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Nomenclature

Symbols

x, y, z Position in the global frame [m]
ϕ, ψ, θ Attitude angles [deg]
Vx, Vy, Vz Velocities in the body frame [m/s]
ax, ay, az Linear accelerations in the body frame [m/s2]
p, q, r Angular velocities in the body frame [deg/s]
Vair Airflow sensing voltage from the airflow sensor
I Current Intensity [A]
γcommand Dihedral angle command [deg]
γoutput Dihedral angle output [deg]
Vbattery Battery voltage [V ]
XG, YG, ZG Global frame
Xbody, Ybody, Zbody Body-fixed frame
Xinertial, Yinertial, Zinertial Inertial frame
ẍ, z̈ Linear acceleration along the Xinertial and Zinertial axis
m Mass [Kg]
g Gravity [m/s2]
T Thrust force [N ]
FDwind

Wind drag force [N ]
Kwind Identified effectiveness reduction coefficient
Vwind Wind speed [m/s]
Ccorr Correction term for a better fit
CDwind

Wind drag coefficient
fflap Flapping frequency [Hz]
f Flapping frequency [Hz]
Kflap Conversion coefficient from PWM to flapping frequency
c1, c2 Fitted coefficients
xref Reference position along Xbody axis [m]
xmeasured Measured position along Xbody axis [m]
ex Position error along Xbody axis [m]
KPx ,KIx ,KDx PID gains in the position controller
KFFx

Feedforward gain in the velocity controller
θFF Pitch angle calculated from the feedforward block in the velocity controller [deg]
len Horizon length for the gain selector
si Current states of airflow readings
Si Length of time of the states in the gain selector remain unchanged
fgust Gust alternating frequency [Hz]
RMSEx Root Mean Square Error along the Xinertial axis [m]
RMSEz Root Mean Square Error along the Zinertial axis [m]
RMSEθ Root Mean Square Error of the pitch angle [deg]
U Constant wing velocity
Φ Flapping amplitude [rad]
b Wingspan [m]
u Free-stream velocity [m/s]
β Force coefficients
RT

dR Attitude error
eωb Angular velocity tracking error
eR Attitude tracking error
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1
Introduction

Starting from Pterodactyls, flying animals have been dominating sky for thousands of million years.
Relying on their flapping wings to generate control forces, they are capable of hovering and agile ma-
neuvers. Due to the similarity in the size, therefore, flying insects [45] and hummingbirds [50, 22] have
inspired the design and development of flapping-wing micro air vehicles (FWMAVs) greatly. During the
last years, researchers have developed several FWMAV platforms: RoboBee by Harvard University
[45], KU Beetle [32], Flapping Hummingbird by Purdue University [42], DelFly Nimble by TU Delft [22]
and the GRIFFIN ornithopter [27]. With weights from 80 milligrams [45] to 28.2 grams [22] and one or
two pairs of wings, these platforms possess different and outstanding flight capabilities, such as: rapid
banked turns of fruit flies [22], extreme evasive maneuvers of hummingbirds [14] and ling-endurance
flights [33].

Regarding the flight control of micro air vehicles (MAVs), besides the vision based obstacle avoidance
[10, 49], in-gust flight control and disturbance rejection for MAVs has always been a problem, par-
ticularly because aerodynamic forces resulting from gusts have a higher impact on flight stability on
lightweight MAVs than multirotors. On the topic of gust disturbance rejection for quadrotors, [48] has
proposed a dual closed-loop control framework with an extended state observer and active disturbance
rejection control in the inner loop for attitude control. In [30], a deep learning–based trajectory tracking
controller is implemented, which enables the quadrotor to learn how to quickly adapt to rapidly changing
wind conditions. Furthermore, for fixed-wing type-of vehicles, [5] has introduced a bio-inspired gust re-
jection mechanism based on strain sensing feedback to improve the roll control of in-gust flights, which
is inspired by the campaniform sensilla, the load and strain sensors of insects in their wings [39].

As a subset of MAVs, FWMAVs are of interest in recent years for their advanced maneuverability and
agility, inspired by their biological counterparts [22]. However, they are more vulnerable to external
disturbances such as gusts, due to unsteady aerodynamics of flapping wing flights [18]. So far, a
few attempts to study and develop disturbance rejection methods for in-gust flight of FWMAVs have
been introduced. With aim of disturbance rejection for 0.6 m/s horizontal wind, both adaptive esti-
mation and least square estimation methods are employed for RoboBee control [9]. [24] presented
disturbance observer based control (DOBC) was also applicable for FWMAVs’ disturbance rejection.
A gain-scheduling control approach in the horizontal position controller enabled by onboard airflow
sensing was introduced and implemented for in-wind flights of DelFly Nimble [43]. All these previous
work present adequate solutions for their pre-defined wind conditions, however in nature, flying insects
adjust their flight attitude and behaviors by sensing the gusts with their antennae, and then acting ac-
cordingly [16, 39].

In this thesis project, we introduce a bio-inspired sensing approach to in-gust flight for FWMAVs, com-
prising on-board airflow sensing and an adaptive PID and feedforward gain scheduling approach for
gust disturbance rejection. Our main contribution here is the adaptive position and velocity control
framework utilizing a thermistor-based airflow sensor [43]. With this adaptive position and velocity con-
troller, the FWMAV could achieve a better stability for FWMAVs’ in-gust flights with a similar energy

1



2

consumption level as the original PID controller. Firstly, we focus on the modeling of FWMAVs’ in-gust
dynamics and capture the main effects brought by gusts on FWMAVs, which are wind drag forces
and servo control effectiveness reduction. Then, we propose an airflow sensing based adaptive flight
controller and validate it by stabilizing the FWMAV’s in-gust hovering. Finally, multiple in-gust flight
experiments are carried out with a time-varying wind intensity for validating the adaptive position and
velocity controller, and their results are analyzed and compared with original cases.

The reminder of this report is organized as two Chapters. In Chapter 2, the main results of this thesis
project are shown as a scientific paper. In Chapter 3, the literature study is shown in five chapters. In
Section 3.1, several FWMAV platforms which has research progress in recent years are introduced.
The aerodynamics and the in-gust dynamics of FWMAVs are explained in Section 3.2. In Section
3.3, the existing models of FWMAVs’ dynamics are presented. Furthermore, in Section 3.4, classic,
machine learning (ML) and reinforcement learning (RL) based control for FWMAVs are introduced. In
Appendix A, the schematics of the connection of the extra hardware to the Flapper Drone’s bolt are
shown, while Appendix B presents the previous design of the adaptive feedforward velocity controller
and its performance in several in-gust hovering flights.
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ABSTRACT2

Flapping wing micro aerial vehicles (FWMAVs) are known for their flight agility and3
maneuverability. However, their in-gust flight performance and stability is still inferior to their4
biological counterparts. To this end, a simplified in-gust dynamic model, which could capture the5
main gust effects on FWMAVs, has been identified with real in-gust flights’ data of a FWMAV, the6
Flapper Drone. Based on this model, an adaptive position and velocity controller was proposed7
with gain scheduling and implemented for in-gust flights under gust speeds up to 2.4 m/s. With8
this airflow-sensing based adaptive controller, the in-gust hovering stability of the Flapper Drone9
has been improved when the gust’s intensity and frequency changes, comparing with the original10
fixed-gain cascaded PID controller case.11

Keywords: flapping wing, bio-inspired aerial robotics, modeling, adaptive PID control, in-gust flights, onboard airflow sensing12

1 INTRODUCTION

In-gust flight control and disturbance rejection for micro air vehicles (MAVs) has always been a problem,13
particularly because aerodynamic forces resulting from gusts have a higher impact on flight stability on14
lightweight MAVs than multirotors. On the topic of gust disturbance rejection for quadrotors, (Yang et al.,15
2017) has proposed a dual closed-loop control framework with an extended state observer and active16
disturbance rejection control in the inner loop for attitude control. In (O’Connell et al., 2022), a deep17
learning–based trajectory tracking controller is implemented, which enables the quadrotor to learn how to18
quickly adapt to rapidly changing wind conditions. Furthermore, for fixed-wing type-of vehicles, (Castano19
et al., 2014) has introduced a bio-inspired gust rejection mechanism based on strain sensing feedback to20
improve the roll control of in-gust flights, which is inspired by the campaniform sensilla, the load and21
strain sensors of insects in their wings Skordos et al. (2002).22

As a subset of MAVs, flapping wing (FWAMVs) are of interest in recent years for their advanced23
maneuverability and agility, inspired by their biological counterparts (Karásek et al., 2018). However, they24
are more vulnerable to external disturbances such as gusts, due to unsteady aerodynamics of flapping25
wing flights (Ho et al., 2003). So far, a few attempts to study and develop disturbance rejection methods26
for in-gust flight of FWMAVs have been introduced. With aim of disturbance rejection for 0.6 m/s27
horizontal wind, both adaptive estimation and least square estimation methods are employed for RoboBee28

1



Wang et al. Running Title

control (Chirarattananon et al., 2015). (Lee et al., 2020) presented disturbance oberserver based control29
(DOBC) was also applicable for FWMAVs’ disturbance rejection. A gain-scheduling control approach in30
the horizontal position controller enabled by onboard airflow sensing was introduced and implemented for31
in-wind flights of Delfly Nimble (Wang et al., 2022). All these previous work present adequate solutions for32
their pre-defined wind conditions, however in nature, flying insects adjust their flight attitude and behaviors33
by sensing the gusts with their antennae, and then acting accordingly (Fuller et al., 2014).34

In this paper we introduce a bio-inspired sensing approach to in-gust flight for FWMAVs, comprising on-35
board airflow sensing and an adaptive PID and feedforward gain scheduling approach for gust disturbance36
rejection. Our main contribution here is the adaptive position and velocity control framework utilizing a37
thermistor-based airflow sensor (Wang et al., 2022). With this adaptive position and velocity controller, the38
FWMAV could achieve a better stability for FWMAVs’ in-gust flights with a similar energy consumption39
level as the original PID controller. Firstly, we focus on the modeling of FWMAVs’ in-gust dynamics and40
capture the main effects brought by gusts on FWMAVs, which are wind drag forces and servo control41
effectiveness reduction. Then, we propose an airflow sensing based adaptive flight controller and validate it42
by stabilizing the FWMAV’s in-gust hovering. Finally, multiple in-gust flight experiments are carried out43
with a time-varying wind intensity for validating the adaptive position and velocity controller, and their44
results are analyzed and compared with original cases.45

