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ABSTRACT

This study was aimed at improving the accuracy of the model predictions for the minimum fluid and inner
wall temperatures for cold, low-pressure start-up of wells that produce oil or gas. Due to the large pressure
drop over the well head choke, the so-called Joule-Thomson cooling will give a very low temperature of the
expanding gas jet. Low-temperatures can give brittle fracture of the material in the piping downstream of
the choke. Models are needed to verify whether the material temperature remains above the lower-design
temperature. For the model validation, Imperial College in London (on request by Shell) has carried out lab
experiments with argon gas that expands through an orifice from 120 bara to 1 bara. Awaiting the results of the
lab experiments, detailed simulations were carried out in the present study using the Fluent CFD programme.

The 3D, steady, compressible Reynolds-Averaged Navier-Stokes equations were solved with the SST k −ω
model for the turbulence. The considered configuration is the same as in the lab. It consists of an upstream
chamber with argon at 120 bara, that expands through a 5 mm long orifice with 1.55 mm diameter, into a
square outlet section with 50 mm sides and 500 mm length. The inlet temperature is -17 oC and the outlet
pressure is 1 bara. The supersonic flow leaving the orifice reaches a maximum Mach number of about 9, just
before a shock to subsonic flow is found. The jet reaches very low temperatures due to isentropic expansion,
and reaches the isenthalpic expansion temperature of 196 K (or -77 oC) downstream of the shock. The jet
reaches the sides of the outlet at a distance of about 100 mm.

The maximum Mach number of about 9 predicted by Fluent is higher than the value of about 6 found
in a previous simulation study that used the STAR-CCM+ CFD programme. To verify the Fluent results, the
distributions of grid cells was varied and the number of grid cells was increased. Also, a MATLAB programme
was written that solved the inviscid compressible equations (Euler equations) for an axisymmetric jet. This
confirmed the Fluent results.

In addition to the 3D square outlet section, also 3D and 2D Fluent simulations were carried out for a
cylindrical outlet (using a hydraulic diameter of 50 mm). The maximum Mach number and the jet structure
(velocity, temperature) are not affected by the side walls. This is because the side walls are sufficiently far
from the jet.

Furthermore, the temperature and the heat transfer at the walls of the outlet section were investigated.
Thereto both adiabatic and non-adiabatic walls were considered. The ambient temperature is 20 oC. Thermal
boundary layers are formed along the side walls, that are exposed to a temperature of 196 K (the isenthalpic
expansion temperature) in the centre of the pipe, up to a distance of about 1.5 m, where the outer edge of the
boundary layer reaches the centre of the pipe. Thereafter the centre line temperature increases due to heat
inflow from the ambient.
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1
INTRODUCTION

A well is a subsurface pipe that is designed to bring hydrocarbon gas and oil from the reservoir to the surface.
In an oil well usually some natural gas is co-produced, and in a gas well usually some condensate (light oil) is
co-produced. Furthermore often water is produced in addition to the hydrocarbons.

A well that is designed to produce mainly or only gas can be indicated as a gas well. The production from
the well can be started or stopped by opening or closing the choke valve at the top of the well (i.e. the well
head). Just before opening the valve, there is a large pressure drop over the valve (typically 50 to 300 bar).
When the flow goes through the valve with such a large pressure drop, there is also a large temperature drop
that will cool down the steel of the piping downstream of the well head to very low temperatures. This is due
to the so-called Joule-Thomson effect, wherein a gas will be cooled down during a depressurization. With a
composition of gas rich in light fractions (methane, ethane) and a large pressure difference the fluid temper-
ature can drop to a value as low as -100 ◦C. In this low temperature range there is an increased risk of brittle
fracture of materials (sudden failure without plastic deformation), which poses a significant risk to the asset
integrity.

There are various incidents in the oil and gas industry that are due to this low-temperature phenomenon.
In September 1998 the Esso plant at Longford in Victoria (Australia) had a major fire. Two men were killed
and the state’s gas supply was interrupted for two weeks, causing chaos in the local industry and consider-
able hardship in houses which were dependent on the domestic gas supply. What happened was that a warm
liquid system (known as the “lean oil” system) failed, allowing a metal heat exchanger to become intensely
cold and therefore brittle. When operators tried to reintroduce warm lean oil, the vessel was fractured and
released a large quantity of gas which found an ignition source and exploded. Figure 1.1 denotes the failure
of the heat exchanger after the explosion, according to [19].

As follow-up to this serious brittle fracture incident, a number of guidelines have been developed for the
design of new structures and the maintenance of existing assets subjected to low temperatures. Avoiding
brittle fracture is one of the main Process Safety Basic Requirements, PSBR 8, used within Shell [6].

To control the flow in a well, a choke valve is used at the well head. When gas flows through this choke
valve during a cold, low-pressure start-up, the large pressure drop leads to supersonic flow with shock waves
formed downstream of the choke. The initial flow expansion through the choke is isentropic, which results
in a very low fluid or gas temperature upstream of the shock. The larger the pressure drop, or the larger the
expansion ratio, the stronger the shock and the lower the minimum fluid temperature. Thus, the accurate
prediction of the location and strength of the shock is necessary for the thermal behaviour in the choke.

One of the operations in which very low temperatures are a concern is the already mentioned cold, low-
pressure start-up of a well. This scenario is carried out as follows:

• After normal production, the well has been shut-in for a long period of time such that it has reached
ambient conditions (“cold”). For oil wells, a gas cap usually has formed at the top of the well. For gas
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2 1. INTRODUCTION

wells, the production column of the well will be filled with gas. There will be a high pressure upstream
of the closed choke valve (the value of which depends on the reservoir pressure and of the weight of the
fluid column in the well).

• The flow line downstream of the wellhead choke has been depressurized to prevent the formation of
hydrates at shut-in, which gives a low pressure downstream of the choke.

• The choke valve at the well head is opened. The by-passing gas expands and starts to cooldown the
piping immediately downstream of the choke. After some time warmer fluids from the reservoir reach
the well head, which stops the cooldown process. The minimum in the temperature found for the
materials during this start-up process should not fall below the Lower Design Temperature (LDT).

Figure 1.1: Cold brittle fracture at the heat exchanger after the Esso Longford gas explosion.

1.1. RESEARCH GOAL
Shell Projects and Technology has asked Imperial College in London to set up an experiment to study the flow
field and the heat transfer from the flowing fluid to the pipe wall for the expanding gas through an orifice. In
this experiment an argon jet was expanding from 120 bara to ambient pressure into a rectangular box, where
four wall boundaries are defined. In parallel to this experiment CFD calculations have been carried out using
the commercial package STAR-CCM+, the results of which are given in [17]. In order to further validate and
completely understand the simulations, a second commercial CFD package, Fluent, has also been applied.
This modelling in Fluent is the topic of the present Master Thesis.

The overall goal of this thesis is to determine how Joule-Thomson cooling induced by an expanding real
gas jet through an orifice affects the cooldown of the surrounding wall materials. The Fluent results were
also compared with the existing simulation results obtained with STAR-CCM+. It was found that the two CFD
tools gave different results although the input was quite similar. To clarify this difference in the flow field a
mesh dependence study was carried out. Furthermore a MATLAB model was built, that solved the inviscid,
incompressible flow equations. This allowed comparing the inviscid results with the viscous results obtained
with STAR-CCM+ and Fluent.
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1.2. METHOD
The ultimate goal of this study is to use Computational Fluid Dynamics to obtain an accurate estimation of
the temperature of the fluid and of the inner wall for an expanding gas layer through a valve with high pres-
sure drop. This can help to improve the guidelines for the design of the cold, low-pressure start-up of wells,
eliminating the risk of brittle fracture.

In the lab experiment and in the simulation model the choke inlet and choke outlet were both 1.55 mm
in diameter The fluid at 256 K was expanded through the nozzle from 120 bara to 1 bara. Simulations were
made with both the inviscid and viscous, compressible equations. Both the ideal gas and the real gas de-
scriptions were used. The well-known analytical 1D solution for the inviscid, compressible equations with
an ideal gas (gas dynamics) was considered. In addition the two-dimensional, axi-symmetric inviscid gas
dynamics theory has been used in a MATLAB solver for an even better description. The solver applied the
method of characteristics for a supersonic rotational flow. These inviscid solutions were also compared with
the FLUENT results. The latter are obtained by solving the viscous flow equations (RANS, Reynolds-Averaged
Navier-Stokes Equations), using a k −ω model for the turbulence.

The effects of real gas properties and of the gas viscosity on the minimum temperature were also evalu-
ated. The minimum temperature is lower for a real gas than for an ideal gas due to Joule-Thomson cooling
(J-T cooling), which is zero for ideal gas. The fluid was chosen to be argon, because it has a cooling J-T coef-
ficient that is comparable to methane gas (note that in the experiments carried out a Imperial College, it was
saver to use argon than methane). The overall cooling far enough downstream of the choke, where veloci-
ties were low enough, was only due to J-T cooling (isenthalpic expansion) and was independent of the choke
size. Thus, to account for J-T cooling, it is important to model the fluid as a real gas. The outlet temperature
due to J-T cooling was calculated to be 196 K, a 60 K drop from the inlet temperature. The calculations were
firstly done with an adiabatic wall condition (Neumann boundary conditions). Thereafter also Dirichlet (or
first-type) boundary conditions were used at the walls, and the heat transfer through the wall was determined
from the simulation results.

1.3. SOFTWARE
Three software programs were used in this thesis. The first one is Fluent, which is an ANSYS CFD package.
This tool was used to execute the CFD simulations. Computational power was obtained by clusters from Shell
and the TU Delft to speed up the calculations. The second program was MATLAB, in which we programmed
a solver for the inviscid gas dynamics of a supersonic jet. Furthermore MATLAB was used to create the plots
from the CFD results. The third program used in this thesis is a thermodynamic tool, REFPROP or Flashmate,
which can calculate the Joule-Thomson cooling from applying an isenthalpic flash from a high pressure to a
low pressure.





2
PRINCIPLES OF FLUID FLOW IN A FREE

UNDER-EXPANDED JET

In order to understand the principles of the fluid flow trough a nozzle, the basic physics of the nozzle flow
and the resulting jet have to be explained. This can help to understand the benchmark results obtained with
the detailed simulations that will be considered in the next chapters of this thesis.

2.1. ORIFICE/NOZZLE
In fluid dynamics, the (subsonic) velocity of a fluid parcel will increase when it passes through a constriction,
in accordance with the principle of mass continuity, while the static pressure must decrease in accordance
with the principle of conservation of mechanical energy. Thus any gain in kinetic energy that a fluid parcel
may obtain due to its increased velocity through a constriction is balanced by a drop in the pressure. By
measuring the change in pressure, the flow rate can be determined, as is done in various flow measurement
devices such as venturi meters, venturi nozzles and orifices.

The Venturi effect [7], which also occurs in an orifice, is the reduction in fluid pressure that results when
a fluid flows through a constricted section (or choke) of a pipe. The Venturi effect is named after an Italian
physicist: Giovanni Battista Venturi (1746–1822).

Figure 2.1: Orifice geometry with sharp edge.

2.1.1. CHOKED FLOW
Choked flow is a phenomenon that limits the mass flow rate of a compressible fluid flowing through nozzles,
orifices and sudden expansions. The limiting case is when a fluid reaches the state of choked flow, where the
fluid velocity approaches the local speed of sound (Mach number M =V /a = 1). Generally speaking it is the
mass flux after which a further reduction in the downstream pressure or the further increase of the upstream

5



6 2. PRINCIPLES OF FLUID FLOW IN A FREE UNDER-EXPANDED JET

pressure will not result in an increase in mass flow rate. Choked flows do not only occur during a well start-up
but also in power generation and in chemical process industries where, without a more precise knowledge of
the critical flow behaviour, the safety or performance of a system may be compromised.

Choked flows come in a variety of shapes depending on the application: from small leakages of pressure
vessels [9] to space applications [8]. In figure 2.1 a schematic is drawn of an orifice geometry with a sharp
edge. The Normal Pressure Ratio (NPR) over the orifice plays a crucial role in the expansion characteristics of
the gas, denoted by:

N PR = P0

Pout
, (2.1)

where P0 is the upstream pressure (assuming a large reservoir with zero fluid velocity) and Pout is the (static)
downstream pressure. The critical pressure ratio is obtained when there is choked flow (or critical flow) in the
throat of the orifice or valve, which is when :

P0

P∗ = (
2

γ+1
)

−γ
γ−1 , (2.2)

where γ is the ratio of the specific heat capacities of the gas (i.e. γ = cp /cv ), P∗ is the static downstream
pressure, and P0 is the total upstream pressure. At critical flow the Mach number in the throat is equal to one,
i.e. the fluid velocity in the throat is equal to the velocity of sound. If the NPR is lower than the critical value,
then sonic flow cannot occur in the throat. If the NPR is higher than the critical value, then the fluid will
accelerate towards a Mach number of 1 in the orifice/nozzle and further increase to supersonic properties
downstream of the throat. For a choked flow in the nozzle or orifice, the critical area is the same as the area
of the nozzle exit:

Ac = Anozzle (2.3)

The critical quantity is denoted by the sub-script ’c’. The mass flow across a choked nozzle is only dependent
on the stagnation pressure P0 and on the temperature T0 of a particular ideal gas:

m∗
nozzle = m∗

c = Ac

√
γ

Rg

P0p
T0

(
2

γ+1
)

γ+1
2(γ−1) (2.4)

Here Rg is the universal gas constant and T0 is the upstream temperature. Note that the difference between
a nozzle and an orifice is the smoothness of the converging geometry towards the throat. For a nozzle the
throat is gradually reached, whereas in an orifice the throat is an abrupt occurrence in the flow stream.

2.1.2. FLOW IN CONVERGING NOZZLES
The compressible flow in a converging nozzle has been studied by many authors like Shapiro [18]. The pres-
sure difference between the two sides of the converging nozzle will result in a jet. The properties of the jet
across the length of the nozzle are dependent on the stagnation pressure and temperature and on the area
ratio at any point (the area ratio is the ratio of the local cross section and the cross section in the throat). Up to
the location where a shock occurs, the flow can assumed to be isentropic. Figure 2.2 describes the isentropic
flow through a converging-diverging nozzle (which can also be referred to as a Laval tube). The gas enters the
inlet from a wide area (reservoir) which has the stagnation conditions. The gas reaches sonic conditions at
the throat where the area section is at its minimum. The gas is expanded isentropically to supersonic con-
ditions in the diverging section. In this section an under-expanded jet is formed which exits the diverging
section at the downstream end (note that "under-expanded" refers to a pressure condition that is still above
the ambient pressure value).

At any point across the length of the nozzle a Mach number (M) of the flow can be given as function of
the cross section area at that point:

A

A∗ = 1

M

(
(

2

γ+1
)(1+ γ−1

2
M 2)

)(γ+1)/(2γ−2)

(2.5)

The density, pressure and temperature of the gas can be expressed as a function of the local Mach number:

ρ0

ρ
=

(
1+ γ−1

2
M 2

) 1
γ−1

(2.6)



2.2. FREE UNDER-EXPANDED JET 7

Figure 2.2: Converging-diverging nozzle.

T0

T
= 1+ γ−1

2
M 2 (2.7)

P0

P
=

(
1+ γ−1

2
M 2

) γ
γ−1

(2.8)

These expressions are obtained by assuming that the flow can be described by the inviscid, one-dimensional
flow equations.

2.1.3. SONIC FLOW IN PIPE SECTION
The compressible fluid flow through constant area nozzles cannot be governed by a changing cross sectional
area as given in equation 2.5. The flow is driven by the pressure gradient applied across the length of the
nozzle or pipe. Due to the finite viscosity of the flow, a boundary layer will develop along the wall of the pipe
section, which leads to a decrease of the apparent pipe diameter, as experienced by the expanding jet. The
increasing thickness of the boundary layer can thus lead to a point in the pipe section where the flow reaches
a sonic condition. This type of expansion is referred to as a Fanno flow, see [16].

2.2. FREE UNDER-EXPANDED JET
A fluid is initially present in a large reservoir with a total pressure P0. From here the fluid flow through a
nozzle, where it reaches the sonic velocity (see [11]). At the exit of when it further expands in downstream
direction. When the pressure of the jet at the exit of the nozzle Pe is higher than that of the ambient back
pressure Pout , this results in a so-called under-expanded jet. The reservoir pressure is larger than the am-
bient pressure, which classifies the nozzle as underexpanded. The underexpanded gas jet expands to the
atmospheric pressure by means of an expansion fan. The boundary of the freely expanding gas jet causes the
expansion waves to be reflected as compression waves.

Figure 2.3 shows the structure of an under-expanded jet emerging from a converging nozzle. The choked
flow has M = 1 at the exit of the nozzle. At the exit the pressure has the value Pe . Thereafter the fluid ex-
pands rapidly through an expansion fan, and the pressure decreases to reach the value Pout . The expansion
waves intercept the jet boundary and are converted to compression waves, which are deflected towards the
centreline. The compression waves converge to form an intercepting shock. Closer to the centreline, the jet
flow is forced to turn parallel to the direction of the centreline, which gives the normal (first) shock; this phe-
nomenon is called the Mach disc, named after Ernst Mach who was the first to describe its existence. The
second shock is the reflected oblique shock, which is normal to the centreline. The third shock is another
oblique shock wave which is reflected at the boundary as an expansion fan. The shocks mark the boundaries
between supersonic and subsonic flow regions. In downstream direction this pattern of shocks is repeated
which gives a pattern of diamonds with supersonic flow.
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Figure 2.3: Characteristic of the first cell of an underexpanded gas jet.

