a ULM reconstruction. ULM images displaying
different properties can be constructed: a density map reports the number of MBs that flowed
through each pixel, a velocity map represents the average blood flow measured in that pixel,
and a flow orientation map reconstructs the flow direction from the MB tracks.

A crucial condition for the working of ULM is that the MBs need to be isolated. Any
interference that degrades the localization precision needs to be avoided. A microbubble is
considered to be isolated if the localization of its center is not influenced by any other sources
originating either from other microbubbles or from tissue.

To ensure that the MBs are isolated from other MBs and their responses do not spatially
overlap, the injected concentration is diluted to achieve spatially sparse MBs. To prevent the
signal resulting from tissue to influence the MB localization, the MB image contribution is
separated from that of tissue by a filtering operation. By exploiting several MB properties
this separation is possible.

First, MBs are known to be resonant oscillators in an ultrasonic field. The compressed gas
acts as a spring and the surrounding aqueous solution as a mass, together forming a mass-
spring system [34]. Due to this resonance, the scattering cross section of the MB drastically
increases around its resonant frequency, as was shown by [14]. The increased scattering
cross section of MBs makes for a stronger echo than echoes resulting from Rayleigh scatter
in the surrounding tissue. Secondly, the resonance of the MB also gives rise to nonlinear
echoes, containing subharmonic and superharmonic frequencies [35]. Since surrounding tissue
generally has a linear ultrasonic response, the MBs can be distinguished by their non-linear

Myrthe Wiersma Master of Science Thesis
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Figure 1-9: The process of creating a ULM reconstruction from input B-mode frames visualized.
During a ULM acquisition, microbubbles (MB) are injected in the vasculature and a large number
of B-mode frames is acquired over time. Static tissue signal is filtered out, resulting in MB
frames that highlight the nonlinear image contribution of the microbubbles. MB events are
detected and localized with sub-wavelength precision. The temporal dimension is collapsed by
linking estimated MB positions over consecutive frames. The MB tracks are accumulated to find
the ULM reconstruction. In the ULM density map displayed here vessels of diameter far below
the wavelength can be distinguished. Scalebar: λ = 102 µm. Data from [4].

behaviour. Lastly, in contrast to tissue that is mostly static, MBs move along with the blood
flow. Due to this difference in spatiotemporal coherence the MB signal can be distinguished
from that of tissue. These MB properties are exploited by the methods described in that aim
to retrieve MB signal from the input B-mode frames.

Chapter 2 elaborates on each of the individual steps in the ULM data processing pipeline:
detection of MB signal, localization of MB position, tracking of the MBs, rendering the MB
tracks to ULM reconstructions and motion correction.

1-2-2 Spatial resolution

By the localizing the MBs with a sub-wavelength precision, ULM is able to image microvessels
that would not be resolvable with diffraction limited ultrasound imaging. The obtained
experimental spatial resolution in ULM is often reported as the smallest vessel that can be
resolved or the smallest separation distance between vesles. The full width at half maximum
(FWHM) should not be used to represent the diameter of the reported vessels, due to the
absence of a PSF in ULM reconstructions [3]. In contrast, the full width should be reported
since each acquired MB track was assumed to lie within a vessel.

Since the diffraction limit is proportional to the wavelength λ, the spatial resolution is often
expressed in wavelengths, allowing an easier comparison between experiments. Resolutions
up to λ/10 were reported [12]. A theoretical bound on the obtainable spatial resolution in
ULM is given by the localization precision with which the center of the MB is estimated [12].

Even though there is a consensus on the fact that ULM is able to achieve sub-wavelength
resolution, one should adapt a critical attitude towards reported resolution values in ULM
[34, 3]. ULM is not always able to reliably reconstruct the vasculature. The accumulation
of MB tracks travelling through a particular vessel does not directly represent the actual
underlying structure. For instance, the diameter of a vessel can be heavily underestimated
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when it is occupied by relatively little trajectories [34]. The super resolution grid size on
which the reconstruction is displayed (generally λ/10) is a relevant factor here.

1-2-3 Temporal resolution

To construct a super resolved ULM image, hundreds of thousands of conventional B-mode
images are needed, which heavily increases the acquisition time (typically ∼ 100 s). In fact,
one could state that in order to obtain a high spatial resolution image, ULM sacrifices temporal
resolution.

There are multiple factors that limit the temporal resolution of ULM. First of all, to enable
a sub-wavelength localization, MBs need to be isolated. To obtain spatially isolated MBs, a
low concentration is injected and only a limited number of MBs can be detected in each B-
mode frame. By developing localization algorithms that can handle higher MB concentration
without sacrificing localization precision, the acquisition time can be shortened [33, 36, 37].
Being able to handle a higher concentration, a larger number of MBs per frame can be
localized. This decreases the number of necessary frames and equivalently the acquisition
time.

A second factor limiting the temporal resolution of ULM is the fact that a minimum number
of MBs needs to be tracked in each individual vessel to be able to adequately reconstruct
that vessel and prevent an underestimation of its width. Hingot et al. [38] showed ULM
acquisition time to be dictated by slow flow in the microvasculature. An acquisition time of
less than 10 s was found sufficient for the reconstruction of larger vessels (∼ 100 µm), while
for a full reconstruction of all small capillaries tens of minutes were required.

1-3 Thesis motivation

Due to the large improvement in spatial resolution of ultrasound localization microscopy the
microvasculature and its flow can be succesfully retrieved [12, 26, 34]. However, the improved
spatial resolution comes at the cost of temporal resolution. Since a large number of MB tracks
is accumulated during the long ULM acquisition time, flow fluctuations are averaged out. The
final ULM velocity map represents the average velocity during the acquisition, which is not
representative of the underlying blood flow. Especially in arteries the blood flow is never
stationary, due to the pulsatility induced by the heartbeat [5]. Retrieving flow fluctuations
is especially interesting when imaging the brain. Due to neurovascular coupling, the cerebral
blood volume in a region of the brain is a measure of its activity [39, 25].

In this thesis, we aim to retrieve pulsatility in the microvasculature by leveraging the high
temporal sampling of MB tracks. Two independent methods for pulsatility retrieval are
introduced. The first method is based on filtering the velocity measurements obtained from
single MB tracks to reduce the noise caused by MB localization error.

Instead of following a single MB track, the second method relies on a static observer. During
the acquisition, velocity measurements of passing MBs are accumulated into a velocity distri-
bution. We show that pulsatility leads to bimodality in this distribution. The minimum and
maximum flow during the pulsatile cycle are extracted from the found distribution.
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We validate both methods in simulated data that incorporates pulsatility. To our best
knowledge all previously reported ULM simulators assumed the blood flow to be station-
ary [36, 37, 40]. We design a ULM simulator that: simulates pulsatile flow, propagates MB
through that flow, simulates B-mode images and performs ULM processing.

1-4 Outline

This chapter has covered the basics of ultrasound imaging and ultrasound localization mi-
croscopy (ULM) and it introduced the thesis motivation. In Chapter 2 the ULM processing
pipeline is described. It covers each of the necessary processing steps for creating a ULM
reconstruction based on input B-mode images. Chapter 3 provides the main contribution of
this study in a manuscript format. In the manuscript two methods of retrieving pulsatility
in ULM data are introduced and a proof of concept is given by application of the meth-
ods on simulated data. The manuscript is formatted in the style of IEEE Open Journal on
Ultrasonics, Ferroelectrics, and Frequency Control. Chapter 4 provides a conclusion of the
thesis. It starts with a summary of the findings described in the manuscript. A discussion is
added to address additional points of discussion not included in the manuscript. Chapter 4
is concluded by providing recommendations for future research.
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Chapter 2

Ultrasound localization microscopy
image processing

To create a super resolved ULM reconstruction out of hundreds of thousands of ultrasound B-
mode images, multiple processing steps are needed. These can be divided into five categories,
as visualized in Figure 2-1.

From the input B-mode images I(x, z, n) with time index n, first the contribution of the
microbubble (MB) signal needs to be separated from that of the surrounding tissue. In the
resulting MB images IMB(x, z, n) regions of interest (ROI) are detected that are assumed to
contain a MB event. These two steps are explained in Section 2-1 on detection.

From the extracted ROIs, the sub-pixel location of the MB is estimated. To find the estimate
(x̂, ẑ) of the MB location, several methods have been developed. The most frequently used
methods are explained in Section 2-2.

Microbubbles are not stationary but flow along with the blood flow. The MB tracks T can be
found by linking MB localizations of consecutive frames. Section 2-3 describes several tracking
methods applied in ULM. From each track, raw velocity estimations un can be computed.

The rendering of the trajectories to either a density or a velocity reconstruction is described
in Section 2-4. Even though multiple steps are involved, the process of rendering is not
well described in literature. The raw velocity measurements are first smoothed to find uf

n.
Afterwards the tracks are spatially interpolated and accumulated to find the super resolved
(SR) reconstruction ISR(xSR, zSR) on the upsampled grid (xSR, zSR).

Finally, motion correction is described in Section 2-5. For in-vivo acquisitions this step is very
useful to prevent motion artefacts in the reconstructions. In the simulation study described
in the remainder of this report no tissue motion was simulated. Therefore this section will
function as a short introduction to the topic.
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18 Ultrasound localization microscopy image processing

Figure 2-1: A detailed depiction of the ultrasound localization microscopy processing pipeline.
Input are the B-mode frames I(x, z, n). The outputted super resolved reconstruction can be either
a density map, a velocity map or a flow orientation map. The main four steps are: detection,
localization, tracking and rendering. The motion correction processing step is optional.

2-1 Detection

The process of detecting MB events in a B-mode image consists of two steps described in
Section 2-1-1 and Section 2-1-2.

2-1-1 Retrieval of microbubble signal

In the first substep of Figure 2-1, the MB image contribution is separated from that of the
tissue. The main MB properties which can be exploited for the separation are their nonlinear
behaviour, their strong echogenic properties resulting in bright image contribution and the
fact that the MBs are moving.

Two approaches are described here that intervene at different steps in the pipeline. First, the
separation of the MB signal from the tissue signal can be obtained by filtering the acquired
B-mode images I(x, z, n) with a singular value decomposition (SVD) filter. Alternatively, the
imaging sequence of ultrasound transmissions can be adjusted to eliminate the tissue signal
in the beamformed image.

Singular value decomposition (SVD) filter

The images I(x, z, n) can be filtered on a spatiotemporal basis by application of the SVD
filter. The input I(x, z, n) is decomposed on a spatiotemporal basis into multiple parts each
corresponding to one of its singular values. Demené et al. [41] found the image contributions
from static tissue signal, moving scatterers and noise to correspond to different singular
values. Therefore, a filter is constructed by only attaining the image contributions of the
singular values corresponding to the MB signal.

Proposed by Demené et al. [41] the approach was initially focused on the separation of blood
signal from tissue signal for application in Power Doppler imaging. They found that the
image contribution of the moving scatterers in the blood could be distinguished based on its
spatiotemporal characteristics. The temporal coherence of the signal resulting from the mov-
ing scatterers is significantly smaller than that resulting from the static tissue. Additionally,
it was shown that the spatial coherence of the image contribution of blood scatterers is lower
than that of tissue [41]. While the original application focused on the separation of blood
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2-1 Detection 19

Figure 2-2: The input B-mode images are reorganized into the spatiotemporal Casorati matrix
S. Each B-mode frame corresponds to one column in S. Nz, Nz and Nf are the number of
pixels in z, the number of pixel in x and the number of B-mode frames of the inputted set. Data
from [4].

signal, later papers showed this method to be applicable to the distinction of MB signal as
well [12, 42]. To apply the singular value decomposition (SVD) filter, the images have to
be reshaped to a Casorati matrix, see Figure 2-2. For each time frame n the corresponding
image is reshaped into a column vector. These columns are then concatenated into the 2D
space-time Casorati matrix S with dimensions (NxNz, Nf ), where Nx and Nz are the number
of pixels in x and z dimension respectively and Nf is the number of time samples [41]. The full
B-mode acquisition is typically split up into chunks of data that are SVD filtered separately
[1]. A singular value decomposition of S is performed as [41]

S = U∆V H (2-1)

where U and V are orthonormal matrices constructed of the spatial and temporal singular
vectors of S respectively. Their sizes are respectively (Nxz, NxNz) and (Nf , Nf ). The sub-
script H indicates the conjugate transpose and ∆ is a non-square diagonal matrix of size
(Nxz, Nf ) containing the ordered singular values σi on its diagonal. The first singular values
correspond to image contributions of the highest spatiotemporal coherence. An alternative
writing of the SVD of (2-1) is given by [41]

S =
∑

i

σiAi =
∑

i

σiUi ⊗ Vi (2-2)

where ⊗ is the outerproduct and the ith columns of the matrices U and V are respectively
given by Ui and Vi, with σi being the corresponding singular value. Each of the columns Ui

corresponds to an individual spatial image modulated by the temporal signal stored in Vi.
If the summation is not performed over all available i but only over the defined interval, a
filtered image IMB(x, z) can be reconstructed. Demené et al. showed that the tissue signal is
mostly described by the highest singular values. The lower singular values correspond to MB
and noise signals. Therefore, removing the signal contribution corresponding to the highest
singular values (up to some threshold) rejects the tissue signal. Noise can be filtered out by
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excluding the contribution of the lowest singular values. The filtered Casorati matrix is given
by

S̃ = U∆̃V H (2-3)

where ∆̃ is the truncated matrix containing the singular values that are kept. The singular
values corresponding to the eliminated images are set to zero. From the filtered Casorati
matrix S̃, the filtered MB images IMB(x, z, n) can be retrieved.