2 EXPERIMENTS SETUP

2.1 Aerial platform and Fan system46

The FWMAV platform used here is Flapper Drone 1 which is developed based on Crazyflie STM32F40547
platform. Comparing with DelFly Nimble which has a similar structure and design (Karásek et al., 2018),48
the dimensions of Flapper Drone are larger than that of DelFly Nimble, hence resulting in a heavier weight49
and a much larger maximum payload, as shown in Table 1. To generate continuous winds and dynamic

Parameters DelFly Nimble Flapper Drone
Wingspan [mm] 330 490
Weight [g] 29.85 112.17
Maximum payloads [g] 10.70 25.00
Battery capacity [mAh] 180 300

Table 1. DelFly Nimble and Flapper Drone parameters

50
gusts during experimental flights, a fan system consisting of an array of 135 axial fans (Olejnik et al., 2022)51
is employed. With pulse width modulation (PWM) based control, the fan system could generate various52
types of continuous winds and gusts with a total wind surface of approximately 1.00m2, which renders53
that the experimental flights could be conducted under continuous wind and gust conditions of different54
intensities and frequencies.55

1 https://flapper-drones.com/wp/
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2.2 Experiments set-up56

All of the experimental flights are carried out in CyberZoo 2. As shown in Figure 1, the Flapper Drone57
has been set to hover at a fixed pre-defined setpoint (1.0m downstream from the fan surface of the fan58
system, 1.1m above the ground and the negative direction of body frame axis Xb pointing towards the59
center of the fan system) during the hovering flight experiments in front of the fan system, which ensures60
that it could be fully immersed in the freestream created by the fan system and hover right in the center of61
the flow.62

For the guided position control flights, the OptiTrack motion capture system measures the accurate63
position of the Flapper Drone and feedbacks accurate position and attitude measurements to the flight64
control system. The in-flight data has been collected from different sources, as presented in Table 1. To

Type sensor Measurements obtained
Optitrack Position (x, y, z)

Attitude angles (ϕ, ψ, θ)
IMU AHRS Velocities (Vx, Vy, Vz)

Linear accelerations (ax, ay, az)
Angular velocities (p, q, r)

RevP airflow sensor Airflow sensing voltage (Vair)
Current sensor Current intensity (I)
On-board extra Dihedral angle command (γcommand)

Dihedral angle output (γoutput)
Battery voltage (Vbattery)

Table 2. Overview of data obtained from Optitrack motion
capture system and other on-board sensors.

65
generate repeatable gust disturbances of different intensities and frequencies for each flight experiment,66
the fan system PWM duty cycle has been programmed to stay rest for the first ten seconds, and alternate67
between a low wind speed value 0.5m/s (PWM duty cycle = 20%) and a high wind speed value 2.1m/s68
(PWM duty cycle = 60%) or 2.4m/s (PWM duty cycle = 70%) (Olejnik et al., 2022) at a pre-defined fixed69
frequency during the following 30 seconds.70

3 THE MODELING OF THE FWMAV’S IN-GUST DYNAMICS

3.1 Model Structure71

In several previous studies, the dynamics of FWMAV have been modelled and used for controller design.72
In (Kajak et al., 2019), a minimal longitudinal model has been proposed for controller design. In (Nijboer73
et al., 2020), a grey-box longitudinal dynamics model is derived based on free-flight data. Furthermore, in74
(Bains, 2020), the lateral body dynamics has been modeled with system identification approach. However,75
these models were derived mostly based on free-flight data with no external disturbance, hence couldn’t76
capture the effects of gusts on FWMAV’s system dynamics precisely.77

2 A flight arena located at the Faculty of Aerospace Engineering, TU Delft
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Figure 1. Flapper Drone hovering at a fixed pre-defined setpoint in front of the fan system, with the
configuration of the airflow sensor illustrated. Reflective markers are added and used for the guided position
control flights with Optitrack motion capture system. The global coordinate frame originates from the
intersection point between the mid-line of the fan system and the ground plane.

The dynamics of FWMAV’s in-wind flights have also been studied in the past few years. (Chirarattananon78
et al., 2017) presented an in-wind FWMAV dynamics model consists of equations of motion (EoM) and an79
additional vector τw describing the wind effects on FWMAV. In (Lee et al., 2020), the attitude dynamics of80
FWMAV has been modeled by modeling the moments acting on a flying FWMAV. Nevertheless, in these81
models, the wind effects on servo control effectiveness have not been modeled.82

The model presented here is a simplified physical model focusing on in-wind longitudinal and translational
dynamics, as shown in Equation 1 and Equation 2.

mẍ = Tsinθ + FDwind
(1)

mz̈ = Tcosθ −mg (2)

where m is the mass, T is the thrust generated by the pair of the flapping wings, FDwind
is the wind drag83

force and θ is the body pitch angle.84

The free body diagram of this model has been shown in Figure 2. Both the thrust force T and the wind85
drag force FDwind

are acting directly on the center of mass (CoM) of the FWMAV. The pitch angle θ86
of FWMAV, which is controlled through the dihedral servo placed near the top of the body fuselage, is87
represented by the angle between the Zbody axis and the Zinertial axis. To include the wind effects on the88
FWMAV in this model, both in-gust actuator dynamics of the dihedral servo and the wind drag model89
have been modeled in Section 3.2 and Section 3.3 respectively. Furthermore, the thrust generated by the90
FWMAV is also modeled and presented in Section 3.4.91
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Xinertial

Zinertial

mg

Xbody

Zbody

T

FDwind

Figure 2. 2D longitudinal free body diagram of a FWMAV (side view). CoM represents the center of
mass.

3.2 The Effects of Wind on Dihedral Servo Control Effectiveness92

In (Kajak et al., 2019), the effects of forward flights on the dihedral servo of DelFly Nimble have been
shown. Similarly as shown in Figure 3, when hovering under the influence of wind disturbance, the dihedral
servo of Flapper Drone has also encountered control effectiveness reduction, which means that the actual
output dihedral angle is always smaller than the desired dihedral angle due to the load imposed on the
wings by gusts. To model this effect, a dihedral servo control effectiveness model has been proposed as
Equation 3, where Kwind is the identified effectiveness reduction coefficient, Vwind the wind speed, γoutput
the actual dihedral angle output, γcommand the commanded dihedral angle and Ccorr the correction term
calculated with real-time airflow sensor reading aiming for a better fit.

γoutput = Kwind(Vwind) γcommand + sign(Vwind)Ccorr(Vwind) (3)

To model the dihedral servo control effectiveness reduction, several hovering tests have been conducted93
with the fan system’s continuous wind speed setting between 0.5m/s and 2.7m/s. The stable hovering94
positions and pitch angles of the Flapper Drone under different wind intensities are shown in Figure 4.95
When the wind speed is increasing, the FWMAV moves further downstream with an altitude increase during96
the stable hovering phase. Based on Equation 3, Kwind has been identified with ordinary least square (OLS)97
estimator by polyval() and polyfit() functions from MATLAB. As presented, during in-wind hovering,98
the dihedral servo could not follow the change of commands precisely, thus the output dihedral angles99
are always smaller than the commanded inputs. Theoretically, Kwind should decrease since the control100
effectiveness reduction is more severe when the wind speed is increasing Kajak et al. (2019). Though101
Kwind in Figure 4 has not always shown a clear trend, it is decreasing when the stable hovering positions102
in XG axis are similarly large, such as the cases when continuous wind speed = 0.5m/s to 1.7m/s and103
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Figure 3. Time histories of the actual dihedral angle output γoutput (red lines) and the commanded dihedral
angle γcommand (blue lines) when hovering in wind stably under continuous wind speed = 0.9m/s (A) and
2.1m/s (B). The data within the green rectangular is selected for the dihedral servo control effectiveness
model identification.
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Figure 4. A: Average position errors in XG and ZG axis when hovering stably under different continuous
wind speeds. B: Values of Kwind under different continuous wind speeds.

the cases when continuous wind speed = 2.1m/s to 2.7m/s. This could be explained by that when the104
FWMAV is further away from the Fan System, the downstream flow field quality will always degrade105
though the wind speed has been set as a same value.106

Therefore, referring to the dihedral servo control effectiveness model and stable in-wind hovering107
positions shown in Figure 3, when the wind speed is increasing, the stable positions of a stable in-108
wind hovering will become further and higher from the setpoints and the control effectiveness reduction109
will become severe, which indicates that during in-wind flights, the pitch angle should be increased to110
compensate control effectiveness reduction and to minimize the position error.111
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3.3 Drag Model112

Based on the composition of forces, the wind drag forces of different continuous wind speeds have been
estimated with the average values of pitch angles and the weight of the Flapper Drone, as shown by the blue
line in Figure 5. Refer to the linear wind drag models proposed in (Kajak et al., 2019) and (Chirarattananon
et al., 2017), the drag model for Flapper Drone’s in-wind flights is structured as Equation 4, taking the
effects of pitch angle θ on the projection area of the FWMAV along the wind speed direction into account.

FDwind
= CDwind

Vwind cos(θ) (4)

where CDrag is the drag coefficient and Vwind is the continuous wind speed. With polyfit() function from

3.8 3.9 4 4.1 4.2 4.3 4.4

Motor PWM signal 10 4

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

T
h

ru
s
t 

[N
]

B

Measured thrust force

Identified linear model

0.5 1 1.5 2 2.5 3

Continuous wind speed [m/s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

W
in

d
 d

ra
g

 f
o

rc
e

 [
N

]

A

Drag estimated from pitch angles

Identified model

Figure 5. Estimation of wind drag forces and the identified linear drag model.