Large gradients in the pressure and temperature occur when the fluid passes through a normal shock
or through a Mach disk. Thus due to the large difference between the reservoir pressure and the ambient
pressure, the under-expanded gas jet forms a repeating and decaying series of shock waves and expansions
waves until the ambient pressure is reached. There are several parameters that affect the flow pattern for
the jet flow discharged from a straight or converged nozzle. These are: the nozzle diameter, the nozzle exit
pressure and the ambient pressure. When the pressure ratio is more than two the jet is denoted as a highly
under-expanded jet (Ref. [3]).

2.2.1. LABORATORY SUPERSONIC JETS

The jet structures as were shown in the figures above are idealizations of the actual flow. Figure 2.4 shows a
more realistic steady-state structure for an over-expanded jet. The Mach reflections that occur have a regu-
lar shape, but the mixing layer, which is formed as a result of the Kelvin-Helmholtz instability, changes the
supersonic core of the jet. When the mixing layer reaches the axis of the jet, the flow is fully turbulent and
subsonic. This is somewhat comparable to the plume of a cigarette; because of the turbulent boundary layer
the wave structures within the core are not steady state anymore. However, time-averaging can be applied to
the unsteady flow to find, for example, the shock location.

2.2.2. MACH DISK CHARACTERISTICS

Many of these flow structures including Mach disks, barrel shocks, and shear layers, are clearly visible in the
flow pattern of an expanding yet. The location, shape and size of such structures, as observed in lab experi-
ments, provide quantitative data that can be used for the validation of the solutions of computational models.
For the present study, we have chosen three readily identifiable flow structure dimensions to compare with
computational results. These three dimensions, indicated in Fig. 2.5, are: the Mach disk location (xm), the
Mach disk diameter (Dm) and the primary wavelength (w) of the flow, where in figure 2.4 the wavelengths are
defined as w1,w2 and w3.
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Figure 2.4: Realistic steady-state structure of an over-expanded supersonic jet.

WAVELENGTH

Several theories have been developed for the prediction of the primary wavelength, which is the length of
the first periodic segment of the free supersonic jet; see for example Pack et al. [13]. The assumption that
the wavelength normalized with the diameter is independent of M and only a function of the ratio between
the reservoir pressure and the ambient pressure has turned out to be insufficient. Based on lab experiments
there is an empirical relation to describe the variation of w/d . There is a sudden change in the variation of
w/d due to the reappearance of the Riemann wave within the jet that occurs at about P0/Pout :

w

De
= 1.52(

P0

Pout
)0.437 +0.5(

1

1.55

√
P0

Pout
−2−1) (2.9)

The yellow curve in figure 2.6 shows the wavelength as function of the NPR.

DIAMETER OF THE MACH DISK

Crist et al. [5] carried out experiments for under-expanded free jets to derive the following empirical expres-
sion for the diameter Dm of the Mach disk:

Dm

De
= 0.36

√
P0

Pout
−3.9 (2.10)

The red curve in figure 2.6 shows the Mach disk diameter as function of the NPR.

LOCATION OF THE MACH DISK

In addition Love et al. [10] performed an experiment to validate Crist’s expression for the location of the Mach
disk:

xm

De
= 0.65

√
P0

Pout
(2.11)

The red curve in figure 2.6 shows the location of the Mach disk as function of the NPR.

This relation allows a “local” check of our numerical results in the highly-compressible fluid region. An
observation from this empirical relation is the fact that the Mach disc location is not dependent on the ther-
modynamic parameter γ (fluid nature).

2.2.3. SCHLIEREN PATTERNS
Schlieren methods are often used in experiments of compressible flows to obtain a flow visualization. Schlieren
measures the gradient in the fluid density and hence shows any pressure waves in the system. To compare
the flow field obtained in simulations with the Schlieren measurements, a numerical Schlieren function can
be defined that is based on the density gradient as:
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Figure 2.5: Main flow structures of interest, including: the nozzle exit diameter De , The Mach disk diameter Dm , the distance to the
Mach disk xm and the primary wave length of the jet w .

S = exp(−a
‖∇ρ‖

‖∇ρ‖max
) (2.12)

Here ‘a’ is an adjustable parameter, which can be varied to obtain the required contrast between the back-
ground and foreground of the image.

2.3. JOULE-THOMSON EFFECT
In thermodynamics, the Joule-Thomson effect or Joule-Kelvin effect explains the increase or decrease in the
temperature of an actual gas when it is allowed to expand freely through a valve, or through another throttling
device like a nozzle or choke, while being kept fully insulated from the ambient, so that no heat is transferred
to or from the gas, and no external mechanical work is extracted from the gas. This gives an isenthalpic ex-
pansion. This is referred to as the Joule-Thomson process or the throttling process [15].

The Joule-Thomson effect is named after James Prescott Joule and William Thomson, 1st Baron Kelvin
who discovered it in 1852 following an earlier study by Joule on Joule expansion, in which a gas experiences
free expansion in a vacuum.

The JT effect does not apply for ideal gases because there is no temperature variation when an ideal gas is
allowed to expand through an insulated throttling device. The adiabatic expansion of a gas may be performed
in many ways. The change in temperature undergone by the gas during expansion depends not only on the
initial and final pressure, but also on the way in which the expansion is performed. If the expansion proce-
dure is reversible, indicating that the gas is in thermodynamic equilibrium at all times, there is an isentropic
expansion. Such an isentropic process can be maintained up to the location of a shock.

When a gas expands, the average distance between molecules increases. Due to intermolecular attractive
forces, expansion causes an increase in the potential energy of the gas. If no external work is extracted and
no heat is transferred, the total energy of the gas remains constant due to the conservation of energy. The in-
crease in potential energy thus indicates a decrease in kinetic energy and therefore a decrease in temperature.
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Figure 2.6: Non-dimensionalized lengths of various Mach disk properties.

Figure 2.7: Schlieren flow visualization. (Source: [4])

During collisions of gas molecules, kinetic energy is momentarily converted into potential energy. When
the average intermolecular distance increases, there is a decrease in the number of collisions per time unit,
which causes a drop in the average potential energy. Furthermore, the total energy must be kept constant,
thus this causes an increase in kinetic energy (temperature). Below the Joule-Thomson inversion tempera-
ture, the former effect (work done internally due to intermolecular attractive forces) at free expansion leads
to a drop in the temperature.

In a Joule–Thomson process the enthalpy is kept constant. To verify this, the first step is to calculate
the net work done by the gas that moves as a plug. Assume that the gas has a volume of V1 in region 1 at
pressure P1 and a volume of V2 when it comes to the region 2 at pressure P2. Then the work done on the
gas by the remainder of the gas in region 1 is P1V1. In region 2, the quantity of work done by the gas is P2V2.
Consequently, the total work done by the gas is:

P1V1 −P2V2 (2.13)

Due to the first law of thermodynamics, the change in internal energy plus the work done by the gas is the
total quantity of heat absorbed by the gas (here it is assumed that there is no change in kinetic energy). In the
Joule-Thomson process the gas is kept insulated, thus no heat is absorbed. This means that
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Table 2.1: Joule-Thomson warming or cooling effect.

µ j t ∂p ∂T J-T effect
+ Always negative Negative Cooling
- Always negative Positive Warming

E2 −E1 +P2V2 −P1V1 = 0 (2.14)

where E1 and E2 indicate the internal energy of the gas in regions 1 and 2, respectively. The equation
above then implies that:

H1 = H2 (2.15)

where H1 and H2 indicate the enthalpy of the gas in regions 1 and 2, respectively.

Figure 2.8: Joule–Thomson coefficients for various gases at atmospheric pressure (source: http://webbook.nist.gov/).

The rate of change of temperature T with respect to the pressure P at constant enthalpy H is the Joule–Thomson
(Kelvin) coefficient µ = ( ∂T

∂P )H . In a gas expansion the pressure reduces, hence the sign of ∂p is always neg-
ative. With that in mind, table 2-1 gives details about when the Joule-Thomson effect cools or warms a real
gas.

Hydrogen and helium are, for example, two gases that will warm up during JT expansion at typical room
temperatures, whereas on the other hand nitrogen and argon are cooled down by a JT expansion, see figure
2.8.



3
OVERVIEW OF PHYSICAL AND NUMERICAL

MODELS

Most simulations in the present study are done using steady, compressible and three-dimensional (and also
two-dimensional) conditions. The governing equations defining the physical behaviour are briefly discussed
in the next few sections. Some relations will be used in this report. Furthermore an overview is given of the
numerical approaches used to solve the system of unknowns. Here a control volume based technique is used
to convert the governing equations to algebraic equations that can be solved numerically. This control vol-
ume technique consists of integrating the governing equations for each control volume. This yields discrete
equations that conserve each quantity on a control volume basis. Both the mass, momentum, and energy
conservation equations are solved sequentially.

3.1. INTEGRAL FORM OF THE CONSERVATION LAW
Consider a control volume with a volume V and surface S = dV , see figure 3.1. Let dV and dS be a small
volume and surface element, respectively. Further let n̄ be the outward unit vector normal to dS. The inte-
gral form of the conservation laws for mass, momentum and energy are determined as follows (and will be
followed by some comments on the different laws):

• Mass conservation:
d

d t

∫ ∫ ∫
V
ρdV︸ ︷︷ ︸

1.1

+
∫ ∫

S
ρV̄ · n̄dS︸ ︷︷ ︸

1.2

= 0 (3.1)

• Momentum conservation:

d

d t

∫ ∫ ∫
V
ρV̄ dV︸ ︷︷ ︸

2.1

+
∫ ∫

S
ρV̄ V̄ · n̄dS︸ ︷︷ ︸

2.2

+
∫ ∫

S
p · n̄dS︸ ︷︷ ︸
2.3

=

∫ ∫ ∫
ρ f̄ dV︸ ︷︷ ︸

2.4

+ F̄vi sc︸ ︷︷ ︸
2.5

+ F̄exter nal︸ ︷︷ ︸
2.6

(3.2)

• Energy conservation

d

d t

∫ ∫ ∫
ρE dV︸ ︷︷ ︸

3.1

+
∫ ∫

S
ρEV̄ · n̄dS︸ ︷︷ ︸

3.2

+
∫ ∫

pV̄ · n̄dS︸ ︷︷ ︸
3.3

=

∫ ∫ ∫
ρ f̄ · V̄ dV︸ ︷︷ ︸
3.4

+ Q︸︷︷︸
3.5

+Ẇvi sc+ext︸ ︷︷ ︸
3.6

(3.3)

13
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Figure 3.1: Control volume

Comments

1. Mass conservation:

(a) time rate of change of mass inside volume V

(b) net mass flow out of volume V through surface S

2. Momentum conservation:

(a) time rate of change of momentum inside volume V

(b) net flow of momentum across surface S

(c) surface force due to pressure p force

(d) body forces

(e) viscous forces

(f) external forces (strut force, enclosure force)

3. Energy conservation:

(a) time rate of change of energy inside volume V

(b) net flow of energy across surface S

(c) work on fluid by pressure p force

(d) work done by body forces

(e) heat added to the fluid; radiation, conduction or condensation

(f) work done by viscous and external forces

The only assumption that has been made is that the integrals are integrable in volume V and over dV . These
integrands are allowed to have discontinuities. This makes that the integral forms of the conservation laws
widely applicable.

3.1.1. DIFFERENTIAL FORM OF THE FLOW EQUATIONS
To derive the differential form of the flow equation the surface integrals in the integral form have to be trans-
formed into a volume integral by using the divergence theorem and the gradient theorem.

Divergence theorem: ∫ ∫ ∫
V
∇· ĀdV =

∫ ∫
Ā ·ndS (3.4)

Gradient Theorem: ∫ ∫ ∫
V
∇pdV =

∫ ∫
pn̄dS (3.5)
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Assuming that V is fixed in space and arbitrarily chosen, the integrand has to be zero for all point in space.
This results into:

Continuity equation
∂ρ

∂t
+∇·ρV̄ = 0 (3.6)

Momentum equation
∂

∂t
ρV̄ +∇·ρV̄ V̄ +∇p = p f̄ (3.7)

Energy equation
∂

∂t
ρE +∇·ρV̄ E +∇·pV̄ = pV̄ · f̄ (3.8)

With H = E + P
ρ , we have that ∇· V̄ E +∇·pV̄ =∇·ρHV̄ .

3.1.2. EULER EQUATIONS
The above equations describe a mathematical model of compressible flows, where the effects of viscosity,
heat conduction and external heating have been neglected. When also the the external force is neglected, the
following so-called Euler equations are found:

∂ρ

∂t
+∇·ρV̄ = 0 (3.9)

∂

∂t
ρV̄ +∇·ρV̄ V̄ +∇p = 0 (3.10)

∂

∂t
ρE +∇·ρV̄ E +∇·pV̄ = 0 (3.11)

3.2. DISCONTINUITIES IN COMPRESSIBLE FLOW
The Euler equations allow for the appearance of discontinuities or so-called weak solutions, where certain
relations hold. Before these relations will be derived, the physical aspects of three different types of disconti-
nuities will be discussed.

3.2.1. SHOCK WAVE
A shock wave [12] is a flow structure that is characterized by an abrupt, nearly discontinuous change in pres-
sure, temperature and density. Shock waves mark a change from supersonic flow to subsonic flow. For steady
shocks it is known that the tangential velocity component is constant over the shock while the normal velocity
component decrease. A shock wave can be of one of the following types:

• Normal: at 90° (perpendicular) to the flow direction.

• Oblique: at an angle to the flow direction.

• Bow: occurs upstream of the front (bow) of a blunt object when the upstream flow velocity exceeds a
Mach number of 1.

3.2.2. SHEAR WAVE
A shear wave moves with the velocity normal to its front. The fluid on either side of the discontinuity has a
normal velocity that is equal to the wave velocity. The tangential velocity remains constant across the wave.
The motion is perpendicular to the direction of the wave propagation.

3.2.3. CONTACT DISCONTINUITY
A contact discontinuity has a surface with a a jump in p, ρ and T jump, while there is no gas flow across it.
Hereby the contact discontinuity is convected with the fluid velocity. An example of a contact discontinuity is
the boundary between a supersonic jet and the ambient gas. Often a contact discontinuity and a shear wave
are superimposed.



16 3. OVERVIEW OF PHYSICAL AND NUMERICAL MODELS

3.2.4. JUMP RELATIONS
Consider a shock discontinuity with the properties ρ1,u1,p1,h1 upstream of the shock and the properties
ρ2,u2,p2,h2 downstream of the shock. The starting point is formed by the Euler equations and by consider-
ing the special case that the discontinuity is steady. The well-known Rankine-Hugoniot relations for steady
normal shock waves are as follows:

ρ1u1 = ρ2u2 (3.12)

ρ1u2
1 +p1 = ρ2u2

2 +p2 (3.13)

h1 +0.5u2
1 = h2 +0.5u2

2 (3.14)

The jump relations are invariant under exchange from 1 to 2. This means that the jump relations cannot
tell which state is found upstream of the shock and which state downstream of the shock. Since viscous
dissipation and heat conduction take place, the shock is an irreversible process. When it is assumed that
there is no external heat addition to the shock, the shock process is adiabatic. For irreversible, adiabatic flow
the entropy will increase across the shock, i.e. d s > 0. This is called the entropy condition, which determines
the allowable direction of the flow through the shock (namely only supersonic upstream of the shock, and
subsonic downstream of the shock is physically possible) . From formula 3.12-3.13 many useful relations can
be derived:

p2

p1
= 1+ 2γ

γ+1
(M 2

1 −1) (3.15)

ρ2

ρ1
= γ+1

2+ (γ−1)

M 2
1

M 2
2

(3.16)

T2

T1
= {1+ 2γ

γ+1
(M 2

1 −1)}
2+ (γ−1)M 2

1

(γ+1)M 2
1

(3.17)

where M1 = u1/a1 is the Mach number upstream of the shock.

Figure 3.2: Finite volume discretization (Greenshield et al. 2009)
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3.3. COMPUTATIONAL METHODS
In the finite volume method the computational domain is divided into several cells or control volumes. Fig-
ure 3.2 shows a typical control volume. Neighboring control volumes are connected to each other by a face f
represented by the area vector S f . The figure shows the unknowns P and N at the centres of two neighbour-
ing cells. The partial differential equations (PDEs) are integrated over these control volumes.

The next step is discretization in which the volume and surface integrals are transformed in a set of linear
algebraic equation involving values of the fluxes of the primary variable ψ f . The values of the face of the
control volumes are found through interpolation of the flux values at the centres ψP and ψN respectively.
The detailed procedure of discretzation and interpolation will be explained in the next sub-sections.