The microbubble and tissue signal proved to be better separable in a spatiotemporal sense
than solely on a temporal basis. This was found especially for imaging the microvasculature,
which contains slow blood velocities [41]. The SVD filter was shown to be able to dinstinguish
MB signal in vivo [12].

An extension to this method was proposed by Huang [33] where MB detections were sepa-
rated into several MB sub-populations by a filtering operation in the spatiotemporal Fourier
domain. Each of the resulting images corresponding to a sub-population was then further pro-
cessed individually by the Ultrasound Localization Microscopy (ULM) pipeline. The method
showed to be able to separate spatially overlapping MB signals and therefore to handle higher
concentrations of MB reducing the necessary acquisition time. Even though the MB signal
could be separated into sub-populations, the interference between two spatially overlapping
MB signals can not be fully eliminated by this operation.

Imaging sequences to separate MB signal

The separation between tissue and MB signal can also be made based on the nonlinear MB
response. The pulse inversion (PI) [43] and amplitude modulation [6] techniques, are designed
to eliminate the linear parts of the echo signal. These techniques intervene at a much earlier
stage in the process than the SVD filter. Here the imaging sequence used to acquire the
echo signal is altered. The image that is then beamformed from the resulting echo signal
corresponds to the nonlinear MB signal. No additional filtering is necessary to obtain the MB
image.

To eliminate the linear tissue response, the PI method uses a transmit sequence that consists
of two pulses, see Figure 2-3. The second pulse in this sequence, emitted after some suitable
delay, is an inverted copy of the earlier emitted pulse [43]. The received echos from both
pulses are then added to attain only the nonlinear MB response. The linear parts of the
two echos cancel each other out, since by definition the output of a linear system is exactly
inverted when an inverted input is applied. Amplitude modulation works in a similar manner.
Here the second pulse is not inverted, but its amplitude is altered, an example is given in
Figure 2-3.

Note that for both methods, at least two illuminations are needed to acquire the data for one
B-mode image. Therefore, one of the main disadvantages of these methods is the reduced
frame rate at which the B-mode images are acquired. ULM strongly benefits from a high
frame rate. Therefore, the SVD method is more commonly used.
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Figure 2-3: The PI and AM techniques are capable of isolating the nonlinear MB response
by altering the imaging sequence. A sequence of transmit pulses are utilized (blue). From the
recombination of the measured echo signals (red) the nonlinear part of the echo signal can be
retrieved (orange). The resulting nonlinear part is beamformed to IMB(x, z, n)

2-1-2 Extraction of regions of interest

After the extraction of the MB signal, the individual MB need to be detected. Before sub-
pixel localization, the regions of interest (ROI) that contain a MB need to be identified. These
ROIs are identified based on their likeness to the expected MB signal, which can be assessed
by applying a cross correlation between the image IMB(x, z, n) and a 2D Gaussian shaped
PSF [32]. The ROIs can be found from the regions of highest cross correlation score.

An alternative method, is to find the pixels of highest intensity in the MB image and center
a ROI around each detected maximum. ROIs that contain more local maxima than a set
threshold, are assumed to not contain an isolated MB and are discarded [1].

Additional methods may be applied to eliminate false ROI detections or spatially overlapping
ROIs. A threshold can be set on either the intensity or the value found from cross correla-
tion with a Gaussian PSF to reject low-confidence ROIs [33]. Furthermore, to ensure only
isolated microbubbles to be included in the remainder of the pipeline, ROIs that are spatially
overlapping can be eliminated to prevent potential interference effects [32].

2-2 Localization

The localization of the microbubble location with sub-wavelength precision is the key factor
enabling super resolution in ultrasound localization microscopy. In the following subsections
the most frequently used localization algorithms are described. See Figure 2-4 for a visual
representation of these algorithms.

2-2-1 Peak detection

The most simple localization algorithm consists of selecting the pixel location of highest
intensity. However, this would not result in a sub-pixel localization. In this case the spatial
resolution of the ULM reconstruction is limited by the beamformed pixel size. Alternatively,
interpolation can first be applied before peak detection [32]. The estimated location is then
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Figure 2-4: An illustration of localization algorithms commonly used in ULM. (a) Peak detec-
tion method without interpolation. (b) Peak detection method with Lanczos interpolation. (c)
Weighted average method. (d) 2D Gaussian fitting. (e) Radial symmetry method.

given as the highest intensity pixel of the upsampled grid. Multiple interpolation methods
can be applied, such as the spline, Lanczos or cubic interpolation [1].

2-2-2 Weighted average

A slightly more advanced method consist of estimating the MB centroid by an intensity
weighted average [26, 44]. The MB localization estimate (x̂,ẑ) in a ROI can then be found by

(x̂, ẑ) =
∑

i∈ROI wi(xi, zi)∑
i∈ROI wi

, ẑ =
∑

i∈ROI wizi∑
i∈ROI wi

(2-4)

where the index i runs over all pixel in the corresponding ROI. Generally, the weights wi

correspond to the pixel intensities.

2-2-3 Gaussian fitting

The Gaussian fitting method estimates the center in a parametric fashion. The 2D Gaussian
shape is fitted in a least squares sense by fitting its parameters including the center location
in x and z, the standard deviations σx and σz, the intensity, the tilt angle and the offset. An
estimation of the MB position is then retrieved from the summit of the 2D Gaussian [12].

2-2-4 Radial symmetry

Alternatively one could use a localization method that exploits radial symmetry [1, 45]. For
a perfect radial symmetric intensity, all lines perpendicular to the gradient intersect at the
object’s center. The radial method proposed by Parthasarathy exploits this property [45].
At each junction of four pixels, here referred to as grid points (dots in Figure 2-4(e)), the
local gradient was computed based on the intensity of the four surrounding pixels and a line
was defined in direction of that gradient. The MB position estimate (x̂, ẑ) was found by
the location that minimizes the weighted sum of all distances to the drawn gradient lines.
Weights scaled with the intensity gradient found at the grid points and inversely scaled with
the distance of the grid points to the MB centroid (found by weighted average method).
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Comparison of localization algorithms

In a recent study by Heiles et al. [1], the performance of the above mentioned algorithms
was assessed on both simulated and in vivo data. The Gaussian fitting and radial symmetry
method were found to perform the best on separating two converging channels, with attainable
separation distances of 0.46 λ and 0.36 λ respectively. Based on the average root mean
square localization error (RMSE) Gaussian fitting slightly outperformed the radial symmetry
method for low SNR cases. At SNR = 10 the methods achieved an RMSE of 0.27 λ and
0.31 λ respectively. The required computation time was found to be the biggest performance
difference between the two algorithms: for the Gaussian fitting method a computation time
was required which was 40 times larger than that of the radial symmetry method.
Due to its fast computation and low RMSE in high SNR scenarios, the weighted average
method wass found to be a good choice for SNR > 30 dB. However, for scenarios in which
the SNR drops below 30 dB, either the Gaussian fitting and radial symmetry method should
be applied [1].

2-3 Tracking

MB tracks can be found by linking the estimated MB positions over consecutive frames as
illustrated in Figure 2-5(a). Tracking MB in ULM has several benefits. Firstly, measurements
of the local blood flow can be obtained from MB trajectories. A raw velocity estimate is
simply given by the distance a MB has travelled from one frame to another divided by the
time between these frames. Due to tracking, the MBs can be considered as moving blood
flow sensors.
Secondly, by rejecting tracks of lengths below some threshold, the effect of false MB detections
is limited. It is assumed here that false MB detections are typically found in these short tracks.
Trajectories in which a MB is followed for many frames are deemed more reliable.
Finally, the image quality is of the ULM reconstructions is improved by spatial interpolation
of the MB locations of the track. By estimating these intermediate locations, the gaps between
the tracked MB localizations can be filled. These gaps can become particularly large when MB
velocity is high compared to the sampling rate. Section 2-4-2 discusses spatial interpolation
of trajectories in more detail.
The MB tracking methods described here are divided into two categories each described in a
separate subsection: local search methods and combinatorial methods. Besides the frequently
used algorithms comprised by these sections, MB tracking can be performed by alternative
methods such as Markov Chain Monte Carlo (MCMC) [46, 47], multiple hypothesis tracking
(MHT) [48] or Kalman filtering [49]. Independent of the choice of tracking algorithm, a
maximum linking distance (MLD) can be set to reject the linking of MBs that would result
in unrealistic flow velocities.

2-3-1 Local search methods

Errico et al. [12] and Christensen-Jeffries et al. [26] were the first to apply tracking of MBs
in ULM to attain velocity information of individual microbubbles. Their methods are have
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Figure 2-5: The MB tracking problem visualized. (a) MB tracking is performed by linking MB
positions of consecutive frames. (b) In local search methods the linking is performed one-by-one.
For each MB position in frame n − 1 a close MB position in the next frame is sought. (c)
Combinatorial methods rely on linking the MBs frame-to-frame. The linking of all MB positions
of two consecutive frames is considered at the same time allowing to find a solution that minimizes
the total linking cost. Cij denotes the cost of linking node i of frame n − 1 to node j of frame n.

in common that MB linking is performed on a local basis, see Figure 2-5(b).

The method applied by Christensen-Jeffries et al. [26] makes use of the cross-correlation
between the MB images IMB(x, z, n − 1) and IMB(x, z, n) within a local search window. A
cross-correlation threshold was determined empirically to identify MB detections of consecu-
tive frames corresponding to the same physical MB.

Errico et al. [12] made use of a Nearest Neighbour algorithm to link MBs of consecutive
frames. This Nearest Neighbour algorithm selects for each MB the closest MB detection in
the next frame to continue the track. The assumption that the closest MB detection in the
next frame corresponds to the same target MB is reasonable for slow MB velocities and/or
high frame rates [50].

However, in several situations this assumption might fail: high MB velocity or low frame rate,
high MB concentration and branching or crossing of vessels. Two vessels that lie within the
elevational width of the imaging slice can appear to cross each other on the reconstructed
image, while in fact they run in different planes.

Furthermore, these methods do not allow gaps to be present in tracks. A track is terminated
when no linking to a detection of the next frame can be made, resulting in short tracks that
systematically underestimate MB lifetimes. The main advantage of local search methods is
their computational simplicity.

2-3-2 Combinatorial methods

In contrast to local search methods, combinatorial methods perform the MB linking on a
frame-to-frame basis. All MB positions are linked at the same time by minimizing a combined
cost that is based on the distances between the MBs of consecutive frames [51].

For each set of two frames a linear assignment problem (LAP) is formulated. The MB positions
of two consecutive frames can be represented by a bipartite graph with two groups of nodes,
see Figure 2-5(c). The LAP consists in assigning each node to a single node of the other set,
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while minimizing a designed cost function. MB positions of the two frames that are assigned
to each other are indicated by an entry of 1 in the assignment matrix A of size (Nn−1, Nn),
where Nn−1 and Nn represent the number of MBs in frame n − 1 and n respectively. The
LAP is given by [51]

Â = arg min
A

Nn−1∑
i=1

Nn∑
j=1

AijCij (2-5)

such that
Nn−1∑
i=1

Aij = 1 and
Nn∑
j=1

Aij = 1 (2-6)

where C is a cost matrix where the entry Cij gives the cost of linking the ith MB localization
of frame n−1 with the jth MB localization of frame n. This cost can be given by the distance
between the localizations [52] or the squared distance [53]. Additionally, one could include
cutoffs in the cost matrix to exclude MB pairing that are physically unlikely. A cutoff can be
applied the same for all MBs by assumed a maximum blood flow [52] or it can be customized
for each MB by taking into account the previous displacements of the MB [51]. Solving the
LAP results in the minimal total cost solution and therefore a spatially global solution is
attained. The constraints of (2-6) are added to ensure that each localization of frame n − 1
is only linked to a single localization of frame n and vice versa.

The Kuhn-Munkres algorithm can be used to efficiently solve balanced assignment problems
(i.e. Nn−1 = Nn) for which each node needs to be assigned [54]. Due to its high computational
efficiency, the Kuhn-Munkres algorithm both applied in 2D ULM [52] [1] as well as in 3D
ULM [53]. However, an extension to the algorithm is needed to allow no-balanced assignment
problems, for which the number of nodes in one group does not equal that in the other.
Besides that, even if a balanced LAP is attained between two frames, not necessarily all
localizations should be paired. The extension should thus allow to terminate and start new
tracks.

Song et al. [52] proposed a bipartite graph-based assignment algorithm that only assigned
two nodes to each other when the corresponding cost was mutually minimal. A localization
remained unpaired, ending the track, when no such mutually minimal pairing distance could
be found.