113
MATLAB, the drag model has been identified as CDrag = 0.3444. As shown by the red line in Figure 5(A),114
the identified model indicates that the wind drag is increasing approximately linearly when the wind speed115
is increasing, which indicates the pitch angle should increase correspondingly to compensate for the effects116
of increased drag and to minimize the position errors.117

3.4 Thrust Model118

Instead of measuring flapping frequencies directly, the thrust model has been modeled as a relationship
between the PWM signal sent to the motors and the thrust generated by the flapping wing. It is important
to notice that the thrust used here is measured by the sum of the Flapper Drone’s weight and the payloads
during stable hovering without any wind disturbance. The flapping frequency of this FWMAV could be
correlated with the input PWM signals of the motors as Equation 5.

fflap = Kflap PWM (5)

where fflap is the flapping frequency, Kflap the conversion coefficient, PWM the magnitude of the input
PWM signals. Referring to the linear thrust assumptions in (Kajak et al., 2019), the thrust model has been
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proposed as a linear model in Equation 6, with both c1 and c2 are the fitted coefficients.

T = 2(c1fflap + c2) = 2c1Kflap PWM + 2c2 (6)

As shown in Figure 5(B), the thrust model has been identified with OLS estimator, in which the thrust force119
is approximately linear with the magnitudes of the motor’s PWM signal.120

4 ADAPTIVE FLIGHT CONTROLLER DESIGN

4.1 Airflow-sensing based adaptive PID controller121

As shown in Section 3.2 and Section 3.3, the wind is effecting FWMAV’s in-wind flights greatly with the122
wind drag and the dihedral servo control effectiveness reduction, which renders the FWMAV unable to123
reach the pre-defined setpoints when attempting to hover stably under the influence of wind disturbance.124
Based on this situation, an adaptive PID controller has been proposed with an adaptive feedforward (FF)125
gain in the velocity controller and an adaptive proportional gain in the position controller to compensate126
for the dihedral servo control effectiveness reduction, minimize the oscillation along XG axis and improve127
the pitch stability when hovering. As shown in Figure 6, the adaptive position controller is implemented

Position 
controller

Velocity controller 
with adaptive FF

Reference 
position

RevP airflow 
sensor

Attitude 
controller

AHRS

FWMAV 
dynamics

IMU

Optitrack

Measured 
position

Figure 6. The block diagram showing the implementation of the adaptive-FF controller in FWMAV’s
control system.

128
with the measured position from Optitrack, the reference postion from the pre-defined setpoints and the129
airflow reading from the RevP airlfow sensor 3 as its inputs and will calculate the reference velocity for the130
adaptive velocity controller as its output.131

Similarly, the adaptive velocity controller is implemented with the measured velocity from AHRS, the132
reference velocity from the position controller and the airflow sensor reading as its inputs and will calculate133
the reference attitude for the attitude controller as its output.134

3 https://moderndevice.com/products/wind-sensor-rev-p
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4.1.1 Airflow-sensing based adaptive position controller135

With the structure presented in Figure 7, in the adaptive position controller, with the position error in
xbody axis ex calculated in Equation 7, the reference velocity in xbody axis Vxref is calculated as in Equation
8 at time t.

ex = xref − xmeasured (7)

Vxref (t) = KPx ex(t) + KIx

∫ t

0
ex(τ) dτ + KDx

dex(t)

dt
(8)

where KPx is the proportional gain (1.5 in the original position controller), KIx the integral gain (0.0 in the136
original position controller) and KDx is the derivative gain (0.0 in the original position controller). Rather

State 
estimator

PID

EKF
RevP airflow 

sensor

Measured X 

Reference X

KP

selector

KP

Reference Vx

Figure 7. The block diagram of the adaptive position controller.

137
than the constant KPx value in the original position controller, the value of KPx is changed adaptively by138
the KPx selector during flights inreal time based on the filtered airflow sensor reading. The values of KPx139
corresponding to different intervals of wind speeds and filtered airflow sensor reading have been shown in140
Table 2. However, in real flights, the airflow sensor will output unreliable outlier readings occasionally,

Wind speed [m/s] Filtered airflow sensor reading [V] KPx [-] KFFx [-] No. of intervals
[0, 0.780) [0, 1.740) 1.5 (default) 10.0 (default) 1

[0.780, 1.087) [1.740, 1.830) 1.65 18.5 2
[1.087,∞) [1.830,∞) 1.65 21.5 3

Table 3. The values of KPx and KFFx with the corresponding ranges of wind speeds and filtered airflow
sensor readings.

141
which results in rapid changes in KPx though the wind speed has not reached certain levels. Therefore,142
an extended Kalman Filter (EKF) and a KPx selector is employed to filter out the noise and select out an143
appropriate value for KPx . At the time t = ti, the KPx selector works as Algorithm 1.144
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Algorithm 1 KPx and KFFx selector

1: while t = ti do
2: initialize si ← 0, Si ← 0 and len← 5
3: gain si−1 and Si−1 from the previous time step
4: read the filtered airflow sensor reading from EKF and assign it to Vair
5: check which filtered airflow sensor reading interval the value of Vair is in
6: assign the corresponding number of intervals to si, as si = 1, 2, 3
7: end while
8: if si = si−1 then
9: Si = Si−1 + 1

10: else if si = 1 then
11: S = 0, KFFx = 10.0, KPx = 1.5
12: else
13: Si = 0
14: end if
15: while Si > 0 do
16: Si = min(Si, len)
17: end while
18: if Si = len then
19: update KP and KFFx with the KPx and KFFx value corresponding to si in Table 2
20: else
21: keep the value of KPx and KFFx as the previous time step
22: end if

4.1.2 Airflow-sensing based adaptive feedforward velocity controller145

As shown in Figure 8, in this adaptive velocity controller, a feedforward term is calculated based on the
reference X velocity Vxref as Equation 8 and summed with the output from the PID block. Instead of using
a constant KFFx as the traditional feedforward controller, the value of KFFx is adjusted actively by the
KFFx selector during the flight based on the filtered airflow sensor reading in this adaptive-ff controller.

θFF = KFFx Vxref (9)

As presented in and Section 3.3, the dihedral servo control effectiveness reduction is becoming more severe146
with greater wind drag forces when the wind speed is increasing. Therefore, in this controller, the KFFx147
has been designed as increasing step to step adaptively to the filtered airflow sensor readings. The values of148
KFFx corresponding to different intervals of wind speed and filtered airflow sensor reading has been shown149
in Table 2. Similar with the KP case in real flights, KFFx will also change rapidly due to the unreliable150
outlier readings from the airflow sensor though the wind speed has not reached certain levels. Therefore,151
same as the adaptive position controller, an extended Kalman Filter (EKF) and a KFFx selector is also152
employed to filter out the noise and select out an appropriate value for KFFx . At the time t = ti, the KFFx153
seletcor works as Algorithm 1.154

Based on the airflow sensor, the adaptive position controller and the adaptive velocity controller, the155
FWMAV could estimate the wind speeds it has encountered with EKF-filtered airflow sensor readings then156
update KP and KFFx in the pitch loop with proper values actively to compensate the effects brought by157
winds and gusts.158
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Figure 8. The block diagram of the adaptive velocity controller.

5 EXPERIMENTS

5.1 In-gust hover flights with original PID controller159

Several in-gust hovering flights have been conducted with the original PID controller under the gusts160
alternating the wind speed between 0.5m/s and 2.4m/s, and between 0.5m/s and 2.1m/s at the frequency161
of 0.25Hz, 0.33Hz, 0.50Hz and 0.75Hz. The time histories of position errors in XG and ZG axis from162
the flights under the gusts alternating the wind speed between 0.5m/s and 2.4m/s have been shown in163
Figure 9.
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Figure 9. Time histories of X and Z axis position errors during the in-gust hovering flights with the original
PID controller.

164

As shown in Figure 9, the FWMAV oscillated greatly under these dynamic gusts. From Table 4, the RMS165
errors of both Xerror and Zerror are increasing, which indicates that the position control is degrading and166
the oscillation becomes more and more severe when the changing frequency of the gust fgust is decreasing,167
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Wind speed 0.5m/s and 2.4m/s 0.5m/s and 2.1m/s
RMS errors

fgust [Hz] XG [m] ZG [m] θ [deg] XG [m] ZG [m] θ [deg]
0.25 0.4565 0.0798 9.5244 0.4044 0.0678 9.9005
0.33 0.3499 0.0516 7.3712 0.3445 0.0607 7.9331
0.50 0.2659 0.0475 5.6884 0.2091 0.0329 4.9303
0.75 0.2451 0.0447 5.1634 0.1697 0.0368 5.0958

Table 4. The RMS errors of the position inXG and ZG axis, and pitch angle
θ from the in-gust hovering flights with the original PID controller under
the gust alternating between 0.5m/s and 2.4m/s, and between 0.5m/s and
2.1m/s.

since within one period the gust of high wind speed always lasts longer (from 0.75 s to 2.00 s) before168
decreasing to 0.5m/s.169

Furthermore, when the maximum wind speed increases from 2.1 m/s to 2.4 m/s, the oscillation also170
becomes more severe because the gust intensity is increasing.171

5.2 In-gust hover flights with adaptive PID controller172

To validate the adaptive position and velocity controller, several in-gust hovering flights have been173
conducted under the gusts alternating the wind speed between 0.5m/s and 2.4m/s, and between 0.5m/s174
and 2.1m/s at the frequency of 0.25Hz, 0.33Hz, 0.50Hz and 0.75Hz. The time histories of position175
errors in XG and ZG axis from the flights under the gusts changing the wind speed between 0.5m/s and176
2.4m/s have been shown in Figure 10.
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Figure 10. Time histories of X and Z axis position errors during the in-gust hovering flights with adaptive
position and velocity controller.