3.3.1. DISCRETIZATION OF CONVECTIVE TERMS

The convective terms in the governing Euler equations are ∇·[(ūρ)],∇·[ū(ρū)] and∇·[ū(ρE)]. Each convective
term is integrated over the control volume and linearized in the following way.∫

V
∇· (ūψ)dV =

∫
S

dS · (ūψ) =∑
f

S f ·u f ψ f =
∑

f
φ f ψ f (3.18)

Where
∑

f is a summation over all faces and φ f = S f ·u f is the volume of fluid passing through the face
per unit time, also known as the volumetric flux.

For obtaining the value of u f , the central difference method is used which is the linear interpolation of
u with respect to the neighbour cells. The value of ψ f is obtained through spitting the flux in two directions
(incoming and outcoming direction). The quantifies are represented as f+ and f−. The weighting function α
is defined by:

α= φ f +
φ f ++φ f −

(3.19)

The above discretization leads to:

∑
f
φ f ψ f =

∑
f

[αφ f +ψ f ++ (1−α)φ f −ψ f −] (3.20)

Volumetric fluxes associated with the local velocities can be calculated as follows:

φ f + = |S|max[(ū f ++a f +), (ū f −+a f −),0] (3.21)

φ f − = |S|max[(ū f +−a f +), (ū f −−a f −),0] (3.22)

Where a f ± is the speed of sound at the face, both in outward and inward direction of the owner cell,
which can be expressed as

a f ±=
√
γRT f pm (3.23)

3.3.2. DISCRETIZATION OF GRADIENT TERMS

All the gradient terms of the governing equation are converted from a volume integral into a surface integral
through: ∫

V
∇ψdV =

∫
S

dSψ=∑
f

S f ψ f (3.24)

By using the interpolation procedure of ψ f with the split in the f+ and f− directions, the following dis-
cretisation results: ∑

f
S f ψ f =

∑
f

[αS f φ++ (1−α)S f φ f −] (3.25)
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3.3.3. DISCRITISATION OF LAPLACIAN TERMS
The Laplacian terms are discretised with the diffusion coefficient η for polyhedral meshes in the following
way: ∫

V
∇· (η∇ψ)dV =

∫
s

dS · (η∇ψ) =∑
f
ηS f · (∇φ) f (3.26)

The evaluation of the diffusion flux S f · (∇ψ) f is split into orthogonal and non-orthogonal components.

3.3.4. DISCRETIZATION OF TEMPORAL TERMS
The temporal terms in the Euler equations are discritized using the Euler explicit scheme (δt is the time step):∫

V

∂ψ

∂t
= (ψn+1 −ψn)dV

δt
(3.27)

Figure 3.3: The three characteristics

3.4. CHARACTERICS OF THE FLOW
For the numerical discretization of a compressible flow problem an important aspect is the correct treatment
of the boundary conditions. Due to the discontinuities in the Euler solution the solution of high velocity
compressible flow problems has a wave-like behaviour. By obtaining the eigenvalues of the Jacobian matrix
of the flow equations a local speed of propagation of the waves can be found. The eigenvalues for a 3-D
compressible flow system obtained as a results of the procedure can be expressed as:

λ1 = u −a obtained from the mass equation (3.28)

λ1 = u obtained from the momentum equation (3.29)

λ1 = u −a obtained from the energy equation (3.30)

3.5. SUPERSONIC JET FLOW
As mentioned before a supersonic jet can be formed by expanding a fluid from a high reservoir pressure reser-
voir, through a nozzle, into a low-pressure ambient. The distance between successive shocks is dependent
on the overall jet pressure. The development of the jet can be calculated by using the method of character-
istics. The method of characteristics applied to supersonic flow is described in various text books; details of
the derivation are given in [2]. The derivation of the characteristic relations from the conservation equations
of mass, momentum and energy is quite straightforward; the present section describes the results as far as
relevant for jet flows. Both two-dimensional and axi-symmetric flows are considered, which show a substan-
tial difference in the approach to solve the equations. The characteristic equations for potential flow are used
throughout; viscosity is neglected and the entropy and total enthalpy are taken to be constant in the entire
flow field.



3.5. SUPERSONIC JET FLOW 19

3.5.1. TWO-DIMENSIONAL PLANAR FLOW
The characteristic equations for two-dimensional flow can be simply expressed in terms of the velocity com-
ponents u and v , in the x and y directions, along two families of lines. Along the line belonging to the first
family defined by

t1 = d y

d x 1
= t an(θ+µ) (3.31)

the equation

du + t2d v = 0 (3.32)

applies, and along a line belonging to the second family, defined by

t2 = d y

d x 2
= t an(θ−µ) (3.33)

the corresponding relation is

du + t1d v = 0 (3.34)

Here θ is the direction of the streamline with respect to the x-axis andµ is the Mach angle,µ= si n−1(1/M).
Transforming to polar coordinates q , θ in the hodograph plane defined by

u = qcosθ v = qsi nθ
du = d qcosθ−qsi nθdθ
d v = d qsi nθ+qcosθdθ

(3.35)

equations 3.32 and 3.34 can be written as:

d q

dθ

√
1− 1

M 2 =± q

M
(3.36)

or

d q

q
=±t anµdθ (3.37)

Here the positive sign corresponds to equation 3.32 and the negative sign to equation 3.34. Replacing q
in equation 3.37 by the Mach number with the relation

d M

M
= d q

q
(1+ γ−1

2
M 2) (3.38)

gives

±dθ =
p

M 2 −1d M

(1+ γ−1
2 M 2)

(3.39)

which can be integrated directly to

±dθ = cos−1 1

M
− γ+1

γ−1
t an−1

√
(M 2 −1)

γ−1

γ+1
+Constant (3.40)

ν is the Prandtl-Meyer angle defined as:

±dθ =−ν(M)+Constant (3.41)

The positive sign in equations 3.40 and 3.41 corresponds to equation 3.34, the (θ−µ) family, and the
negative sign to equation 3.32, the (θ+µ) family. Suppose that the flow conditions at two point A and B are
known, where A is on a (θ+µ) line B is on a (θ−µ) line, see figure 3.4. The flow conditions at C where the two
lines intersect can be found from equation 3.41. At A and B :

Constanta = ν(Ma)−θa (3.42)
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Figure 3.4: General field point intersection of characteristic lines.

Constantb = ν(Mb)+θb (3.43)

At C , the flow direction θc and the Prandtl-Meyer angle are:

θc = Constantb −Constanta

2
(3.44)

θc = Constanta +Constantb

2
(3.45)

The coordinates of C are found by using the equations for the characteristic line AC and BC by taking the
mean of θ and µ at A and C , B and C :

yc − yb

xc −xa
= t an(

θa +µa +θc +µc

2
) (3.46)

yc − yb

xc −xb
= t an(

θb −µb +θc −µc

2
) (3.47)

Characteristic lines intersecting with a solid surface of specified shape can be dealt with in a similar man-
ner. Consider a (θ−µ)b line passing through a point B where the flow conditions are known, figure 3.5. A first
approximation to the position of C is made by calculating where a straight line of slope (θ−µ)b intersects the
surface. As the surface is a streamline; θc is known and Mc can be found from equation 3.39. The mean slope
of the line BC is then used to calculate a new intersection point C ′ and the calculation is repeated until the
point of intersection does not change anymore.

The boundary that occurs in the calculation of jet flow is a constant (or specified) pressure boundary, 3.6.
The Mach number at C is known from the pressure ratio and the streamline direction θc can be found from
equation 3.39. The coordinates of C are determined from equation 3.40 except that the second equation is
replaced by:

yc − yb

xc −xb
= t an(

θb +θc

2
) (3.48)

3.5.2. AXISYMMETRIC FLOW
The characteristic equations for supersonic axisymmetric flow are more complexd than the two-dimensional
equations because the streamline direction and Mach number depend on the position of the coordinates.
The equations corresponding to 3.32 and 3.34 are, along the line defined by

t1 = dr

d x 1
= t an(θ+µ) (3.49)
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Figure 3.5: Intersection of characteristic lines for asymmetric flow

du + t1d v + v

r (1− u2

a2 )
d x = 0 (3.50)

and along the line

t2 = dr

d x 2
= t an(θ−µ) (3.51)

du + t2d v + v

r (1− u2

a2 )
d x = 0 (3.52)

where r is the radial coordinate. Transforming to the variables q , θ as before and substituting into equations
3.51 and 3.52 gives:

cotµ
d q

q
−dθ− si nµsi nθ

cos(θ+µ)

d x

r
= 0 (3.53)

cotµ
d q

q
+dθ− si nµsi nθ

cos(θ−µ)

d x

r
= 0 (3.54)

These equations cannot be integrated directly into a Prandtl-Meyer type-like flow because of the presece
of the radial coordinate in the last term. A solution for this can be obtained by writing equation 3.51 and 3.52
into a finite difference form and by iterating for the coordinates of the point where the lines intersect and
provide the flow conditions at this point.

As before, assume that the flow conditions are known at two point A and B on a different family of lines,
see figure 3.6. In finite difference form, equations 3.51 and 3.52 become

f2(qc −qa)− (θc −θa)− f3(xc −xa) = 0 (3.55)

along the line

rc − ra

xc −xa
= f1 (3.56)

and

f5(qc −qb)+ (θc −θb)− f6(xc −xb) = 0 (3.57)
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Figure 3.6: Pressure boundary point intersection of characteristic lines

along the line

rc − rb

xc −xb
= f4 (3.58)

where, as a first approximation:

f1 = t an(θa +µa)
f2 = cotµa

qa

f3 = si nθa si nµb
ra cos(θa+µa )

f4 = t an(θb −µb)
f5 = cotµb

qb

f6 = si nθb si nµb
rb cos(θb−µb )

(3.59)

The expressions for f1 and f4 substituted into equations 3.56 and 3.58 give a first approximation for the
coordinates of C , and these are substituted into equation 3.55 and 3.57; it will give initial values of qc and θc .
The solution is improved by using the conditions calculated for C (similar to equations 3.46 and 3.47):

f1 = t an( θa+µa+θc+µc
2 )

f2 = 0.5∗ ( cotµa
qa

+ cotµc
qc

)

f3 = 0.5∗ ( si nθa si nµb
ra cos(θa+µa ) +

si nθc si nµc
rc cos(θc+µc ) )

f4 = t an( θb−µb+θc−µc
2 )

f5 = 0.5∗ ( cotµb
qb

+ cotµc
qc

)

f6 = 0.5∗ ( si nθb si nµb
rb cos(θb−µb ) +

si nθc si nµc
rc cos(θc−µc ) )

(3.60)

The process is repeated by using the latest calculated values at C until convergence is reached. Normally
only a few iterations are needed (5-8 iterations). Lines intersecting with a specified surface and points on the
pressure boundary can be dealt with as in two-dimensional flow using the appropriate quantities fi . If there
is no inner boundary, the expressions for f3 and f6 above cannot be used since r and θ are both zero on the
centreline. A limiting form of the expression is used instead, which reads

lim
x→0
θ→0

si nθsi nµ

r cos(θ±µ)
=±[

1

2
cotµ

dν

d x
]r=0 (3.61)

3.5.3. UNDER-EXPANDED JET
An under-expanded jet exits from the orifice. At the exit the flow is parallel (θ = 0) and has a constant Mach
number M j et . For the choked flow configuration the Mach number is one, as was described in section 2.1.1.
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The jet exits into quiescent fluid having an ambient pressure pa . The pressure in the orifice is assumed to be
pe > pa causing a further expansion of the jet when flowing downstream.

Figure 3.7: Under-expanded jet, pexi t > pambi ent .

The flow is symmetric with respect to the centerline and therefore the discussion can be restricted to the
upper part only. Theere are various regions with different conditions. Region ABC contains a simple wave
with straight Γ−-characteristics. In region BCE two simple waves intersect. Region ACD is uniform with a
pressure that is equal to pa . Region CDEF contains a simple wave with straight Γ+-characteristics. Regiion
DFG covers both the invariants V + and V −. Region EFH is uniform with a pressure lower than pa . Region
FGHI contains a simple wave V + which is uniform; the Γ−-characteristics are straight. Region GIJ is uniform
with a pressure equal to pa . In region HIK two simple waves intersect. The boundary of the exhausting jet is
a line of constant pressure pa . There appears to be a repeated pattern of divergence and convergence of the
total jet area.

Figure 3.7 provides a sketch of this flow. The method of characteristics may now be used to find the devel-
opment of the jet outside the nozzle. At the outer lip of the nozzle exit (point A) a centered expansion appears
which reflects on the opposite jet boundary as a compression wave. In the expansion regime the characteris-
tics diverge, and in the compression part they converge to each other. When converging characteristics start
to intersect a shock wave will appear and the method of characteristics method breaks down. When contin-
uous waves intersect, the resulting wave pattern depends on the type of waves involved and on the direction
of propagation of the incident waves.

σshock = t an
(θ1 −µ1)+ (θ2 −µ2)

2
(3.62)

Figure 3.8: Compression waves of the same family converge and ultimately coalesce to form a shock wave.

Compression waves of the same family converge as in 3.8 and ultimately coalesce to form an oblique
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shock wave. The initiation of the oblique shock wave has the direction of the first two colliding characteris-
tics. Any shock wave causes a change in the pressure of the flow, an increase in this case. An oblique shock
wave is named after the fact that it is inclined at an angle to the direction of the flow passing through it.

On the other hand, a shock wave that is perpendicular to the direction of the flow is called a normal shock
wave. A normal shock can be seen in the above diagram when the flow again turns parallel to the centreline.
This normal shock creates a Mach disk in the exhaust flow. Passing through this normal shock wave causes the
temperature of the flow to increase. The calculation of the shock waves agrees with the shock wave relation
explained in chapter 2. Eventually, figure 3.9 gives an overview of the complete flow field (similar to the figures
given in chapter 2).

Figure 3.9: Wave structures that create shock diamonds in an under-expanded flow
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APPLIED COMPUTATIONAL FLUID

DYNAMICS METHOD

A numerical algorithm is used in Computational Fluid Dynamics (CFD) to solve fluid flow and heat transfer
problems. There are different commercial CFD packages available, among which ANSYS Fluent is considered
to be a major tool which is widely used by various industries. The ANSYS Fluent software (from this point
referred as Fluent) incorporates the modeling capabilities to describe flow with several features, such as heat
transfer, chemical reactions and multiphase flows. The website of fluent [1] was a good helping hand.

To solve the problems the computational domain needs to be divided into cells. The collection of cells
is commonly referred to as the ’grid’. Fluent covers the entire flow domain with cells. This allows to resolve
boundary layers and any turbulent fluid structures everywhere in detail, and it includes the determination
of the local gradients of the velocity and temperature near a wall. These gradients determine the wall shear
stress and the convective wall heat transfer. The simulations are based on the finite volume method, which
means that for each finite volume (i.e. each grid cell) the conservation equations for mass, momentum (the
Navier-Stokes equations) are solved. For specific flows, such as flows with heat transfer or with compressibil-
ity, an additional conservation equation is solved, which is the energy equation 3.3.

An important feature in fluid flow was first observed by Osborne Reynolds [14], who characterized pipe
flow by a single non-dimensional parameter, known as the Reynolds number Re:

Re = U L

ν
(4.1)

Here U and L are characteristic velocity and length scales of the flow and ν is the kinematic viscosity of the
fluid. The gas flow considered in the present study has a high Reynolds number, which results in a fully
turbulent flow.

4.1. FLOW SOLVERS
Fluent allows the user to to choose one of the two numerical solvers:

• Pressure-based solver

• Density-based solver

Historically speaking, the pressure-based approach was developed for low-speed incompressible flows,
while the density-based approach was mainly used for high-speed compressible flows. However, recently
both methods have been extended and reformulated to enable solving a wide range of flow conditions be-
yond their original intent. In both methods the velocity field is obtained from the momentum equations. In
the density-based approach, the continuity equation is used to obtain the density field while the pressure
field is determined from the thermodynamic equation of state.
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On the other hand, in the pressure-based approach, the pressure field is extracted by solving a pressure or
pressure correction equation which is obtained by manipulating the continuity and momentum equations.

4.1.1. DENSITY-BASED SOLVER

The density-based solver solves the governing equations of continuity, momentum, and (where appropriate)
energy simultaneously (i.e. in coupled ). Because the governing equations are non-linear (and coupled),
several iterations of the solution loop must be performed before a converged solution is obtained. Each
iteration consists of the steps illustrated in figure 4.1 and outlined below:

Figure 4.1: Overview of the density-based solution method.

1. Update the fluid properties based on the current solution; if the calculation has just started, the fluid
properties will be updated based on the initialized solution.

2. Solve the continuity, momentum, and (where appropriate) energy equations simultaneously.

3. Where appropriate, solve equations for scalars such as for the turbulence properties using the previ-
ously updated values of the other variables.

4. Check for convergence of the equation set.

These steps are continued until the convergence criteria are met.

In the density-based solution method one can solve the coupled system of equations (continuity, momen-
tum, energy) by using either the coupled-explicit formulation or the coupled-implicit formulation. The main
distinction between the density-based explicit and implicit formulations is described below. In the density-
based solution methods the discrete, non-linear governing equations are linearized to produce a system of
equations for the dependent variables in every computational cell. The resulting linear system is then solved
to yield an updated flow-field solution.
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4.1.2. PRESSURE-BASED SOLVER
The pressure-based solver applies an algorithm which belongs to a general class of methods called the projec-
tion methods. In a projection method, the mass conservation (continuity) is achieved by solving a pressure
(or pressure correction) equation. The pressure equation is derived from the continuity and the momentum
equations in such a way that the velocity field, corrected by the pressure, satisfies the continuity. Since the
governing equations are nonlinear and coupled, the solution process involves iterations wherein the entire
set of governing equations is solved repeatedly until the solution has converged. Two pressure-based solver
algorithms are available in Fluent: a segregated algorithm and a coupled algorithm.