Jaqaman et al. [51] proposed an two-step algorithm based on LAPs to improve temporal
globality. First, small track segments were formed using similar LAPs as introduced above.
Second, the track segments were paired on a spatially and temporally global basis by an
additional LAP. The initial frame-to-frame linking does not allow gaps in the formed tracks
segments, resulting in an underestimation of the track length. The second step was included to
allow gaps to be present, improving the temporal globality. Allowing gaps in MB trajectories
is especially relevant for in vivo acquisitions, where MBs could temporarily move out of the
imaging slice or could be undetected for some frames due to a spatial overlap with another
MB.
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Figure 2-6: The rendering of MB trajectories consists of three steps: smoothing, interpolation
and accumulation. (a) A MB trajectory is formed by linking localizations of consecutive frames.
The maximum linking distance is applied at this stage in the process. From the found track, raw
velocity measurements vR(n) are obtained. (b) Smoothing of the trajectory by a moving average
filter of span s = 3. (c) Spatial interpolation of the trajectory results in additional data points
(red dot). (d) From the accumulation of all trajectories super resolved ULM reconstructions can
be found.

2-4 Rendering

The processing steps applied to render a ULM reconstruction from the found MB trajectories
are described by the following subsections, a visualization is added in Figure 2-6.

2-4-1 Trajectory smoothing

From the found trajectories, the raw velocity measurements un can be obtained by applying
the backward Euler method as

un =

√
(x̂n − x̂n−1)2 + (ẑn − ẑn−1)2

dt
(2-7)

where the euclidean distance between the localizations (x̂n, ẑn) and (x̂n−1, ẑn−1) is divided by
the time step dt. Besides the magnitude of the received velocity vector, also its orientation
θ can be retrieved. Due to localization errors, the raw velocity measurements generally have
a noisy behaviour. Trajectory smoothing is applied to counteract the deteriorating effect of
the localization errors. Smoothed velocity measurements uf

n can be obtained by applying the
moving average filter as [1]

uf
n = 1

s

n+⌊s/2⌋∑
i=n−⌊s/2⌋

ui (2-8)

where the span s (in number of frames) is chosen odd and ⌊·⌋ represent the floor operation.
A more detailed discussion on the moving average filter and its influence on the velocity
measurements can be found in Section 3.
An alternative method for smoothing MB trajectories based on the Kalman filter was in-
troduced by Tang et al. [49]. The state of the MB given by its position and velocity was
recursively estimated for each frame n based on the previous localizations. The localization
error distribution was assumed to be zero-mean Gaussian noise. The motion of the MB was
approximated with a linear motion model. Performing this state estimation with the Kalman
filter resulted in smoothed trajectories, for which both the measured velocity and the MB
location was updated.
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2-4-2 Spatial interpolation

The sampling rate of the MB trajectories corresponds to that of the acquired B-mode frames.
Due to this temporal sampling the intermediate locations between two MB localizations of
the same track are not observed. Interpolation of the MB trajectories is used to fill in the
corresponding gaps resulting in improved image quality [49].

Note that for increasing MB velocities with respect to the frame rate, the interpolation be-
comes increasingly beneficial due to the larger gap between consecutive MB locations. Inter-
polation can be performed on a temporal [38, 52] or spatial basis [49]. Spatial interpolation
is preferred for appropriate filling of the gaps caused by MBs travelling at different speeds.
Spatial interpolation aims for the interpolated points between two MB localizations to be
equally distanced. It thus allows the number of interpolated points to vary according to the
travelled distance between two MB localizations. The spatial interpolation factor should be
adjusted to the size of the grid at which a super resolved reconstruction is made [49].

2-4-3 Density reconstruction

A super-resolution (SR) density reconstruction can be obtained by accumulating the inter-
polated MB trajectories on a SR grid of chosen pixel size. The intensity of a SR pixel in the
ULM density map is given by the number of MBs that have passed that pixel [38]. If two
or more interpolated MB locations of the same track lie within the same pixel, only one is
counted in the density reconstruction. Since the density map displays MB count, it can be
regarded as a 2D histogram, in which the SR pixel size represents the bin size.

Even though it is tempting to reconstruct the density map on a very fine SR grid to display
small details, one should note the following two disadvantages. First, the smaller the recon-
structed pixel size, the more MB trajectories are necessary to sufficiently fill the vessel. The
minimum number of necessary trajectories is given by the diameter of the vessel over the su-
per resolution pixel size [38]. When inspecting a ULM density map, one should keep in mind
that it may not always correctly represent the underlying vessel structure. The diameter of a
vessel can be heavily underestimated when it is occupied by relatively little trajectories [34].

Secondly, a very small SR pixel size does not give a correct representation of the localization
precision σ with which the ULM localizations are found. In fact, for decreasing SR pixel size
one can be less certain that the MB actually passed the corresponding pixel. Since localization
precision can not be measured in vivo due to the absence of ground truth data, one can rely
on previous studies to estimate an expected value [1] or lower bound [12, 55]. A commonly
used SR pixel size is 10 µm.

When utilizing a very coarse grid, the potential of the ULM reconstruction to resolve small
structures is not fully utilized. In fact it results in a more pixelated version of the ULM
reconstruction, in which vessel diameter might be overestimated.

2-4-4 Velocity reconstruction

The velocity reconstruction is found from the smoothed and interpolated trajectories in a
similar manner. Instead of counting the number of MBs that passed a pixel, their velocity

Master of Science Thesis Myrthe Wiersma



28 Ultrasound localization microscopy image processing

measurements are averaged [1]. The pixel value in a ULM velocity reconstruction thus cor-
responds to the average velocity observed in that pixel. It is due to the averaging performed
here that pulsatility can generally not be observed in ULM velocity maps. Only when a
trajectories is not overlayed by another trajectory, in which case no averaging is performed,
a fluctuation in flow could theoretically be discovered in the ULM reconstruction.

2-5 Motion correction

Motion correction is crucial in most in vivo acquisitions to eliminate image blurring due
to motion artifacts. During acquisition, motion can be prevented by physically restraining
the organ to be imaged [34]. This is often done for preclinical brain imaging by stabilizing
the animals head by a stereotaxic instrument [56]. However, when imaging organs that are
affected by respiratory motion, physical restraint is inapplicable. Tissue motion between two
consecutive frames can be detected by inspecting the normalized cross-correlation [50]

C(n) =
∑

x

∑
z I(x, z, n)I(x, z, n + 1)∗√∑

x

∑
z I(x, z, n)I(x, z, n)∗ ·

∑
x

∑
z I(x, z, n + 1)I(x, z, n + 1)∗ (2-9)

Note that (2-9) results in a scalar that represents the similarity between the frames at n
and n + 1. The higher the motion between two frames, the lower their C(n). Frames of
high tissue motion can be rejected when their cross-correlation score is below a set threshold,
e.g. 0.98 [26]. It is assumed that when large tissue motion is observed through a low cross-
correlation score, it will be accompanied by out-of-plane motion. Motion that is directed out
of the imaging slice can not be corrected for and therefore the frame can best be discarded.
For breathing motion, this results in a cyclic rejection of frames according to the respiratory
cycle[50].

In the frames that are kept, the motion between two consecutive frames, or blocks of frames
[56] is detected. The offset caused by in-plane rigid tissue motion can be detected by spatial
cross-correlation [57]. Alternatively, elastic tissue motion can be detected by fitting an affine
transformation between the coordinate frames of two consecutive frames [50, 58]. Once the
motion is detected, it can be corrected for by mapping the localizations found in a motion
affected frame to the coordinates of a fixed reference frame.

To prevent moving MBs affecting the tissue motion estimation, the SVD method [41] discussed
in 2-1 can be used to only preserve the image resulting from tissue signal [56] [50], which is
then used in the motion correction methods.

Myrthe Wiersma Master of Science Thesis
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Retrieving pulsatility in ultrasound localization
microscopy

Myrthe Wiersma1,2, Baptiste Heiles1, Dylan Kalisvaart2, Carlas S. Smith2∗, David Maresca1∗

Abstract—Ultrafast ultrasound localization microscopy (ULM)
is a super-resolved vascular imaging method that provides a 10-
fold improvement in resolution compared to ultrafast ultrasound
Doppler imaging. Because typical ULM acquisitions accumulate
large numbers of synthetic microbubble (MB) tracks over hun-
dreds of cardiac cycles, transient hemodynamic variations such as
pulsatility get averaged out. Here we introduce two independent
processing methods to retrieve pulsatile flow information from
MB tracks sampled at kilohertz framerates and demonstrate
their potential on a simulated dataset. Our first approach filters
out ULM localization grid artifacts and successfully recovers the
pulsatility fraction Pf with a root mean square error of 3.3%.
Our second approach relies on the derivation of the velocity
distribution of MBs as observed from a stationary observer.
We show that pulsatile flow gives rise to a bimodal velocity
distribution with peaks indicating the maximum and minimum
velocity of the cardiac cycle. Measuring the locations of these
peaks, we successfully estimated Pf with an error of 5.2%. Last,
we evaluated the impact of the MB localization precision σ on
our ability to retrieve the bimodal signature of a pulsatile flow.
Together, our results demonstrate that pulsatility can be retrieved
from high framerate ULM acquisitions and that the estimation of
the pulsatility fraction improves with MB localization precision.

Index Terms—ultrasound localization microscopy, pulsatility,
localization precision, velocity distribution

I. INTRODUCTION

THE resolution of conventional ultrasound images is lim-
ited by the wavelength (λ) dependent Rayleigh diffraction

limit [1] while imaging depth is inversely proportional with λ,
leading to a fundamental trade-off between image resolution
and investigation depth. Recently, this trade-off has been cir-
cumvented by the introduction of ULM. This super-resolution
vascular imaging technique relies on the localization of sub-
wavelength contrast agent [2]. By accumulating thousands
of agent positions with sub-wavelength precision, a vascular
image can be reconstructed with a 10-fold resolution improve-
ment compared to conventional ultrasound while retaining the
same imaging depth. ULM has been demonstrated in vitro
[3]–[6], in preclinical imaging [7]–[11] as well as in the clinic
[12]–[14], in 2D and in 3D [15]–[17].

To date, ULM relies on synthetic ultrasound contrast agents
made of polydisperse gas-filled microbubbles (MBs). Cur-
rently, ULM reconstruction algorithms rely on the hypothesis
that individual MBs can be localized with sub-wavelength
precision. Individual MBs are typically tracked over frames

1Department of Imaging Physics, Delft University of Technology, Delft,
The Netherlands, 2Delft Center for Systems and Control, Delft University of
Technology, Delft, The Netherlands, ∗these authors contributed equally

at kilohertz frame rates. The MB positions in subsequent
frames can thus be linked together, forming tracks that reveal
the underlying vascular architecture. ULM images are then
rendered using either the density of MBs per each pixel,
blood velocity measurements, or other metrics associated with
morphological features such as tortuosity, vessel orientation,
or main flow direction.

Because MB tracks are accumulated over hundreds of
cardiac cycles, fast flow fluctuations are averaged out in ULM
velocity maps. In other words, the velocity displayed is a
measure of the average velocity over the entire ULM acqui-
sition. An intuitive approach to speed up ULM acquisition
consists in enabling the localization of dense MB populations
as localizing larger numbers of MBs per frame reduces the
total number of frames accordingly. However, this poses a
new imaging trade-off between acquisition time and MB lo-
calization precision. Huang et al. [18] proposed to increase the
MB sparsity via post-processing methods. They separated MB
echoes into subpopulations using a spatiotemporal fourier fil-
ter. Each subpopulation was then individually processed using
a conventional ULM reconstruction. Alternatively, machine
learning-based approaches for MB localization were show to
be able to handle higher MB concentrations by disentangling
the interference pattern of spatially overlapping MBs [19]–
[21].

In this study, we investigated the possibility of retriev-
ing pulsatility from conventional ULM datasets without any
change in the acquisition pipeline. Rather than aiming to
decrease the acquisition time to reconstruct ULM maps faster,
we hypothesized that the high temporal sampling of MB trajec-
tories contains enough information to retrieve pulsatility. We
report two methods capable of retrieving pulsatility from raw
ULM data. The first method follows a Lagrangian description
of the flow. Using a single MB velocity measurement, it
relies on filtering to retrieve the pulsatility fraction in the
reconstructed tracks. The second method follows a Eulerian
description of the flow. The temporal distribution of velocities
found at a fixed location in space is calculated. The pulsatility
fraction was extracted from the bimodality of the velocity
distribution. We validated both methods on simulated data
generated using a ULM simulator that incorporates pulsatility
waveforms recorded experimentally in rat cortical brain vessels
[22].

II. METHODS

The ULM simulation pipeline is described in II-A and pul-
satility retrieval methods are described in II-B. We provide a
list of symbols in Appendix A.
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Fig. 1. Simulation study pipeline. (a) Our simulator enabled two simulation scenarios: Localization and No-Localization. (b) Simulated ground truth flow
uGT
n (0) at the centerline (r = 0) for three values of Pf and a pulsatility frequency of 5 Hz. Flow profiles extracted from [22]. (c) A rigid vessel with a

parabolic flow profile is assumed. r and l are respectively the axial and lateral coordinates. Flow is independent of l. (d) Two steps of US simulation: first
the point spread functions (PSF) of the MBs are simulated. Second, a B-mode image is generated by adding speckle. Estimation of the MB position in a
region of interest (ROI). The ground truth MB position (x, z) and the estimated position (x̂, ẑ) are given by the black and red cross respectivel. (e) In the
No-Localization scenario a localization error (∆x,∆z) is sampled from two normal distributions and added to the ground truth MB position (x, z) to obtain
the estimated MB position (x̂, ẑ). Localization precision σ is controlled. (f) The double vessel and single vessel configurations showing a vein (blue) and
arteries (red). Simulation parameters in Table I. The local coordinates are defined at the inlet of the vessel. The vessel orientation angle θ is defined with
respect to the x-axis in the counter clockwise direction.