177

Frontiers 12



Wang et al. Running Title

Wind speed 0.5m/s and 2.4m/s 0.5m/s and 2.1m/s
RMS errors

fgust [Hz] XG [m] ZG [m] θ [deg] XG [m] ZG [m] θ [deg]
0.25 0.3435 0.0833 8.8880 0.3560 0.0671 9.2566
0.33 0.3184 0.0620 5.5373 0.2761 0.0483 7.1083
0.50 0.1947 0.0313 1.6880 0.1705 0.0332 5.9009
0.75 0.1235 0.0416 3.1116 0.1008 0.0321 5.0009

Table 5. The RMS of position errors in XG and ZG axis, and pitch angle
θ from the in-gust hovering flights with the adaptive PID controller under
the gust alternating between 0.5m/s and 2.4m/s, and between 0.5m/s and
2.1m/s..

Similar with the in-gust flight experiments in Section 4.3, the FWMAV is oscillating during these in-gust178
hover flights. As presented in Table 5 and Table 6, when the gust changing frequency fgust is decreasing179
and the maximum wind speed increases from 2.1m/s to 2.4m/s, the oscillation is becoming more and180
more severe.181

6 PERFORMANCE ANALYSIS AND COMPARISON

The root mean square error (RMSE) of the XG position, the ZG position and pitch attitude angle θ from182
in-gust flights with both the original PID controller and the adaptive PID controller have been shown in183
Figure 11 and Figure 12, together with the average in-flight current intensities.184

As shown, the RMSE value of the XG position RMSEX is decreasing when the gust changing frequency185
is decreasing. Comparing with the original PID controller, RMSEX values of the cases with the adaptive186
PID controller are always lower which indicates a better performance in disturbance rejection and XG187
position control. Furthermore, the RMSE values of the pitch attitude angle RMSEθ of the adaptive PID188
cases are also always lower than the cases with the original PID controller, except the case of gusts189
alternating between 0.5m/s and 2.1m/s at 0.33Hz, which presents that the pitch stability of FWMAV’s190
in-gust flights has been improved.191

The RMSE values of ZG position RMSEZ are lower than the cases of original PID controller in the high192
gust changing frequency cases (0.75Hz) and remain the similar magnitudes in the lower cases (0.25Hz and193
0.33Hz). Furthermore, for the flights with adaptive PID controller, the average in-flight current intensity194
values are slightly higher than the cases with the original PID controller when the gust changing frequencies195
are higher (0.50Hz and 0.75Hz), and are slightly lower than the cases with the original PID controller196
when the gust changing frequencies are lower (0.33Hz), which indicates the energy consumption levels197
remain similar in these in-gust flights.198

Furthermore, as shown in Figure 13, the dihedral outputs of the in-gust flights with the adaptive PID199
controller is much closer to the level of the dihedral commands of the in-gust flights with the original200
PID controller, comparing with the dihedral outputs of the in-gust flights with the original PID controller.201
Therefore, the dihedral servo control effectiveness reduction has been alleviated by this adaptive PID202
controller efficiently.203
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Figure 11. Average values of position errors in XG axis and current intensities during the in-gust hovering
flights under the gust changing between 0.5m/s and 2.4m/s.

7 CONCLUSION

In this paper, two main aspects of wind effects on FWMAVs, which are wind drag force and servo control204
effectiveness reduction, have been identified in Chapter 3. An adaptive PID controller has been proposed in205
Chapter 4 and implemented with a RevP airflow sensor in the FWMAV’s control system. This controller206
was validated with several hovering flights under the gusts changing the wind speed at different frequencies207
in Chapter 5.208

Comparing with the original PID controller in which KP and KFFx values are constant, this adaptive209
PID controller enables the FWAMV to damp the oscillation in XG direction and improve the pitch stability210
efficiently by sensing the airflow speed actively and changing KP and KFFx value, when encountering211
dynamic changing gusts up to 2.4m/s in XG direction.212

Future work will investigate the possibility to design a similar adaptive controller for the thrust loop of213
the FMWAV, which could improve the position control along ZG axis and improve the energy efficiency. A214
better estimator for current wind speed could also be designed and implemented with the airflow sensor215
to replace the EKF in adaptive PID controller. Regarding the servo control effectiveness reduction, the216
possibility of implementing a low-level feedback controller for the dihedral servo to solve the control217
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Figure 12. Average values of position errors in XG axis and current intensities during the in-gust hovering
flights under the gust alternating between 0.5m/s and 2.1m/s.
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Figure 13. Comparison between dihedral commands from the flights with the original PID controller
(blue), dihedral outputs from the flights with the adaptive PID controller (red) and dihedral outputs from the
flights with the original PID controller (black) during the in-gust hovering flights under the gust alternating
between 0.5m/s and 2.4m/s (A), and between 0.5m/s and 2.1m/s (B) at different frequencies.
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effectiveness reduction thoroughly could be studied. Furthermore, to reduce the average value of position218
error, an integral gain could be introduced in the position controller in Figure 6.219
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3
Literature Study

3.1. FWMAV Platforms
In nature, both birds and insects fly with their flapping wings. However, their underlying flight principles
are rather different [2]. Except hummingbirds, most large/medium-scale birds gain aerodynamic forces
by relatively low frequency and small downstroke motions, during which the flapping stroke plane is
almost vertical to flight path [38]. In contrast, during flights of most insects, the amplitude of flapping is
larger and the frequency is also much higher with a parallel stroke plane to flight path [12]. Therefore,
insects’ capability of precise hovering is not possessed by most birds. Furthermore, comparing with
birds which could use their tails during flight, most insects produce control forces with only their wings
by adjusting wing kinematics actively [41], which results in a huge difference in flight attitude control of
birds and insects.

From the differences in aerodynamic mechanism, size and attitude control, FWMAV platforms could
be separated into two categories: bird-inspired FWMAVs and insect/hummingbird-inspired tailless FW-
MAVs. This chapter introduces four FWMAV platforms which have active research progress in recent
years: insect-inspired Robobee by Harvard University, hummingbird-inspired Flappy Hummingbird by
Purdue University, hummingbird/insect-inspired DelFly Nimble by TU Delft and bird-inspired GRIFFIN
ornithopter by University of Seville.

3.1.1. Robobee
As shown in Figure 3.1, Robobee, which was first introduced by Harvard University in 2013, is an
80-milligram, insect-scale fly-inspired FWMAV[26]. As the source of form and function inspiration for
Robobee, Diptera was used as a model system for its simple flight apparatus (two wings) and exem-
plary aerial agility[11]. The flight of Diptera, in which wings undergo a complex trajectory with three
rotational degrees of freedom[15], is simplified in Robobee fly as a reciprocating flapping motion with
pitch rotation regulated by passive compliant flexures[46], for the sake of practicality of mechanism
design and manufacture.

To mimic the aerial prowess of flies in Robobee, tiny but high-efficiency mechanical components which
could tackle with miniaturization challenges from force-scaling laws is required. Therefore, to solve this
issue, high-power-density flight muscles and unique manufacturing methodology was developed and
implemented in Robobee[26]. Firstly, voltage-driven piezoeletric bimorphs which could generate bidi-
rectional forces were used as flight muscles and geometrically optimized for energy density[47]. Sec-
ondly, a manufacturing methodology capable of producing articulated and flexure-based sub-millimeter
mechanisms efficiently, smart composite microstructures (SCM), was developed and applied for man-
ufacturing all electromechanical elements of Robobee.

The wing-flapping motion of Robobee is driven by a four-bar linkage serving as a lever arm to amplify
the small displacement of the piezoelectric flight muscle[26]. Besides, a passive elastic flexure hinge
at wing base was employed for wing pitch motion. With the structure shown in Figure 3.2, the wing

21
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Figure 3.1: Robobee shown alongside with a U.S. penny for scale

Figure 3.2: Robobee structure

kinematics of Robobee could resemble wing motions of insect flight and generate sufficient lift force
for flight[25]. So far, hovering flight[26], basic maneuvers[6], acrobatic flight of perching on a vertical
wall[7] and disturbance-rejection control[9, 8] has been demonstrated on Robobee.

3.1.2. Flappy Hummingbird
Inspired by the sustained stable hovering and extremely acrobatic maneuvering of hummingbirds,
Flappy Hummingbird was developed and first introduced by researchers from Purdue University in
2017[50], shown in Figure 3.3. Under the conditions of stringent size, weight, and power constraints, it
is a challenging task to design a hummingbird-inspired at-scale tailless FWMAV with only two actuators.
Therefore, a systematic optimization approach was proposed in [42], and covered the complete sys-
tem models and analysis of wing-actuation dynamics, control authorities, body dynamics, mechanical
limitations and electrical constraints.

During the designing phase, three optimization tasks were conducted[42]:

• lift-to-weight ratio optimization
• control bandwidth optimization
• control authority optimization

From these optimization tasks, three different prototypes of Flappy Hummingbird were derived. Since
the prototype from lift-to-weight ratio optimization which demonstrates the general design could gen-
erate sufficient lift to fly, flight experiments were carried out on two other prototypes and showed that
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Figure 3.3: Flappy Hummingbird prototype

the prototype from control authority optimization possessed a better flight capability. As shown in Fig-
ure 3.4, the main structure of Flappy Hummingbird, the wing-actuation system consists of a brushless
motor as actuator, a pair of reduction gears for torque transmission, a energy-restoring spring and a
pair of 2-DoF cambered wings[42]. Furthermore, the wings are driven actively only for flapping motion
and are able to rotate passively from the coupling effects of aerodynamics and inertial loading.

Figure 3.4: Flappy Hummingbird structure

Figure 3.5: Flappy Hummingbird simulator

Based on this structure and prototypes, Flappy Hummingbird was developed successfully and demon-
strated its stable hovering, trajectory following, payload carrying[50] and RL-based extreme evasive
maneuvers[14]. Furthermore, an open-source dynamic simulator of FWMAV was developed based on
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identified dynamic model of Flappy Hummingbird[13], as shown in Figure 3.5.