Figure 4.2: Overview of the pressure-based solution method.

With the segregated algorithm, each iteration consists of the steps illustrated in Figure 4.2 and outlined
below:

1. Update fluid properties (such as density, viscosity, specific heat capacity, and also including the turbu-
lent viscosity), based on the current solution.

2. Solve the momentum equations, one after another, using the recently updated values of the pressure
and face mass fluxes.

3. Solve the pressure correction equation using the recently obtained velocity field and the mass fluxes.

4. Correct the face mass fluxes, pressure, and the velocity field using the pressure correction obtained
from Step 3.

5. Solve the equations for additional scalars, if any, such as the turbulent quantities and temperature,
using the current values of the solution variables.

6. Check for the convergence of the equations.

Two pressure-based solver algorithms are available in ANSYS Fluent: a segregated algorithm and a cou-
pled algorithm.
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Unlike the segregated algorithm described above, the pressure-based coupled algorithm solves a cou-
pled system of equations comprising the momentum equations and the pressure-based continuity equation.
Thus, in the coupled algorithm, steps 2 and 3 in the segregated solution algorithm are replaced by a single
step in which the coupled system of equations is solved. The remaining equations are solved in a decoupled
way as is done in the segregated algorithm.

4.2. TURBULENT MODELLING IN CFD
A brief introduction on different commonly used turbulence models is given below.

4.2.1. STANDARD k −ε MODEL
The k − ε turbulence model is a two-equation model in which the transport equations are solved for the tur-
bulent kinetic energy k and the dissipation rate ε.

The equation for the turbulent kinetic energy k is:

∂(ρk)

∂t
+ ∂(ρkui )

∂xi
= ∂

∂x j
[
µt

σk

∂k

∂x j
]+2µt Ei j Ei j −ρε (4.2)

The equation for the the dissipation rate ε is:

∂(ρε)

∂t
+ ∂(ρεui )

∂xi
= ∂

∂x j
[
µt

σkε

∂ε

∂x j
]+C1ε

ε

k
2µt Ei j Ei j −C2ερ

ε2

k
(4.3)

These two equations contain the following contributions: rate of change of k or ε + Transport of k or ε by
convection = Transport of k or ε by diffusion + Rate of production of k or ε - Rate of destruction of k or ε.

In these equations µt represents the eddy viscosity:

µt = ρCµ
k2

ε
(4.4)

The equations contain some constants: σk , σk , σε σε , C1ε , C1ε and C2ε , C2ε.
The k−εmodel uses the gradient diffusion hypothesis to relate the Reynolds stresses to the mean velocity

gradients and the turbulent viscosity.

The performance of the k−εmodel can be summarized as follows. It is the most robust, widely used two-
equation turbulence model when solving the Reynolds-Averaged Navier-Stokes equations (RANS), despite
the known limitations of the model. The model is very easy to implement and it is computationally cheap.
The k − ε model, however, performs poorly for complex flows involving large pressure gradients, separation,
or strong streamline curvature. All these effects are present in the highly under-expanded jet flow. Another
shortcoming is the numerical stiffness when the equations are integrated through the viscous sublayer which
is treated with damping functions that can cause numerical stability issues. But the most disturbing weak-
ness is lack of sensitivity to adverse pressure gradients, which is assumed to be present near the wall of the
configuration considered in this study.

4.2.2. STANDARD k −ω MODEL
Another two-equation turbulence model is k −ω model. This model solves (again) the kinetic energy k, but
also the specific and turbulent dissipation rate ω. The equation for the kinetic energy reads:

∂(ρk)

∂t
+ ∂(ρkui )

∂x j
= ρP −β∗ρωk + ∂

∂x j
[(µ+σk

ρk

ω
)
∂k

∂x j
] (4.5)

with P = τi j
∂ui
∂x j

. The equation for the specific dissipation rate ω reads:

∂(ρω)

∂t
+ ∂(ρωui )

∂x j
= γω

k
P −βρω2 + ∂

∂x j
[(µ+σω ρk

ω
)
∂k

∂x j
]+ ρσd

ω

∂k

∂x j

∂ω

∂x j
(4.6)
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The performance of the k −ω model can be summarized as follows. This model can easily be extended
with low-Reynolds number terms to describe the turbulent boundary layer very close to a wall. These terms
also have the potential to predict the transition between laminar and turbulent flows. Compared to the k −ε
model, the k −ω model performs significantly better under adverse pressure gradient conditions. The model
also has good numerical stability properties.

4.2.3. SST k −ω MODEL
The Shear Stress Transport (SST) model is a variant of the standard k-ωmodel. It combines the standard k−ω
model for use near walls and the standard k −ε model away from the wall using a blending function.

The SST k −ω model offers similar benefits as the standard k −ω model. The SST model accounts for the
transport of turbulent shear stress and gives quite accurate predictions of the onset and the amount of flow
separation under adverse pressure gradients. SST is recommended for high accuracy boundary layer simula-
tions. The dependency of the model on the wall distance makes this model less suitable for free shear flows
compared to standard k −ω.

4.3. WALL DISTANCE y+
The wall distance y+ is an important parameter in turbulence modeling in CFD. This is because it is impor-
tant to know how the flow behaves near the wall, to consider the effects near to a wall. This also determines
how the grid should be refined when approaching the wall. The wall distance y+ is a non-dimensional num-
ber similar to the local Reynolds number. It determines the region in the wall boundary layer: the viscous
sublayer very close to the wall (typically below y+ = 5, the log layer between the viscous sublayer and a loca-
tion with about y+ = 300, and the free stream core layer for larger y+ values.

Figure 4.3: Illustration of y+ framed in a numerical grid

Referring to figure 4.3 we need to be careful to ensure that the grid distribution is not so coarse that the
first node falls outside the viscous sublayer if a low-Reynolds number model is used, or outside the log layer
if a wall function is used. If the grid is too coarse, the turbulence model may incorrectly calculate the flow
properties at this first calculation point which will introduce errors in the results for the wall shear stress and
for the pressure drop.

The definition of y+ at the first grid cell away from the wall is:

y+ = ρUτδy

µ
(4.7)

where Uτ is shear velocity defined as Uτ =
√
τw /ρ and τw =C f

1
2ρU 2

F r eestr eam . Figure 4.4 shows how the
boundary layer can split-up in various regions, which are also listed below:

• y+ < 5 : Viscous sublayer region (velocity profile is assumed to be laminar-like and the viscous stress
dominates the wall shear stress)
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• 5 < y+ < 30 : Buffer region (both viscous and turbulent shear dominate)

• 30 < y+ < 300 : Fully turbulent log-law region (corresponds to the region where turbulent shear domi-
nates)

Figure 4.4: Various in turbulent wall boundary layer

As explained, y+ is the near wall grid coordinate that has been non-dimensionalised using the so-called
shear stress velocity. It is effectively a local Reynolds number. In order to resolve the viscous sublayer one
needs to have a first grid cell with a y+ value of less than 5. Normally it has been found that an average value
along the surface of y+ = 1 is adequate. But the best approach is to run two simulation with a different y+
choice, one for a coarse grid and one for a refined grid. If the solution on the refined grid does not change
significantly, then the coarse grid is adequate.

4.4. INITIALIZATION
For many complex flow problems such as those found in rotating machinery, or flows in expanding or spiral
ducts, the convergence of the numerical solution can be accelerated if a better initial solution is used at the
start of the calculation. The Full Multigrid initialization (FMG initialization) can provide this initial and ap-
proximate solution at a minimum cost to the overall computational effort.

This initialization procedure is computationally inexpensive; even for large problems, a good initial solu-
tion can be obtained in a fraction of the time spent to converge to a final solution. When the FMG initializa-
tion is started, the algorithm will perform the following steps:

1. Recording of the current solver selection and of all current solver parameters.

2. Switching from the selected solver to the density-based explicit formulation.

3. Performing one FMG iteration using the FMG parameters given in the text command interface (see
below).

4. Switching back to the initially selected solver and resetting all solver parameters back to the original
solver values.

In the FMG iteration, the inviscid Euler equations are solved using a first order-discretization to obtain
the approximate solution. However, the turbulence equations or the equation for any other transport scalar
are not solved in the FMG initialization.



5
SIMULATION SET-UP AND SIMULATION

RESULTS

As mentioned before the benchmark for this study is the experiment carried out at Imperial College in London
for Shell, but to this date the results from imperial college haven’t been analyzed. So they aren’t taken into this
report. The same geometry is used in this study and the setup is explained in this chapter. In addition some
simplifications are made to translate the 3D model to a much simpler 2D model.

5.1. GEOMETRY
The configuration used in the simulation model is matched to the one used in the lab experiments at Imperial
College. The fluid domain along the orientation of the three coordinate system is shown in figure 5.1. The
bulk flow occurs along the +X -direction. As shown figure 5.1 it includes (1) an upstream section that feeds
the nozzle, (2) the nozzle tube, and (3) the downstream "test section". The upstream section has a 25 mm
× 25 mm square size with a length of 25 mm. The cylindrical nozzle tube has a diameter of 1.55 mm, and a
length of 5 mm. The test section has a 50 mm × 50 mm square cross section that extends over a length of 500
mm.

The sizes of the geometry are also summarized in table 5.1.

Figure 5.1: Flow domain and geometry used for the CFD as matched with the experimental set-up.

5.2. MESHING
When creating a mesh there are some aspects that need to be considered since the simulation results will be
largely dependent on the quality of the grid. Both the numerical stability and accuracy could be affected by a
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Table 5.1: Sizes in the geometry.

Symbol Quantity Size [mm]
D Inlet height, width and length 25
d Nozzle diameter 1.55
l Nozzle length 5
L Outlet length 500
H Outlet height or width 50

poor quality of the grid. Obviously, for the best accuracy the grid resolution should be as high as possible, but
a higher resolution requires more computing resources and generates longer turnaround times.

Primarily there should be no gaps in the grid or overlap of elements. Furthermore the grid points should
be clustered around areas of interest such as regions of large gradient, for example: boundary layers, separa-
tion points, shocks, around sharp corners or curves.

Figure 5.2: Computational domain with areas where mesh refinement is applied.

Two types of meshing methodologies are used and compared against each other in this study: the quad
mesher and the triangle mesher, in which the former is the favorite one. The reason for the choice of the quad
mesh is the fact that this mesh is more aligned with the flow. In figure 5.2 the regions with mesh refinement
are depicted. A reference length size of 1 mm is used with local refinement near the nozzle region (up to
10 times finer, indicated in orange) to improve the resolution in the region where the flow expands creating
a shock and discontinuities. There is a total of approximately 8.4 million cells. After the nozzle region, a
uniform prism layer is generated at the walls to capture the boundary layer flow. 12 layers of prismatic cells
extending to the reference length size with a growth factor of 2.5 are used. Figure 5.3 shows that the area after
the throat is refined to make sure that the shock diamonds are capture properly. After this refined area there
is another less denser downstream area to capture the (high) velocities after the shock diamond (refinement
of 2.5 ·10−4) orange area in figure 5.2.

5.3. INITIAL CONDITIONS
In the experiments, the inlet to the test section is fed from a temperature regulated stagnation reservoir. The
measured values of the static pressure and temperature at the inlet are 120 bara and -17 ◦C, respectively. It
should be noted that the stagnation quantities are different from the static quantities. But at such low inlet
and outlet velocities, the static quantities are considered to be similar to the stagnation quantities.

The outlet of the test section on the far downstream end is modeled with a pressure boundary condition,
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Figure 5.3: Area with mesh refinement.

Figure 5.4: Wall materials and thickness specifications as used in the experimental set-up.

which is set to 1 bara. The walls of upstream feed section and of the nozzle are modeled as adiabatic walls,
which thus prevent any heat loss/gain through the walls. The walls of the test section are firstly modeled as
adiabatic walls to have a reference. Later on the walls were allowed to transport heat (i.e. non-adiabatic walls
were applied).

The location and material type of the walls as used in the experimental set-up are shown in Figure 5.4.
These thermal properties were also used in the simulations with the non-adiabatic walls. In these simula-
tions, the heat conduction along the plane of the wall is assumed to be negligible. A "shell" region approach
can be used in the CFD simulations to model the heat flux normal though the walls. This approach assumes
that the heat conduction is only one-dimensional. The model requires the wall thickness and wall material
as input. Furthermore, the walls of the test section are modeled to be uniform with no changes in material
properties. The thickness and material type of the walls (present in the experimental set-up and as used in
the simulations) are shown in figure 5.5 and in table 5.2. The wall that connects the downstream end of the
orifice to the side walls of the outlet section is modelled as fully adiabatic.

The thermal conditions at the outer side of the wall should be specified as well. Next to conductivity
through the wall the convective heat transfer should be taken into account. The ambient temperature (i.e.
the room temperature) is 20 ◦C and the heat transfer coefficient between the outer side and the wall to the
ambient air is set to 20 W/(m2K), a proven convective heat transfer for ∆T around 60-80 oC.
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Table 5.2: Thickness and thermal conductivity of the walls.

Wall Thickness Thermal conductivity
[mm] [W/(m-K)]

Aluminum 10 202.3
Fused-Silica 5 1.38
Polyurethane 18 0.002

Figure 5.5: Test section wall material and thickness used in the CFD simulations.

5.3.1. GAS PROPERTIES
To ensure the occurrence of the Joule-Thomson cooling in the test section a proper fluid has to be chosen.
As was already described in section 2.8 argon is a suitable gas for use in the experiments, and it was thus also
used in the simulations of the JT-cooling. The thermodynamic properties of argon are modeled as a temper-
ature dependent polynomial, for which the weak pressure dependence of the properties is neglected. The
details are given in Appendix A.

The phase diagram of argon is shown in figure 5.6. According to this phase diagram, a phase change of
argon (from gas to liquid) could occur in the flow system. At a pressure of 1 bara, argon gas will condense
to liquid at a temperature of 88 K. In such a case when the temperatures of the flow drops below 88 K due to
JT-cooling, the formation of argon liquid droplets will occur. However, the phase change models available in
ANSYS Fluent are not compatible with the real gas model which is needed to capture the JT-effect. Further-
more, the numerical stability of the phase change model within the coupled flow solver in a multiphase flow
regime is also highly doubtful. Due to these limitations, the formation of liquid droplets is neglected in the
present study.

5.3.2. TURBULENCE MODEL
The effect of turbulence modeling on thermal behaviour with the JT cooling is one of the areas of interest in
the present study. Different turbulence models were explained in the chapter 4. To obtain the best accuracy,
we have selected the k −ω model coupled with the SST (Shear Transport) correction. This approach uses the
k −ω type of modeling in the region close to a wall and switches to a k −ε type of treatment for the bulk flow.
The SST k −ω model is used together with the density-based solver.

5.3.3. EQUATION OF STATE
Different equations of state for argon gas were used to model the pressure density coupling in the compress-
ible flow system. In section 2.8 is was noted that the ideal-gas model equation of state will not predict JT-
cooling, which is a real-gas effect. In the CFD calculations carried out by Shell with the Star-CCM+ CFD tool
the Peng-Robinson model is used as the Equation of State for real-gas argon. Other Equations-of-State were
also considered, but these and gave similar results as the Peng-Robinson model.

5.3.4. VISCOUS EFFECTS
To evaluate the effect of wall friction on the cooling when the fluid was passing through the nozzle, the flow
was described by using the steady-state Reynolds-Averaged Navier-stokes (RANS) equations with the Boussi-
nesq hypothesis for the closure the Reynolds stresses. The additional settings of compressible flow and vis-
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Figure 5.6: Thermodynamic phase boundary of argon indicating the triple point and the critical point. At a pressure of 1 bara, argon gas
will condense to liquid at a temperature of 88 K.

cous heating were enabled to obtain faster computational times.

To make sure that the mesh resolution was fine enough, the dimensionless wall distance (y+) is consid-
ered (see section 4.2); the first grid cell along the wall should be in the viscous sublayer and it should thus
have a y+ value smaller than 5.

It was also found to be necessary to increase the length of the computational domain to prevent backflow
at the outlet. Due to the flow separation downstream of the shock there is backflow in that region. To prevent
fluid intake from the outlet (carrying the ambient temperature), the longer domain is used. In this way the
full region with backflow and recirculation remains within the computational domain.

The equations were solved using the Fluent density-based implicit solver with the Roe-FDS flux type.
In order to accelerate the convergence of the solution, the FMG-initialization is applied, see section 4.4. A
proper convergence of the solution downstream of the shock could not be achieved with the pressure-based
coupled solver. Furthermore, to obtain convergence, it was necessary to discretize the equation with only
the first-order upwind scheme rather than the second-order upwind scheme. Simulations were done, as
mentioned earlier, with argon gas both as an ideal gas and as real gas where the walls are considered to be
adiabatic.