A. ULM simulator design

The designed ULM simulator is presented in Fig. 1(a) and can
be used for two simulation scenarios: the ’Localization’ and
’No-Localization’ scenarios.

1) Localization scenario: The Localization scenario mim-
ics all steps of an experimental ULM acquisition (Fig. 1(a))
and consists of three main modules: a module simulating
the MB positions (in blue), a module simulating ultrasound
frames (in green) and a module performing ULM processing
(in yellow).

In the first module, the ground truth flow uGT
n (r) was

simulated by modeling its temporal and spatial characteristics
separately, with r the lateral coordinate and n the time index.

The temporal behavior of the flow at the centerline of the
vessel (r = 0) was modelled following in vivo observations
by Santisakultarm et al. [22] in rat cortical brain vessels
(Fig. 1(b)). The pulsatility fraction is defined as the difference
between the maximum and minimum flow velocity over the
average flow velocity at a fixed location in the vessel

Pf =
maxn(u

GT
n (r))−minn(u

GT
n (r))

ūGT
n (r)

(1)

where ūGT
n (r) denotes the temporal average. To construct

the pulsatile flow at the centerline of the vessel uGT
n (0) we

retrieved the temporal average ūGT
n (0), Pf and the shape of the

pulsatile cycle from the results reported in [22]. The frequency
of pulsatility was fixed at a typical rat heartbeat of 300 bpm.

Fig. 1(b) shows the simulation of uGT
n (0) for three different

values of Pf corresponding to a steady-state flow (Pf = 0) a
pulsatile flow in a vein (Pf = 0.2) and in an artery (Pf = 0.4).

We calculate the flow uGT
n (r) for a given temporal sampling

n = t/dt, from uGT
n (0) following two assumptions on the

spatial characteristics of the flow. First, uGT
n (r) is assumed to

be dependent on the lateral coordinate r only, corresponding
to the rigid vessel-hypothesis. Second, the flow velocity profile
along r is assumed to be parabolic, corresponding to Poiseuille
flow [23]. Therefore, uGT

n (r) is obtained by fitting a parabola
to the simulated centerline velocity uGT

n (0) and the vessel
diameter d. We found that simulating flow by modeling
the temporal and spatial behavior separately was in good
agreement with the Womersley solution for pulsatile flow in
rigid pipes [24].

MB positions during the acquisition were simulated by
initializing and propagating a fixed number of point scatterers
in the vessel. The axial MB coordinate r was uniformly
sampled along the vessel length L. The lateral MB coordinate l
was sampled from a distribution of parabolic shape found by
normalization of the parabolic velocity profile uGT

n (r). The
MBs were propagated to the next frame using the local sim-
ulated flow velocity and the timestep dt. An outlet condition
was implemented so that once an MB left the vessel, a new
MB was initialized at the inlet. The lateral coordinate r of this
new MB was drawn from the parabolic distribution while the
axial coordinate was drawn from a uniform distribution on the
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interval [0, uGT
n (r)dt)].

In the second module, the Verasonics Research Ultrasound
Simulator (VRUS, Verasonics, Kirkland, WA, USA) was used
to simulate the ultrasound B-mode frames at 1kHz [25]. The
L22-14vX probe (Vermon, Tours, France) was simulated to
transmit a single plane wave at 0◦ with pulse duration of 2
cycles and a main frequency of 17.6 MHz. The Verasonics
Reconstruction software was used to beamform the Radio-
Frequency data. Additional parameters can be found in Ap-
pendix A, Table A.2. To improve computational efficiency the
frames were constructed in two steps as shown in Fig. 1(d).
The speckle patterns were simulated by placing 105 weaker
scatterers of random intensity at a uniform random position
in the field of view. As the simulation time in VRUS depends
on the number of scatterers placed in the medium, 3×104

simulated speckle frames were generated and microbubble
response was simulated a posteriori. The MB response was
simulated taken as the response of a subwavelength scatterer
and was simulated as if the MBs were to flow in a homoge-
neous medium without speckle, resulting in a frame with a few
point spread functions (PSF). A speckle pattern was randomly
selected from the set of simulated speckle frames and added to
the PSF frame. The signal-to-noise ratio (SNR) of the resulting
image can be controlled by setting the intensity of the speckle
pattern. An average SNR of 14 dB was simulated.

In the third module, we performed ULM processing on
blocks of 1000 simulated frames using the LOTUS toolbox
[25]. We optimized ULM parameters based on the visual
improvement of the microvessel reconstruction. Their values
are provided in Appendix A, Table A.3. We applied an SVD
filter to filter the simulated B-mode frames. Since no static
tissue is present in our simulation, the SVD filter was solely
applied to reduce speckle noise. For localization of the MBs
we used the radial symmetry algorithm, due to its high
performance and low computation time in mid-to-low-SNR
scenarios [25] [26]. We calculated MB tracks using a Kuhn-
Munkres assignment [27] and computed the corresponding raw
velocity measurements un(r) by a backward Euler method
[7]. We smoothed MB tracks using a moving average filter to
generate the velocity measurements uf

n(r) [25] and rendered
these tracks on a super resolved grid to reconstruct the velocity
map. Additionally, a density map was constructed by finding
the MB count for each pixel and a flow orientation θ map
was constructed, with θ the angle between the x-axis and the
direction of flow (in counter clockwise direction).

2) No-Localization scenario: In the No-Localization sim-
ulation scenario a spatial offset mimicking a MB localization
error is added to the ground truth MB positions simulated
by the first module (orange section in Fig. 1(a)). The MB
positions with added localization errors are then fed to the
tracking module (Fig. 1(e)). The localization errors in x and z
direction were assumed independent and identically distributed
(IDD) as N (0, σ2), with σ the localization precision. This
simulation scenario allows us to investigate the effect of
localization precision on retrieval of pulsatility since σ can
be directly controlled. It should be noted that in practice,
different localization algorithms lead to different shapes and
mean values of localization error distributions [25].

TABLE I
SIMULATION CONFIGURATION PARAMETERS

Parameter Double vessel Single vessel
configuration configuration

Vessel type Vein Artery Artery
d 100 µm 30 µm 100 µm
L 2mm 1.5 mm 2 mm
θ 1/2π 3/2π - 0.027 3/2π

ūGT
n (0) 9 mm/s 8.57 mm/s 20.57 mm/s
Pf 0.2 0.4 0.4

average nr. of MBs 2 1/4 1
Vessel separation distance 50-10 µm -

Acquisition time 40 s 40 s
Simulation scenario Localization No-Localization

3) Simulation configurations: We defined two distinct mi-
crovascular configurations as illustrated in Fig. 1(f), with
specific simulation parameters provided in Table I. For both
configurations the simulated flow characteristics matched that
of in vivo observations [22].

The double vessel configuration mimics the in vivo configu-
ration of cortical brain vessels. Here, the vascular architecture
consisted of a straight 30 µm wide descending artery and a
straight 100 µm wide ascending vein that converge towards
each other. We used this configuration in combination with the
Localization simulation scenario to evaluate the performance
of our ULM simulator.

The second configuration consisted of a single 100 µm wide
straight artery and was used in combination with the No-
Localization simulation scenario. This configuration enables us
to assess the performance of the pulsatility retrieval methods
for different values of the localization precision σ.

B. Methods to retrieve pulsatility in ULM data

In this section, we introduce two methods for pulsatility
retrieval in ULM data.

1) Single-track velocity filtering: In this first method to re-
cover pulsatility, the raw velocity measurements of individual
MB tracks were filtered. Raw velocity measurements un(r)
are found by dividing the traveled distance over one frame
by the time-step, also known as the backward Euler method
[7]. Raw velocity measurements are strongly impacted by the
localization errors in the MB positions. We filtered tracks using
a moving average filter defined as

uf
n(r) =

1

s

n+⌊s/2⌋∑
i=n−⌊s/2⌋

ui(r) (2)

where s is the span of the moving average filter and ⌊·⌋ is the
floor operation. Note that the span is expressed in number of
frames and should be chosen as an odd number such that an
equal number of raw velocity measurements before and after
frame n are included. It dictates the time window over which
the un(r) is averaged. Its value is therefore dependent on the
imaging frame rate. Here, s should be compared to the 200
frames covering one simulated pulsatile cycle (5Hz, dt=1ms).
Grid-based artifacts appear in the velocity measurements when
localization is dependent on the MB position within the
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Fig. 2. Pulsatility retrieval method based on the accumulation of velocity measurements. (a) For derivation purposes, the steady-state and pulsatile flow
case were considered. In the former the flow uGTss(r) is independent of the time index n. (b) Illustration of two MB positions ln and ln−1 localized
with localization errors ∆ln and ∆ln−1 respectively. Only the localization error along the axial coordinate l is considered. (c) Derivation of the distribution
U f . The distribution UGTf is found by the histogram of the smoothed ground truth flow uGTf

n (0) at the centerline of the vessel. By convolution with the
smoothed velocity error distribution ∆U f we derive U f . Here, the derivation is performed for the single vessel configuration for three different values of Pf

and with σ = 5 µm and s = 21. The maximum and minimum flow can be detected by the peaks in U f .

beamformed pixel of size dx. A MB of constant steady-state
velocity uss(r) passes a beamformed pixel every dx/uss(r),
i.e. with frequency fdx = uss(r)/dx. Track velocity mea-
surements should inhibit this same frequency in case of grid-
dependent MB localization, since they are computed directly
from MB positions. Here, the simulated MBs move along with
the pulsatile flow uGT

n (r). Therefore fdx corresponds to a
range of frequencies as

fdx =
uGT
n (r)

dx
(3)

We inspected the frequency spectrum of un(r) to assess the
presence of these frequency-dependent grid-based artifacts. To
filter out the artifacts which could not be eliminated by using
the moving average filter, we applied a bandstop filter as a
pre-filtering step. We set the stopband corresponding to the
derived fdx range. After frequency filtering we applied the
moving average filter with span of 51 frames to improve
both the retrieval of the velocity extremes as well as the
visual appearance of the tracks. We defined the velocity
measurements obtained from our designed filtering process as
uf
n(r).
We implemented this pulsatility retrieval method on tracks

measured in the double vessel simulation for the Localization
scenario. The pulsatility fraction was calculated on the filtered
single-track velocity measurements. To retrieve the maximum
and minimum velocity measured during a track the average of
three points centered around respectively the local maximum
and local minimum was taken.

2) Accumulation of track velocities as observed by a sta-
tionary observer: We introduce a second method of retrieving
pulsatility that relies on the accumulation of measured veloc-
ities in a fixed lateral position r in the vessel. As multiple
MBs go through the same super-resolution pixel during a ULM
acquisition, multiple velocity measurements are found in each
pixel. The average of these measurements is reported in a
conventional ULM velocity map.

In the following, we calculated the distribution of the
measured velocities at a fixed r for a fully one-dimensional
flow along the axial coordinate l. For simplicity we start the

derivation by considering a steady-state flow, i.e. uGT
n (r) =

uGTss(r), after which the case of a pulsatile flow is considered,
see Fig. 2(a).

For steady-state flow, we assume that the spread in measured
velocities is solely caused by error in MB localization. Con-
sider two linked MBs at frame n and n−1 as illustrated in Fig.
2(b). Each estimated MB position l̂n along axial coordinate l
is given by the ground truth MB position ln with an added
localization error ∆ln, i.e. l̂n = ln + ∆ln. The raw velocity
measurement at frame n is then given as

un(r) =
l̂n − l̂n−1

dt
(4)

=
ln − ln−1

dt
+

∆ln −∆ln−1

dt
(5)

= uGT
n (r) + ∆un (6)

where ∆un is the velocity error caused by error in MB
localization. We assume ∆ln and ∆ln−1 to be independent
and identically distributed (IID) as N (0, σ2), σ being the lo-
calization precision. The distribution of the raw velocity error
∆un can be found by a combination of the two independent
normal distributions, resulting in ∆U ∼ N

(
0, 2

dt2σ
2
)
.