3.1.3. DelFly Nimble
As the successor of DelFly and DelFly II, DelFly Nimble was developed by researchers of MAVLab,
TU Delft and Wageningen University and Research in 2018[22]. Being a fly-inspired tailless FWMAV,
DelFly Nimble could accurately imitate the rapid escape turn-over maneuvers of flies despite 55 times
the size of a fruit fly. However, without mimicking any natural flyers in details, the size, wing morphology
and wing kinematics of DelFly Nimble were optimized for maximal power efficiency since it is driven by
brushless motors but not powerful animal flight muscles. Consequentially, DelFly Nimble has a weight
of 28.2 g and a 33 cm wingspan, and the flapping frequency of its 14-cm-long wings could reach ap-
proximately 17 Hz while hovering. Besides, its hovering duration is 5 min and the flight range is more
than 1 Km, on a single battery charge, which indicates its power efficiency.

Figure 3.6: DelFly Nimble

As shown in Figure 3.6, DelFly Nimble is driven by two motors for left and right wing-pair respectively,
and two servos for wing root angle control and dihedral angle control. In the attitude control of DelFly
Nimble, yaw torque control is realised by wing root adjustment mechanism in left of Figure 3.7, and
pitch torque is controlled by dihdral angle between left and right wing-pairs in right of Figure 3.7. The
roll torque is actuated by difference in the flapping frequency between left and right wing-pairs.

Figure 3.7: Left: wing root adjustment mechanism for yaw torque control, Right: dihedral angle control mechanism for pitch
torque control
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Based on the simple structure and great flight capability of DelFly Nimble, its commercial version, Flap-
per Drone was introduced to market, as shown in Figure 3.8. In this project, Flapper Drone is also
selected as the platform for FWMAV in-gust dynamic modelling, flight control strategy design and flight
experiments.

Figure 3.8: Flapper Drone

3.1.4. GRIFFIN Ornithopter
GRIFFIN Ornithopter in Figure 3.9 is the bird-inspired FWMAV platform developed for GRIFFIN-ERC
project whose aim is to enable bird-inspired FWMAV to fly minimizing energy consumption, to perch on
curved surfaces and to perform dexterous manipulation1. It was first introduced in [28] by researchers
from University of Seville. Inspired by birds, GRIFFIN Ornithopter has one pair of wings with a 50-cm-
long wingspan and a tail whose angle is controlled by a corresponding servo.

Figure 3.9: GRIFFIN Ornithopter

Due to its structure, recent research on this platform was carried out in its longitudinal control. A lon-
gitudinal dynamic model for GRIFFIN Ornithopter was proposed in [28]. Research in energy-efficient
kino-dynamics planning and NN-based trajectory optimization was conducted based on this model in
[34] and [31]. Different from the objective of agility, robustness and maneuverability in those research

1https://griffin-erc-advanced-grant.eu/project-overview/
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mentioned above, the research on perching/landing motion on GRIFFIN Ornithopter was basically to-
wards the objective of in-flight manipulation, including cooperative manipulation, with small-scale com-
pliant dual-arm mechanism in [40].

3.2. FWMAV Aerodynamics and In-Gust Dynamics
The energy-efficient flight, agility and maneuverability of birds and insects has always been an obses-
sion for biologists and engineers. Starting from Leonardo da Vinci in 15th century, there have many
attempts for understanding the underlying principles of flapping wings. In 20th century, as theoretical
aerodynamics became rather mature, the lift-generation mechanism of flapping wings was discovered
as Leading Edge Vortex (LEV). In past decades, research on generation and characteristics of LEV
was mainly conducted by both CFD simulation[37, 19, 44, 35] and experiments observation[44, 11]. In
this chapter, the formation mechanism and lift-generation of LEV is introduced in subsection 3.2.1, and
in-gust dynamics of flapping wings is stated in subsection 3.2.2.

3.2.1. Leading edge vortex
Formation mechanism
Similar to conventional airfoils, the lift generated due to LEV is from the pressure difference between
upper and lower surface of airfoils. However, the formation of low-pressure area in LEV cases is more
complex. As the airfoil increases its angle of attack (AoA) after certain critical angle, the flow stream
going over the airfoil separates near leading edge and reattaches before trailing edge[37], which is
the phenomenon of stall. In the insect/FWMAV flight regime, Reynolds number Re is always of O(104)
or lower, which indicates fluid inertial forces dominate flow field of these flights. In such cases of low
Reynolds number, a leading edge vortex forms and could keep stable in the separation zone as shown
in Figure 3.10. For the reason that the airfoil translates at a rather high AoA, a greater downward mo-
mentum imparted to flow enhances the vortex substantially, which means the vorticity is being removed
by viscous diffusion within LEV at same rate as its generating rate at leading edge[44] and results in
stable LEV structure shown in Figure 3.11.

Figure 3.10: LEV formation.

Figure 3.11: A stable LEV attached on upper surface of a thin airfoil.

In theory, the formation of LEV could be interpreted as the balance between the pressure gradient,
the centrifugal force and the Coriolis force in the momentum equation of aerodynamics[37], which also
influences the stability of LEV.
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Lift generation of LEV
In general, LEV attached to upper surface of airfoil generates a lower pressure area as shown in Fig-
ure 3.12 and lift is mostly generated from a large suction on the upper surface brought by great pressure
difference[37]. Furthermore, in the cases of low AoA in which no LEV is formed, flowmoving exclusively
towards trailing edge on the upper surface results in a large skin friction. In contrast, in the cases with
LEV, flow moves over only a part of upper surface, which means the magnitude of skin friction force is
reduced[44]. The lift and drag force brought by LEV is illustrated in Figure 3.13.

Figure 3.12: Low pressure area brought by LEV.

Figure 3.13: Lift and drag force brought by LEV.

The lift-generation mechanism of Flapper Drone’s wing-pairs is shown in Figure 3.14. In Figure 3.14,
flow lines are indicated by black lines, and induced velocity is shown by deep blue arrows while light
blue arrows show the resultant force acting on the wing.

The clapping motion is shown in A-C part of Figure 3.14. In A, the wings come near to each other
dorsally, and their leading edges touch or reach closest positions initially along with the rotation of wing
around leading edge in B. In C, vorticity detached from the trailing edge turns into stopping vortices and
dissipates in to the wake while the LEV also loses strength. Moreover, an additional thrust is generated
by the closing of gap between the two wings, which presses out air between two wings. The flinging
motion is shown in D-F part of Figure 3.14. In D, by means of wing rotation around trailing edge, two
wings fling apart. From D to E, as the gap becomes larger when the leading edge translates away from
each other, air rushes in and fills the gap again, which results in an initial boost in circulation around
two wings. In F, LEV forms again during the translation of two wings with high AoA. The vortices near
the trailing edge counteract each other due to opposite circulation[35].
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Figure 3.14: LEV and lift generation in clapping and flinging motion of Flapper Drone’s wing-pairs.

3.2.2. In-gust dynamics of flapping wings
Generally for the sake of simplicity and practicality, the effects on FWMAVs by external disturbance,
i.e. gusts were mostly computed and evaluated numerically in the stroke-averaged form, which is the
average force generated per stroke due to relatively high flapping frequency. The stroke-averaged
forces contributed by wing-flapping could be described as a function of incoming frontal (along ŷ axis
in Figure 3.15) and lateral (along x̂ axis in Figure 3.15) gust speed[8].

Figure 3.15: Body-fixed coordinates definition of a FWMAV (Robobee).

Based on findings in [1], the drag forces is assumed as linearly proportional to relative gust speed, and
this relationship is shown to be approximately valid for a FWMAV at the scale of Robobee encountering
both frontal and lateral gusts of low speeds (less than 1.5m/s). And both frontal and lateral gusts result
in additional lift (in x̂ axis in Figure 3.15) which is quadratic to relative gust speeds. These relationships
are shown in Figure 3.16 and were proven as accurate in further model-based disturbance-rejection
control strategy design.

Besides aforementioned research, CFD simulation were carried out to study in-gust dynamics of flap-
ping wings in [20]. As shown in Figure 3.17, both lift and drag forces increase when the speed of frontal
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Figure 3.16: Relationships between forces and relative gust speeds.

gusts encountered increases. And the magnitude of effects on lift is slightly larger than that on drag,
and the relationship between peak value of lift, and drag, and frontal gust speed are approximately
linear.

Figure 3.17: Effects on flapping-wing lift and drag forces by frontal gusts.

Comparing with Figure 3.17, effects brought by lateral gusts are much less significant, as shown in Fig-
ure 3.18. Both lift and drag increase when the speed of lateral gust encountered increases. However,
the effect on lift is much smaller than that on drag in this case of lateral gust.

In summary, both research shows that when encountering frontal and lateral gusts, lift and drag gener-
ated by flapping wings will increase. But considering the size difference of experimental FWMAV/flapping-
wing platform, the magnitude of effect/change on forces is quite different. Therefore, it’s quite obvious
that in this project both studying the gust effects on Flapper Drone and accurately modelling in-gust
dynamics are necessary steps before control strategy design.
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Figure 3.18: Effects on flapping-wing lift and drag forces by lateral gusts.

3.3. Dynamics Modelling of FWMAV/Drones
As discussed in 3.2, it is necessary to model the in-gust dynamics of FWMAVs before further steps
of control strategy design. In previous thesis[23, 21, 3, 29], both longitudinal and lateral dynamics of
DelFly Nimble have been studied, and several models for DelFly Nimble are developed from system
identification (black-box models) and parameter estimation (white-box models). However, these mod-
els are not complete for this project because no in-gust dynamics are included. Furthermore, due to
the high linearity in in-gust dynamics of FWMAV, it is more practical to model in-gust dynamics with
ML/NN-based methods, which are strong tools for global nonlinear function approximation. In sub-
section 3.3.1, DelFly Nimble’s models already existed are introduced, and ML/NN-based dynamics
modelling of drones are introduced in subsection 3.3.2.

3.3.1. Dynamic models of DelFly Nimble
The modelling of FWMAV dynamics mostly requires initial proposal on model structure, parameter es-
timation and model validation. Depending on the accuracy and complexity of the model required, the
model could be derived from fundamental dynamic analysis or from high-level approximation on data
collected during flight experiments.