5.4. THREE-DIMENSIONAL, ADIABATIC SIMULATIONS
The most important settings are summarized as:

• Solver type: density-based solver

• Steady state formulation

• Model: SST k −ω (2 eqn) with low-Reynolds number corrections, viscous heating and compressibility
effects

• Fluid: argon with properties described with ideal gas or with Peng-Robinson equation of state

• Formulation: implicit
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Table 5.3: Inlet conditions.

Property Value and unit
Stagnation pressure 120 bara
Stagnation temperature 256 K
Gas specific heat ratio 1.667
Gas constant 207.9 J/kg/K

• Flux type: Roe-FDS

• Gradient spatial discretization: least squared cell based

• Flow: Second order upwind

• Turbulent kinetric energy: Second order upwind

• Courant number: 0.1

• Under-relaxations factors: all set to 0.1

• Limit for positivity rate limit: 0.02

As mentioned in section 2.2, the mass flow rate across a choked nozzle is only dependent on the stagna-
tion temperature and pressure, which reads (assuming a particular ideal gas):

m∗
nozzle = m∗

c = Ac

√
γ

Rg

P0p
T0

(
2

γ+1
)

γ+1
2(γ−1) (5.1)

For the flow conditions in the present study (as summarized Table 5.3) the mass flow rate through the
nozzle is calculated to be 0.0721 kg/s.

Figure 5.7: Contour plot of the Mach number for both ideal (above) and real gas (below).

The flow rates obtained in the CFD simulations for the ideal and real gas cases are 0.0708 kg/s and 0.0686
kg/s, respectively which is close to the mentioned theoretical value of 0.0721 kg/s. The reason why this CFD
calculations have a lower mass rate flows due to the viscous boundary layer in the orifice, where tt contracts
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Figure 5.8: Contour plot of the velocity for both ideal (above) and real gas (below).

the area of the nozzle. The resulting Mach contour plots are shown in figure 5.7 and the velocity plots are
shown in figure 5.8. Furthermore the contours for the static temperature are shown in figure 5.9.

Flow separation occurs at the boundary of the shock diamond. The shock front has a shape that is similar
to what is described in the literature. The gradients of the shock are largest at the centreline; this is also clear
from the change in the velocity and in the Mach number along the centre line, as is shown in figures 5.10 and
5.11, respectively. For reference, x = 0 corresponds to the location where the choke expands from the minimal
cross-sectional area to the outlet area.

The shock occurs at almost the same distance for both the real gas and the ideal gas. The shock character-
istics were described in chapter 2. In table 5.4 the CFD predictions for the location of the Mach disk are given;
the values for the real gas case and for the ideal gas case are very close to the value in the empirical relation of
Love et al. [10].

As shown in figure 5.13, for a given initial pressure and temperature, the predicted initial density with the
two different EOS models differs by about 15%.
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Figure 5.9: Contour plot of the static temperature for both ideal (above) and real gas (below).

The contours of the static temperature for the real gas and for the ideal gas are compared in figure 5.9.
The minimum temperature is quite low, as can also be seen in table 5.5. At these low temperatures a phase
change will occur which is not incorporated in the Fluent model.

The temperature profile along the centreline is depicted in figure 5.12. The outlet temperature for a real
gas (196 K) is about 60 ◦C lower than for an ideal gas (256 K). A thermodynamic tool can be used to pre-
dict the Joule-Thomson cooling. Those predictions are obtained with the Shell Flashmate tool or with Ref-
prop. The assumption was made that the inlet and outlet velocities are negligible in the isenthalpic equation
(H1+u2

1/2 = H2+u2
2/2 -> H1 = H2). The isenthalpic flash predicts that the temperature will decrease to 196 K,

which is the same as the CFD result for the outlet temperature for the real gas case. The total temperature and
pressure, as shown in Figure 5.15, remain constant at the inlet section up to the nozzle (< 0 m), after which
is drops steeply across the shock; note that the shock is a non-isentropic compression wave that causes a
decrease in the total pressure).

Table 5.4: Shock distance characteristic

Approach Shock distance (mm)
Real gas CFD 88.2
Ideal gas CFD 85.3

Relation (Love et al.) 86.5
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Figure 5.10: Predicted flow velocity along the centreline of the domain.

Figure 5.11: Predicted Mach number along the centreline of the domain.

5.5. THREE-DIMENSIONAL, NON-ADIABATIC SIMULATIONS
Three-dimensional CFD simulations with non-adiabatic walls were carried out. Figure 5.16 compares the
static temperature at the centreline, as obtained for both adiabatic and non-adiabatic walls. As expected, the
temperature at the outlet is slightly higher with non-adiabatic walls than with adiabatic walls, due to the heat
flow from the warmer ambient to the colder jet fluid in case of non-adiabatic walls.

The wall temperatures are compared at the four walls enclosing the test section. Figure 5.17 shows the
temperature distribution on the aluminum wall. Due to the high conductivity in aluminum, the wall is seen
to be at a higher temperature since heat can quickly flow from the warmer surrounding into the colder test
section. Both the walls show a similar temperature distribution. This is, however, not the case with the poly-
urethane and fused-silica walls. Especially for the poly-urethane (which has a thermal conductivity of 0.03
W/m/K), figure 5.18 shows that this wall has the tendency to behave more like an adiabatic wall. For the
fused-silica case, as shown in figure 5.19 and in figure 5.20, there is more heat exchange through the wall. The
legend of all the contour plots is given in figure 5.21.

Next to these contour plots, which are less suitable to see the actual quantitative temperature values, fig-
ure 5.23 shows the temperature at the midline of the wall along the section. Furthermore, figure 5.24 shows
the heat transfer through the walls. The cause of the first little bump in the temperature plot can be found
by considering the contours of the angle of the velocity vectors in figure 5.22; angles between -90 and 90 deg
denote positive flow and the other angles denote flow reversal. This shows that the jet touches the side walls

Table 5.5: Comparison of minimum static temperature (ideal gas and real gas).

Quantity Ideal gas Real gas
Minimum static temperature (K) 8.85 7.63
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Figure 5.12: Predicted static temperature along the centreline of the domain.

Figure 5.13: Predicted density along the centreline of the domain.

at a distance of about 0.1 m. To have a clear overview of the whole domain (with non-adiabatic walls) the
contours of the Mach number and of the temperature are shown in figure 5.27 and in figure 5.28, respectively.

5.5.1. MESH DEPENDENCE
To ensure that a proper mesh is used for the modeling of the structure of the shock wave, a mesh dependence
study is performed. In order to do this, various meshes have been constructed with a different number of
cells. Each mesh is used in a simulation with the same discretization scheme, turbulence model, and solu-
tion method.

One of the parameters monitored in the mesh dependence study is the minimum static temperature in
the domain. Another parameter that is considered is the maximum Mach number, which occurs just up-
stream of the shock. The results for the temperature and Mach number are shown in figure 5.25 and in figure
5.26, respectively. It can be concluded that almost mesh-independent results are obtained when using about
8 million grid cells or more.

5.5.2. COMPARISON OF FLUENT AND STAR-CCM+ RESULTS
As mentioned before, Shell has carried out similar CFD simulations, using Star-CCM+ instead of Fluent; see
[17]. The results described in that report are compared with the results obtained in the present studies. Two
main differences in the results obtained in the two simulation studies are found:

1. First, the temperature on the poly-urethane wall differs a lot. This is most likely due to the wall con-
ditions applied at the wall. The thermal conductivity used for the poly-urethane in the present study
was 0.03 W/m/K. Due to this low conductivity, the wall will behave like a adiabatic wall. Here the tem-
perature at the wall should be almost similar to the temperature of the flow, as only little heat is added
from the outside to the jet. The wall temperatures a obtained with STAR-CCM+ in [17] are shown in



5.6. SUPERSONIC AXISYMMETRIC FLOW IN MATLAB 41

Figure 5.14: Predicted static pressure along the centreline of the domain.

Figure 5.15: Predicted total pressure along the centreline of the domain.

Appendix C.

2. Second, the maximum Mach number between the calculations differs significantly. In the STAR-CCM+
results, the maximum Mach number is about 6, while the present results obtained with Fluent give a
value of about 9. To further verify this, in the next section results are described that we have obtained
by developing a MATLAB programme that calculates the inviscid, supersonic axisymmetric flow. Fig-
ure 5.29 compares the Mach numnber at the centre line as obtained with Fluent in the current study
(maximum about 9) and with STAR-CCM+ obtained in [17] (maximum about 6).

5.6. SUPERSONIC AXISYMMETRIC FLOW IN MATLAB
In chapter 3, the theory for the inviscid gas dynamics of an under-expanded jet was described. The solution
of the inviscid, compressible equations was programmed in MATLAB, and the results for iso-contours of the
Mach number, which includes the shock, are depicted in figure 5.30. The corresponding MATLAB code is
described in Appendix B.

The flow field that MATLAB has predicted is very similar to the Fluent results. As mentioned already,
MATLAB solves the inviscid equations whereas Fluent solves the viscous equations, using a model for the
turbulence. The predictions of the Mach number at the centreline as obtained with MATLAB and Fluent are
compared in figure 5.31. The agreement is very good; both the location of the shock and the maximum Mach
number have about the same value with the two methods. This shows that the shock behaviour is almost not
affected by viscous effects and by turbulence.

A comparison can be made between the Mach number, the static temperature and the velocity along the
centreline. The Mach number is coupled to the pressure through the function
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Figure 5.16: Predicted static temperature along the centreline for both adiabatic and non-adiabatic wall conditions.

Figure 5.17: Predicted temperature on the aluminum wall; Results obtained from CFD using PR EOS.

Figure 5.18: Predicted temperature on the poly-urethane wall. Results obtained from CFD using PR EOS.

Figure 5.19: Predicted temperature on the fused-Silica wall at the negative X end. Results obtained from CFD using PR EOS.

Figure 5.20: Predicted temperature on the fused-silica wall at the positive Y end. Results obtained from CFD using PR EOS.

Figure 5.21: Legends of figure 5.17,5.18,5.19 and 5.20.

P = P0(1+ γ−1

2
M 2)

−γ
γ−1 (5.2)

The pressure and the temperature are coupled through the isenthalpic flash (with inclusion of the kinetic
energy contribution), as shown for argon in figure 5.32. As expected, the temperature decreases if the pres-
sure is decreased. In this way the Mach number can be transformed to a temperature. The results for the
temperature along the centreline are compared in figure 5.33.

Assuming that γ and R are constant in the domain, the velocity can be calculated from the following
relation:

M = V

a
= V√

γRT
(5.3)

The resulting velocity along the centreline is shown in figure 5.34.
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Figure 5.22: Contour plot of the velocity angle; blue and red denote flow reversal.

Figure 5.23: Static temperature on all four walls of the three-dimensional domain.

5.6.1. DEPENDENCE ON THE NUMBER OF CHARACTERISTICS

To obtain accurate results with the MATLAB code, a sufficient number of characteristics needs to be applied.
The parameter used to verify the dependence on the number of characteristics is the location of the shock
wave. The results of the analysis are shown in figure 5.35. It can be concluded that above a number of 500,000
characteristics the solution does hardly change anymore.

The very good agreement between the results obtained with the MATLAB code and with the Fluent code
confirms that the Fluent results are reliable. In particular both methods find a maximum Mach number of
about 9 just before the shock. This is in contrast to the prediction with Star-CCM+ with which a lower value
of about 6 was found. Most likely the too low value with Star-CCM+ is due to insufficient grid resolution.

5.7. THREE-DIMENSIONAL VERSUS TWO-DIMENSIONAL SIMULATIONS
Although a large number of CPUs could be used for the 3D Fluent simulations, the computational time for a
typical single simulation is quite large (5-10 days). To reduce the computer time, an effort was made to map
the three-dimensional configuration to a two-dimensional configuration (which will allow to use a 2D in-
stead of a 3D solver). In order to translate the three-dimensional square configuration to a two-dimensional
axisymmetric configuration an intermediate step has to be made. First from the three-dimensional square
structure a three dimensional round structure is made, as is illustrated in figure 5.36. Here the small reservoir
on the right of both configurations forms the inlet section where a pressure of 120 bara is imposed. At the
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Figure 5.24: Heat transfer through all four walls of the three-dimensional domain.

Table 5.6: Number of cells used in each configuration.

Configuration Cells
2D axisymmetric 80 755
3D Round 6 979 551
3D squared 8 347 936

outlet a pressure of 1 bara is imposed. The square test sectionis converted to a cylindrical section by using
the hydraulic diameter, which is equal to 50 mm for a pipe (when starting from a square with 50 mm sides).

In the second mapping step, the three dimensional round configuration is converted to a two dimensional
axisymmetric configuration, which is shown in figure 5.37. Here axisymmetry is assumed, which gives a
2D simulation with two coordinates, namely the streamwise coordinate and the radius r (with r =0 at the
centreline). The same zones of refinement are used in the 2D domain as were used in the 3D domain. The
number of grid cells is summarized in table 5.6. Note that only about 1% of the grid cells is needed in the 2D
case compared to the 3D case. This also leads to a significant reduction is computer time.

5.7.1. RESULTS
The results obtained with the three configurations are compared. Figure 5.38 shows the Mach number along
the centreline for the ideal gas (left) and for the real gas (right). The agreement for the three configurations
is very good. Furthermore, the static temperature along the centreline is shown in (5.39); also here the agree-
ment is very good. The good agreement for the flow behaviour can be explained by the fact that the walls are
sufficiently far from the expanding jet to have a significant effect.

5.8. TWO-DIMENSIONAL NON-ADIABATIC CONFIGURATION
In order to map the 3D square case with non-adiabatic walls to the 2D axsymmetric case a proper transfor-
mation of the wall distance and thermal conductivity should be made. Therefore the total wall heat transfer
Q should be the same:

QSquar e =QRound (5.4)
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Figure 5.25: Mesh dependence of the value of the minimum static temperature in the domain.

Figure 5.26: Mesh dependence of the maximum Mach number (i.e. just upstream of the shock).

Q AL +QSi l i 1 +Qsi l i 2 +QUr heen =QRound (5.5)

kAL ∗S AL
∆T

L AL
+kSi l i 1 ∗SSi l i 1

∆T

LSi l i 1
+kSi l i 2 ∗SSi l i 2

∆T

LSi l i 2
+ ..

..+kUr heen ∗SUr heen
∆T

LUr een
= kRound ∗SRound

∆T

LRound

(5.6)

Here k is the material conductivity, S is the wall length, and L is the wall thickness. Although ∆T will be
different for each wall, it is assumed to have the same order of magnitude to obtain the following estimate:

kRound

LRound
= 6619 W /(m2K ) (5.7)

For the two dimensional Fluent calculations an aluminum wall was used (with k = 202 W/m/K). This corre-
sponds to a thickness of 30.6 mm. This was applied in the two-dimensional axisymmetric Fluent calculations.
Figure 5.40 compares the wall temperatures as obtained in the three-dimensional and in the two-dimensional
configurations. In addition the wall heat transfer is compared in 5.41. There is a very good agreement between
the results obtained in the three-dimensional and two-dimensional configurations. The reason for the dif-
ferent temperature at the beginning of the wall is the difference in geometry: in the square configuration the
presence of the corner points form locally "dead zones" which are absent in the round configuration.

5.9. EXTENDED 2D ANALYSIS
So far Fluent simulations were performed with an outlet section (which is the section downstream of the ori-
fice) of 0.5 m length. This is long enough the cover the jet with its Mach disk, as the jet is was found to reattach
at the sides of the outlet section at a distance of 0.1 m. It was also found that taking a round outlet section
(with a diameter of 0.05 m) instead of a rectangular section (with sides 0.05 m) has a negligible effect on the
jet structure. Therefore to study the interaction between the jet and the wall heat transfer, it is sufficient to
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Figure 5.27: Mach contours for the case with non-adiabatic walls.

Figure 5.28: Temperature contours for the case with non-adiabatic walls.

carry out 2D axi-symmetric simulations with a cylindrical outlet section with 0.05 m diameter. For the case
with a non-adiabatic wall, aluminum with a thickness of 30.6 mm was used.

To save computer time, 2D Fluent simulations with a non-adiabatic wall were carried out for a pipe with-
out orifice. First a length of 0.5 was used, which was later increased to 5 m. The pipe configuration and
boundary conditions is shown in figure 5.42. At the inlet a uniform velocity profile is described, with a total
mass flow rate of 0.07 kg/s (being the critical rate through the orifice, when expanding from 120 bara to 1
bara). The inlet temperature is 196 K (which is the temperature found after insenthalpic expansion though
the orifice). At pipe outlet the ambient pressure of 1 bara is prescribed. At the outer wall a heat transfer co-
efficient of 20 W/(m2K) is prescribed with an ambient temperature of 20 oC. The following simulation results
are obtained:

• The centreline velocity is shown in figure 5.43

• The centreline temperature is shown in figure 5.44

• The (inner) wall temperature is shown in figure 5.45

• The wall heat flux is shown in figure 5.46

• The Overall Heat Transfer Coefficient (OHTC) is shown in figure 5.47

All figures show the horizontal distance along the horizontal axis (starting at the inlet of the pipe, or at the
outlet of the orifice in case an orifice is present). From the results for the centre velocity and for the centre
temperature it is clear that it takes a distance of about 1.5 m before fully developed pipe flow is obtained.
This means that thermal boundary layers develop along the wall, with an inner pipe temperature of (about)
the isenthalpic expansion temperature of 196 K. The thermal boundary layer grows in streamwise direction,
until the centre of the pipe is reached at about 1.5 m distance. From here on the centre temperature increases
above the isenthalpic temperature due to heat inflow from the ambient. To verify the heat transfer results
from the Fluent simulations, a simple analytical model can be used. The heat transfer through the boundary
layer along the inner wall, through the pipe solid thickness, and between the outer wall and the ambient is
given by the following formula:

OHTC = QW

πD∆T
= 2/D

1
λ f

2
Nu + 1

λAL
ln Dout

D + 2
Doutαamb

(5.8)

Here:
OHTC is the overall heat transfer coefficient, with unit W/(m2K)
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Figure 5.29: Comparison of Mach number at the centreline as obtained with Fluent in the current study and with STAR-CCM+ from [17].