The raw velocity measurements of a track are smoothed by
a moving average filter. Substitution of (5) in (2) for general
odd-numbered s results in the smoothed velocity measurement
as

uf
n(r) =

1

s

n+⌊s/2⌋∑
i=n−⌊s/2⌋

uGT
i (r)

+
1

sdt

(
∆ln+⌊s/2⌋ −∆ln−⌊s/2⌋−1

)
= uGTf

n (r) + ∆uf
n

(7)

where uGTf
n (r) is the smoothed ground truth flow and ∆uf

n

the smoothed velocity error resulting from localization error.
The distribution of the smoothed velocity error is found to be
∆U f ∼ N (0, σ2

u), where σu =
√
2

s dtσ. In the steady-state sce-
nario, where the first term of (7) can be replaced by uGTss(r),
we find the smoothed velocity measurements at a fixed lateral
location r to be distributed as U f ∼ N (uGTss(r), σ2

u).
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In a pulsatile flow, the smoothed ground truth flow uGTf
n (r)

does not equal the steady state flow uGTss(r). The dis-
tribution of uf

n(r) for pulsatile flow is then found to be
U f ∼ N

(
uGTf
n (r), σ2

v

)
. Two effects cause the spread in this

distribution. Similar to the steady-state case, the variance σu is
caused by the localization error. In contrast to the steady-state
case, an additional spread due to a varying mean uGTf

n (r)
is caused by the pulsatile flow behaviour. The distribution
UGTf of the varying mean can be approximated by creating a
histogram of uGTf

n (r) over one pulsatility cycle, as in Figure
2(c). Assuming uGTf

n (r) to be independent of ∆uf
n we find

the distribution of uf
n(r) in pulsatile flow to be

U f = UGTf ⊛∆U f (8)

where ⊛ represents the convolution operation. In Fig. 2(c) the
derivation is performed for three different values of Pf for
a fixed σ and s. By employing the moving average filter, it
is implicitly assumed that uGTf

n (r) ≈ uGT
n (r). The span s

should be small enough compared to the pulsatile period for
this assumption to hold.

The minimum and maximum values of uGTf
n (r) are given

by the peaks in the histogram UGTf . After convolution, these
peaks appear in U f as well. In ULM acquisitions U f can be
found by the accumulation of the smoothed velocities found
at a fixed lateral location r. The pulsatility fraction can be
estimated by substitution of the found peaks in (1).

III. RESULTS

The results presented here are divided into three sections. We
first report the performance of the simulator, then the simula-
tion results of the first pulsatility retrieval method that relies on
the filtering of single MB tracks, and finally theoretical and
simulation results found from the application of the second
method of retrieving pulsatility.

A. The full ULM process is simulated and super-resolution is
achieved

An average velocity map was reconstructed from the simu-
lation of the flow in the double vessel configuration in Fig.
3. This average velocity map serves as the ground truth with
which the ULM velocity reconstruction should be compared.
Fig. 3(b) displays a simulated B-mode image containing three
MBs.

Based on the acquired B-mode images, a contrast-enhanced
Power Doppler image is computed (Fig. 3(c)), and the ULM
pipeline for localization and tracking is implemented resulting
in three super-resolved maps displaying density (Fig. 3(d)),
velocity (Fig. 3(e)) and orientation (Fig. 3(f)). The cross-
sections of the ULM density map and Power Doppler image
taken at 3 different positions along the axial direction are
plotted in Fig. 3(g). The two vessels can be separated as
close as 15 µm (∼ λ/5.8), well below the wavelength of
λ = 86.2 µm. Separation of the vessels is also possible in the
velocity based renderings (Fig. 3(h)). Finally, the orientation
map displays a clear separation of the two vessels of opposite
flow using a color code for the orientation of the velocity

vector, the vein appearing in blue and the artery in red. The
root mean square error (RMSE) of the average blood flow
velocity and orientation are 1.3 mm/s and 0.23 rad respectively.

Histograms of the found localization errors in ∆x and ∆z
are plotted in Fig. 3(i). The localization precisions σx and σz

were 8.5 µm and 12.7 µm respectively and are within the same
range as reported in [25], i.e. [0.09, 0.23]λ = [7.76, 19.83] µm.

B. Pulsatility fraction can be recovered from single tracks by
filtering out grid-based artifacts

Three lateral vessel locations r1, r2 and r3 were defined,
corresponding to the center of the vein, the side of the vein,
and the center of the artery in the double vessel configuration.
Tracks at these lateral locations were found by controlling
the inlet position of simulated MBs, see Fig. 4(a) and (b).
ULM parameters were adjusted to recover long tracks that
span almost the entire length of the vessels.

The presence the periodical grid-based artifact was noticed
upon post-processing via a moving average filter with a span
s = 51. At the position r2, this is clearly visible by the
sawtooth-like behavior of Fig. 4(c) and was also visible
at other positions. Increasing the span s did not result in
elimination of this artifact which can be seen in Fig. B.1 of
Appendix B.

The frequency spectrum of the track at r2 was computed
with a Fast Fourier Transform (Fig. 4(d)). A frequency peak
is clearly visible in the frequency range fdx at which a
simulated MB passes a beamformed pixel (computed from
(3) and indicated as the gray shaded region). This peak was
also found for different beamformed pixel sizes and is always
in the fdx frequency range (Fig. B.2 of Appendix B). This
artifact is referred to as a beamforming grid-based artifact in
the rest of this manuscript.

The filtered velocity measurements found by pre-filtering
with the bandstop filter and smoothing with the moving aver-
age filter are shown in 4(e). The pulsatility fraction estimates
calculated from the found maximum and minimum velocities
are given in Fig. 4(f).

The RMSE of the pulsatility fraction estimates at r1, r2 and
r3 are 0.022, 0.056 and 0.013, which corresponds to 11%, 28%
and 3.3% of the simulated pulsatility fraction respectively.

C. The ability to retrieve pulsatility from the measured velocity
distribution is dictated by σ and s

1) Theoretical results: The theoretical velocity distributions
corresponding to the single vessel configuration are given in
Fig. 5(a). The calculation was performed for different values
of σ and a fixed moving average span of s = 21. In Fig. 5(b)
and 5(c) the calculation was repeated for pulsatility fraction
of Pf = 0.2 and Pf = 0.

Pulsatility introduces a bimodal velocity distribution for
sufficiently low σ. For Pf = 0.4 two peaks could be retrieved
for σ ≤ 20 µm, while for Pf = 0.2 this was possible for
σ ≤ 10 µm. The maximum and minimum velocity during the
pulsatile cycle were retrieved from the location of these peaks
and a pulsatility fraction estimate P̂f as given in Fig. 5(a)-(c)
was computed. No bimodality was found in the distribution
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Fig. 3. Simulation of the double vessel configuration with the designed ULM simulator shows its ability to simulate the full ULM processing pipeline and
achieve super-resolution. Length of all scalebars = λ (a) The simulated average bloodflow ūGT

n (r) serves as the ground truth with which the ULM velocity
map is to be compared. (b) A patch of a simulated B-mode image with 3 MBs at position (x, z) beamformed at 50 µm ≈ λ/2. In the regions of interest,
the MB position estimates (x̂, ẑ) are found using the radial symmetry localization algorithm. (c) Diffraction-limited Power Doppler rendering with cross-
sections 1,2 and 3 at which the vessels have a separation distance of respectively 45, 30 and 15 µm. (d) ULM density rendering. (e) ULM velocity rendering.
(f) ULM orientation rendering. (g) Cross-sections (1)-(3) of the ULM density rendering and Power Doppler image. (h) Cross-sections (4)-(6) of the ULM
velocity rendering (i) Histograms for measured localization errors ∆x and ∆z for a total of 29417 localized MBs.

of the steady-state flow case. The location of the centroid of
the distribution (asterisks) indicates the mean ūGTf

n (r). When
rendering the MB trajectories to a ULM reconstruction this
mean value is obtained and displayed in the velocity map.
ūGTf
n (r) is the same for all distributions given in Fig. 5(a)-

(d).

From the derivation in II-B2 it was already found that

increasing the span s narrows ∆U f . This effect was also
found in U f when comparing Fig. 5(a) with Fig. 5(d) with
respectively s = 21 and s = 51. We find that increasing the
span aids the retrieval of the bimodality. In Fig. 5(b) two peaks
could still be retrieved for σ = 30 µm.

The localization precision σ has a large influence on the
distributions. For increasing σ we find the peaks to move
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Fig. 4. Pulsatility can be retrieved by filtering single-track velocity measurements. (a)-(b) Three tracks at different lateral positions r1, r2, and r3 in the
two vessels are highlighted. Scalebar = λ (c) The smoothed velocity measurements at r2 show a disturbance with periodical behavior. (d) The frequency
spectrum of the raw velocity measurements at r2 shows a peak at frequencies corresponding to the frequency range fdx (grey). (e) The frequency filtered
velocity measurements uf

n(r) follow the simulated ground truth velocity uGT
n (r). Multiple tracks for each lateral location are shown. (f) From the filtered

measurements of (e) Pf is estimated.

slightly inwards and the distribution to flatten until no two
peaks can be detected any longer. To further study this, Fig.
5(e) plots the pulsatility fraction as a function of σ for a
fixed value of the span s = 21. The theoretical pulsatility
fraction is indicated as a dashed line. We find that Pf is always
underestimated. A deteriorated localization precision results in
a higher underestimation of Pf , well in accordance to what is
observed in Fig. 5(a)-(d). For σ > 20 µm only a single peak
was detected and thus, no P̂f was found.

The span of the moving average filter s has a large influence
on the height of the velocity distribution peaks. For increasing
s, the peaks are heightened. By comparing Fig. 5(a) and (d) we
find the peaks to move inwards for higher s. To further study
this, Fig. 5(f) plots the pulsatility fraction as a function of the
span s for a fixed value of σ. Multiple lines are included that
represent distinct σ values. The calculation was performed up
to s = 51. Similarly as described in the previous paragraph, P̂f

is underestimated for all the scenarios. The smallest theoretical
attainable estimation error is found at the maxima of the curves
for each value of σ. With this approach an optimal setting of s
can be derived for any obtained localization precision σ, as is
shown in Fig. 5(f). The curves show that a lower localization
precision (higher σ) requires a larger span s to enable retrieval
of the pulsatility fraction.

2) Simulation results: The velocity distributions as derived
in Fig. 5(a) were acquired in simulation for σ = 5, 10 and 20
µm (single vessel No-Localization). The resulting histograms
are given in Fig. 6. The peaks of the distributions found in
both cases are in good accordance. The simulations for σ = 5
µm and for σ = 10 µm result in the same peak locations for
the bin size of the histogram used here.

Additionally, the method was applied to the same data
set as used in Fig. 4, where the double vessel configuration

was simulated with the Localization scenario. Histograms
were obtained by accumulation of velocity measurements at
the lateral coordinates r1, r2 and r3, see Fig. 6(b). In the
center of the vein (r1), we found P̂f = 0.143 which is
an underestimation of 28.6%. It was needed to increase the
moving average span to 31 frames for retrieval of bimodality.
In the histogram found for r2 no bimodality could be retrieved
despite further increasing the span. In the center of the artery
(r3) a pulsatility fraction estimate of 0.379 corresponding
to 5.2% underestimation was found. Bimodality was already
achieved at s = 21. Using the first method we achieved a
RMSE of 3% and 11% for respectively the artery and the
vein. We find that pulsatility retrieval is best performed at the
centerline of the vessel.

IV. DISCUSSION

In this study, we introduced two methods to retrieve flow
pulsatility with ULM. The first method retrieves pulsatility
from raw ULM data by filtering out grid-based artifacts from
single-track velocity measurements. The second method relies
on the accumulation of velocity measurements at a fixed
location in the microvessel of interest. With this approach,
the pulsatility fraction could be retrieved from the location of
the two peaks in the bimodal velocity distribution. To validate
these methods, we modelled pulsatility in arteries and veins
from experimental data and used the Verasonics Research
Ultrasound Simulator to generate ultrasound B-mode frames.
The low computation time of this simulator (as reported in
Appendix A) compared to k-space-based simulators makes it
suitable for large dataset generation. Our results show that
ULM datasets contain rich temporal information that can be
processed to retrieve pulsatility in addition to conventional
ULM image reconstructions. By relying on the high frame
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Fig. 5. Pulsatility fraction can be retrieved from the bimodal shape of the velocity distribution. The results shown here correspond to the parameters of the
single vessel configuration. (a) The derived velocity distributions for different values of σ with fixed s = 21. P̂f can be found from the location of the two
peaks in the distribution. Centroids of the distribution are given by asterisks and represent the conventional ULM measurement. (b)-(c) Similar derivation for
Pf = 0.2 and Pf = 0 respectively. (d) The derivation of (a) was repeated for s = 51. (e) The effect of localization precision σ on P̂f for fixed s. The line
stops when no two peaks could be detected. (f) The effect of s on P̂f for a fixed σ. The different lines correspond to different σ values. A maximum (cross)
can be found corresponding to the optimal value of s. Derivation was performed up to s = 51.

rate, we were able to retrieve the temporal dynamics induced
by pulsatility without changing the localization, concentration,
or tracking of the ULM processing pipeline.

Our derived velocity distributions were validated in sim-
ulation. The peak loations in the acquired histograms (Fig.
6) closely match those derived theoretically (Fig. 5). The
larger presence of high velocities in the histograms acquired
from the simulation is expected to be a results of the spatial
interpolation of the tracks. A MB of higher velocity travels a
longer distance on a frame-to-frame basis, causing its velocity
to be accumulated in the velocity distribution of multiple
pixels. We hypothesize that this effect is beneficial to the
retrieval of pulsatility since it causes the peak corresponding to
the maximum velocity to be more prominent. The derivation
of U f should be updated to include this effect. Pulsatility
induces bimodality in the distribution of smoothed velocity
measurements U f (Fig. 5). Localization precision σ dictated
both the ability to find a Pf estimate as well as the quality
of that estimate. In the derivation of U f the MB localization
error was assumed to be normally distributed as ∼ N (0, σ2),
which does not generally hold for all localization algorithms
[25].