In [21], a minimal longitudinal dynamic model of DelFly Nimble is proposed and verified for control
design purpose. The stroke-averaged drag force is modelled based on the assumption that flapping
wings flap with a saw-tooth profile and its center of pressure is located at half the wing length. The
constant wing velocity is expressed as Equation 3.1.

U = 2Φf
b

4
(3.1)

where Φ is the flapping amplitude in radians, f is the flapping frequency and b is the wingspan.

Based on this, when the wing velocity due to flapping is higher than the free-stream velocity, the drag
force during the downstroke and upstroke is modelled as Equation 3.2 and Equation 3.3 respectively
with u as free-stream velocity, β as force coefficients.

fd = −β(U + u)2 (3.2)

fd = β(U − u)2 (3.3)

Since these two strokes have an equal time duration, the average force over a flapping cycle could be
expressed as Equation 3.4.
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Figure 3.19: Longitudinal dynamics diagram of DelFly Nimble. COM - mean center of mass.

fd =
1

2
β[(U − u)2 − (U + u)2] = −2βUu (3.4)

Based on above, the model for longitudinal dynamics of DelFly Nimble is given as Equation 3.5 to
Equation 3.9 and illustrated in Figure 3.19.

uCOP = u− lz θ̇ − l̇d (3.5)

wCOP = w − (ld + lz)θ̇ (3.6)

X = −2bxuCOP (3.7)

Z = −2T − 2bzwCOP (3.8)

M = −Xlz + Z(ld + lz) (3.9)

In [23], based on Equation 3.4, a complete white-box model for DelFLy Nimble is proposed. The non-
linear EoM of the rigid body dynamics are Figure 3.20. And the forces and torques are modelled as
Figure 3.20, and the frames and forces are illustrated in Figure 3.21.

However, for the platform of this project, Flapper Drone, the force coefficients and the relationship
between thrust and flapping frequency is still to-be-identified by flight experiments and parameter esti-
mation techniques.
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Figure 3.20: Force and torque model in body frame of DelFly Nimble

Figure 3.21: Overall view of DelFly Nimble with forces of left wing as example. The force acting on COP is decomposed in
drag forces in directions in body frame (purple) and thrust forces.

3.3.2. ML/NN-based modelling of drones
As discussed in subsection 3.2.2 and subsection 3.3.1, the in-gust dynamics of a FWMAV is highly-
nonlinear and hard to model with classic system identification methods. Being another popular flight
platform, the dynamics of quadrotors are also highly-nonlinear and include coupling effects between
different motions. On the other hand, neural networks are strong tools for global nonlinear function
approximation. In [4], a ML/NN -based modelling method is proposed for flight dynamic model of
quadrotors. With current states and control inputs as the input of a Rectified Linear Unit (ReLU) neural
network shown in Figure 3.22, the network was trained on real flight data and could predict states of
next step accurately. The model accuracy is shown in Figure 3.23.

Figure 3.22: The ReLU NN architecture used to learn quadrotor’s dynamics

Furthermore, in [4], it was shown that NN could generalize and learn nonlinear dynamic couplings be-
tween translational and rotational motions, even when the training data hasn’t captured these coupling
effects significantly. And in [36], a stable drone landing control strategy was designed based on NN-



3.4. Control of FWMAV 33

Figure 3.23: Comparison between real flight data and NN outputs.

learned dynamic model and verified in reality. Therefore, in this project, ML/NN-based methods would
be employed to model the high-nonlinear in-gust dynamics of Flapper Drone and the learned model
would also be used for further step of control strategy design after being validated.

3.4. Control of FWMAV
After modelling of in-gust dynamics of Flapper Drone, the following step as control strategy design
is also an essential step for improving robustness and energy-efficiency of in-gust flights. In subsec-
tion 3.4.1, classic control strategies for FWMAV are introduced. And in subsection 3.4.2, the ML/RL-
based control strategy for FWMAV is introduced.

3.4.1. Classic control
J. Kelbling's work in DelFly Nimble control
In [23], nonlinear geometric control is implemented for attitude control and position control, as shown in
3.24. The attitude error is defined asRT

dR and the an attitude error function is defined as Equation 3.10,
which represents the Euclidean distance of RT

dR.

Ψ(R,Rd) =
1

2
tr[I −RT

dR] (3.10)

Figure 3.24: Block diagram of the nonlinear tracking control structure.

Based on Equation 3.10, the tracking error for the angular velocity is selected as Equation 3.11, and
the tracking error of the attitude is selected as Equation 3.12.

eωb
= ωb −RT

dRωbd (3.11)
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eR =
1

2
(RT

dR−RTRd) (3.12)

After substituting the nonlinear control input defined in Equation 3.13, the attitude error dynamics are
given as Equation 3.14. With positive gains, the error could be eliminated theoretically.

τb,v = −kReR − kωb
eωb

+ ωb × Jωb − J(ωbR
TRdωb,d −RTRd ˙ωb,d) (3.13)

J ˙eωb
= −kReR − kωb

eωb
(3.14)

Chirarattananon et al. work in disturbance rejection control of Robobee.
In [8], based on the gust effect model in Figure 3.16 and the adaptive tracking flight controller in [9],
adaptive estimation in Equation 3.15 and least-square estimation in Equation 3.16 methods for estimat-
ing disturbance torques are applied on Robobee.

τw =

−ŷT 0
0 x̂T

0 0

[
axv
ayv

]
(3.15)

τ [ti−1] =
1

1− γ
(Ψ[ti]− γΨ[ti−1]) (3.16)

where Ψ stands for results after passing a low-pass filter.

Figure 3.25: Position error comparison from all experiment set-ups.

As shown in Figure 3.25, the position error with adaptive/LS-estimation is much lower than the original
case without any compensation. Furthermore, [8] admitted it was still yet to find out the reason that
single LS estimation preformed even slightly better than combination (adaptive + LS) cases.
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Lee et al. work in disturbance rejection control of FWMAV
In [24], disturbance-observer-based control (DOBC) is applied to the control of a simple FWMAV. Their
work is mainly to estimate the disturbance and add a feed-forward control term in the inner loop of the
nominal controller. The disturbance observer is defined as Equation 3.18.

ż = −∂p
∂x

(x)g2(x)z −
∂p

∂x
(x)(f(x) + g1(x) + g2(x)p(x)) (3.17)

d̂ = z + p(x) (3.18)

With disturbance observer, a flight mode selector is designed and will be activated when the output of
disturbance observer reaches the critical value. Once activated, the feed-forward control term is added
in to the control input to reject disturbances encountered.

Figure 3.26: Block diagram of DOBC control for the FWMAV.

The experiment flight paths are defined as Figure 3.27. Right after encountering disturbance in red area,
the flight mode selector is activated. The result comparison is shown in Figure 3.28. The oscillation
and tracking errors of FWMAV is obviously smaller than nominal case without compensation.

Figure 3.27: Experiment flight path for DOBC validation.
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Figure 3.28: Result comparison for DOBC validation.

3.4.2. ML/RL-based control
Goedhart's work in ML/RL-based control of DelFly II
In [17], two ML/RL-based methods are applied for tuning gains of PI controller in airspeed controller.
Firstly, Policy Gradient algorithm in RL is implemented as shown in Figure 3.29 in the actor-only form.
Secondly, the Classification Algorithm in ML is applied for selecting pairs of gains in the predefined
gain set, as shown in Figure 3.30.

Figure 3.29: Policy gradient algorithm for PI tuning

Baseline tracking tests were conducted for comparison of rewards per episode with different methods,
as the results shown in Figure 3.31. In PI cases, the score of PG algorithm is slightly higher than two
other cases. In cascaded PI cases, the performance of both PG and CA looks comparable to fixed-gain
cases, but the tracking accuracy is actually much better than fixed-gain cases.
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Figure 3.30: Classification algorithm for PI gain selection.

Figure 3.31: Comparison of rewards per episode with different methods

Fei et al. work in RL-based control of Flappy Hummingbird
In [13], an open source dynamic simulator for Flappy Hummingbird is introduced based on identified
dynamic model of this FWMAV platform. With this simulator, Flappy Hummingbird has learned extreme
hummingbird maneuvers with help of Deep Deterministic Policy Gradient (DDGP) algorithm in RL.

The proposed control strategy is a hybrid one which combines model-based nonlinear control with
model-free RL algorithm, as shown in Figure 3.32. The model-based nonlinear controller could guaran-
tee flight stability and the model-free maneuvering policy learns to destabilize the system for extreme
agile maneuvers.

Figure 3.32: Control architecture for Flappy Hummingbird.

Based on training in simulator and real transfer, Flappy Hummingbird has learned the extreme evasive
maneuver of hummingbird. The real flight of hummingbird is shown in Figure 3.33, with the learned
maneuvers in simulation as Figure 3.34 and real maneuvers conducted by Flappy Hummingbird as
Figure 3.35.

In this project, based on literature study, the control strategy could be a combination of a controller for
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Figure 3.33: Maneuvers of hummingbirds

Figure 3.34: Control architecture for Flappy Hummingbird.

Figure 3.35: Control architecture for Flappy Hummingbird.

in-gust stable hovering and another controller for additional control input in in-gust way-point following
task.

3.5. Conclusion
The conclusions from the literature study are the research questions and objectives of this project.

3.5.1. Research question
The findings of literature study in previous chapters are concluded as:

• The dynamic models of DelFly Nimble existing so far are not complete and adequate for this
project, due to the reason that no in-gust dynamics are included.

• ML/NN algorithms are strong tools for nonlinear function approximation and the response speed
of ML/NN-based controllers are faster than most classic controllers.

Based on these findings, the research question if ML/NN methods are applied on in-gust dynamic mod-
elling and control strategy design, and airflow data from the sensor is utilized in control system, could
the robustness and energy-efficiency of in-gust flights of Flapper Drone be improved and how much
could we improve it?