Figure 5.30: Mach number in the domain (MATLAB).

D is the inner pipe diameter, which is 0.05 m
Dout is the outer pipe diameter, which is 0.05+2*0.0306=0.1112 m
λ f is the fluid conductivity, which is 0.0132 W/m/K
λAL is the conductivity of aluminum, which is 202 W/m/K
αamb is the external heat transfer coefficient, is 20 W/m2/K
∆T is the characteristic temperature difference, taken as the difference between the ambient temperature
(set to 20 oC) and the centre temperature
Nu is the Nusselt number, which is the dimensionless convective heat transfer in the
thermal boundary layer, i.e. between the centre of the pipe and the inner wall surface.

The Nusselt number of fully turbulent pipe flow can be approximated with the the Dittus-Boelter correla-
tion which reads

Nu = 0.023Re0.8Pr 0.4 (5.9)

Where Re is the Reynolds number (based on the inner pipe diameter, and the average velocity), which
is about Re=1.08*105 for atmospheric pipe flow conditions, and Pr is the Prandtl number, which is 0.68 for
those conditions. Taking a centre temperature of 196 K (which is the isenthalpic expansion temperarture),
and using the values given above in the expression for the OHTC gives that the OHTC is 24 W/m2/K. This is
higher than the value of about 14 W/m2/K found from the Fluent simulations, as shown in figure 5.47. The
cause of the difference was not yet fully analysed, but can be due to the way in which the turbulence model in
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Figure 5.31: Mach number on the centreline; comparison of Fluent and MATLAB predictions.

Figure 5.32: Isenthalpic flash of argon from 120 bara to 1 bara.

Fluent represents the thermal boundary layer which can give a convective heat transfer that is different from
the Dittus-Boelter correlation. The OHTC is also quite dependent on the choice for the external heat transfer
coefficient.
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Figure 5.33: Static temperature on the centreline.

Figure 5.34: Velocity on the centreline.

Figure 5.35: Location of the shock; dependence on the number of applied characteristics.

Figure 5.36: Conversion of square configuration to round configuration.
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Figure 5.37: Conversion of three dimensional round configuration to the two dimensional axisymmetric configuration.

Figure 5.38: Comparison of the Mach number on the centreline as obtained for the three configurations.

Figure 5.39: Comparison of the static temperature on the centreline as obtained for the three configurations.
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Figure 5.40: Static wall temperature for the three dimensional configuration (on all four walls) and for the two dimensional configuration
(using the derived wall condition).

Figure 5.41: Wall heat transfer for the three dimensional configuration (through all four walls) and for the two dimensional configuration
(using the derived wall condition).
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Figure 5.42: The model without the orifice.

Figure 5.43: Velocity at the centreline in 2D Fluent simulation with non-adiabatic wall.
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Figure 5.44: Temperature at the centreline in 2D Fluent simulation with non-adiabatic wall.

Figure 5.45: Wall temperature in 2D Fluent simulation with non-adiabatic wall.
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Figure 5.46: Wall heat transfer in 2D Fluent simulation with non-adiabatic wall.

Figure 5.47: OHTC in 2D Fluent simulation with non-adiabatic wall.



6
CONCLUSIONS AND RECOMMENDATIONS

6.1. CONCLUSIONS
This study was aimed at improving the accuracy of the model predictions for the minimum fluid and inner
wall temperatures for cold, low-pressure start-up of wells that produce oil or gas. Due to the large pressure
drop over the well head choke, the so-called Joule-Thomson cooling will give a very low temperature of the
expanding gas jet. Low-temperatures can give brittle fracture of the material in the piping downstream of
the choke. Models are needed to verify whether the material temperature remains above the lower-design
temperature. For this model validation, Imperial College in London (on request by Shell) has carried out lab
experiments with argon gas that expands through an orifice from 120 bara to 1 bara. Awaiting the results of the
lab experiments, detailed simulations were carried out in the present study using the Fluent CFD programme.

From the simulations the following conclusions can be drawn:

• The 3D, steady, compressible Reynolds-Averaged Navier-Stokes equations are solved with the SST k−ω
model for the turbulence. The considered configuration is the same as in the lab. It consists of an
upstream chamber with argon at 120 bara, that expands through a 5 mm long orifice with 1.55 mm
diameter, into a square outlet section with 50 mm sides and 500 mm length. The inlet temperature is -17
oC and the outlet pressure is 1 bara. The supersonic flow leaving the orifice reaches a maximum Mach
number of about 9 before a shock to subsonic flow is found. The jet reaches very low temperatures due
to isentropic expansion (the minimum is 9 K), and reaches the isenthalpic expansion temperature of
196 K (or -77 oC) downstream of the shock. The jet reaches the sides of the outlet at a distance of about
100 mm.

• The maximum Mach number of about 9 predicted by Fluent is higher than the value of about 6 found
in a previous simulation study that used the STAR-CCM+ CFD programme. To verify the Fluent results,
the distributions of grid cells was varied and the number of grid cells was increased. Also a MATLAB
programme was written that solved the inviscid compressible equations (Euler equations) for an ax-
isymmetric jet. This confirmed the Fluent results.

• In addition to the 3D square outlet section, also 3D and 2D Fluent simulations were carried out for
a cylindrical outlet (using an hydraulic diameter of 50 mm). The maximum Mach number and the
jet structure (velocity, temperature) are not affected by the side walls. This is because the sides are
sufficiently far from the jet.

• Furthermore, the temperature and the heat transfer at the walls of the outlet section were investigated.
Thereto both adiabatic and non-adiabatic walls were considered. The ambient temperature is 20 oC.
Thermal boundary layers are formed along the side walls, that are more or less exposed to a tempera-
ture of 196 K (the isenthalpic expansion temperature) in the centre of the pipe, up to a distance of about
1.5 m, where the outer edge of the boundary layer reaches the centre of the pipe. Thereafter the centre
line temperature increases due to heat inflow from the ambient.

• The lowest temperature on the adiabatic and non-adiabatic walls is about the isenthalpic expansion
temperature (196 K). For the non-adiabatic walls, the temperature rapidly increases in downstream

55
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direction due to the heat inflow from the ambient. For the considered case, the wall temperature in-
creases by 30 oC (from 196 K to 226 K, or from -77 oC to -47 oC) over a length as short as 0.5 m. These wall
temperature results are of large importance for the design of brittle fracture prevention in engineering
applications.

6.2. RECOMMENDATIONS
Recommendations for further research are the following:

• Imperial college has carried out lab experiments for the expanding jet. These consisted of Schlieren
flow visualization, Particle Image Velocimetry (PIV) for the velocities, thermocouples for the temper-
ature, and phosphoric temperature measurement with laser-induced phosphor thermometry (phos-
phorescence) (both for the wall surface temperature and for the flowing fluid temperature). These data
still need to be processed. Once available, the experimental data can be used for the validation of the
CFD results.

• Use simple 1D flow and heat transfer models (of the type that is used in engineering design in the oil
and gas industry) in a further comparison with the CFD results.

• Include the effect of droplet formation in the cold expansion zones in the CFD simulations. This re-
quires a multiphase flow simulation.

• Carry out additional simulations for the axisymmetric configuration. This can include parameter vari-
ation, such as different expansion rates and larger pipe diameters.
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Figure A.1: Temperature dependent specific heat capacity of Argon gas at atmospheric pressure. source: http://webbook.nist.gov/
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Figure A.2: Temperature dependent thermal conductivity of Argon gas at atmospheric pressure. source:http://webbook.nist.gov/

Figure A.3: Temperature dependent viscosity of Argon gas at atmospheric pressure. source: http://webbook.nist.gov/
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1

2

3 end1 = 0;
4 %S = 1+C;
5 vv = 1;
6

7 for S = 1+C
8 kk = S;
9 r(S) = 0;

10 Theta(S) = 0;
11 f4(kk) = tand(Theta(S-C)-mu(S-C));
12 f5(kk) = 1/(tand(mu(S-C))*M(S-C)*(1+(k-1)/2*M(S-C)^2));
13 f6(kk) = sind(Theta(S-C))*sind(mu(S-C))/(r(S-C)*cosd(Theta(S-C)-mu(S-C)));
14

15 x(S) = x(S-C) - r(S-C)/(f4(kk));
16 M(S) = (degtorad(Theta(S-C)) + f6(kk)*(x(S)-x(S-C)))*(f5(kk)) + M(S-C);
17 mu(S) = asind(1/M(S));
18

19 [¬,nu(S-C),¬] =flowprandtlmeyer(k,M(S-C),'mach');
20

21 con = 1;
22 while con > 1e-10
23 vv = vv +1 ;
24

25 f4(kk) = tand((Theta(S-C)-mu(S-C)+Theta(S)-mu(S))/2);
26 x_new = x(S-C) - r(S-C)/(f4(kk));
27

28 f5(kk) = 0.5*(1/(tand(mu(S-C))*M(S-C)*(1+(k-1)/2*M(S-C)^2)))+ ...
29 0.5*(1/(tand(mu(S))*M(S)*(1+(k-1)/2*M(S)^2)));
30 [¬,nu_2,¬] =flowprandtlmeyer(k,M(S),'mach');
31 f6(kk) = 0.5*sind(Theta(S-C))*sind(mu(S-C)/(r(S-C)*cosd(Theta(S-C)-mu(S-C)))- ...
32 0.5*cotd(mu(S-C))*(degtorad(nu_2)-degtorad(nu(S-C)))/(x_new-x(S-C)));
33

34 M(S) = (degtorad(Theta(S-C)) + HULP*f6(kk)*(x(S)-x(S-C)))*(f5(kk)) + M(S-C);
35 mu(S) = asind(1/M(S));
36 con(vv) = abs(x_new-x(S));
37 x(S) = x_new;
38

39 end
40

41 for kk = S+1:S+C-2
42

43 f1(kk) = tand(Theta(kk-1)+mu(kk-1));
44 f2(kk) = 1/(tand(mu(kk-1))*M(kk-1)*(1+(k-1)/2*M(kk-1)^2));
45 if r(kk-1) > 0
46 f3(kk) = sind(Theta(kk-1))*sind(mu(kk-1))/(r(kk-1)*cosd(Theta(kk-1)+mu(kk-1)));
47 else
48 f3(kk) = 0;
49 end
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50

51 f4(kk) = tand(Theta(kk-C)-mu(kk-C));
52 f5(kk) = 1/(tand(mu(kk-C))*M(kk-C)*(1+(k-1)/2*M(kk-C)^2));
53 f6(kk) = sind(Theta(kk-C))*sind(mu(kk-C))/(r(kk-C)*cosd(Theta(kk-C)-mu(kk-C)));
54

55 AA = [1 -f1(kk) ; 1 -f4(kk)];
56 BB = [-f1(kk)*x(kk-1)+r(kk-1) ; -f4(kk)*x(kk-C)+r(kk-C)];
57 r_x = AA\BB;
58

59 r(kk) = r_x(1);
60 x(kk) = r_x(2);
61

62 AA = [f2(kk) -1; f5(kk) +1];
63 BB = [HULP*f3(kk)*(x(kk)-x(kk-1)) - degtorad(Theta(kk-1)) + f2(kk)*M(kk-1) ; ...

HULP*f6(kk)*(x(kk)-x(kk-C)) + degtorad(Theta(kk-C)) + f5(kk)*M(kk-C) ];
64 M_T = AA\BB;
65 M(kk) = M_T(1);
66 Theta(kk) = radtodeg(M_T(2));
67 mu(kk) = asind(1/M(kk));
68 conv = 1;
69

70 while conv>1e-10
71 f1(kk) = tand((Theta(kk-1)+mu(kk-1)+Theta(kk)+mu(kk))/2);
72 f2(kk) = 0.5*(1/(tand(mu(kk-1))*M(kk-1)*(1+(k-1)/2*M(kk-1)^2)))+...
73 +0.5*(1/(tand(mu(kk))*M(kk)*(1+(k-1)/2*M(kk)^2)));
74 if r(kk-1) > 0
75 f3(kk) = ...

0.5*(sind(Theta(kk-1))*sind(mu(kk-1))/(r(kk-1)*cosd(Theta(kk-1)+mu(kk-1))))+...
76 +0.5*(sind(Theta(kk))*sind(mu(kk))/(r(kk)*cosd(Theta(kk-1)+mu(kk))));
77 else
78 [¬,nu_c,mu_c] =flowprandtlmeyer(k,M(kk),'mach');
79 [¬,nu_b,¬] =flowprandtlmeyer(k,M(kk-1),'mach');
80 f3(kk) = 0.5*(sind(Theta(kk))*sind(mu(kk))/(r(kk)*cosd(Theta(kk)+mu(kk))))+...
81 +0.5*cotd(mu_c)*(degtorad(nu_c)-degtorad(nu_b))/(x(kk)-x(kk-1))));
82 end
83

84 f4(kk) = tand((Theta(kk-C)-mu(kk-C)+Theta(kk)-mu(kk))/2);
85 f5(kk) = 0.5*(1/(tand(mu(kk-C))*M(kk-C)*(1+(k-1)/2*M(kk-C)^2))+...
86 +1/(tand(mu(kk))*M(kk)*(1+(k-1)/2*M(kk)^2)));
87 f6(kk) = 0.5*(sind(Theta(kk-C))*sind(mu(kk-C))/(r(kk-C)*cosd(Theta(kk-C)-mu(kk-C))))+...
88 +0.5*(sind(Theta(kk))*sind(mu(kk))/(r(kk)*cosd(Theta(kk)-mu(kk)))));
89

90 AA = [1 -f1(kk) ; 1 -f4(kk)];
91 BB = [-f1(kk)*x(kk-1)+r(kk-1) ; -f4(kk)*x(kk-C)+r(kk-C)];
92 r_x = AA\BB;
93

94 conv = abs(x(kk)-r_x(2));
95

96 r(kk) = r_x(1);
97 x(kk) = r_x(2);
98 AA = [f2(kk) -1; f5(kk) +1];
99 BB = [HULP*f3(kk)*(x(kk)-x(kk-1)) - degtorad(Theta(kk-1)) + f2(kk)*M(kk-1) ; ...