In the first reported method, both the pre-filtering by the
bandstop filter and the smoothing by the moving average
filter were found critical to retrieve pulsatility from single
tracks. In the raw velocity measurements, we observed a large
presence of noise resulting from MB localization error. In the
simulation of the double vessel configuration, we obtained
σ values higher than the average distance traveled by the
MBs over one frame, 12.7 µm versus 3.3, 9.0 and 8.6 µm
for r1, r2 and r3 respectively. Additionally, we discovered the
presence of beamforming grid-based artifacts in single-track
velocity measurements caused by grid-dependent localization,

as shown in Fig. 4(c). The presence of these artifacts is
consistent for different beamformed pixel sizes dx and for
localization using both a radial symmetry and a Gaussian
fitting algorithm (Fig. B.2). Applying the single-track filtering
method to a data set without speckle for which no SVD filter
was applied, validated that the artifacts are indeed a result of
beamforming (Fig. B.3).

This first method relies on the temporal sampling of a track.
For each track, it will recover a pulsatility fraction using (1).
In the case of slow MBs - at the side of the vein for example
- trajectories spanning hundreds of consecutive frames could
be found (Fig. 4(e)). The main factor limiting the trajectory
length in our simulation was the time during which the MB
was present in the vessel. Acquisition of long MB tracks is
therefore crucial in the first method. The tracks in Fig. 4(e)
succeed each other every ∼100 frames. Due to the sparsity of
in vivo MB data the intervals between two succeeding tracks
are expected to be longer.

The second method does not rely on a Lagrangian but an
Eulerian description of the flow. Rather than looking at the
tracks of each MB, it will explore the distribution of the
velocities at a fixed spatial sample. Because it relies on the full
acquisition time, we expect less dependency on the frame rate
and on the retrieval of long MB tracks than the first method. In
the calculation of U f we noticed two possible effects a change
in framerate might cause. First, the temporal discretization
causes an additional numerical error in (6) that has not yet
been taken into account. This numerical error will increase for
decreasing frame rates. Second, the time-step dt influences the
variance of the smoothed velocity error through σu =

√
2

s dt .
When the span of the moving average filter is increased to
match the original temporal window, this effect is neutralized.

The moving average filter was found to narrow the velocity
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Fig. 6. Validation of the velocity distribution pulsatility retrieval method in simulation. (a) The histograms were constructed by collecting velocity measurements
along the centerline of the vessel in the single vessel configuration for the No-Localization scenario. The theoretical location of the peak was extracted from
derived U f of Fig. 5(a). Bin size = 0.5 mm/s. (b) The acquired histograms for the double-vessel configuration with Localization. The same data set as in Fig.
4 was used. Bin size = 0.1 mm/s.

error distribution ∆U f by dividing the standard deviation by
the value of s. It therefore reduces the adverse effect of
localization error on the velocity measurements. For estimation
of a steady-state flow it is advised to use a large moving
average span. However, beyond a certain point increasing the
span has adverse effects on pulsatility retrieval. The heavy
smoothing results in an increased underestimation of the
pulsatility fraction due to the flattening of the pulsatile cycle
(see Appendix C). This underestimation effect of the moving
average filter is apparent in Fig. 5(e) where s = 21 was
applied. Even for perfect localization (σ = 0 µm) pulsatility
fraction was underestimated. Unfortunately,we can not rely on
previous research for an appropriate range of s for in vivo
applications, since these values are usually not reported. The
theory introduced here can be used to determine an optimal
setting of the moving average span for a specific flow scenario
with given localization precision.

The occurrence of false MB pairing by the tracking al-
gorithm will influence both methods. It will cause unex-
pected behavior of the filtered tracks (Fig. 4(e)) and introduce
additional contributions to the measured velocity histogram
(Fig. 6). To limit the adverse effect of false MB pairings, an
appropriate tuning of the maximum linking distance in ULM
tracking is necessary. The theoretical derivation of the velocity
distribution performed in this study aids the development of a
systematic method to determine the optimal maximum linking
distance (Appendix D).

Pulsatility was simulated by our ULM simulator by mod-
elling the spatial and temporal characteristics of the microvas-
cular blood flow separately corresponding to a straight vessel
with rigid wall of constant diameter. The ULM simulator could

be improved by adapting a vascular architecture corresponding
to in vivo observations.

By investigating the effect of MB localization precision
on the retrieval of pulsatility, we focused on the spatial
quality of MB tracks. Future research could focus on the
temporal sampling of the MB tracks in relation to pulsatility
reconstruction. We expect the minimum frame rate needed for
resolving hemodynamics to depend mainly on the time scale
of the targeted hemodynamic phenomena, which are usually in
the tens of milliseconds to seconds timescale for hemodynamic
events. The methods reported here will need to be tested on
in vivo data. We anticipate specific challenges in an in vivo
context, such as shorter MB tracks, sparser MB data, and more
frequent false MB linkings.

V. CONCLUSION

We have introduced two methods to extract pulsatility from
raw ULM datasets. First, by filtering out grid-based artifacts
from single track velocity measurements, second, by retrieving
the distribution of velocities measured at a fixed location in a
vessel of interest. Both methods have been validated on simu-
lated ultrasound beamformed data featuring pulsatility induced
flow variations. Our study shows that ULM datasets contain
more information on the hemodynamics of the blood flow than
that provided by conventional ULM image reconstructions.
By looking at reconstructed tracks independently or at the
distribution of velocities, more insight can be gained into the
hemodynamics experienced by the microbubbles.By reported
by vascular anatomy and hemodynamic function, ULM has
the potential of becoming a full-fledged ultrasound diagnostic
method of unprecedented resolution.
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APPENDIX A

All symbols used in this study are given in Table A.1 along
with their definition.

TABLE A.1
LIST OF SYMBOLS

Symbol Definition
λ Wavelength (in m)
x Coordinate parallel to tissue surface (in m)
z Coordinate perpendicular to tissue surface (in m)
r Lateral local coordinate (in m)
l Axial local coordinate (in m)
n Time index or frame number
d Vessel diameter (in m)
L Vessel length (in m)
θ Vessel or blood flow orientation

w.r.t. the x-axis (CCW) (in rad)
dt Timestep between two B-mode frames (in s)
dx Beamformed pixel size (in m)
fdx Frequency range corresponding to a MB

passing beamformed pixels (in Hz)
(x̂, ẑ) Estimated MB position (in m)

∆x, ∆z, ∆l MB localization error in x, z and l (in m)
µx, µz Mean of localization error in x and z (in m)
σx, σz Found localization precision in x and z (in m)

σ Induced localization precision for simulation in
the No-Localization scenario in x and z (in m)

Pf Pulsatility fraction
uGT
n (r) Ground truth flow (in m/s)

uGTf
n (r) Filtered ground truth flow (in m/s)

uGTss(r) Ground truth flow for steady-state scenario (in m/s)
un(r) Raw velocity measurement (in m/s)
uf
n(r) Filtered velocity measurement (in m/s)

∆un(r) Error in raw velocity measurement
induced by localization error (in m/s)

∆uf
n(r) Error in smoothed velocity measurement

induced by localization error (in m/s)
s Span of moving average filter (in number of frames)
σu Derived standard deviation of ∆uf

n(r) (in m)

TABLE A.2
US SIMULATION PARAMETERS

Parameter Value
Transmit frequency 17.8571 MHz

Speed of sound 1540 m/s
Wavelength 86.2 µm
Frame rate 1 kHz

Probe Verasonics L22-14v
Nr. of plane waves 1

Angle 0◦

Nr. of transmit elements 128
Nr. of receive elements 128

Pitch 100 µm
Beamformed pixel size 50 µm

Total computation time of the ULM simulator was found on
average 24 ms/B-mode frame excluding the time needed for
computing the speckle frames. Therefore, simulating a ULM
reconstruction of 10s acquisition time at 1kHz requires a total
average computation time of 240s. The hardware specifications
of the computer used in this study are given in Table A.4.

TABLE A.3
ULM PROCESSING PARAMETERS

Parameter Value
Super resolved pixel size 10 µm

SVD threshold [5,750]
FWHM 3×3 US pixels

Nr. of allowed local maxima 3
Maximum Linking Distance (MLD) 50 µm

Minimum track length 5 frames
Maximum gap closing distance 0 frames

Moving average span 21

TABLE A.4
HARDWARE SPECIFICATIONS

CPU Intel Xeon W-2155, 10 cores @ 3.30 GHz
GPU NVIDIA Quadro P2000, 10.5 GB

APPENDIX B

Increasing the moving average span did not eliminate the
beamforming grid-based artifacts (Fig. B.1). Even at a span
of 111 frames, which is more than half of the duration of the
pulsatile cycle, the artifact is still observed.

The artifact is likely to be a result of MB localization that
is dependent on the location in the beamformed pixel. In Fig.
B.2 this is illustrated for a MB that moves at constant speed
with localization biased towards the center of the pixel. The
velocity measurements based on the estimated MB positions
(red) will fluctuate between a high value measured for the MB
crossing a pixel border and a low value measured for a MB at
a central pixel location, see the gray arrows in the illustration.

To conclude that the artifact indeed results from this grid
dependent localization, the simulation was performed on three
different beamformed pixel sizes dx: 100 µm, 50 µm and 10
µm. The resulting spectra are shown in Fig. B.2 with the fdx
range given by the shaded area.

For dx = 100 µm and 50 µm a noticable peak is found
within the fdx range. In the case of a 10 µm pixel size, this
is not observed. Note that this pixel size is approximately
∼ 1/10λ and typical localization precisions that would be
obtained are often larger than 10 µm [25].

To validate that the grid-based artifact does indeed result
from beamforming and the applied SVD filter does not induce
it, a simulation on PSF frames without any speckle was
performed. In processing of this data, no SVD filter was
applied. The results in Fig. B.3 show that the grid-based
artifact is also present in this data set.
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Fig. B.1. The periodical grid-based artifact found in single-track velocity measurements is not eliminated by increasing the span s (in number of frames).
The smoothed velocity values of s = 111 still show the artifact while their shape is heavily altered by the heavy smoothing, resembling the effect shown in
Fig. C.1(a).

Fig. B.2. The frequency spectra of the raw single-track velocity measurements un(r) are shown for simulations in which beamforming was perfomed on
different pixel sizes dx. fdx corresponds to the range of frequencies at which a MB passes a pixel. In the top row with dx = 100 µm, peaks lie within the
frequency range fdx for localization performed with a radial symmetry algorithm and with Gaussian fitting. In the bottom row a peak is visible in the fdx
range for dx = 50 µm. For dx = 10 µm ∼ 1/10λ the frequency range was not found to align with a distinct peak in the spectrum. On the right an illustration
of the grid-based artifact is included. The distance between the estimated MB positions (x̂, ẑ) is dependent on the ground truth MB location within (x, z) a
beamformed pixel.

Fig. B.3. The grid-based artifact in a PSF simulation without speckle and without application of a SVD filter. (a) The frequency spectrum shows a peak
corresponding with the fdx region. Additionally, an increase in frequency content is found at ∼ 2fdx. (b) The track velocity measurements smoothed by a
moving average filter with a span of 51 frames. A clear sawtooth-like behavior is found.
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Fig. C.1. The span of the moving average filter has a large influence on the obtained distribution uf . (a) The simulated ground truth pulsatile cycle (s = 1)
is smoothed for different values of the span s. A full cycle (200 frames) is displayed here. (b) The histograms of UGTf change shape for different value of
s. (c) The velocity error distribution ∆U f narrows for increased span. The scenario of σ = 20 µm is derived here. The width of ∆U f for the non smoothed
case (black) extends far outside of the interval given here. (d) The resulting velocity distribution U f from the convolution of the results of (b) and (c). The
two peaks are barely noticable for s = 21. Increasing the span to s = 51 improves the retrieval of the two peaks. The peaks move inwards with increasing s.

APPENDIX C
When increasing the span of the moving average filter, two
effects cause the resulting velocity distribution U f to change.

First, as introduced in section II-B2, by employing a moving
average filter one implicitly assumes that uGTf

n (r) ≈ uGT
n (r).

This assumption is violated when increasing the span s, as
can be seen in Fig. C.1(a). Due to the flattening caused by the
moving average filter, the smoothed pulsatile cycle does not
resemble the original pulsatile cylce (s = 1) any longer. As a
result, the shape of the histograms of UGTf changes and their
peaks move inwards.

Second, a more beneficial effect of increasing the span is the
fact that ∆U f narrows. After convolution with UGTf this gives
rise to narrower peaks in U f . For lower localization precision
a higher span is needed to be able to resolve two peaks. For
example, in Fig. C.1(d) for a localization precision of σ = 20
µm, the two peaks are more distinct for s = 51 than s = 21.

APPENDIX D
The ULM simulator was additionally utilized to inspect the
influence of the pulsatility fraction on the rendered ULM
velocity map. The quality of the reconstruction was assessed
by the RMSE of the average velocity prediction at each super
resolved pixel compared to the ground truth average velocity
(Fig. D.1(a)). Additionally, the ULM velocity reconstructions
were inspected along the cross-section (Fig. D.2).