3.5.2. Research objectives
From this research question, the research objectives of this project are as follows:

• To create a more accurate model of Flapper Drone in gust dynamic conditions.
• To use this model in design of controller with MLmethod, for in-gust flight control of Flapper Drone.
• To validate the new controller in gust dynamic conditions to examine the robustness (devia-
tion from desired position and real trajectory, response speed and repeatability) and energy-
efficiency(battery life/flight time) of Flapper Drone’s in-gust flights.

• To compare validation results with current cases with OptiTrack/simple on-board PID controllers.



References

[1] Natalie Agre et al. “Linear drag law for high-Reynolds-number flow past an oscillating body”. In:
Physical Review Fluids 1.3 (2016), p. 033202.

[2] David E Alexander. Nature’s flyers: birds, insects, and the biomechanics of flight. JHU Press,
2002.

[3] Karan Bains. “System Identification of the Delfly Nimble: Modeling of the Lateral Body Dynamics”.
In: (2020).

[4] Somil Bansal et al. “Learning quadrotor dynamics using neural network for flight control”. In: 2016
IEEE 55th Conference on Decision and Control (CDC). IEEE. 2016, pp. 4653–4660.

[5] Lina Castano et al. “Gust rejection using force adaptive feedback for roll”. In: 14th AIAA Aviation
Technology, Integration, and Operations Conference. 2014, p. 2588.

[6] Pakpong Chirarattananon, Kevin Y Ma, and Robert J Wood. “Adaptive control of a millimeter-
scale flapping-wing robot”. In: Bioinspiration & biomimetics 9.2 (2014), p. 025004.

[7] Pakpong Chirarattananon, Kevin Y Ma, and Robert J Wood. “Fly on the wall”. In: 5th IEEE
RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE. 2014,
pp. 1001–1008.

[8] Pakpong Chirarattananon et al. “Dynamics and flight control of a flapping-wing robotic insect in
the presence of wind gusts”. In: Interface focus 7.1 (2017), p. 20160080.

[9] Pakpong Chirarattananon et al. “Wind disturbance rejection for an insect-scale flapping-wing
robot”. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE. 2015, pp. 60–67.

[10] Gangik Cho, Jongyun Kim, and Hyondong Oh. “Vision-based obstacle avoidance strategies for
mavs using optical flows in 3-d textured environments”. In: Sensors 19.11 (2019), p. 2523.

[11] Michael H Dickinson, Fritz-Olaf Lehmann, and Sanjay P Sane. “Wing rotation and the aerody-
namic basis of insect flight”. In: Science 284.5422 (1999), pp. 1954–1960.

[12] Robert Dudley. The biomechanics of insect flight: form, function, evolution. Princeton University
Press, 2002.

[13] Fan Fei et al. “Flappy hummingbird: An open source dynamic simulation of flapping wing robots
and animals”. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE. 2019,
pp. 9223–9229.

[14] Fan Fei et al. “Learning extreme hummingbird maneuvers on flapping wing robots”. In: 2019
International Conference on Robotics and Automation (ICRA). IEEE. 2019, pp. 109–115.

[15] Steven N Fry, Rosalyn Sayaman, and Michael H Dickinson. “The aerodynamics of free-flight
maneuvers in Drosophila”. In: Science 300.5618 (2003), pp. 495–498.

[16] Sawyer Buckminster Fuller et al. “Flying Drosophila stabilize their vision-based velocity controller
by sensing wind with their antennae”. In: Proceedings of the National Academy of Sciences
111.13 (2014), E1182–E1191.

[17] Menno Goedhart et al. “Machine learning for flapping wing flight control”. In: 2018 AIAA Informa-
tion Systems-AIAA Infotech@ Aerospace. 2018, p. 2135.

[18] Steven Ho et al. “Unsteady aerodynamics and flow control for flapping wing flyers”. In: Progress
in aerospace sciences 39.8 (2003), pp. 635–681.

[19] Hua Huang and Mao Sun. “Dragonfly forewing-hindwing interaction at various flight speeds and
wing phasing”. In: AIAA journal 45.2 (2007), pp. 508–511.

[20] Martin Jones and Nail K Yamaleev. “Effect of lateral, downward, and frontal gusts on flapping
wing performance”. In: Computers & Fluids 140 (2016), pp. 175–190.

39



References 40

[21] Karl Martin Kajak et al. “A minimal longitudinal dynamic model of a tailless flapping wing robot
for control design”. In: Bioinspiration & biomimetics 14.4 (2019), p. 046008.

[22] Matěj Karásek et al. “A tailless aerial robotic flapper reveals that flies use torque coupling in rapid
banked turns”. In: Science 361.6407 (2018), pp. 1089–1094.

[23] Jelle Kelbling. “Trajectory control and dynamic modeling of a tailless flapping-wing robot”. In:
(2020).

[24] Jonggu Lee, Seungwan Ryu, and H Jin Kim. “Stable flight of a flapping-wing micro air vehicle
under wind disturbance”. In: IEEE Robotics and Automation Letters 5.4 (2020), pp. 5685–5692.

[25] Kevin Y Ma, Samuel M Felton, and Robert J Wood. “Design, fabrication, and modeling of the split
actuator microrobotic bee”. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE. 2012, pp. 1133–1140.

[26] Kevin Y Ma et al. “Controlled flight of a biologically inspired, insect-scale robot”. In: Science
340.6132 (2013), pp. 603–607.

[27] A. Martín-Alcántara et al. “A Simple Model for Gliding and Low-Amplitude Flapping Flight of a
Bio-Inspired UAV”. In: 2019 International Conference on Unmanned Aircraft Systems (ICUAS).
2019, pp. 729–737. DOI: 10.1109/ICUAS.2019.8798233.

[28] A Martı́n-Alcántara et al. “A simple model for gliding and low-amplitude flapping flight of a bio-
inspired UAV”. In: 2019 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE.
2019, pp. 729–737.

[29] Jorgen Nijboer et al. “Longitudinal Grey-Box Model Identification of a Tailless Flapping-Wing MAV
Based on Free-Flight Data”. In: AIAA Scitech 2020 Forum. 2020, p. 1964.

[30] Michael O’Connell et al. “Neural-Fly enables rapid learning for agile flight in strong winds”. In:
Science Robotics 7.66 (2022), eabm6597.

[31] MA Pérez-Cutiño et al. “Neural networks algorithms for ornithopter trajectory optimization** This
work is partially supported by the Spanish Ministry of Economy and Competitiveness (MTM2016-
76272-R AEI/FEDER, UE) and European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Skłodowska-Curie grant agreement# 734922.” In: 2021 International
Conference on Unmanned Aircraft Systems (ICUAS). IEEE. 2021, pp. 1665–1670.

[32] Hoang Vu Phan, Taesam Kang, and Hoon Cheol Park. “Design and stable flight of a 21 g insect-
like tailless flapping wing micro air vehicle with angular rates feedback control”. In: Bioinspiration
& biomimetics 12.3 (2017), p. 036006.

[33] Hoang Vu Phan et al. “Towards the Long-Endurance Flight of an Insect-Inspired, Tailless, Two-
Winged, Flapping-Wing Flying Robot”. In: IEEE Robotics and Automation Letters 5.4 (2020),
pp. 5059–5066. DOI: 10.1109/LRA.2020.3005127.

[34] Fabio Rodrı́guez et al. “Kinodynamic planning for an energy-efficient autonomous ornithopter”.
In: Computers & Industrial Engineering (2021), p. 107814.

[35] Sanjay P Sane. “The aerodynamics of insect flight”. In: Journal of experimental biology 206.23
(2003), pp. 4191–4208.

[36] Guanya Shi et al. “Neural lander: Stable drone landing control using learned dynamics”. In: 2019
International Conference on Robotics and Automation (ICRA). IEEE. 2019, pp. 9784–9790.

[37] Wei Shyy and Hao Liu. “Flapping wings and aerodynamic lift: the role of leading-edge vortices”.
In: AIAA journal 45.12 (2007), pp. 2817–2819.

[38] Wei Shyy et al. An introduction to flapping wing aerodynamics. Vol. 37. Cambridge University
Press, 2013.

[39] Alex Skordos et al. “A novel strain sensor based on the campaniform sensillum of insects”. In:
Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences 360.1791 (2002), pp. 239–253.

[40] Alejandro Suarez et al. “Small-Scale Compliant Dual Arm with Tail for Winged Aerial Robots”. In:
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2019,
pp. 208–214.

https://doi.org/10.1109/ICUAS.2019.8798233
https://doi.org/10.1109/LRA.2020.3005127


References 41

[41] Graham K Taylor. “Mechanics and aerodynamics of insect flight control”. In: Biological Reviews
76.4 (2001), pp. 449–471.

[42] Zhan Tu et al. “An at-scale tailless flapping-wing hummingbird robot. I. Design, optimization, and
experimental validation”. In: IEEE Transactions on Robotics 36.5 (2020), pp. 1511–1525.

[43] Sunyi Wang et al. “Battle the Wind: Improving Flight Stability of a Flapping Wing Micro Air Vehicle
Under Wind Disturbance With Onboard Thermistor-Based Airflow Sensing”. In: IEEE Robotics
and Automation Letters 7.4 (2022), pp. 9605–9612.

[44] PCWilkins and K Knowles. “The leading-edge vortex and aerodynamics of insect-based flapping-
wing micro air vehicles”. In: The Aeronautical Journal 113.1142 (2009), pp. 253–262.

[45] RobertWood, Radhika Nagpal, andGu-YeonWei. “Flight of the robobees”. In:Scientific American
308.3 (2013), pp. 60–65.

[46] Robert J Wood. “The first takeoff of a biologically inspired at-scale robotic insect”. In: IEEE trans-
actions on robotics 24.2 (2008), pp. 341–347.

[47] Robert J Wood, E Steltz, and RS Fearing. “Optimal energy density piezoelectric bending actua-
tors”. In: Sensors and Actuators A: Physical 119.2 (2005), pp. 476–488.

[48] Hongjiu Yang et al. “Active disturbance rejection attitude control for a dual closed-loop quadrotor
under gust wind”. In: IEEE Transactions on control systems technology 26.4 (2017), pp. 1400–
1405.