HULP*f6(kk)*(x(kk)-x(kk-C)) + degtorad(Theta(kk-C)) + f5(kk)*M(kk-C) ];
100

101 M_T = AA\BB;
102 M(kk) = M_T(1);
103 Theta(kk) = radtodeg(M_T(2));
104 mu(kk) = asind(1/M(kk));
105

106 end
107 if x(kk) < x(kk-1)
108 Theta(kk) = (Theta(kk)+Theta(kk-1))/2;
109 x(kk)= x(kk-1);
110 r(kk)= r(kk-1);
111 end
112

113 end
114

115 kk = kk + 1;
116 f1(kk) = tand(Theta(kk-1)+mu(kk-1));
117 f4(kk) = tand(Theta(kk-C)-mu(kk-C));
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118 f6(kk) = sind(Theta(kk-C))*sind(mu(kk-C))/(r(kk-C)*cosd(Theta(kk-C)-mu(kk-C)));
119

120

121

122 AA = [1 -f1(kk) ; 1 -f4(kk)];
123 BB = [-f1(kk)*x(kk-1)+r(kk-1) ; -f4(kk)*x(kk-C)+r(kk-C)];
124 r_x = AA\BB;
125

126 r(kk) = r_x(1);
127 x(kk) = r_x(2);
128 M(kk) = M(kk-C);
129 mu(kk) = asind(1/M(kk));
130

131 Theta(kk) = Theta(kk-C)+radtodeg(HULP*f6(kk)*(x(kk)-x(kk-C)));
132

133 conv = 1;
134

135 while conv>1e-10
136

137 f4(kk) = tand((Theta(kk-C)+Theta(kk))/2);
138

139 f1(kk) = tand((Theta(kk-1)+mu(kk-1)+Theta(kk)+mu(kk))/2);
140 f2(kk) = 0.5*(1/(tand(mu(kk-1))*M(kk-1)*(1+(k-1)/2*M(kk-1)^2)))+...
141 +0.5*(1/(tand(mu(kk))*M(kk)*(1+(k-1)/2*M(kk)^2))));
142 f3(kk) = 0.5*(sind(Theta(kk-1))*sind(mu(kk-1))/(r(kk-1)*cosd(Theta(kk-1)+...
143 +mu(kk-1))))+0.5*(sind(Theta(kk))*sind(mu(kk))/(r(kk)*cosd(Theta(kk-1)+mu(kk)))));
144

145

146 AA = [1 -f1(kk) ; 1 -f4(kk)];
147 BB = [-f1(kk)*x(kk-1)+r(kk-1) ; -f4(kk)*x(kk-C)+r(kk-C)];
148 r_x = AA\BB;
149

150 conv = abs(x(kk)-r_x(2));
151

152 r(kk) = r_x(1);
153 x(kk) = r_x(2);
154 M(kk) = M(kk-C);
155 mu(kk) = asind(1/M(kk));
156

157 Theta(kk) = Theta(kk-1)+radtodeg(f2(kk)*(M(kk)-M(kk-C))-HULP*f3(kk)*(x(kk)-x(kk-1)));
158

159 end
160 end
161

162 ss = 1;
163

164 for S = 1+C+C:C:1+C^2%:1+2*C
165 Start = S;
166 clear gem
167 kk = S;
168 gem = 1;
169 r(S) = 0;
170 Theta(S) = 0;
171 f4(kk) = tand(Theta(S-C+1)-mu(S-C+1));
172 f5(kk) = 1/(tand(mu(S-C+1))*M(S-C+1)*(1+(k-1)/2*M(S-C+1)^2));
173 f6(kk) = sind(Theta(S-C+1))*sind(mu(S-C+1))/(r(S-C+1)*cosd(Theta(S-C+1)-mu(S-C+1)));
174

175 x(S) = x(S-C+1) - r(S-C+1)/(f4(kk));
176 M(S) = (degtorad(Theta(S-C+1)) + HULP*f6(kk)*(x(S)-x(S-C+1)))*(f5(kk)) + M(S-C+1);
177 mu(S) = asind(1/M(S));
178

179 [¬,nu(S-C+1),¬] =flowprandtlmeyer(k,M(S-C+1),'mach');
180

181 con = 1;
182 while con > 1e-10
183 vv = vv +1 ;
184

185 f4(kk) = tand((Theta(S-C+1)-mu(S-C+1)+Theta(S)-mu(S))/2);
186 x_new = x(S-C+1) - r(S-C+1)/(f4(kk));
187

188 f5(kk) = 0.5*(1/(tand(mu(S-C+1))*M(S-C+1)*(1+(k-1)/2*M(S-C+1)^2))+...
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189 +1/(tand(mu(S))*M(S)*(1+(k-1)/2*M(S)^2)));
190 [¬,nu_2,¬] =flowprandtlmeyer(k,M(S),'mach');
191 f6(kk) = ...

0.5*(sind(Theta(S-C+1))*sind(mu(S-C+1))/(r(S-C+1)*cosd(Theta(S-C+1)-mu(S-C+1)))- ...
0.5*cotd(mu(S-C+1))*(degtorad(nu_2)-degtorad(nu(S-C+1)))/(x_new-x(S-C+1)));

192

193 M(S) = (degtorad(Theta(S-C+1)) + HULP*f6(kk)*(x(S)-x(S-C+1)))*(f5(kk)) + M(S-C+1);
194 mu(S) = asind(1/M(S));
195 con(vv) = abs(x_new-x(S));
196 x(S) = x_new;
197

198 end
199

200

201 for kk = S+1:S+C-2;
202 kk
203 f1(kk) = tand(Theta(kk-1)+mu(kk-1));
204 f2(kk) = 1/(tand(mu(kk-1))*M(kk-1)*(1+(k-1)/2*M(kk-1)^2));
205 if r(kk-1) > 0
206 f3(kk) = sind(Theta(kk-1))*sind(mu(kk-1))/(r(kk-1)*cosd(Theta(kk-1)+mu(kk-1)));
207 else
208 f3(kk) = 0;
209 end
210

211 f4(kk) = tand(Theta(kk-C+1)-mu(kk-C+1));
212 f5(kk) = 1/(tand(mu(kk-C+1))*M(kk-C+1)*(1+(k-1)/2*M(kk-C+1)^2));
213 f6(kk) = sind(Theta(kk-C+1))*sind(mu(kk-C+1))/(r(kk-C+1)*cosd(Theta(kk-C+1)-mu(kk-C+1)));
214

215 AA = [1 -f1(kk) ; 1 -f4(kk)];
216 BB = [-f1(kk)*x(kk-1)+r(kk-1) ; -f4(kk)*x(kk-C+1)+r(kk-C+1)];
217 r_x = AA\BB;
218

219 r(kk) = r_x(1);
220 x(kk) = r_x(2);
221

222 AA = [f2(kk) -1; f5(kk) +1];
223 BB = [HULP*f3(kk)*(x(kk)-x(kk-1)) - degtorad(Theta(kk-1)) + f2(kk)*M(kk-1) ; ...

HULP*f6(kk)*(x(kk)-x(kk-C+1)) + degtorad(Theta(kk-C+1)) + f5(kk)*M(kk-C+1) ];
224 M_T = AA\BB;
225 M(kk) = M_T(1);
226 Theta(kk) = (M_T(2));
227 mu(kk) = asind(1/M(kk));
228 conv = 1;
229

230 while conv>1e-10
231 f1(kk) = tand((Theta(kk-1)+mu(kk-1)+Theta(kk)+mu(kk))/2);
232 f2(kk) = 0.5*(1/(tand(mu(kk-1))*M(kk-1)*(1+(k-1)/2*M(kk-1)^2))+...
233 +1/(tand(mu(kk))*M(kk)*(1+(k-1)/2*M(kk)^2)));
234 if r(kk-1) > 0
235 f3(kk) = ...

0.5*(sind(Theta(kk-1))*sind(mu(kk-1))/(r(kk-1)*cosd(Theta(kk-1)+mu(kk-1)))+...
236 +sind(Theta(kk))*sind(mu(kk))/(r(kk)*cosd(Theta(kk-1)+mu(kk))));
237 else
238 [¬,nu_c,mu_c] =flowprandtlmeyer(k,M(kk),'mach');
239 [¬,nu_b,¬] =flowprandtlmeyer(k,M(kk-1),'mach');
240 f3(kk) = 0.5*(sind(Theta(kk))*sind(mu(kk))/(r(kk)*cosd(Theta(kk)+mu(kk)))+...
241 +0.5*cotd(mu_c)*(degtorad(nu_c)-degtorad(nu_b))/(x(kk)-x(kk-1)));
242 end
243

244 f4(kk) = tand((Theta(kk-C+1)-mu(kk-C+1)+Theta(kk)-mu(kk))/2);
245 f5(kk) = 0.5*(1/(tand(mu(kk-C+1))*M(kk-C+1)*(1+(k-1)/2*M(kk-C+1)^2))+...
246 +1/(tand(mu(kk))*M(kk)*(1+(k-1)/2*M(kk)^2)));
247 f6(kk) = ...

0.5*(sind(Theta(kk-C+1))*sind(mu(kk-C+1))/(r(kk-C+1)*cosd(Theta(kk-C+1)-mu(kk-C+1)))+
248 ...+sind(Theta(kk))*sind(mu(kk))/(r(kk)*cosd(Theta(kk)-mu(kk))));
249

250 AA = [1 -f1(kk) ; 1 -f4(kk)];
251 BB = [-f1(kk)*x(kk-1)+r(kk-1) ; -f4(kk)*x(kk-C+1)+r(kk-C+1)];
252 r_x = AA\BB;
253

254 conv = abs(x(kk)-r_x(2));
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255

256 r(kk) = r_x(1);
257 x(kk) = r_x(2);
258 AA = [f2(kk) -1; f5(kk) +1];
259 BB = [HULP*f3(kk)*(x(kk)-x(kk-1)) - degtorad(Theta(kk-1)) + f2(kk)*M(kk-1) ; ...

HULP*f6(kk)*(x(kk)-x(kk-C+1)) + degtorad(Theta(kk-C+1)) + f5(kk)*M(kk-C+1) ];
260

261 M_T = AA\BB;
262 M(kk) = M_T(1);
263 Theta(kk) = radtodeg(M_T(2));
264 mu(kk) = asind(1/M(kk));
265

266 end
267

268 if x(kk) ≤x(kk-1)
269 if end1 == 0
270 Pre_shock_M = M(kk-1);
271 Pre_shock_Theta = Theta(kk-1);
272 Pre_shock_n = kk - 1;
273 end
274

275 end1 = 1;
276

277 post_shock_M = M(kk);
278 post_shock_Theta = Theta(kk);
279 post_shock_n = kk;
280

281 SAVE(ss) = kk-1;
282 ss = ss + 1;
283 SAVE(ss) = kk;
284 ss = ss +1;
285

286

287 x_mean = mean(x(unique(SAVE)));
288 r_mean = mean(r(unique(SAVE)));
289 M_mean = mean(M(unique(SAVE)));
290 Theta_mean = mean(Theta(unique(SAVE)));
291 mu_mean = mean(mu(unique(SAVE)));
292

293

294 x(unique(SAVE)) = x_mean;
295 r(unique(SAVE)) = r_mean;
296 M(unique(SAVE)) = M_mean;
297 Theta(unique(SAVE)) = Theta_mean;
298 mu(unique(SAVE)) = mu_mean;
299

300 end
301

302 end
303

304 kk = kk + 1;
305 f1(kk) = tand(Theta(kk-1)+mu(kk-1));
306 f4(kk) = tand(Theta(kk-C)-mu(kk-C));
307 f6(kk) = sind(Theta(kk-C))*sind(mu(kk-C))/(r(kk-C)*cosd(Theta(kk-C)-mu(kk-C)));
308

309

310

311 AA = [1 -f1(kk) ; 1 -f4(kk)];
312 BB = [-f1(kk)*x(kk-1)+r(kk-1) ; -f4(kk)*x(kk-C)+r(kk-C)];
313 r_x = AA\BB;
314

315 r(kk) = r_x(1);
316 x(kk) = r_x(2);
317 M(kk) = M(kk-C);
318 mu(kk) = asind(1/M(kk));
319

320 Theta(kk) = Theta(kk-C)+radtodeg(f6(kk)*(x(kk)-x(kk-C)));
321

322 conv = 1;
323

324 while conv>1e-10
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325

326 f4(kk) = tand((Theta(kk-C)+Theta(kk))/2);
327

328 f1(kk) = tand((Theta(kk-1)+mu(kk-1)+Theta(kk)+mu(kk))/2);
329 f2(kk) = 0.5*(1/(tand(mu(kk-1))*M(kk-1)*(1+(k-1)/2*M(kk-1)^2))+...
330 +1/(tand(mu(kk))*M(kk)*(1+(k-1)/2*M(kk)^2)));
331 f3(kk) = 0.5*(sind(Theta(kk-1))*sind(mu(kk-1))/(r(kk-1)*cosd(Theta(kk-1)+mu(kk-1)))+...
332 +sind(Theta(kk))*sind(mu(kk))/(r(kk)*cosd(Theta(kk-1)+mu(kk))));
333

334

335 AA = [1 -f1(kk) ; 1 -f4(kk)];
336 BB = [-f1(kk)*x(kk-1)+r(kk-1) ; -f4(kk)*x(kk-C)+r(kk-C)];
337 r_x = AA\BB;
338

339 conv = abs(x(kk)-r_x(2));
340

341 r(kk) = r_x(1);
342 x(kk) = r_x(2);
343 M(kk) = M(kk-C);
344 mu(kk) = asind(1/M(kk));
345

346 Theta(kk) = Theta(kk-1)+radtodeg(f2(kk)*(M(kk)-M(kk-C))-HULP*f3(kk)*(x(kk)-x(kk-1)));
347 end
348

349

350

351 if end1 == 1
352

353 f4(unique(SAVE)) = mean(f4(unique(SAVE)));
354 return
355 end
356 end

1 clc
2 close all
3 clear all
4

5 %% parameters
6 Char = 2000;
7 Pressdiff =120;
8 R = 208;
9 k = 1.666666;

10 H=0.775*10^-3;
11 HULP = 1; % 0 is PLANAR, 1 is AXISYMMMETRIC
12

13 M = zeros(1,Char^2/10^2);
14 nu = zeros(1,Char^2/10^2);
15 r = zeros(1,Char^2/10^2);
16 x = zeros(1,Char^2/10^2);
17 Theta = zeros(1,Char^2/10^2);
18

19 M(1) = 1;
20 klas = 0;
21 P_stag = (1+(k-1)/2*M(1)^2)^-(k/(k-1)); % isentropic relation for stagnation pressure ...

ratio
22 P_tot = 1/(Pressdiff*P_stag);
23

24 M(Char+1) = (2/(k-1)*(P_tot^((1-k)./k)-1))^(1/2); % Mach number in region #Char+1
25

26 [M(1),nu(1),mu(1)] =flowprandtlmeyer(k,M(1),'mach');
27 [M(1+Char),nu(1+Char),mu(1+Char)] =flowprandtlmeyer(k,M(1+Char),'mach');
28

29 Theta(Char+1) = nu(Char+1) - nu(1);
30 D_Theta = ((Theta(Char+1))/(Char^1.1));
31

32 for i = 1:Char-1
33 Theta(i+1) = (Theta(1)+D_Theta*(i^1.1));
34 nu(i+1) = (nu(1) + D_Theta*(i^1.1));
35
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36 [¬,¬,mu(i+1)] =flowprandtlmeyer(k,nu(i+1),'nu');
37

38 end
39

40 FI = Char/100;
41 D_Theta = Theta(FI)/(FI^4);
42

43 [M(1),nu(1),mu(1)] =flowprandtlmeyer(k,M(1),'mach');
44 [M(1+Char),nu(1+Char),mu(1+Char)] =flowprandtlmeyer(k,M(1+Char),'mach');
45

46 for i = 1:FI
47 Theta(i+1) = (Theta(1)+D_Theta*(i^4));
48 nu(i+1) = (nu(1) + D_Theta*(i^4));
49 [¬,¬,mu(i+1)] =flowprandtlmeyer(k,nu(i+1),'nu');
50 end
51

52 for i = 1:Char-1
53 Theta(i) = (Theta(i+1)+Theta(i))/2;
54 mu(i) = (mu(i+1)+mu(i))/2;
55 end
56

57

58

59 M = 1./sind(mu);
60

61 Char = Char+1;
62

63 x(1:Char) = 0;
64 r(1:Char) = H;
65

66

67 axiJET
68

69

70 % figure(2)
71 % hold on
72 % for ii = Start:length(x)
73 % plot(x(ii),r(ii),'*')
74 % text(x(ii),0.01+r(ii),num2str(ii))
75 % end
76 %
77 % hold off
78

79

80 Begin_1 = S;
81

82 figure(1)
83 xlabel('x [cm]')
84 ylabel('y [cm]')
85 hold on
86 sss = 0;
87

88 x_shock = 0.65*sqrt(Pressdiff)*H*2;
89 r_shock = 0.35*sqrt(Pressdiff)*H/2;
90

91 plot(x_shock,r_shock,'o')
92

93 S_angle_pre = (atand(f4(SAVE(2)))-Theta(SAVE(2)));
94 M_a_pre = M(SAVE(2)-1);
95 def_pre = (atand(1/(((k+1)/2*M_a_pre^2/(M_a_pre^2*sind(S_angle_pre)^2-1)-1)*
96 ...(tand(S_angle_pre)))));
97 press_pre = (2*k)/(k+1)*(M_a_pre^2*sind(S_angle_pre)^2-(k-1)/(2*k));
98 dens_pre = 1/((2)/(k+1)*(1/(M_a_pre^2*sind(S_angle_pre)^2)+(k-1)/(2)));
99 entropy_pre = ((R)/(k-1)*(-log(1/press_pre)+k*log(1/dens_pre)));

100 M_b_pre = sqrt((1/(tand(S_angle_pre)/(tand(S_angle_pre-def_pre))*
101 ...(k+1)/2-(k-1)/2))/((sind(S_angle_pre-def_pre))^2));
102 W_a_pre = sqrt(1/(1+(2/(k-1))*1/M_a_pre^2));
103 W_b_pre = sqrt(1/(1+(2/(k-1))*1/M_b_pre^2));
104 dw_dd = 0;
105 ds_dd = 0;
106
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107 BEGINNNN_angle = S_angle_pre;
108 aaaa = 0;
109 test = 1;
110

111 for S = Begin_1+Char:Char:Begin_1+Char*Char %Begin_1+Char
112

113 ss = 1;
114 aaaa = aaaa + 1;
115 Start(aaaa) = S;
116

117 kk = S;
118

119 r(S) = 0;
120 Theta(S) = 0;
121 f4 = tand(Theta(S-Char+1)-mu(S-Char+1));
122 f5 = 1/(tand(mu(S-Char+1))*M(S-Char+1)*(1+(k-1)/2*M(S-Char+1)^2));
123 f6 = sind(Theta(S-Char+1))*sind(mu(S-Char+1))/...
124 (r(S-Char+1)*cosd(Theta(S-Char+1)-mu(S-Char+1)));
125

126 x(S) = x(S-Char+1) - r(S-Char+1)/(f4);
127 M(S) = (degtorad(Theta(S-Char+1)) + HULP*f6*(x(S)-x(S-Char+1)))*(f5) + M(S-Char+1);
128 mu(S) = asind(1/M(S));
129