In Fig. D.1(a) the velocity RMSE and the fraction of tracked
MBs is plotted against the localization precision for different
values of Pf ranging from 0 to 1 and two maximum linking
distance (MLD) setting. In tracking, the linking of two MBs is
not permitted if the distance between them exceeds the MLD.

Generally the RMSE is found to increase for increasing
σ. The reported RMSE values become unreliable, as seen by
the enlarged 95% confidence interval, when only a very low
number of MBs is tracked. The fraction of MBs that is tracked
drops for increasing values of σ, since the distance between
two MBs becomes more likely to exceed the MLD.

The violins in the cross-sections of Fig. D.2 report the
spread in ūf

n(r) reported in the ULM velocity rendering at the
corresponding lateral position in the vessel. The violins were
constructed from 2000 cross-sections out of ULM velocity
renderings of a 100 µm vessel for acquisition time of 10s.

Fig. D.1 and Fig. D.2 show that Pf can have a small
effect on the ULM velocity reconstructions through two mech-
anisms. First, for an insufficient maximum linking distance the
truncation of the velocity distributions of different Pf result
in different values reported in the ULM reconstruction, see
MLD = 25 µm of Fig. D.1(a) and Fig. D.1(b). We observe
that the fraction of MBs tracked varies for different Pf . Fig.
D.1(b) displays the non-smoothed velocity distributions U as
found from UGT ⊛∆U for Pf = 0, 0.2 and 0.4 and a fixed
σ = 5 µm. For a MLD of 25 µm velocities over 25 mm/s can
not be measured and the velocity distributions are truncated
at that location. The truncation of these distributions by the
insufficient setting of the MLD results in different locations
of the new centroids, which represent the average velocity
ūf
n(r) as found in a ULM reconstruction, see the legend for the

found values. Note that the non-smoothed velocity distribution
is applicable here since the MLD is applied before the moving
average filter. Due to the trunctation, the centerline velocity is
found to be more underestimated for larger Pf . The theoretical
explanation of Fig. D.1 corresponds to the simulation results
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Fig. D.1. For specific scenarios the pulsatility fraction Pf can have an effect on the RMSE of the ULM velocity reconstruction. (a) Velocity RMSE and the
fraction of tracked MBs is plotted against the localization precision σ for different simulated values of Pf . Left and right differ on the value of the maximum
linking distance (ULM) used in ULM processing. A shaded area was added to indicate the 95% confidence interval as found from 1000 bootstrapped samples.
(b) The non-smoothed velocity distribution U for three values of Pf and σ = 5 µm is shown. The MLD of 25 µm truncates the distributions at 25 mm/s
causing the centroids of the distributions to shift to the left. The average velocity of the truncated distribution as measured in a ULM reconstruction is given
in the legend for the different Pf .

of Fig. D.2, where the underestimation at the center of the
vessel is clearly visible.

Additionally, the effect of insufficient MLD is visible in
the average density reconstruction over the cross-section. For
MLD = 25 µm the number of MBs tracked drops for the
central pixels.

A second effect of Pf on the reported RMSE values is found
in the high localization precision range (σ < 10 µm) even for
sufficient MLD setting of 50 µm. This can not be caused by
the truncation of the velocity distribution as described above
since no loss in tracked number of MBs is found. When
inspecting the cross-sections of Fig. D.1 we only observe a
slight increase in violin size for larger Pf , which indicates a
higher spread of reconstructed velocities in the ULM velocity
rendering. We expect this effect to fade for longer acquisitions
due to the averaging that is performed in rendering of the
reconstruction. To construct these cross-sections, the single
vessel configuration was simulated for only a 10s acquisition,
while typical in vivo acquisition length is > 100s.

To prevent underestimation of the centerline velocities as
found in Fig. D.2, the MLD should ideally be set such that it
captures the full non smoothed velocity distribution. It should
therefore be set significantly higher than the actual maximum
blood flow velocity present. Based on our velocity distribution
theory new systematic ways of setting the MLD can be formed
replacing the trial and error tuning that is currently common.
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Fig. D.2. Violin plots displaying the spread in reconstructed velocities along a cross-section of a 100 µm vessel. A total of 2000 cross-sections of ULM
velocity reconstructions were acquired to construct the violins. The colorbars below show the average number of MBs that passed that lateral location in the
vessel. In all six cross-sections a localization precision of 5 µm was simulated. Pf varies along the columns and the two rows show the results for MLD =
25 µm and 50 µm. Median velocities obtained at the centerline for MLD= 25 µm and Pf = 0, 0.2 and 0.4 are respectively 18.69, 17.95 and 16.90 mm/s.



Chapter 4

Conclusion

This chapter concludes the thesis. Section 4-1 gives a summary of the main findings and
contributions of the study. Section 4-2 provides additional points of discussion that were not
included in the manuscript. In section 4-3 we provide an outlook on the retrieval of pulsatility
in ultrasound localization microscopy.

4-1 Summary

Ultrasound imaging reveals internal tissue structures in a non-invasive way and is a common
imaging modality in clinical practice [6]. It relies on the pulse-echo principle by illuminating
the tissue with an acoustic wave and recording the backscattered echoes. Due to its use
of ultrasound waves, the resolution of conventional ultrasound imaging is limited by the
diffraction limit [24]. Increasing the transmit frequency improves resolution but limits the
attainable imaging depth due to increased attenuation of the transmit pulse.

Ultrafast ultrasound localization microscopy (ULM) circumvents the trade-off between res-
olution and imaging depth as found in conventional ultrasound imaging. It relies on the
localization and tracking of a large number of intravascular injected synthetic microbubbles
(MB) over several hundreds of thousands of B-mode frames. The isolated MBs are localized
with sub-wavelength precision enabling a 10-fold improvement in resolution compared to con-
ventional diffraction limited ultrasound imaging [34]. By tracking of MBs, measurements of
the velocity of blood flow are retrieved. Super resolved images of the microvasculature and
its average blood flow can be recovered by accumulating the found MB tracks on a fine grid.

ULM requires a long acquisition time of typically hundreds of seconds to acquire sufficient
data for reconstruction of the microvasculature [3]. Due to this long acquisition time, transient
hemodynamic variations such as pulsatility get averaged out in the ULM velocity reconstruc-
tion.

Here two methods to retrieve pulsatility from MB tracks were introduced that leverage the
high temporal sampling of MB tracks.
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The first method relies on the filtering of single track velocity measurements to retrieve
the pulsatile flow behaviour. The moving average filter was found incapable of filtering out
newly uncovered grid-based artefacts. Inspection of the frequency spectrum of the velocity
measurements validated that the artefacts were caused by MB localization that is dependent
on the position within a beamformed pixel. The designed filtering technique consists of
two steps. First a bandstop filter was applied to eliminate the grid based artefacts that
were found for a specific range of frequencies. Second, a moving average filter was applied
to further smooth the velocity measurements. From the filtered single track velocities, the
extreme values were extracted and used to obtain a pulsatility fraction estimate. The method
was validated in simulation where it was shown to retrieve the pulsatility fraction with an
RMSE compared to the ground truth of 3.3%. Since it was found that a larger absolute
deviation in flow velocity resulted in lower RMSE, we concluded that pulsatility could best
be retrieved at the centerline of a vessel.

The second method reported in this study relies on the accumulation of velocity measurements
at a fixed lateral location of the vessel over the full acquisition time. Theoretical derivation
showed that a pulsatile flow led to bimodality in the velocity distribution, which could be
retrieved for sufficient localization precision. The derivation of the velocity distribution was
validated in simulation where the pulsatility fraction was recovered at an RMSE of 5.2%.
Additionally, the effect of both the localization precision σ and the span of the moving average
filter s on the retrieval of pulsatility were investigated. We found that increasing value of σ,
i.e. lower localization precision, leads to larger underestimation of the pulsatility fraction.
Based on our theory an optimal selection of s for specific flow scenarios and σ can be found.

To acquire the simulated data sets on which the methods were validated, a new ULM simulator
was developed that incorporates pulsatility. The pulsatile flow was simulated by modelling its
temporal and spatial characteristics separately and relying on in vivo observations [5]. The
simulator consists of two simulation scenarios. The first scenario incorporated all steps of a
typical ULM acquisition including simulation of B-mode frames and localization of the MBs
in these frames. In the second scenario, a spatial offset imitating the localization error was
directly added to the simulated MB positions, such that no localization was needed. This
approach allowed to control the localization precision.

All together our results show that the recovered track velocity measurements in ULM contain
more information on hemodynamics of the blood flow than is represented by conventional
ULM image reconstructions. In future research, the reported methods need to be validated
in vivo and their application for the retrieval of other hemodynamic phenomena could be
investigated.

4-2 Discussion

The manuscript of Section 3 included a main discussion of the reported results of this study.
It focused on two topics. First, the proposed methods in this study rely on high acquisi-
tion frame rates. The effect of the frame rate on the performance of the proposed methods
should be investigated by future research. Second, the need for in vivo validation of the in-
troduced methods was highlighted. The remainder of this section addresses additional points
of discussion, not previously discussed in the manuscript.
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Pulsatile flow was simulated by assuming a rigid vessel of constant diameter and modelling the
spatial and temporal characteristics separately. Spatially, the flow was assumed independent
on the axial vessel coordinate and described by a parabolic profile along the lateral vessel
coordinate corresponding to Poisseuille flow [68]. Temporal characteristics were retrieved
from in vivo observations [5]. An alternative method for simulating pulsatility in rigid pipes
is provided by the Womersley solution [69]. It models the flow response to a varying pressure
gradient incorporating the lag a flow can experience due to inertial forces. However, the
flow in the microvasculature was found to be in phase with the local pressure gradient and
can therefore be modelled by deriving the Poisseuille flow for each time instance [71]. This
result supports the separation of spatial and temporal flow characteristics as applied in the
simulator. Additional information on the rigid vessel assumption, Poisseuille flow and the
Womersley solution is included in Appendix A. The rigid vessel assumption does not hold
for all vessels in the vasculature. Due to their muscular vessel wall, arterioles can dilate and
constrict and therefore regulate the blood flow to the capillaries [72]. This effect was not
considered in this study.

Additionally, the likeliness of the simulated data to in vivo acquisitions could be improved
by measures including: a more realistic vascular architecture based on in vivo observations,
varying the number of simulated MBs and including tissue structures in the simulation of
B-mode images.

Throughout the study, localization error was assumed to be distributed as N (0, σ2). However,
this assumption does not generally hold for all localization algorithms as shown by [1]. Future
research could extent the derivation of the velocity distribution for other localization error
distributions. Additionally, the presence of the grid-based artefact shows the localization error
in our results to be dependent on the MB position within the beamformed pixel for both the
radial symmetry and the Gaussian fitting algorithm. Future research could investigate for
each localization algorithm what the cause is of this grid-dependent localization. To assess
whether the localization precision achieved by our simulator is within an appropriate range,
we relied on [1], which reported MB localization RMSE from simulated data at different SNR.
The conversion needed to map their reported values from RMSE to localization precison σ is
given in Appendix B.

The steps involved in rendering a ULM image from acquired MB tracks are not well described
in literature. In this study these steps were described explicitly and their influence on the
acquired velocity measurements was shown. Especially the moving average filter step was
shown to be of significance: an appropriate setting of the moving average span s was shown
to improve retrieval of pulsatility.

4-3 Outlook

The two reported methods were designed to retrieve the pulsatility in a target vessel from
track velocity measurements obtained in that vessel. Another angle to approach the task of
retrieving hemodynamics would be to aim for drastically reducing the acquisition time of a
full ULM reconstruction, i.e. achieving time-resolved ULM. In this scenario a ULM movie
would be constructed from which pulsatility could be retrieved.

Sparsity of velocity measurements in a ULM acquisition is expected to be the main challenge
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for achieving time-resolved ULM in the future. We hypothesize that to be able to attain
acquisition times suitable for retrieving hemodynamics, it is insufficient to solely rely on
increasing the density of the MB population. Even for acquisitions of increased MB density
the challenge remains to infer a full velocity map from sparse velocity measurements found
at changing locations.

In the early stages of this project efforts were made to achieve time-resolved ULM by appli-
cation of a Kalman filter. The idea consisted in capturing the spatiotemporal dynamics of
the blood flow by a state-space model derived from the Navier Stokes equations. Based on
this model, state estimation of the flow in each pixel could recursively be performed by the
Kalman filter for each new set of acquired velocity measurements. Wang et al. demonstrated
this method for the reconstruction of wall-bounded turbulence [73].

The derivation of a state-space model for a simple straight vessel from the Navier Stokes
equations consisted of three steps: simplifications corresponding to flow in a straight rigid
vessel, linearization around an assumed average flow profile and discretization. Several reasons
resulted in the decision to abort this approach and switch to what later became the methods
reported here. First, the derived state-space model was shown to violate the incompressibility
condition, since the flow into the vessel did not equal the flow out of the vessel. Second, the
method was not expected to generalize well to more complex networks of vessels. Lastly, a
large computational demand was expected when applying this method to full ULM images,
since the state matrix was found to be of size (2N × 2N). Where N corresponds to the
number of pixels in the super resolved ULM velocity map. We advice future research that
aims to apply the Kalman filter to attain time-resolved ULM to resort to a different method
to acquire the state-space model.