[49] Dong-Wan Yoo, Dae-Yeon Won, and Min-Jea Tahk. “Optical flow based collision avoidance of
multi-rotor uavs in urban environments”. In: International Journal of Aeronautical and Space Sci-
ences 12.3 (2011), pp. 252–259.

[50] Jian Zhang et al. “Design optimization and system integration of robotic hummingbird”. In: 2017
IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2017, pp. 5422–5428.



A
Extra Hardware Added to the FWMAV

A.1. Schematics of the connection
In this thesis, an airflow sensor, a current sensor and a 9 V voltage regulator are added to the Flapper
Drone. The schematic which shows the connection of the airflow sensor and the current sensor to the
Flapper Drone’s Crazyflie expansion deck is as follow.

Figure A.1: The schematic of the connection of the airflow sensor and the current sensor to the Flapper Drone’s Crazyflie
expansion deck.

The specifications of the sensors and the voltage regulator are as Table A.1.

Hardware type Model Supply voltage [V] Output
Airflow sensor Rev.P6 9.0 − 12.0 ≤ 3.3 V

Current Sensor Pololu ACS711EX 3.0 − 5.5 ≤ 31.0 A

Step-Up Voltage Regulator Pololu U3V12F9 2.5 − 9.0 9.0 V

Table A.1: The specifications of the sensors and the voltage regulator

42



A.2. Drivers of the sensor 43

A.2. Drivers of the sensor
The drivers for the airflow sensor is shown as follow.

1 /**
2 Airflow Sensor Driver
3 */
4

5 #define DEBUG_MODULE "AIRFLOW"
6

7 #include "FreeRTOS.h"
8 #include "task.h"
9 #include "stabilizer_types.h"

10 #include "deck.h"
11 #include "system.h"
12 #include "debug.h"
13 #include "log.h"
14 #include "param.h"
15 #include "airflowdeck.h"
16

17 static float wind_volts_last = 0;
18 static float airspeed_last = 0;
19

20 static bool isInit;
21

22 void airflowDeckInit(DeckInfo* info)
23 {
24 if (isInit)
25 return;
26

27 xTaskCreate(airflowDeckTask, AIRFLOWDECK_TASK_NAME , AIRFLOWDECK_TASK_STACKSIZE , NULL,
AIRFLOWDECK_TASK_PRI , NULL);

28

29 isInit = true;
30 }
31

32 bool airflowDeckTest()
33 {
34 bool testStatus;
35 testStatus = true;
36

37 if (!isInit)
38 return false;
39

40 return testStatus;
41 }
42

43 void airflowDeckTask(void* arg)
44 {
45 systemWaitStart();
46 TickType_t xLastWakeTime;
47

48 xLastWakeTime = xTaskGetTickCount();
49

50 while (1) {
51 vTaskDelayUntil(&xLastWakeTime, M2T(1));
52

53 wind_volts_last = analogReadVoltage(DECK_GPIO_MISO);
54 flowvolt.volt = wind_volts_last;
55 airspeed_last = 25.8666354823914f*wind_volts_last*wind_volts_last*wind_volts_last*

wind_volts_last -1.664910993036515e2f*wind_volts_last*wind_volts_last*wind_volts_last
+4.030483719450837e2f*wind_volts_last*wind_volts_last -4.325309182694595e2f*
wind_volts_last+1.730907713055474e2f;

56 }
57 }
58

59 static const DeckDriver airflow_deck = {
60 .vid = 0xBC,
61 .pid = 0x02,
62 .name = "bcAirflowDeck",
63 .usedGpio = DECK_USING_PA6,
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64

65 .init = airflowDeckInit,
66 .test = airflowDeckTest,
67 };
68

69 DECK_DRIVER(airflow_deck);
70

71 PARAM_GROUP_START(deck)
72

73 PARAM_ADD_CORE(PARAM_UINT8 | PARAM_RONLY, airflowDeck, &isInit)
74 PARAM_GROUP_STOP(deck)
75

76 LOG_GROUP_START(airflow)
77 LOG_ADD(LOG_FLOAT, v_wind_ext, &wind_volts_last)
78 LOG_ADD(LOG_FLOAT, airspeed_ext, &airspeed_last)
79 LOG_GROUP_STOP(airflow)

The drivers for the current sensor is shown as follow.
1 /**
2 Current Sensor Driver
3 */
4

5 #define DEBUG_MODULE "CURRENT"
6

7 #include "FreeRTOS.h"
8 #include "task.h"
9 #include "deck.h"

10 #include "system.h"
11 #include "debug.h"
12 #include "log.h"
13 #include "param.h"
14 #include "currentdeck.h"
15

16 static float reading_last = 0;
17 static float current_last = 0;
18 static float current = 0;
19

20 static bool isInit;
21

22 void currentDeckInit(DeckInfo* info)
23 {
24 if (isInit)
25 return;
26

27 xTaskCreate(currentDeckTask, CURRENTDECK_TASK_NAME , CURRENTDECK_TASK_STACKSIZE , NULL,
CURRENTDECK_TASK_PRI , NULL);

28

29 isInit = true;
30

31 DEBUG_PRINT("Current deck initialization is done.\n");
32 }
33

34 bool currentDeckTest(void)
35 {
36 bool testStatus;
37 testStatus = true;
38

39 DEBUG_PRINT("Current deck test is done.\n");
40

41 if (!isInit)
42 return false;
43

44 return testStatus;
45 }
46

47 void currentDeckTask(void* arg)
48 {
49 systemWaitStart();
50 TickType_t xLastWakeTime;
51

52 xLastWakeTime = xTaskGetTickCount();
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53

54 while (1) {
55 vTaskDelayUntil(&xLastWakeTime, M2T(1));
56

57 reading_last = analogReadVoltage(DECK_GPIO_SCK);
58 current_last = 36.7f*reading_last/3.0f-18.3f;
59

60 current = 0.975f*current + 0.025f*current_last;
61 }
62 }
63

64 static const DeckDriver current_deck = {
65 .vid = 0xBC,
66 .pid = 0x09,
67 .name = "bcCurrentDeck",
68 .usedGpio = DECK_USING_PA5,
69

70 .init = currentDeckInit,
71 .test = currentDeckTest,
72 };
73

74 DECK_DRIVER(current_deck);
75

76 PARAM_GROUP_START(deck)
77

78 PARAM_ADD_CORE(PARAM_UINT8 | PARAM_RONLY, bcCurrentDeck, &isInit)
79 PARAM_GROUP_STOP(deck)
80

81 LOG_GROUP_START(current)
82 LOG_ADD(LOG_FLOAT, v_raw, &reading_last)
83 LOG_ADD(LOG_FLOAT, i_raw, &current_last)
84 LOG_ADD(LOG_FLOAT, current, &current)
85 LOG_GROUP_STOP(current)



B
Previous Design of Adaptive Controller

B.1. Airflow-sensing based adaptive feedforward velocity controller
Prior to the design of the adaptive position and velocity controller presented in 2, the adaptive controller
was designed as only adaptive part in the feedforward block of the velocity controller, but with more
specified intervals and correspondingKFFx gains. The overall diagram of the flight control system and
the diagram of the adaptive feedforward velocity controller are shown in B.1 and B.2.

Position 
controller

Velocity controller 
with adaptive FF

Reference 
position

RevP airflow 
sensor

Attitude 
controller

AHRS

FWMAV 
dynamics

IMU

Optitrack

Measured 
position

Figure B.1: The diagram of the flight control system with the only adaptive part in the feedforward block of the velocity
controller.

State 
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PID

EKF
RevP airflow 

sensor
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Reference Vx

Feedforward

kFFx 
selector

kFFx

+
+

Reference pitch angle

Figure B.2: The diagram of the adaptive feedforward velocity controller.

B.2. KFFx
selector

The values ofKFFx
corresponding to different intervals of wind speed and filtered airflow sensor reading

has been shown in B.1.
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Wind speed [m/s] Filtered airflow sensor reading [V] KFFx
[-] No. of intervals

[0, 0.780) [0, 1.740) 10.0 (default) 1
[0.780, 1.087) [1.740, 1.830) 17.0 2
[1.087, 1.449) [1.830, 1.905) 18.5 3
[1.449, 1.817) [1.905, 1.960) 19.0 4
[1.817, 2.257) [1.960, 2.010) 21.5 5
[2.257,∞) [2.010,∞) 23.0 6

Table B.1: The values of KFFx with the corresponding ranges of wind speeds and filtered airflow sensor readings.

The KFFx
works as Algorithm 1.

Algorithm 1 KFFx
selector

1: while t = ti do
2: initialize si ← 0, Si ← 0 and len← 10
3: gain si−1 and Si−1 from the previous time step
4: read the filtered airflow sensor reading from EKF and assign it to Vair
5: check which filtered airflow sensor reading interval the value of Vair is in
6: assign the corresponding number of intervals to si, as si = 1, 2, ..., 6
7: end while
8: if si = si−1 then
9: Si = Si−1 + 1

10: else if si = 1 then
11: S = 0,KFFx

= 10.0
12: else
13: Si = 0
14: end if
15: while Si > 0 do
16: Si = min(Si, len)
17: end while
18: if Si = len then
19: update KFFx

with the KFFx
value corresponding to si in B.1

20: else
21: keep the value of KFFx as the previous time step
22: end if

B.3. Performance
This adaptive feedforward velocity controller is validated with several hovering flights under the gust
alternating between 0.5m/s and 2.4m/s at different frequencies. The RMSE values are shown in B.2.

Wind speed 0.5 m/s and 2.4 m/s

RMS errors
fgust [Hz] XG [m] ZG [m] θ [deg]

0.25 0.3435 0.0833 8.8880
0.33 0.3184 0.0620 5.5373
0.50 0.1947 0.0313 1.6016
0.75 0.1235 0.0416 3.1116

Table B.2: The RMS errors of the position in XG and ZG axis, and pitch angle θ from the in-gust hovering flights with the
adaptive feedforward velocity controller under the gust alternating between 0.5m/s and 2.4m/s.
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