130 [¬,nu(S-Char+1),¬] =flowprandtlmeyer(k,M(S-Char+1),'mach');
131

132 con = 1;
133

134 while con > 1e-10
135 f4 = tand((Theta(S-Char+1)-mu(S-Char+1)+Theta(S)-mu(S))/2);
136 x_new = x(S-Char+1) - r(S-Char+1)/(f4);
137

138 f5 = 0.5*(1/(tand(mu(S-Char+1))*M(S-Char+1)*(1+(k-1)/2*M(S-Char+1)^2))+
139 ...+1/(tand(mu(S))*M(S)*(1+(k-1)/2*M(S)^2)));
140 [¬,nu_2,¬] =flowprandtlmeyer(k,M(S),'mach');
141 f6 = 0.5*(sind(Theta(S-Char+1))*sind(mu(S-Char+1))/...
142 (r(S-Char+1)*cosd(Theta(S-Char+1)-mu(S-Char+1)))- ...
143 0.5*cotd(mu(S-Char+1))*(degtorad(nu_2)-degtorad(nu(S-Char+1)))/(x_new-x(S-Char+1)));
144

145 M(S) = (degtorad(Theta(S-Char+1)) + HULP*f6*(x(S)-x(S-Char+1)))*(f5) + M(S-Char+1);
146 mu(S) = asind(1/M(S));
147 con = abs(x_new-x(S));
148 x(S) = x_new;
149

150 end
151

152

153 while x(kk) > x(kk-1) || kk == S
154

155 kk = kk + 1;
156 f1 = tand(Theta(kk-1)+mu(kk-1));
157 f2 = 1/(tand(mu(kk-1))*M(kk-1)*(1+(k-1)/2*M(kk-1)^2));
158 if r(kk-1) > 0
159 f3 = sind(Theta(kk-1))*sind(mu(kk-1))/(r(kk-1)*cosd(Theta(kk-1)+mu(kk-1)));
160 else
161 f3 = 0;
162 end
163 f4 = tand(Theta(kk-Char+1)-mu(kk-Char+1));
164 f5 = 1/(tand(mu(kk-Char+1))*M(kk-Char+1)*(1+(k-1)/2*M(kk-Char+1)^2));
165 f6 = sind(Theta(kk-Char+1))*sind(mu(kk-Char+1))/
166 ...(r(kk-Char+1)*cosd(Theta(kk-Char+1)-mu(kk-Char+1)));
167

168 AA = [1 -f1 ; 1 -f4];
169 BB = [-f1*x(kk-1)+r(kk-1) ; -f4*x(kk-Char+1)+r(kk-Char+1)];
170 r_x = AA\BB;
171

172 r(kk) = r_x(1);
173 x(kk) = r_x(2);
174

175 AA = [f2 -1; f5 +1];
176 BB = [HULP*f3*(x(kk)-x(kk-1)) - degtorad(Theta(kk-1)) + f2*M(kk-1) ; ...

HULP*f6*(x(kk)-x(kk-Char+1)) + degtorad(Theta(kk-Char+1)) + f5*M(kk-Char+1) ];
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177 M_T = AA\BB;
178 M(kk) = M_T(1);
179 Theta(kk) = (M_T(2));
180 mu(kk) = asind(1/M(kk));
181 convp = 1;
182

183 while convp>1e-12
184 f1 = tand((Theta(kk-1)+mu(kk-1)+Theta(kk)+mu(kk))/2);
185 f2 = ...

0.5*(1/(tand(mu(kk-1))*M(kk-1)*(1+(k-1)/2*M(kk-1)^2))+1/(tand(mu(kk))*M(kk)*(1+(k-1)/2*M(kk)^2)));
186 if r(kk-1) > 0
187 f3 = ...

0.5*(sind(Theta(kk-1))*sind(mu(kk-1))/(r(kk-1)*cosd(Theta(kk-1)+mu(kk-1)))+
188 ...+sind(Theta(kk))*sind(mu(kk))/(r(kk)*cosd(Theta(kk-1)+mu(kk))));
189 else
190 [¬,nu_c,mu_c] =flowprandtlmeyer(k,M(kk),'mach');
191 [¬,nu_b,¬] =flowprandtlmeyer(k,M(kk-1),'mach');
192 f3 = 0.5*(sind(Theta(kk))*sind(mu(kk))/(r(kk)*cosd(Theta(kk)+mu(kk)))+
193 ...+0.5*cotd(mu_c)*(degtorad(nu_c)-degtorad(nu_b))/(x(kk)-x(kk-1)));
194 end
195

196 f4 = tand((Theta(kk-Char+1)-mu(kk-Char+1)+Theta(kk)-mu(kk))/2);
197 f5 = 0.5*(1/(tand(mu(kk-Char+1))*M(kk-Char+1)*(1+(k-1)/2*M(kk-Char+1)^2))+...+
198 1/(tand(mu(kk))*M(kk)*(1+(k-1)/2*M(kk)^2)));
199 f6 = 0.5*(sind(Theta(kk-Char+1))*sind(mu(kk-Char+1))/...
200 (r(kk-Char+1)*cosd(Theta(kk-Char+1)-mu(kk-Char+1)))+...
201 +sind(Theta(kk))*sind(mu(kk))/(r(kk)*cosd(Theta(kk)-mu(kk))));
202

203 AA = [1 -f1 ; 1 -f4];
204 BB = [-f1*x(kk-1)+r(kk-1) ; -f4*x(kk-Char+1)+r(kk-Char+1)];
205 r_x = AA\BB;
206

207 convp = abs(x(kk)-r_x(2));
208

209 r(kk) = r_x(1);
210 x(kk) = r_x(2);
211 AA = [f2 -1; f5 +1];
212 BB = [HULP*f3*(x(kk)-x(kk-1)) - degtorad(Theta(kk-1)) + f2*M(kk-1) ; ...

HULP*f6*(x(kk)-x(kk-Char+1)) + degtorad(Theta(kk-Char+1)) + ...
f5*M(kk-Char+1) ];

213

214 M_T = AA\BB;
215 M(kk) = M_T(1);
216 Theta(kk) = radtodeg(M_T(2));
217 mu(kk) = asind(1/M(kk));
218 end
219 end
220

221 Checkker = 1;
222 testaa = 0;
223 S_angle_post = S_angle_pre;
224 kk = kk;
225

226

227 while Checkker == 1 ;
228 x = x(1:kk-1);
229 r = r(1:kk-1);
230 Theta = Theta(1:kk-1);
231 mu = mu(1:kk-1);
232 M = M(1:kk-1);
233

234 Checkker = 0;
235

236 kk = kk - 1;
237

238 f1 = tand(Theta(kk-1)+mu(kk-1));
239 f4 = tand(Theta(kk-Char)+S_angle_post);
240

241

242 AA = [1 -f1 ; 1 -f4];
243 BB = [-f1*x(kk-1)+r(kk-1) ; -f4*x((kk-Char+1))+r((kk-Char+1))];
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244 r_x = AA\BB;
245

246

247 r(kk) = r_x(1);
248 x(kk) = r_x(2);
249

250 dsdnplus_pre = ...
(entropy_pre)*cosd(mu(kk-1)+Theta(kk-1))/(sind(mu(kk-1))*(x(kk)-x(kk-1)));

251

252 Theta(kk) = ...
radtodeg(1/(tand(mu(kk-1))*M(kk-1)*(1+(k-1)/2*M(kk-1)^2))*(M(kk)-M(kk-1)) + ...
HULP*(x(kk)-x(kk-1))*(-sind(Theta(kk-1))*sind(mu(kk-1))/

253 ...(r(kk-1)*cosd(Theta(kk-1)+mu(kk-1)))+dsdnplus_pre*sind(mu(kk-1))^3/(cosd(mu(kk-1)+Theta(kk-1)))/(k*R))/tand(mu(kk-1)))+Theta(kk-1);
254

255 M_a_post = M(kk-1);
256 def_post = Theta(kk) - Theta(kk-1);
257

258 S_angle_post = -radtodeg(obliquerelations('mach', M_a_post, ...
'theta',abs(degtorad(def_post)),k));

259

260 press_post = (2*k)/(k+1)*(M_a_post^2*sind(S_angle_post)^2-(k-1)/(2*k));
261 dens_post = 1/((2)/(k+1)*(1/(M_a_post^2*sind(S_angle_post)^2)+(k-1)/(2)));
262 entropy_post = ((R)/(k-1)*(-log(1/press_post)+k*log(1/dens_post)));
263 M(kk) = sqrt((1/(tand((-S_angle_post))/(tand((-S_angle_post)-(def_post)))*...
264 (k+1)/2-(k-1)/2))/((sind((-S_angle_post)-(def_post)))^2));
265

266

267 convss = 1;
268 testaa = 0;
269

270 while convss > 10^-12
271

272 f1 = tand(Theta(kk-1)+mu(kk-1));
273

274

275

276 f4 = tand((Theta(kk-Char+1)+S_angle_pre+Theta(kk)+S_angle_post)/2);
277

278 AA = [1 -f1 ; 1 -f4];
279 BB = [-f1*x(kk-1)+r(kk-1) ; -f4*x(kk-Char+1)+r(kk-Char+1)];
280 r_x = AA\BB;
281

282 convss_new = abs(x(kk)-r_x(2));
283 r(kk) = r_x(1);
284 x(kk) = r_x(2);
285

286 dsdnplus_pre = ...
(entropy_post)*cosd(mu(kk-1)+Theta(kk-1))/(sind(mu(kk-1))*(x(kk)-x(kk-1)));

287

288 Theta(kk) = ...
radtodeg(1/(tand(mu(kk-1))*M(kk-1)*(1+(k-1)/2*M(kk-1)^2))*(M(kk)-M(kk-1)) + ...
HULP*(x(kk)-x(kk-1))*(-sind(Theta(kk-1))*sind(mu(kk-1))/

289 ...(r(kk-1)*cosd(Theta(kk-1)+mu(kk-1)))+dsdnplus_pre*sind(mu(kk-1))^3/(cosd(mu(kk-1)+Theta(kk-1)))/(k*R))/tand(mu(kk-1)))+Theta(kk-1);
290

291 M_a_post = M(kk-1);
292 def_post = Theta(kk) - Theta(kk-1);
293

294 S_angle_post = -radtodeg(obliquerelations('mach', M_a_post, ...
'theta',abs(degtorad(def_post)),k));

295

296 press_post = (2*k)/(k+1)*(M_a_post^2*sind(S_angle_post)^2-(k-1)/(2*k));
297 dens_post = 1/((2)/(k+1)*(1/(M_a_post^2*sind(S_angle_post)^2)+(k-1)/(2)));
298 entropy_post = ((R)/(k-1)*(-log(1/press_post)+k*log(1/dens_post)));
299 M(kk) = sqrt((1/(tand(S_angle_post)/(tand(S_angle_post+def_pre))*(k+1)/2-(k-1)/2))/
300 ...((sind(S_angle_post+def_pre))^2));
301

302

303 convss = convss_new;
304 end
305

306 end
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307

308 S_angle_pre = S_angle_post;
309 M_a_pre = M_a_post;
310 def_pre = def_post;
311 press_pre = press_post;
312 dens_pre = dens_post;
313 entropy_pre = entropy_post
314 %M(kk) = M_b_post;
315 %mu(kk) = asind(1/M(kk));
316

317 SAVE(1) = kk;
318

319 sss = sss + 1;
320 SHOCK(sss) = kk;
321

322 plot(x(SHOCK(sss)),r(SHOCK(sss)),'*')
323 text(x(SHOCK(sss)),0.0001+r(SHOCK(sss)),num2str(SHOCK(sss)))
324 drawnow
325 S_angle_pre
326 kk = kk + 1;
327 f1 = tand(Theta(kk-1)+mu(kk-1));
328 f2 = 1/(tand(mu(kk-1))*M(kk-1)*(1+(k-1)/2*M(kk-1)^2));
329 if r(kk-1) > 0
330 f3 = sind(Theta(kk-1))*sind(mu(kk-1))/(r(kk-1)*cosd(Theta(kk-1)+mu(kk-1)));
331 else
332 f3 = 0;
333 end
334 f4 = tand(Theta(kk-Char+1)-mu(kk-Char+1));
335 f5 = 1/(tand(mu(kk-Char+1))*M(kk-Char+1)*(1+(k-1)/2*M(kk-Char+1)^2));
336 f6 = sind(Theta(kk-Char+1))*sind(mu(kk-Char+1))/...
337 (r(kk-Char+1)*cosd(Theta(kk-Char+1)-mu(kk-Char+1)));
338

339 AA = [1 -f1 ; 1 -f4];
340 BB = [-f1*x(kk-1)+r(kk-1) ; -f4*x(kk-Char+1)+r(kk-Char+1)];
341 r_x = AA\BB;
342

343 r(kk) = r_x(1);
344 x(kk) = r_x(2);
345

346 AA = [f2 -1; f5 +1];
347 BB = [HULP*f3*(x(kk)-x(kk-1)) - degtorad(Theta(kk-1)) + f2*M(kk-1) ; ...

HULP*f6*(x(kk)-x(kk-Char+1)) + degtorad(Theta(kk-Char+1)) + f5*M(kk-Char+1) ];
348 M_T = AA\BB;
349 M(kk) = M_T(1);
350 Theta(kk) = (M_T(2));
351 mu(kk) = asind(1/M(kk));
352 convp = 1;
353

354 while convp>1e-12
355 f1 = tand((Theta(kk-1)+mu(kk-1)+Theta(kk)+mu(kk))/2);
356 f2 = 0.5*(1/(tand(mu(kk-1))*M(kk-1)*(1+(k-1)/2*M(kk-1)^2))+...
357 +1/(tand(mu(kk))*M(kk)*(1+(k-1)/2*M(kk)^2)));
358 if r(kk-1) > 0
359 f3 = 0.5*(sind(Theta(kk-1))*sind(mu(kk-1))/(r(kk-1)*cosd(Theta(kk-1)+...
360 +mu(kk-1)))+sind(Theta(kk))*sind(mu(kk))/(r(kk)*cosd(Theta(kk-1)+mu(kk))));
361 else
362 [¬,nu_c,mu_c] =flowprandtlmeyer(k,M(kk),'mach');
363 [¬,nu_b,¬] =flowprandtlmeyer(k,M(kk-1),'mach');
364 f3 = 0.5*(sind(Theta(kk))*sind(mu(kk))/(r(kk)*cosd(Theta(kk)+mu(kk)))+...
365 +0.5*cotd(mu_c)*(degtorad(nu_c)-degtorad(nu_b))/(x(kk)-x(kk-1)));
366 end
367

368 f4 = tand((Theta(kk-Char+1)-mu(kk-Char+1)+Theta(kk)-mu(kk))/2);
369 f5 = 0.5*(1/(tand(mu(kk-Char+1))*M(kk-Char+1)*(1+(k-1)/2*M(kk-Char+1)^2))+...
370 +1/(tand(mu(kk))*M(kk)*(1+(k-1)/2*M(kk)^2)));
371 f6 = 0.5*(sind(Theta(kk-Char+1))*sind(mu(kk-Char+1))/...
372 (r(kk-Char+1)*cosd(Theta(kk-Char+1)-mu(kk-Char+1)))+...
373 +sind(Theta(kk))*sind(mu(kk))/(r(kk)*cosd(Theta(kk)-mu(kk))));
374

375 AA = [1 -f1 ; 1 -f4];
376 BB = [-f1*x(kk-1)+r(kk-1) ; -f4*x(kk-Char+1)+r(kk-Char+1)];
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377 r_x = AA\BB;
378

379 convp = abs(x(kk)-r_x(2));
380

381 r(kk) = r_x(1);
382 x(kk) = r_x(2);
383 AA = [f2 -1; f5 +1];
384 BB = [HULP*f3*(x(kk)-x(kk-1)) - degtorad(Theta(kk-1)) + f2*M(kk-1) ; ...

HULP*f6*(x(kk)-x(kk-Char+1)) + degtorad(Theta(kk-Char+1)) + ...
f5*M(kk-Char+1) ];

385

386 M_T = AA\BB;
387 M(kk) = M_T(1);
388 Theta(kk) = radtodeg(M_T(2));
389 mu(kk) = asind(1/M(kk));
390 end
391 end
392

393

394

395

396

397 % figure(3)
398 % hold on
399 % for ii = 1:length(x)
400 % plot(x(ii),r(ii),'*')
401 % text(x(ii),0.01+r(ii),num2str(ii))
402 % end
403 %
404 % hold off
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Wall temperatures for the non-adiabatic case as simulated with STAR-CCM+ in [17].

Figure C.1: Legend of the contour plots shown below

Figure C.2: Temperature on the aluminum wall (positive X end). Results obtained from CFD using PR EOS and the k −ω turbulence
model

Figure C.3: Temperature on the fused-silica wall at the negative X end. Results obtained from CFD using PR EOS and the k−ω turbulence
model
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Figure C.4: Temperature on the poly-urethane wall (positive Y end). Results obtained from CFD using PR EOS and the k −ω turbulence
model

Figure C.5: Temperature on the fused-silica wall (negative Y end). Results obtained from CFD using PR EOS and the k −ω turbulence
model
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