In contrast to the model-based Kalman filtering approach, Chen et al. proposed a learning
based method to achieve time-resolved ULM [40]. Their method consisted of training a neural
network to map a low number of input B-mode frames to an output velocity reconstruction.
The structure of their neural network resembles the U-Net architecture [74]. They report a
16 ms temporal resolution allowing to retrieve pulsatility in an in vivo chicken embryo aqui-
sition. This indicate that applying deep learning for pulsatility retrieval is a relevant future
research topic. Several opportunities for improvement were identified in their results. First,
incorporating a prior velocity map into their network could help resolve the unrealistic flow
artefacts and the distortion of the vascular architecture as observed in their reported results.
Second, training their network on simulated data that incorporates a pulsatile flow is expected
to further improve the retrieval of pulsatility by their proposed method. Additionally, a pul-
satile ULM simulator can be used to generate test data that allows the output of the neural
network to be compared to a ground truth. The ULM simulator designed in this study could
be useful in future research aiming to apply a learning based method to recover pulsatility.
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Appendix A

The womersley solution for pulsatile
flow in rigid pipes

Before deriving the equations for pulsatile flow, the simpler case of Poiseuille flow is discussed.
An incompressible Newtonian fluid and rigid pipes of circular cross-section are assumed in
the following sections.

Poisseuille flow

Poiseuille flow denotes a steady state fully developed flow in rigid tubes, which is assumed
to be symmetrical about the l axis (no external forces cause the flow to rotate). A fully
developed flow is found in pipes after a sufficient distance from the inlet. In this region entry
effects are negligible and the flow satisfies ∂u

∂l = 0, see Figure A-1 for the definition of the
variables utilized here. For a fully developed flow symmetrical about the l axis, the Navier
Stokes equations reduce to [68]

ρ
∂u

∂t
+ ∂p

∂l
= µ

(
∂2u

∂r2 + 1
r

∂u

∂r

)
(A-1)

where p is the pressure[Pa], ρ is the fluid’s density [kg/m3] and µ the fluid’s viscosity [Pa·
s]. In a fully developed axisymmetrical flow, the velocity u depends only on r and t and the
pressure p on l and t, i.e.

u = u(r, t), p = p(l, t) (A-2)

Poiseuille flow is given by the steady state solution u = uss(r), which has ∂uss
∂t = 0. This corre-

sponds to a situation in which the pressure gradient that drives the flow is time-independent.

Master of Science Thesis Myrthe Wiersma
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Figure A-1: Illustration of the difference between pulsatile flow in rigid and elastic vessels. (a)
Cylindrical coordinates in a blood vessel with the flow velocities u and v in the axial and lateral
direction respectively. (b) Fully developed axisymmetrical flow in a rigid vessel. The velocity
profile is constant along l, even for time varying pressure gradient. (c) In a vessel with elastic
walls, the velocity profiles vary along the vessel for changing pressure gradient in time.

Therefore, p = pss(l) with ∂pss

∂x = kss, where kss is a constant [Pa/m]. To find the steady
state solution uss(r), (A-1) reduces to

∂pss

∂l
= µ

(
∂2uss

∂r2 + 1
r

∂uss

∂r

)
(A-3)

when applying the no-slip boundary conditions, the Poiseuille flow uss is found as

uss = kss

4µ

(
r2 − R2

)
(A-4)

where R is the radius of the tube [m]. Note that only in rigid tubes it is possible to have a
constant flow u while the pressure p varies along the tube. When a tube wall is non-rigid, it
expands when encountering a local pressure change, resulting in a change in flow velocity, see
Figure A-1(b) and A-1(c).

Pulsatile flow

Due to the beating of the heart, the pressure gradient along a vessel varies in time and the flow
in this vessel is pulsatile. This applies mainly to arteries but pulsatility was also found in veins
[5]. For slow changes in pressure gradient, the resulting flow velocity will almost be in phase
with the changing pressure gradient and we can use the Poiseuille equation to approximate
the flow at each instance [68]. However, as the frequency of the pressure oscillation increases,
the fluid’s inertia causes the flow to lag behind. Due to this lag, the flow is unable to build
up to the peak value that it would have reached at the same peak pressure in steady state.
Both the lag and the loss in peak flow increase for increasing frequency of pulsation [68]. For
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pulsatile flow of sufficient frequency the steady state solution described in Section A can not
be applied. Another method is needed to solve

ρ
∂u

∂t
+ ∂p

∂l
= µ

(
∂2u

∂r2 + 1
r

∂u

∂r

)
(A-1 revisited)

Rigid or elastic tube In order for pulsatile flow in rigid tubes to satisfy the incompressibility
conditions, it has to respond in unison to a change in pressure gradient ∂p

∂l [68]. Since the
tube is unable to stretch to a larger diameter and the fluid density is constant, an increased
inflow comes hand in hand with an instantaneously increased outflow. A change in pressure
gradient is thus assumed to act instantaneously over the full length of the tube, resulting in
a constant velocity profile along the axial direction, see Figure A-1(b).

In nonrigid tubes, an increase in pressure causes the tube to stretch locally. Due to its
elasticity, the tube then recoils back to its original diameter. The pressure difference travels
in a wave motion further down the tube by inducing local stretching and recoiling. The
velocity profile in a nonrigid tube changes along the axial direction according to the pressure
wave passing, see Figure A-1(c). In the remainder of this text, rigid tubes will be assumed.

Oscillatory flow solution The linearity of (A-1) in both u(r, t) and p(l, t) allows to calculate
the steady state and oscillatory part of the flow separately. The velocity, pressure and pressure
gradient k(t) are separated in their steady state (ss) and oscillatory (ϕ) parts as

p(l, t) = pss(l) + pϕ(l, t)
u(r, t) = uss(r) + uϕ(r, t)

k(t) = ∂p

∂l
= kss + kϕ(t)

(A-5)

Substitution in (A-1) results in{
dpss

dl
− µ

(
d2uss

dr2 + 1
r

duss

dr

)}

+
{

ρ
∂uϕ

∂t
+ ∂pϕ

∂l
− µ

(
∂2uϕ

∂r2 + 1
r

∂uϕ

∂r

)}
= 0

(A-6)

where the first group of terms does not depend on time, while the second group of terms
do. Both groups should equal zero for (A-6) to hold. The solution to the steady state part
is given by (A-4). The remainder of this section will focus on retrieving the oscillatory flow
solution. Rewriting the second term of (A-6) and substituting ∂pϕ

∂l = kϕ(t) results in

µ

(
∂2uϕ

∂r2 + 1
r

∂uϕ

∂r

)
− ρ

∂uϕ

∂t
= kϕ(t) (A-7)

where we aim to retrieve uϕ from a known pulsatile pressure gradient kϕ(t). Any periodic
kϕ(t) of arbitrary shape can be represented by a Fourier series as

kϕ(t) =
∞∑

n=0
An cos

(2nπt

T

)
+

∞∑
n=1

Bn sin
(2nπt

T

)
(A-8)
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where T is the period and the Fourier coefficients can be found by

A0 = 1
T

∫
T

kϕ(t)dt

An = 2
T

∫
T

kϕ(t) cos
(2nπt

T

)
dt

Bn = 2
T

∫
T

kϕ(t) sin
(2nπt

T

)
dt

(A-9)

Linearity of (A-7) in uϕ allows the evaluations of each Fourier series component individually.
Note that an approximation can be obtained by incorporating only the first few Fourier terms
in the solution. For simplicity in further derivations, the exponential form of the Fourier series
is adapted. It is given as

kϕ(t) =
∞∑

n=−∞
cneiωnt (A-10)

where ωn = 2nπ
T and

cn =≜


a0/2, n = 0
an
2 e−iφn = 1

2 (an − ibn) , n > 0
c∗

|n|, n < 0
(A-11)

Substituting one of the Fourier terms of kϕ in (A-7) results in

∂2uϕ

∂r2 + 1
r

∂uϕ

∂r
− ρ

µ

∂uϕ

∂t
= cn

µ
eiωnt (A-12)

This equation has to be solved for each Fourier term of kϕ(t). A solution can be found by
separation of variables. uϕ(r, t) is decomposed as

uϕ(r, t) = Uϕ(r)eiωnt (A-13)

Substitution results in
d2Uϕ

dr2 + 1
r

dUϕ

dr
− iΩ2

R2 Uϕ = kss

µ

where Ω =
√

ρωn

µ
R

(A-14)

where Ω is the nondimensional Womersley number [69] that describes the relation between
pulsatile flow frequency and viscous forces in a fluid. Its value dominates the pulsatile be-
haviour of the flow. R is the radius of the vessel. Since (A-14) can be recognized as a form
of Bessel equation, a standard solution can be found. When applied the no-slip boundary
conditions, this standard solution results in

Uϕ = icnR2

µΩ2

(
1 − J0(ζ)

J0(Λ)

)
(A-15)

where J0 is the zero order Bessel function of the first kind and

ζ = Λ r

R
, Λ =

(
i − 1√

2

)
Ω (A-16)
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See [68] for a step by step derivation of the solution given in (A-15). Consider again our goal
to find the flow velocity u(r, t) if we have the periodic pressure gradient given by [69]

k(t) = kss + Re


N∑

n=−N

cneiωnt

 (A-17)

The solution consist of the steady state solution plus the summation of (A-15) for each Fourier
term up to N . We find

u(r, t) = uss(r) + uϕ(r, t)

= kss

4µ

(
r2 − R2

)
+ Re

{
icnR2

µΩ2

(
1 − J0(ζ)

J0(Λ)

)} (A-18)
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Appendix B

Conversion between RMSE and σ

To determine the relevant range of localization precision σ for our designed simulator, we
rely on the RMSE values reported in [1], in which the localization precision attainable with
different localization algorithms at varying SNR of the US frames was investigated. The
conversion between the reported RMSE values and their corresponding σ values was found as

RMSE((x̂, ẑ)) =
√

2σ (B-1)

where (x̂, ẑ) are the MB location estimates and the localization precision σ is given by the
standard deviation of the localization error distribution. The RMSE is defined by

RMSE((x̂, ẑ)) =
√

MSE(x̂, ẑ)

=

√√√√ 1
N

N∑
i

(x̂i − xi)2 + (ẑi − zi)2
(B-2)

were (x̂i, ẑi) is the estimated location of MB i and (xi, zi) its ground truth location. First, the
relation between the mean squared error MSE and σ is found by

MSE((x̂, ẑ)) = 1
N

N∑
i

(x̂i − xi)2 + (ẑi − zi)2

= E
[
(x̂ − x)2 + (ẑ − z)2

]
= E

[
(x̂ − x)2

]
+ E

[
(ẑ − z)2

]
= Var(x̂) + Bias(x̂)2 + Var(ẑ) + Bias(ẑ)2

= 2σ2

(B-3)

where localization error (x̂i −xi) and (ẑi −zi) were assumed to be independent and identically
distributed (IID) as ∼ N (0, σ2).
Finally, taking the square root of (B-3), we find (B-1). The minimum and maximum RMSE
values of 0.13λ and 0.32λ for respective SNR of 60 and 10 found in [1] correspond to a
localization precision σ of 0.09λ = 7.9 µm and 0.23λ = 19.5 µm respectively.
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Glossary

List of Acronyms

ULM Ultrasound Localization Microscopy
MB microbubble
SNR signal to noise ratio
RF radio frequency
FOV field of view
VRUS Verasonics Research Ultrasound Simulator
fUS functional ultrasound imaging
PSF point spread function
SVD singular value decomposition
MLD maximum linking distance

List of Symbols

∆l MB localization error in l (in m)
∆uf

n(r) Error in smoothed velocity measurement induced by localization error (in m)
∆un(r) Error in raw velocity measurement induced by localization error (in m/s)
∆x MB localization error in x (in m)
∆z MB localization error in z (in m)
x̂ Estimated x-coordinate of MB position (in m)
ẑ Estimated z-coordinate of MB position (in m)
λ Wavelength (in m)
λ Wavelength (in m)
µx Mean of localization error in x (in m)
µz Mean of localization error in z (in m)
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64 Glossary

σ Induced localization precision for simulation in the No-Localization scenario
(equal in x and z) (in m)

σx Found localization precision in x (in m)
σz Found localization precision in z (in m)
σu Derived standard deviation of ∆uf

n(r) (in m)
θ Vessel or blood flow orientation w.r.t. the x-axis (CCW) (in rad)
c Speed of sound (in m/s)
d Vessel diameter (in m)
dt Timestep between two B-mode frames (in s)
dx Beamformed pixel size (in m)
f Transmit frequency (in Hz)
fdx Frequency range corresponding to a MB passing beamformed pixels (in Hz)
L Vessel length (in m)
l Axial local coordinate (in m)
n Time index or frame number
Pf Pulsatility fraction
r Lateral local coordinate (in m)
s Span of moving average filter (in number of frames)
uf

n(r) Filtered velocity measurement (in m/s)
uGTf

n (r) Filtered ground truth flow (in m/s)
uGTss(r) Ground truth flow for steady-state scenario (in m/s)
uGT

n (r) Ground truth flow (in m/s)
un(r) Raw velocity measurement (in m/s)
x Coordinate parallel to tissue surface (in m)
z Coordinate perpendicular to tissue surface (in m)
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